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A b s t r a c t  
This paper describes a method for linear text seg- 
mentation which is twice as accurate and over seven 
times as fast as the state-of-the-art (Reynar, 1998). 
Inter-sentence similarity is replaced by rank in the 
local context. Boundary locations are discovered by 
divisive clustering. 

1 I n t r o d u c t i o n  

Even moderately long documents typically address 
sew~ral topics or different aspects of the same topic. 
The aim of linear text segmentation is to discover 
the topic boundaries. The uses of this procedure 
include information retrieval (Hearst and Plaunt, 
1993; Hearst, 1994; Yaari, 1997; Reynar, 1999), 
summarization (Reynar, 1998), text understanding, 
anaphora resolution (Kozima, 1993), language mod- 
elling (Morris and Hirst, 1991; Beeferman et al., 
199717) and improving document navigation for the 
visually disabled (Choi, 2000). 

This paper focuses on domain independent meth- 
ods for segmenting written text. We present a new 
algorithm that builds on previous work by Reynar 
(Reynar, 1998; Reynar, 1994). The primary distinc- 
tion of our method is the use of a ranking scheme 
and the cosine similarity measure (van Rijsbergen, 
1979) in formulating the similarity matrix. We pro- 
pose that the similarity values of short text segments 
is statistically insignificant. Thus, one can only rely 
on their order, or rank, for clustering. 

2 B a c k g r o u n d  

Existing work falls into one of two categories, lexical 
cohesion methods and multi-source methods (Yaari, 
1997). The former stem from the work of Halliday 
and Hasan (Halliday and Hasan, 1976). They pro- 
posed that text segments with similar vocabulary 
are likely to be part of a coherent topic segment. 
hnplementations of this idea use word stem repe- 
tition (Youmans, 1991; Reynar, 1994; Ponte and 
Croft, 1997), context vectors (Hearst, 1994; Yaar- 
i, 1997; Kaufmann, 1999; Eichmann et al., 1999), 
entity repetition (Kan et al., 1998), semantic simi- 
larity (Morris and Hirst, 1991; Kozima, 1993), word 

distance model (Beeferman et al., 1997a) and word 
frequency model (Reynar, 1999) to detect cohesion. 
Methods for finding the topic boundaries include s- 
liding window (Hearst, 1994), lexical chains (Mor- 
ris, 1988; Kan et al., 1998), dynamic programming 
(Ponte and Croft, 1997; Heinonen, 1998), agglomer- 
ative clustering (Yaari, 1997) and divisive clustering 
(Reynar, 1994). Lexical cohesion methods are typi- 
cally used for segmenting written text in a collection 
to improve information retrieval (Hearst, 1994; Rey- 
nat, 1998). 

Multi-source methods combine lexical cohesion 
with other indicators of topic shift such as cue phras- 
es, prosodic features, reference, syntax and lexical 
attraction (Beeferman et al., 1997a) using decision 
trees (Miike et al., 1994; Kurohashi and Nagao, 
1994; Litman and Passonneau, 1995) and probabilis- 
tic models (Beeferman et al., 1997b; Hajime et al., 
1998; Reynar, 1998). Work in this area is largely mo- 
tivated by the topic detection and tracking (TDT) 
initiative (Allan et al., 1998). The focus is on the 
segmentation of transcribed spoken text and broad- 
cast news stories where the presentation format and 
regular cues can be exploited to improve accuracy. 

3 A l g o r i t h m  
Our segmentation algorithm takes a list of tokenized 
sentences as input. A tokenizer (Grefenstette and 
Tapanainen, 1994) and a sentence boundary disam- 
biguation algorithm (Palmer and Hearst, 1994; Rey- 
nar and Ratnaparkhi, 1997) or EAGLE (Reynar et 
al., 1997) may be used to convert a plain text docu- 
ment into the acceptable input format. 

3.1 Similarity measure 
Punctuation and uninformative words are removed 
from each sentence using a simple regular expression 
pattern mateher and a stopword list. A stemming 
algorithm (Porter, 1980) is then applied to the re- 
maining tokens to obtain the word stems. A dic- 
tionary of word stem frequencies is constructed for 
each sentence. This is represented as a vector of 
frequency counts. 

