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Abstract 
This paper describes an application of APE (the 
Atlas Planning Engine), an integrated planning and 
execution system at the heart of the Atlas dialogue 
management system. APE controls a mixed- 
initiative dialogue between a human user and a 
host system, where turns in the 'conversation' may 
include graphical actions and/or written text. APE 
has full unification and can handle arbitrarily 
nested discourse constructs, making it more 
powerful than dialogue managers based on finite- 
state machines. We illustrate this work by 
describing Atlas-Andes, an intelligent tutoring 
system built using APE with the Andes physics 
tutor as the host. 

1 Introduction 

The purpose of  the Atlas project is to enlarge the 
scope of  student interaction in an intelligent 
tutoring system (ITS) to include coherent 
conversational sequences, including both written 
text and GUI actions. A key component of  Atlas 
is APE, the Atlas Planning Engine, a "just-in- 
time" planner specialized for easy construction 
and quick generation of  hierarchically organized 
dialogues. APE is a domain- and task-independent 
system. Although to date we have used APE as a 
dialogue manager for intelligent tutoring systems, 
APE could also be used to manage other types of  
human-computer conversation, such as an advice- 
giving system or an interactive help system. 

Planning is an essential component of a 
dialogue-based ITS. Although there are many 
reasons for using natural language in an ITS, as 
soon as the student gives an unexpected response 
to a tutor question, the tutor needs to be able to 
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plan in order to achieve its goals as well as 
respond appropriately to the student's statement. 
Yet classical planning is inappropriate for 
dialogue generation precisely because it assumes 
an unchanging world. A more appropriate 
approach is the "practical reason" approach 
pioneered by Bratman (1987, 1990). According to 
Bratman, human beings maintain plans and prefer 
to follow them, but they are also capable of  
changing the plans on the fly when needed. 
Bratman's approach has been introduced into 
computer science under the name of  reactive 
planning (Georgeff and Ingrand 1989, Wilkins et 
al. 1995). 

In this paper we discuss the rationale for the use 
of  reactive planning as well as the use of  the 
hierarchical task network (HTN) style of  plan 
operators. Then we describe APE (the Atlas 
Planning Engine), a dialogue planner we have 
implemented to embody the above concepts. We 
demonstrate the use of  APE by showing how we 
have used it to add a dialogue capability to an 
existing ITS, the Andes physics tutor. By showing 
dialogues that Atlas-Andes can generate, we 
demonstrate the advantages of this architecture 
over the finite-state machine approach to dialogue 
management. 

2 Integrated planning and execution for 
dialogue generation 

2.1 'Practical reason' and the BDI model 

For an ITS, planning is required in order to ensure 
a coherent conversation as well as to accomplish 
tutorial goals. But it is impossible to plan a whole 
conversation in advance when the student can 
respond freely at every turn, just as human beings 
cannot plan their daily lives in advance because of  
possible changes in conditions. Classical planning 
algorithms are inappropriate because the tutor 
must be able to change plans based on the 
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student's responses. 
For this reason we have adopted the ideas of  the 

philosopher Michael Bratman (1987, 1990). 
Bratman uses the term "practical reason" to 
describe his analysis since he is concerned with 
how to reason about practical matters. For human 
beings, planning is required in order to 
accomplish one's goals. Bratman's key insight is 
that human beings tend to follow a plan once they 
have one, although they are capable of  dropping 
an intention or changing a partial plan when 
necessary. In other words, human beings do not 
decide what to do from scratch at each turn. 

Bratman and others who have adopted his 
approach use a tripartite mental model that 
includes beliefs, desires and intentions (Bratman, 
Israel and Pollack 1988, Pollack 1992, Georgeff 
et al. 1998), hence the name "BDI model." 
Beliefs, which are uninstantiated plans in the 
speaker's head, are reified by the plan library. 
Desires are expressed as the agent's goals. 
Intentions, or plan steps that the agent has 
committed to but not yet acted on, are stored in an 
agenda. Thus the agent's partial plan for 
achieving a goal is a network of  intentions. A plan 
can be left in a partially expanded state until it is 
necessary to refine it further. 

