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Introduction

The W-NUT 2025 workshop focuses on a core set of natural language processing tasks on top of noisy
and user-generated text, such as those found on social media, web forums and online reviews. The inter-
net has democratized content creation leading to an explosion of informal user-generated text, publicly
available in electronic format, motivating the need for NLP on noisy text to enable new data analytics
applications. We have received a total of 18 main workshop submissions, of which 16 are included in
the proceedings. The workshop will be held in hybrid in-person and virtual modes. We have two invited
speakers: Su Lin Blodgett and Verena Blaschke, who have generously agreed to share their ongoing re-
search work. We are very thankful to have them in our workshop. We would like to thank the Program
Committee members who reviewed the papers, as well as all of the workshop participants for submitting
their work.

ii



Organizing Committee

General Chair

JinYeong Bak, Sungkyunkwan University

Program Chair

Hyeju Jang, Indiana University Indianapolis

Co-Organizers

Rob van der Goot, IT University of Copenhagen
Weerayut Buaphet, Vidyasirimedhi Institute of Science and Technology
Alan Ramponi, Fondazione Bruno Kessler
Wei Xu, Georgia Institute of Technology
Alan Ritter, Georgia Institute of Technology

iii



Program Committee

Reviewers

Sweta Agrawal, Hamed Alhoori, Emily Allaway, Antonios Anastasopoulos, Maria Antoniak

Eduardo Blanco

Tommaso Caselli, Paul Cook, Danilo Croce

Micha Elsner

Yoshinari Fujinuma

YeongJun Hwang, Mika Hämäläinen
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Yasuhide Miura, Manuel Montes, W. Graham Mueller

Günter Neumann, Vincent Ng

Naoki Otani

Rahul Raja, Alan Ramponi, Shubhashis Roy Dipta
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Keynote Talk
Beyond “noisy” text: How (and why) to process dialect data

Verena Blaschke
LMU Munich & MCML

2025-05-03 09:30:00 – Room: 25 - Navajo/23 - Nambe

Abstract: Processing data from non-standard dialects links two lines of research: creating NLP tools
that are robust to “noisy” inputs, and extending the coverage of NLP tools to underserved language
communities. In this talk, I will describe ways in which processing dialect data differs from processing
standard-language data, and discuss some of the current challenges in dialect NLP research. For instance,
I will talk about strategies to mitigate the effect of infelicitous subword tokenization caused by ad-hoc
pronunciation spellings. Additionally, I argue that we should not only consider how to tackle dialectal
variation in NLP, but also why. To this end, I will highlight perspectives of some dialect speaker com-
munities on which language technologies should (or should not) be able to process or produce dialectal
in- or output.

Bio: Verena Blaschke is a final-year PhD student at LMU Munich. She currently researches NLP for non-
standard dialects and other low-resource language varieties, investigating how robust language models are
towards language variation (and how to make them more robust). Her research is supervised by Barbara
Plank and co-supervised by Hinrich Schütze. She also completed a research internship at Apple where
she worked on multilingual NLP, and she previously developed software for machine-assisted historical
linguistics at the University of Tübingen.
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Keynote Talk
What Can We Learn from Perspectives on Noisy

User-Generated Text?
Su Lin Blodgett

Microsoft Research Montréal
2025-05-03 16:00:00 – Room: 25 - Navajo/23 - Nambe

Abstract: As language technologies become increasingly ubiquitous, research has shown that they strug-
gle with real-world language variation and use. How can we expand the set of perspectives that inform
our (and thus our technologies’) engagement with such variation and use, and what can we learn by
doing so? First, I will describe work on minoritized language varieties: building on work using quanti-
tative methods to illustrate technologies’ poor performance for such varieties, in this work we interview
speakers of African American Language to better understand their experiences with language technolo-
gies and the impacts on them when technologies fail. I will discuss what this means for how we might
design and assess language technologies to handle language variation, including the limits of quantita-
tive methods for understanding people’s experiences. Second, I will discuss disagreement in people’s
expectations and preferences—as technologies are increasingly designed to adapt to language variation,
how do people think they should behave? I will describe work on natural language generation systems
showing that people’s expectations can vary widely, highlighting the importance of taking into account
people’s complex beliefs about language and technology, and raising questions about how to decide what
constitute desirable system behaviors, when engaging with real-world language variation and use.