Let fi,j denote the frequency of word j in sentence 
i. The similarity between a pair of sentences x,y 
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is computed using the cosine measure as shown in 
equation 1. This is applied to all sentence pairs to 
generate a similarity matrix. 

E:, f.~., x :~., 
s i m ( x , y )  = ~_~.,  .~., , , ,  

f 2 . x E j f 2 .  (1) 

Figure 1 shows an example of a similarity matr ix  ~ . 
High similarity values are represented by bright pix- 
els. The bottom-left  and top-right pixel show the 
self-similarity for the first and last sentence, respec- 
tively. Notice the matr ix  is symmetric and contains 
bright square regions along the diagonal. These re- 
gions represent cohesive text segments. 

Each value in the similarity matr ix  is replaced by 
its rank in the local region. The rank is the num- 
ber of neighbouring elements with a lower similarity 
value. Figure 2 shows an example of image ranking 
using a 3 x 3 rank mask with output  range {0, 8}. 
For segmentation, we used a 11 x 11 rank mask. The 
output  is expressed as a ratio r (equation 2) to cir- 
cumvent normalisation problems (consider the cases 
when the rank mask is not contained in the image). 

Similarity matrix Rank matrix 
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Figure 2: A working example of image ranking. 

Figure 1: An example similarity matrix.  

3.2 R a n k i n g  
For short text segments, the absolute value of 
sire(x, y) is unreliable. An additional occurrence of 
a common word (reflected in the numerator)  causes 
a disproportionate increase in sim(x,y) unless the 
denominator (related to segment length) is large. 
Thus, in the context of text segmentation where a 
segment has typically < 100 informative tokens, one 
can only use the metric to estimate the order of sim- 
ilarity between sentences, e.g. a is more similar to b 
than c. 

Furthermore, language usage varies throughout  a 
document. For instance, the introduction section of 
a document is less cohesive than a section which is 
about  a particular topic. Consequently, it is inap- 
propriate to directly compare the similarity values 
from different regions of the similarity matrix. 

In non-parametr ic  statistical analysis, one com- 
pares the rank of da ta  sets when the qualitative be- 
haviour is similar but the absolute quantities are un- 
reliable. We present a ranking scheme which is an 
adaptat ion of that  described in (O'Neil and Denos, 
1992). 

1The contrast of the image has been adjusted to highlight 
the image features. 

# of elements with a lower value 
r = ( 2 )  

# of elements examined 

To demonstrate  the effect of image ranking, the 
process was applied to the matr ix  shown in figure 1 
to produce figure 32 . Notice the contrast  has been 
improved significantly. Figure 4 illustrates the more 
subtle effects of our ranking scheme, r(x) is the rank 
(1 x 11 mask) of f(x) which is a sine wave with 
decaying mean, ampli tude and frequency (equation 
3). 

Figure 3: The matrix in figure 1 after ranking. 

2The process was applied to the original matrix, prior to 
contra.st enhancement. The output image has not been en- 
hanced. 
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Figure 4: An illustration of the more subtle effects 
of our ranking scheme. 

3.3 C l u s t e r i n g  

The final process determines the location of the topic 
boundaries. The method is based on Reynar 's  max- 
imisation algorithm (Reynar, 1998; Helfman, 1996; 
Church, 1993; Church and Helfman, 1993). A text  
segment is defined by two sentences i , j  (inclusive). 
This is represented as a square region along the di- 
agonal of the rank matrix.  Let si,j denote the sum of 
the rank values in a segment and a i j  = (j - i + 1) 2 
be the inside area. B = {bl,. . . ,bm} is a list of m 
(:oherent text  segments, sk and ak refers to the sum 
of rank and area of segment k in B. D is the inside 
density of B (see equation 4). 

D - (4) 
)-~k~l ak 

To initialise the process, the entire document is 
placed in B as one coherent text  segment. Each step 
of the process splits one of the segments in B. The 
split point is a potential  boundary which maximises 
D. Figure 5 shows a working example. 