2.2 Implementation via reactive planning 

Bratman's approach has been elaborated in a 
computer science context by subsequent 
researchers (Bratman, Israel and Pollack 1988, 
Pollack 1992, Georgeff et al. 1998). Reactive 
planning (Georgeff and Ingrand 1989, Wilkins et 
al. 1995), originally known as "integrated 
planning and execution," is one way of  
implementing Bratman's model. Originally 
developed for real-time control of  the space 
shuttle, reactive planning has since been used in a 
variety of other domains. For the Atlas project we 
have developed a reactive planner called APE 
(Atlas Planning Engine) which uses these ideas to 
conduct a conversation. After each student 
response, the planner can choose to continue with 
its previous intention or change something in the 
plan to respond better to the student's utterance. 

Like most reactive planners, APE is a 
hierarchical task network (HTN) style planner 
(Yang 1990, Erol, Hendler and Nau 1994). 
Hierarchical decomposition asserts that each goal 

can be achieved via a series of subgoals instead of 
relying on means-end reasoning. Hierarchical 
decomposition is more appropriate to dialogue 
generation for a number of  reasons. First, 
decomposition is better suited to the type of  large- 
scale dialogue planning required in a real-world 
tutoring system, as it is easier to establish what a 
human speaker will say in a given situation than 
to be able to understand why in sufficient detail 
and generality to do means-end planning. Second, 
Hierarchical decomposition minimizes search 
time. Third, our dialogues are task-oriented and 
have a hierarchical structure (Grosz and Sidner 
1986). In such a case, matching the structure of  
the domain simplifies operator development 
because they can often be derived from transcripts 
of  human tutoring sessions. The hierarchy 
information is also useful in determining 
appropriate referring expressions. Fourth, inter- 
leaved planning and execution is important for 
dialogue generation because we cannot predict the 
human user's future utterances. In an HTN-based 
system, it is straightforward to implement 
interleaved planning and execution because one 
only needs to expand the portion of  the plan that 
is about to be executed. Finally, the conversation 
is in a certain sense the trace of  the plan. In other 
words, we care much more about the actions 
generated by the planner than the states involved, 
whether implicitly or explicitly specified. 
Hierarchical decomposition provides this trace 
naturally. 

3 Background: the Andes physics tutor 

Andes (Gertner, Conati and VanLehn 1998) is an 
intelligent tutoring system in the domain of first- 
year college physics. Andes teaches via coached 
problem solving (VanLehn 1996). In coached 
problem solving, the tutoring system tracks the 
student as the latter attempts to solve a problem. 
If the student gets stuck or deviates too far from a 
correct solution path, the tutoring system provides 
hints and other assistance. 

A sample Andes problem is shown in mid- 
solution in Figure 1. A physics problem is given 
in the upper-left corner with a picture below it. 
Next to the picture the student has begun to 
sketch the vectors involved using the GUI buttons 
along the left-hand edge of  the screen. As the 
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student draws vectors, Andes and the student 
cooperatively fill in the variable definitions in the 
upper-right corner. Later the student will use the 
space below to write equations connecting the 
variables. 

In this example, the elevator is decelerating, so 
the acceleration vector should face the opposite 
direction from the velocity vector. (If the 
acceleration vector went the same direction as the 
velocity vector, the speed of  the elevator would 
increase and it would crash into the ground.) This 
is an important issue in beginning physics; it 
occurs in five Andes problems. 

When such errors occur, Andes turns the 
incorrect item red and provides hints to students 
in the lower-left corner of  the screen. A sample of 
these hints, shown in the order a student would 
encounter them, is shown in Fig. 2. But hints are 
an output-only form of natural language; the 
student can't take the initiative or ask a question. 
In addition, there is no way for the system to ask 
the student a question or lead the student through 
a multi-step directed line of reasoning. Thus there 

is no way to use some of the effective rhetorical 
methods used by skilled human tutors, such as 
analogy and reductio ad absurdum. Current 
psychological research suggests that active 
methods, where students have to answer 
questions, will improve the performance of 
tutoring systems. 

4 Structure of the Atlas Planning Engine 

Figure3 shows a sample plan operator. For 
legibility, the key elements have been rendered in 
English instead of  in Lisp. The hiercx slot 
provides a way for the planner to be aware of  the 
context in which a decomposition is proposed. 
Items in the hiercx slot are instantiated and added 
to the transient database only so long as the 
operator which spawned them is in the agenda. 