Bio: Su Lin Blodgett is a researcher in the Fairness, Accountability, Transparency, and Ethics (FATE)
group at Microsoft Research Montréal. Her research examines the ethical and social implications of
language technologies, focusing on the complexities of language and language technologies in their social
contexts, and on supporting NLP practitioners in their ethical work. She completed her Ph.D. in computer
science at the University of Massachusetts Amherst, where she was supported by the NSF Graduate
Research Fellowship, and has been named as one of the 2022 100 Brilliant Women in AI Ethics.
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Abstract

Social media offers the potential to provide
detection of outbreaks or public health inci-
dents faster than traditional reporting mecha-
nisms. In this paper, we developed and tested
a pipeline to produce alerts of influenza-like
illness (ILI) using Twitter data. Data was col-
lected from the Twitter API, querying keywords
referring to ILI symptoms and geolocated to
Wales. Tweets that described first-hand descrip-
tions of symptoms (as opposed to non-personal
descriptions) were classified using transformer-
based language models specialised on social
media (BERTweet and TimeLMs), which were
trained on a manually labelled dataset match-
ing the above criteria. After gathering this
data, weekly tweet counts were applied to the
regression-based Noufaily algorithm to identify
exceedances throughout 2022. The algorithm
was also applied to counts of ILI-related con-
sultations with general practitioners (GPs) for
comparison. Exceedance detection applied to
the classified tweet counts produced alerts start-
ing four weeks earlier than by using GP con-
sultation data. These results demonstrate the
potential to facilitate advanced preparedness
for unexpected increases in healthcare burdens.

1 Introduction

Surveillance of symptoms of infectious diseases in
the population, also known as syndromic surveil-
lance, is an important public health function to pro-
vide warning of an incoming epidemic and prepare
healthcare systems for increased demand. Such
surveillance systems traditionally rely on clinical
data, for example, general practitioner (GP) con-
sultations, ambulance call-outs, sickness-related
absences, and access to telephone advice services.
Such data sources can be slow due to the reporting
mechanisms they rely on.

In recent years, there has been increasing inter-
est in leveraging social media to develop an early

*Joint first author

warning detection (EWD) system for infectious dis-
eases (Pilipiec et al., 2023; McClymont et al., 2024;
Aiello et al., 2019; Joshi et al., 2019). Social media
provides a rapid, and high-volume data source, of-
fering the potential to provide reliable detection of
a disease outbreak or public health incident faster
than traditional reporting mechanisms. Such data
sources will enable more rapid and timely response
to anticipate increased demand on health services.

1.1 Related Work
A systematic review of methods developed to use
social media to facilitate disease surveillance iden-
tified 23 papers from as early as 2010 (Pilipiec
et al., 2023) (See also (McClymont et al., 2024;
Aiello et al., 2019; Joshi et al., 2019). While a
wide variety of social media platforms and dis-
eases were the subjects of these studies, the re-
view found Twitter to be the most used social
media platform and influenza the most targeted
disease. A wide variety of natural language pro-
cessing methods have been employed to identify
health-related posts ranging from simple keyword
filtering, to topic modelling and sentiment analy-
sis. Some EWD systems built on these approaches
include Epitweetr (Espinosa et al., 2022), The Twit-
ter Health Surveillance (THS) System (Rodríguez-
Martínez and Garzón-Alfonso, 2018) and SEN-
TINEL (S, erban et al., 2019).

An issue that has been highlighted (Mollema
et al., 2015) is the propensity of health-related posts
to be from news, government and political out-
lets reporting or advising on an ongoing outbreak,
rather than more direct accounts from individuals
in the community describing their first-hand ex-
periences of symptoms. For a timely and accurate
signal reflecting true disease prevalence, it is impor-
tant to correctly separate the latter from the former.
Only a few studies have tried to directly address
this issue (S, erban et al., 2019; Mackey et al.; Shen
et al., 2020).
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1.2 Aims
Our main aim is to develop an early detection sys-
tem that can predict contagious illnesses’ outbreaks
such as influenza. To this end, we developed a
pipeline to ingest Twitter (now known as X) data
matching symptom-related keywords, localised to
Wales, and classify tweets that describe first-hand
accounts of influenza-like illnesses (ILIs), and ap-
ply an exceedance detection algorithm, a method to
produce alerts of higher-than-expected incidence.
We test the method’s ability to provide early warn-
ing of the recent spike in flu cases in the end of
2022 which was much higher than in the previous
years and placed significant demand on the health-
care system. Finally, we compared the performance
of the method applied to Twitter data to that applied
to general practitioner (GP) consultations for ILIs,
a more established syndromic surveillance indica-
tor.

2 Methods

In order to detect potential outbreaks in social me-
dia, we primarily rely on Twitter data (Section 2.1)
and an automatic NLP-based classification method-
ology (Section 2.2). Then, we present the GP con-
sultation data we use as a comparison (Section 2.3)
and our methodology to identify outbreaks based
on data (Section 2.4).