The number of segments to generate, m, is deter- 
mined automatically. D (n) is the inside density of n 
segments and 5D (n) -- D (n) - D  (n-l)  is the gradient. 
For a document with b potential boundaries, b step- 
s of divisive clustering generates (D  (1), ..., D (b+l)} 
and {SD(2),...,SD (b+l)} (see figure 6 and 7). An 
unusually large reduction in 5D suggests the opti- 
inal clustering has been obtained 3 (see n = 10 in 

3In practice, convolution (mask {1,2,4,8,4,2,1}) is first 
aI)plied to 5D to smooth out sharp local changes 
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Figure 5: A working example of the divisive eluster- 
ing algorithm. 

figure 7). Let # and v be the mean and variance of 
5D(n),n E {2, ..., b + 1}. m is obtained by applying 
the threshold, p + c × v/~, to 5D (c = 1.2 works well 
in practice). 

0.9 

0.8 

0.7 

~, 0.6 

g 
~ o.5 

~ o.4 

(1.3 

(I,2 

o.1 

o ,o 2'0 3'0 ,; s; ,'0 ;o 
Number of segments 

Figure 6: The inside density of all levels of segmen- 
tation. 

3.4 S p e e d  o p t i m i s a t i o n  

The running time of each step is dominated by the 
computat ion of sk. Given si,j is constant,  our algo- 
r i thm pre-computes all the values to improve speed 
performance. The procedure computes the values a- 
long diagonals, s tart ing from the main diagonal and 
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Figure 7: Finding the optimal segmentation using 
the gradient. 

works towards the corner. The method has a com- 
Ln2 Let refer to the rank value plexity of order 12 • ri,j 

in the rank matrix R and S to the sum of rank ma- 
trix. Given R of size n × n, S is computed in three 
steps (see equation 5). Figure 8 shows the result of 
applying this procedure to the rank matrix in figure 
5. 

4 E v a l u a t i o n  

The definition of a topic segment ranges from com- 
plete stories (Allan et al., 1998) to summaries (Ponte 
and Croft, 1997). Given the quality of an algorithm 
is task dependent, the following experiments focus 
on the relative performance. Our evaluation strat- 
egy is a variant of that  described in (Reynar, 1998, 
71-73) and the TDT segmentation task (Allan et al., 
1998). We assume a good algorithm is one that  finds 
the most prominent topic boundaries. 

4.1 E x p e r i m e n t  p r o c e d u r e  

An artificial test corpus of 700 samples is used to 
assess the accuracy and speed performance of seg- 
mentation algorithms. A sample is a concatenation 
of ten text segments. A segment is the first n sen- 
tences of a randomly selected document from the 
Brown corpus 4. A sample is characterised by the 
range of n. The corpus was generated by an auto- 
matic procedure 5. Table 1 presents the corpus s- 
tatistics. 

I Range of n - - 11 I 3 -  11 
400 I 310:  I 610:  I 9100 I [ # samples 

Table 1: Test corpus statistics. 

1. Si, i -~- r i , i  

for i E {1,...,n} 
2. S i + l , i  : 2ri+t,i + s i , i  + s i + l , i + l  

8i , i+ 1 : 8i+1, i 
for i E { 1 , . . . , n -  1} 

3. 8 i T j ,  i -~ 2 r i + j , i  "}- 8 iWj - - l , i - l -  

8 i+ j , i+  1 --  8 i + j _ l , i +  1 

Si , i+ j --~- 8 i+j ,  i 

for j E { 2  .... , n - l }  
i E  { 1 , . . . , n - j }  

(5) 
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Figure 8: Improving speed performance by pre- 
computing si,j. 

p(error]ref, hyp, k) = 
p(misslref, hyp, diff, k)p(diffiref, k)+ (6) 
p(falref, hyp, same, k)p(samelref , k) 

Speed performance is measured by the average 
number of CPU seconds required to process a test 
sample 6. Segmentation accuracy is measured by th(,. 
error metric (equation 6, fa --+ false alarms) 1)roposed 
in (Beeferman et al., 1999). Low error probability 
indicates high accuracy. Other performanc(; mea- 
sures include the popular precision and recall metric 
(PR) (Hearst, 1994), fuzzy PR (Reynar, 1998) and 
edit distance (Ponte and Croft, 1997). The l)rob- 
lems associated with these metrics are discussed in 
(Beeferman et al., 1999). 