To initiate a planning session, the user invokes 
the planner with an initial goal. The system 
searches the operator library to find all operators 
whose goal field matches the next goal on the 
agenda and whose filter conditions and precon- 

An elevator slows to a stop from an initial downward velocity 
of 10.0 m]s in 2.00 seconds. A passenger in the elevator is 
holding a 3.00 kilogram package by a vertical string. 

What is the tension in the string during the process? 

i ........ ii ....... i i i  

. I ÷Y 

~TO e',ev~o, at 10 m/s 
elev~or at a stop 
mass of p~:w'.,I,,~ 
magnitude of the inst~¢~taneous Velocity of pack, age ~ {rkne TO v._w 
magnitude of the avelage Acceleratiorl of package ,dudng TO... a._x 

v_v 
a~ 

- - I  
pkg 

Figure I: Screen shot of the Andes physics tutor 
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S: (draws acceleration vector in same direction as velocity) 
T: Wrong. 
S: What's wrongwith that? 
T: Think about the direction of  the acceleration vector. 
S: Please explain further. 
T: Remember that the direction of  acceleration is the direction of  the change in velocity. 
S: Please explain further. 
T: The'direction of  the acceleration vector is straight up. 
S: (draws acceleration vector correctly) 

Figure 2: Andes hint sequence formatted as dialogue 

ditions are satisfied. Goals are represented in 
first-order logic without quantifiers and matched 
via unification. Since APE is intended especially 
for generation of  hierarchically organized task- 
oriented discourse, each operator has a multi-step 
recipe in the style of  Wilkins (1988). When a 
match is found, the matching goal is removed 
from the agenda and is replaced by the steps in 
the recipe. APE has two kinds of primitive 
actions; one ends a turn and the other doesn't. 

From the point of  view of discourse generation, 
the most important APE recipe items are those 
allowing the planner to change the agenda when 
necessary. These three types of  recipe items make 
APE more powerful than a classical planner. 

• Fact: Evaluate a condition. If false, skip the 
rest of  the recipe. Fact is used to allow run-time 
decision making by bypassing the rest of  an 
operator when circumstances change during its 
execution. Fact can be used with retry-at to 

implement a loop just as in Prolog. 

• Retry-at. The purpose of  retry-at is to allow 
the planner to back up to a choice point and make 
a new decision. It removes goals sequentially 
from the top of  the agenda, a full operator at a 
time, until the supplied argument is false. Then it 
restores the parent goal of  the last operator 
removed, so that further planning can choose a 
new way to achieve it. Retry-at implements a 
Prolog-like choice of  alternatives, but it differs 
from backtracking in that the new operator is 
chosen based on conditions that apply when the 
retry operation is executed, rather than on a list of 
possible operators formed when the original 
operator was chosen. For retry-at to be useful, the 
author must provide multiple operators for the 
same goal. Each operator must have a set of  
preconditions enabling it to be chosen at the 
appropriate time. 

• Prune-replace: The intent of  prune-replace is 

(def-operator handle-same-direction 
:goal (...) 
:filter () 
:precond (...) 

; We have asked a question about acceleration 
; ... and the student has given an answer 
; ... from which we can deduce that s/he thinks accel, and velocity go in 
; the same direction 
; and we have not given the explanation below yet 

:recipe (...) 
; Tell the student: "But if the acceleration went the same 

direction as the velocity, then the elevator would be speeding up." 
; Mark that we are giving this explanation 
; Tell the student that tutor is requesting another answer ("Try again.") 
; Edit the agenda (using prune-replace) so that responding to another 

answer is at the top of the agenda 
:hiercx ()) 

Figure 3: Sample plan operator 
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to allow the planner to remove goals from the 
agenda based on a change in circumstances. It 
removes goals sequentially from the top of the 
agenda, one at a time, until the supplied argument 
becomes false. Then it replaces the removed goals 
with an optional list of  new goals. Prune-replace 
allows a type of  decision-making frequently used 
in dialogue generation. When a conversation 
partner does not give the expected response, one 
would often like to remove the next goal from the 
agenda and replace it with one or more 
replacement goals. Prune-replace implements a 
generalized version of  this concept. 