2.1 Data
The Twitter Academic API (Twitter, 2023) was
utilised to collect tweets originated from Wales
from January 2020 to January 2023. Only tweets
in the English and Welsh language were collected.

2.1.1 Geolocation
Due to limitations of Twitter’s API (i.e. we could
only filter countries by ISO alpha-2 code and there
is no one available for Wales) we utilise a map of
Wales (https://datashare.ed.ac.uk/handle/
10283/2410?show=full) and divide it in 34 equal
areas which are used as parameters for the “bound-
ary_box” field of the API. In total, 5,278,425 tweets
were gathered that certainly originated from the re-
gion of Wales.

2.1.2 Keyword matching
In an effort to collect a sufficiently large dataset that
can allow us to identify any early signal related to
flu outbreaks, we initially identified relevant tweets
by applying a filter of 22 relevant keywords during
the API call: (’flu’, ’ill’, ’sick’, ’unwell’, ’fever’,

’cough’, ’coughing’, ’bug’, ’headache’, ’hoarse-
ness’, ’muscle pain’, ’sore throat’,’high tempera-
ture’, ’tummy pain’, ’covid-19’, ’covid’, ’covid19’,
’coronavirus’, ’blocked nose’, ’runny rose’, ’aches’,
’fevery’). Keywords referring to symptoms were
principally used, but also keywords referring to ’flu’
and ’covid’ were included as these are likely to be
mentioned in lieu of respiratory symptoms. With
geolocation and keyword filtering, 35,724 tweets
were retrieved. Counts and overview of the size of
the datasets can be found in Figure 1 and Table 1.

2.2 Classification
An important consideration is the identification
of first-hand accounts of symptoms being expe-
rienced, which are more representative of preva-
lence of symptoms in the community, as opposed
to tweets that provide general advice or discus-
sion about symptoms and illnesses (see Table 2 for
examples). We therefore employ a small manual
annotation (section 2.2.1) and NLP methods (Sec-
tion 2.2.2) to classify such tweets. In total, 2,213
tweets were classified as being first-hand accounts,
approximately 6% of all retrieved tweets.

2.2.1 Manual Annotation
Aiming to investigate the difficulty of the classifica-
tion and also to collect data for the training of ma-
chine learning models a sample of 121 tweets was
also manually annotated by three different coders.
This sample was geolocated to the whole UK, to
avoid a large overlap with the Wales dataset to
serve as an independent training set. Each anno-
tator was asked to annotate tweets as TRUE if the
tweet contained descriptions of ILI symptoms from
a first-person perspective, and FALSE otherwise.
Our results indicate a strong agreement between
the coders which achieve an average of 0.68 when
considering Cohen’s Kappa. Having established a
high agreement between the coders, an additional
751 tweets were individually annotated, bringing
the total number of gathered tweets to 8781.

2.2.2 Automatic Classification
There has been a recent influx of new large lan-
guage models in the NLP field such as OpenAI’s
GPT-3 and Google’s Bard that achieve impressive
results on difficult tasks. However, for simpler
tasks such as binary text-classification, as in our
use case, smaller models fine-tuned for the particu-
lar task can achieve similar performances without

1Class distribution: 613 FALSE, 265 POSITIVE entries.
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Year Geolocated to Wales Matching ILI keywords,
without classification

Classified as first-hand
account of ILI symptoms

2020 1,382,874 13,173 499
2021 1,967,665 14,225 823
2022 1,927,886 8,326 891
Total 5,278,425 35,724 2,213

Table 1: Counts of tweets pulled pulled from the API, with geolocation, keyword matched and classified for
first-hand accounts of ILI symptoms. (2022 includes 1st week of 2023)

Figure 1: Counts of tweets classified as referring to first-hand accounts of ILI symptoms, geolocated to Wales.

Class Example

TRUE "I’ve never felt so ill. coughing, shiv-
ering, aching. Luckily my mom is sup-
plying me with medication, water and
soup!"

FALSE "If you have aches, fever and feel gen-
erally unwell, it might be flu. Make
sure to rest, drinking plenty of water &
take over the counter medicines to ease
symptoms."

Table 2: Examples of tweets classified at whether or not
they describe first-hand accounts of ILI symptoms.

the need of huge computational resources or paying
API services.

Two large pre-trained language models were
tested for the classification process: Twitter-
RoBERTa (Loureiro et al., 2022) and BERTweet
(Nguyen et al., 2020). Both models are based on the
RoBERTa (Liu et al., 2019) architecture which in

turn is an expansion of BERT (Devlin et al., 2019).
RoBERTa models are essentially deep neural net-
works of 12 layers and utilise techniques such as
attention masks (Vaswani et al., 2017) and dynamic
masking of tokens during training that allows them
to understand language relations and create accu-
rate representations (by mapping words into a high
dimension embedding vectors). To achieve this the
models are usually trained on large corpora of text.
Specifically, BERTweet and Twitter-RoBERTa are
pre-trained in a large corpus of tweets, 850 and
124 million tweets respectively, and are tailored for
usage in social media context.