4 . 2  E x p e r i m e n t  1 - B a s e l i n e  

Five degenerate algorithms define the baseline for 
the experiments. B,, does not propose any bound- 
aries. Ba reports all potential boundaries as real 
boundaries. B,. partitions the sample into regular 
segments. B(r,?) randomly selects any number of 

4Only  the  news  art icles  c a * * . p o s  and in fo rmat ive  text  
c j * * . p o s  were used in the  expe r imen t .  

5All e x p e r i m e n t  da ta ,  a l go r i t hms ,  sc r ip t s  att(I detai led re- 
su i t s  are  available f rom the  au th o r .  

6All e x p e r i m e n t s  were conduc ted  on a P e n t i u m  I 1256Mllz  
P C  wi th  128Mb R A M  r u n n i n g  Red Ha t  Linux 6.0 and tile 
Blackdown Linux po r t  of . IDK1.1.7 v3. 
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boundaries as real boundaries. B(r,b ) randomly se- 
lects b boundaries as real boundaries. 

The accuracy of the last two algorithms are com- 
puWA analytically. We consider the status of m po- 
tential bomldaries as a bit string (1 --+ topic bound- 
ary). The terms p(miss) and p(fa) in equation 6 cor- 
responds to p(samelk ) and p(difflk ) = 1-p(same[k) .  
Equatioll 7, 8 and 9 gives the general form of 
p(samelk ), B(.,.?) and B(r,b), respectively 7. 

Table 2 presents the experimental results. The 
values in row two and three, four and five are not 
actually the same. However, their differences are 
insignificant according to the Kolmogorov-Smirnov, 
or KS-test (Press et al., 1992). 

# valid segmentations 
]) ( san le l  ]~ ) = (7)  

# possible segmentations 

2//~- ]¢ 
p(samelk, B(~,?)) - 2m - 2 -k 

(m-k)Cb 
p ( s a r n e l k ,  m ,  B ( r , b ) )  - -  ~Cb 

3-11 3-5 6-8 9-11 
B~ 45% 38% 39% 36% 
B,, 47% 47% 47% 46% 
B(,.,~) 47% 47% 47% 46% 
B ,  53% 53% 53% 54% 
B(~,?) 53% 53% 53% 54% 

(8) 

(9) 

Table 2: The error rate of the baseline algorithms. 

4.3 Experiment  2 - TextTil ing 
We compare three versions of the TextTiling algo- 
rithm (Hearst, 1994). H94(c,d) is Hearst 's C im- 
plementation with default parameters. H94(c,r) us- 
es the recommended parameters k = 6, w = 20. 
H94(js)  is my implementation of the algorithm. 
Experimental result (table 3) shows H94(c,a) and 
H94(~,r) are more accurate than H94(js) .  We sus- 
pect this is due to the use of a different stopword list 
and stemming algorithm. 

4.4 Experiment  3 - D o t P l o t  

Five versions of Reynar 's  optimisation algorithm 
(Reynar, 1998) were evaluated. R98 and R98(min) 
are exact implementations of his maximisation and 
minimisation algorithm. R98(~,~o~) is my version of 
the maximisation algorithm which uses the cosine 
coefficient instead of dot density for measuring sim- 
ilarity. It incorporates the optimisations described 

7The full derivation of our me thod  is available from the 
author.  

I 3-11 3-5 6-8 9-11 
H94(c,~t) 46% 44% 43% 48% 
H94(c,~) 46% 44% 44% 49% 
H94(~u. ) 54% 45% 52% 53% 
H94(~,a/ 0.67s 0.52s 0.66s 0.88s 
H94(c,~) 0.68s 0.52s 0.67s 0.92s 
H94(j,~) 3.77s 2.21s 3.69s 5.07s 

Table 3: The error rate and speed performance of 
TextTiling. 

in section 3.4. R98(m,dot) is the modularised version 
of R98 for experimenting with different similarity 
measures. 