APE is domain-independent and communicates 
with a host system via an API. As a partner in a 
dialogue, it needs to obtain information from the 
world as well as produce output turns. 
Preconditions on plan operators can be used to 
access information from external knowledge 
sources. APE contains a recipe item type that can 
be used to execute an external program such as a 
call to a GUI interface. APE also has recipe items 
allowing the user to assert and retract facts in a 
knowledge base. Further details about the APE 
planner can be found in (Freedman, 2000). 

5 Implementat ion  of  At las -Andes  

5.1 Architecture of Atlas-Andes 

The first system we have implemented with APE 
is a prototype Atlas-Andes system that replaces 
the hints usually given for an incorrect 
acceleration vector by a choice of generated 
subdialogues. Figure 4 shows the architecture of  
Atlas-Andes; any other system built with APE 
would look similar. Robust natural language 
understanding in Atlas-Andes is provided by 
Ros6's CARMEL system (Ros6 2000); it uses the 
spelling correction algorithm devised by Elmi and 
Evens (1998). 

5.2 Structure of human tutorial dialogues 

In an earlier analysis (Kim, Freedman and Evens 
1998) we showed that a significant portion of  
human-human tutorial dialogues can be modeled 
with the hierarchical structure of  task-oriented 
dialogues (Grosz and Sidner 1986). Furthermore, 
a main building block of  the discourse hierarchy, 
corresponding to the transaction level in 
Conversation Analysis (Sinclair and Coulthard 
1975), matches the tutoring episode defined by 
VanLehn et al. (1998). A tutoring episode 
consists of  the turns necessary to help the student 
make one correct entry on the interface. 

NLU 
(CARMEL) 

Plan 
Library 

User APE 
< Interface I 

I I 
GUI Transient 

Interpreter Knowledge 
(Andes) Base 

Host 
(Andes) 

Figure 4: Interface between Atlas and host system 
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To obtain empirical data for the Atlas-Andes 
plan operators, we analyzed portions of a corpus 
of human tutors helping students solve similar 
physics problems. Two experienced tutors were 
used. Tutor A was a graduate student in computer 
science who had majored in physics; tutor B was 
a professional physics tutor. 

The complete corpus contained solutions to five 
physics problems by 41 students each. We 
analyzed every tutoring episode dealing with the 
acceleration vector during deceleration, totaling 
29 examples divided among 20 students and both 
tutors. The tutors had very different styles. 
Tutor A tended to provide encouragement rather 
than content, making those transcripts less useful 
for deriving an information-based approach. 
Tutor B used an information-based approach, but 
after one wrong answer tended to complete the 
solution as a monologue. Largely following 
tutor B's approach to sequence and content, we 
isolated six ways of  teaching the student about 
direction of  acceleration. 

5.3 Sample output and evaluation 

Figure 5 shows an example of  text that can be 
generated by the Atlas-Andes system, showing an 
analogy-based approach to teaching this content. 
The operator library used to generate this text 
could generate a combinatorially large number of  
versions of  this dialogue as well as selected 
examples of  other ways of  teaching about 
direction of  acceleration. 

This operator library used to generate this text 
contained 1 l 1 plan operators, divided as follows: 

Tutoring schemata 
Switching between schemata 
API and GUI handling 
Answer handling 
Domain-dep. lex. insertion 
Domain-indep. lex. insertion 
TOTAL 

4 4% 
5 4% 

33 30% 
35 31% 
24 22% 
10 9% 

111 100% 

We are currently working on components that will 
allow us to increase the number of  physics 
concepts covered without a corresponding 
increase in the number of operators. The schema 
switching operators prevent the tutor from 
repeating itself during a physics problem. They 
could be reduced or eliminated by a general 
discourse history component that tutoring schema 
operators could refer to. Domain-dependent 
lexical insertion refers to the choice of  lexical 
items such as car and east in the sample dialogue, 
while domain-independent iexical insertion refers 
to items such as OK and exactly. Both categories 
could be eliminated, or at least severely reduced, 
through the use of  a text realization package. 
Together that would provide a one-third reduction 
in the number of  operators needed. As the set of  
API and GUI handling operators is fixed, that 
would reduce by half the number of  application 
operators needed. 