R98(m,s,) uses a variant of Kozima's semantic sim- 
ilarity measure (Kozima, 1993) to compute block 
similarity. Word similarity is a function of word co- 
occurrence statistics in the given document. Word- 
s that  belong to the same sentence are considered 
to be related. Given the co-occurrence frequen- 
cies f(wi, wj), the transition probability matrix t is 
computed by equation 10. Equation 11 defines our 
spread activation scheme, s denotes the word sim- 
ilarity matrix, x is the number of activation steps 
and norm(y) converts a matrix y into a transition 
matrix, x = 5 was used in the experiment. 

y(w ,wj) (10) 
t ,j = p ( w j  Iw ) = E j  

s = n o r m ( ~ t ' ) i = l  (11) 

Experimental result (table 4) shows the cosine co- 
efficient and our spread activation method improved 
segmentation accuracy. The speed optimisations sig- 
nificantly reduced the execution time. 

3-11 3-5 6-8 9-11 
R98{,~,8,) 18% 20% 15% 12% 
R98(8,co~) 21% 18% 19% 18% 
R98(m,dot) 22% 21% 18% 16% 
R98 22% 21% 18% 16% 

_R98(min) n / a  34% 37% 37% 
R98(s,cos) 4.54s 2.24s 4,36s 6.99s 
R98 29.58s 9.29s 28.09s 55.03s 
R98(m,s,) 41.02s 7.34s 40.05s 113.5s 
R98(m,dot) 46.58s 9.24s 42.72s 115.4s 

_R98(min) n / a  19.62s 58.77s 122.6s 

Table 4: The error rate and speed perforinance of 
Reynar's optimisation algorithm. 

4.5 Experiment  4 - Segmenter 
We compare three versions of Segmenter (Kan et al., 
1998). K98(B) is the original Perl implementation of 
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the algoritlun (version 1.6). K98(j) is my imple- 
mentation of the algorithm, K98(j,a) is a version of 
K98(j) which uses a document specific chain break- 
ing strategy. The distribution of link distances are 
used to identify unusually long links. The threshold 
is a function # + c x vf5 of the mean # and variance 
u. We found c = 1 works well in practice. 

Table 5 summarises the experimental results. 
K98(p) performed significantly better than K98g, ,) .  
This is due to the use of a different part-of-speech 
tagger and shallow parser. The difference in speed is 
largely due to the programming languages and term 
clustering strategies. Our chain breaking strategy 
improved accuracy (compare K98(j) with K98(j,~)). 

3-11 3-5 6-8 9-11 
K98(p) 36% 23% 33% 43% 
K98(j,,) n / a  41% 46% 50% 
K98(i ) n / a  44% 48% 51% 
K98(p) 4.24s 2.57s 4.21s 6.00s 
K98(j) n / a  21.43s 65.54s 129.3s 
K98(L~ ) n / a  21.44s 65.49s 129.7s 

Table 5: The error rate and speed performance of 
Segmenter. 

4 .6  E x p e r i m e n t  5 - O u r  a l g o r i t h m ,  C99 

Two versions of our algorithm were developed, C99 
and C99(b). The former is an exact implementation 
of the algorithm described in this paper. The latter 
is given the expected number of topic segments for 
fair comparison with R98. Both algorithms used a 
11 x 11 ranking mask. 

The first experiment focuses on the impact of our 
automatic termination strategy on C99(~) (table 6). 
C99(b) is marginally more accurate than C99. This 
indicates our automatic termination strategy is effec- 
tive but not optimal. The minor reduction in speed 
performance is acceptable. 

3-11 3-5 6-8 9-11 
C99('b) 12% 12% 9% 9% 
C99 13% 18% 10% 10% 
C99(b) 4.00s 1.91s 3.73s 5.99s 
C99 4.04s 2.12s 4.04s 6.31s 

Table 6: The error rate and speed performance of 
our algorithm, C99. 