The largest remaining category of  operators is 
the answer handlers. These operators handle a 
variety of  answers for each of  the five questions 
that the system can ask. The answers we 
recognize include categories such as "don't 
know" as well as specific answers (e.g. a direction 
perpendicular to the correct answer) which we 
recognize because the tutor has specific replies 
for them. In order to reduce the number of  

S: (draws acceleration vector in same direction as velocity) 
T: What is the definition of  acceleration? 
S: Don't know. 
T: OK, let's try this. If a car was driving along east, which way would you have to push on it 

to make it stop? 
S: West. 
T: Exactly. The opposite direction. So the net force goes the opposite direction, and so does 

the acceleration. Try to draw the acceleration vector again now. 
S: (draws acceleration vector correctly) 

Figure 5: Example of generated dialogue 
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operators further, we must investigate more 
general methods of  handling student errors. In 
particular, we plan to investigate error-classifying 
predicates that apply to more than one question as 
well as the use of intention-based predicates. 
Since the system only covers one rule of  physics, 
albeit in a variety of  ways, we plan to make some 
of these efficiency improvements before adding 
new rules of  physics and testing it with users. 

Preconditions for the operators in the plan 
library utilize discourse or interaction history, the 
current goal hierarchy, recent information such as 
the tutor's current goal and the student's latest 
response, shared information such as a model of  
objects on the screen, and domain knowledge. As 
an example of  the latter, if the student draws an 
acceleration vector which is incorrect but not 
opposite to the velocity vector, a different 
response will be generated. 

5.4 Discussion 

Many previous dialogue-based ITSs have been 
implemented with finite-state machines, either 
simple or augmented. In the most common finite 
state mode[, each time the human user issues an 
utterance, the processor reduces it to one of  a 
small number of  categories. These categories 
represent the possible transitions between states. 
Thus history can be stored, and context 
considered, only by expanding the number of  
states. This approach puts an arbitrary restriction 
on the amount of context or depth of  
conversational nesting that can be considered. 
More importantly, it misses the significant 
generalization that these types of  dialogues are 
hierarchical: larger units contain repeated 
instances of  the same smaller units in different 
sequences and instantiated with different values. 
Furthermore, the finite-state machine approach 
does not allow the author to drop one line of 
attack and replace it by another without hard- 
coding every possible transition. 

It is also clear that the dialogue-based approach 
has many benefits over the hint-sequence 
approach. In addition to providing a multi-step 
teaching methods with new content, it can 
respond flexibly to a variety of  student answers at 
each step and take context into account when 
generating a reply. 

6 Re la t ed  w o r k  

Wenger (1987), still the chief textbook on ITSs, 
states that using a global planner to control an ITS 
is too inefficient to try. This is no longer true, if 
indeed it ever was. Vassileva (1995) proposes a 
system based on AND-OR graphs with a separate 
set of  rules for reacting to unexpected events. 
Lehuen, Nicolle and Luzzati (1996) present a 
method of dialogue analysis that produces 
schemata very similar to ours. Earlier dialogue- 
based ITSs that use augmented finite-state 
machines or equivalent include CIRCSIM-Tutor 
(Woo et al. 1991, Zhoue t  al. 1999) and the 
system described by Woolf (1984). Cook (1998) 
uses levels of  finite-state machines. None of  these 
systems provides for predicates with variables or 
unification. 

7 Conclusions 

In this paper we described APE, an integrated 
planner and execution system that we have 
implemented as part of  the Atlas dialogue 
manager. APE uses HTN-style operators and is 
based on reactive planning concepts. Although 
APE is intended largely for use in domains with 
hierarchical, multi-turn plans, it can be used to 
implement any conversation-based system, where 
turns in the 'conversation' may include graphical 
actions and/or text. We illustrated the use of  APE 
with an example from the Atlas-Andes physics 
tutor. We showed that previous models based on 
finite-state machines are insufficient to handle the 
nested subdialogues and abandoned partial 
subdialogues that occur in practical applications. 
We showed how APE generated a sample 
dialogue that earlier systems could not handle. 
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