The second experiment investigates the effect of 
different ranking mask size on the performance of 
C99 (table 7). Execution time increases with mask 
size. A 1 x 1 ranking mask reduces all the elements in 
the rank matrix to zero. Interestingly, the increase 
in ranking mask size beyond 3 x 3 has insignificant 
effect on segmentation accuracy. This suggests the 

use of extrema for clustering has a greater impact on 
accuracy than linearising the similarity scores (figure 
4). 

I x l  
3x3  
5x5 
7x7 
9x9  
ii x 11 
13 x 13 
15 x 15 
17 x 17 
i x l  
3x3  
5x5 
7x7  
9x9  
II x Ii  
13 x 13 
15 x 15 
17 x 17 

3-11 3-5 6-8 9-11 
48% 48% 50% 49% 
12% 11% 10% 8% 
12% 11% 10% 8% 
12% 11% 10% 8% 
12% 11% 10% 9% 
12% 11% 10% 9% 
12% 11% 10% 9% 
12% 11% 10% 9% 
12% 10% 10% 8% 
3.92s 2.06s 3.84s 5.91s 
3.83s 2.03s 3i79s 5.85s 
3.86s 2.04s 3.84s 5.92s 
3.90s 2.06s 3.88s 6.00s 
3.96s 2.07s 3.92s 6.12s 
4.02s 2.09s 3.98s 6.26s 
4.11s 2,11s 4.07s 6.41s 
4.20s 2.14s 4.14s 6.60s 
4.29s 2.17s 4.25s 6.79s 

Table 7: The impact of mask size oil the performance 
of C99. 

4 . 7  S u m m a r y  

Experimental result (table 8) shows our algorith- 
m C99 is more accurate than existing algorithms. 
A two-fold increase in accuracy and seven-fold in- 
crease in speed was achieved (compare C99(b) with 
R98). If one disregards segmentation accuracy, H94 
has the best algorithmic performance (linear). C99, 
K98 and R98 are all polynomial time algorithms. 
The significance of our results has been confirmed 
by both t-test and KS-test. 

3-11 3-5 6-8 9-11 
C99(b) 12% 12% 9 %  9% 
C99 13% 18% 10% 10% 
R98 22% 21% 18% 16% 
K98(p) 36% 23% 33% 43% 
H94(~,d) 46% 44% 43% 48% 
H94(j,r) 3.77s 2.21s 3.69s 5.07s 
C99(b) 4,00s 1.91s 3.73s 5.99s 
C99 4.04s 2.12s 4.04s 6.31s 
R98 29.58s 9.29s 28.09s 55.03s 
K98g) n/a 21.43s 65.54s 129.3s 

Table 8: A summary of our experimental results. 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

A segmentation algorithm has two key elements, a 
clustering strategy and a similarity me~sure. Our 
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results show divisive clustering (R98) is more precise 
than sliding window (H94) and lexical chains (K98) 
for locating topic boundaries. 

Four similarity measures were examined. The co- 
sine coefficient (R98(s,co,)) and dot density measure 
(R98(m,(lot)) yield similar results. Our spread activa- 
tion based semantic measure (R98( ..... ,)) improved 
a.ccura(:y. This confirms that although Kozima's ap- 
l)roaeh (Kozima, 1993) is computationally expen- 
sive, it does produce more precise segmentation. 

Tile most significant improvement was due to our 
ranking scheme which linearises the cosine coefficien- 
t. Our exl)eriments demonstrate that given insuffi- 
(:lent data, tile qualitative behaviour of the cosine 
m(,asul'e is indeed more reliable than the actual val- 
II(~S. 

Although our evaluation scheme is sufficient for 
this (:omparative study, further research requires a 
large scale, task independent benchmark. It would 
be interesting to corot)are C99 with the multi-source 
method described in (Beeferman et al., 1999) using 
the TDT corpus. We would also like to develop a 
linear time and multi-source version of the algorith- 
I I l .  
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