These transformer-based language models were
selected as: (1) they consistently outperform pre-
vious text-classification approaches and adapt well
to different domains and (2) since they have been
pre-trained on Twitter data, they perform better in
social media text data (i.e. short, unstructured text,
internet slang, emojis, etc) (Barbieri et al., 2020;
Antypas et al., 2023).

Due to the small size of the annotated set, a 5-
fold cross-validation method is also applied where
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the whole dataset is used. We also ensured that
distribution of classes in the train and test sets in
each fold is the same.

All models used are based on the implementa-
tions of the base versions provided by Hugging
Face (Wolf et al., 2020) while Ray-Tune (Liaw
et al., 2018) was utilised to optimise the models’
hyper-parameters (i.e. learning rate, training batch-
size, warm-up rate, number of epochs).

To establish the difficulty of the task and better
evaluate the performance of the language models,
three baseline models were also tested. An SVM
classifier based on TFIDF features is tested, along
with two frequency-based classifiers (predicting the
most frequent and least frequent classes).

2.3 Clinical data
As a comparison to the Twitter data, a more tra-
ditional public health indicator was also analysed.
Data on weekly counts of GP consultations for
influenza-like illnesses (ILI) reported in Wales for
the period January 2020 to December 2023 was
extracted (Public Health Wales, 2023). A total of
11,152,985 GP consultations for ILIs were recorded
for the period of interest. There was a notable surge
in ILI-related consultations in towards the end of
2022, peaking in weeks 49-51 (Figure 2)

2.4 Exceedance detection
Exceedance detection (Farrington et al., 1996;
Zareie et al., 2023) is an approach used by several
public health authorities to identify significantly
high incidences of diseases relative to historic base-
line data (for example, Kavanagh et al. 2012). Ex-
ceedance detection was performed using a modified
version of the Farrington algorithm (Noufaily et al.,
2013) as implemented in the R package surveil-
lance (Salmon et al., 2016). Briefly, the algorithm
iteratively fits a quasi-Poisson model to historic
data and detect significant deviations in the present
data from that predicted by the model. The model
was fit to the 2 previous years of data (2020-2021)
and exceedance detected for data in the year 2022.
Counts were binned into weekly intervals. A win-
dow width or 3 weeks and detection threshold of
α = 0.05 (all other parameters kept to default val-
ues).

Exceedance detection was applied to the classi-
fied tweet counts. For comparison, the keyword-
matched tweet counts (without classification) and
the counts of ILI GP consultations were also anal-
ysed.

F1 AccuracyFALSE TRUE Macro
BERTweet 88.44 74.70 81.57 84.16
T-RoBERTa 87.30 74.80 81.05 83.14
SVM 84.13 33.39 58.76 74.37
Most Frequent 82.23 0.00 41.11 69.82
Least Frequent 0 46.37 23.18 30.18

Table 3: Average F1 scores for each class. The accu-
racy and mean macro-F1 scores are also reported. The
"Most Frequent" baseline indicates a baseline predict-
ing always FALSE, while the "Least Frequent" baseline
indicates a baseline predicting always TRUE.

3 Results

In this section, we present both the classification re-
sults that are used as basis for our analysis (Section
3.1), and the results of our exceedance detection al-
gorithm based on the classification output (Section
3.2).

3.1 Classification results

When considering the results of the cross-
validation classification experiment, the BERTweet
model performs slightly better than the Twitter-
RoBERTa (T-RoBERTa) one. Table 3 displays the
average macro-F1 scores for each class that the two
models achieve.

Both models appear to struggle to identify the
positive class where their performance drops ap-
proximately by 10 ten points in terms of F1 score.
In general, tweets that indicate first-person flu
symptoms in a more subtle way pose difficulties for
the models. For example both ‘When you’re too ill
to watch TV or read a book music is what keeps you
sane. Currently listening to Queen. Freddie was
the absolute best, without a doubt.‘ and ‘@user
My family had it we were ill for 2 days 7 of us non
jabbed. . . ‘ are labelled as positive but classified by
BERTweet as negative entries. At the same time,
negative labelled tweets such as ‘@user My partner
has had it for 2 feverish nights horrendous cough-
ing, headache, sore eyes but covid negative.‘ and

‘Is there anyone in this country NOT coughing and
spluttering and snotting and just generally feeling
yuck¿ which describe symptoms in a more general
way are also labelled as positive by BERTweet.

Due to its slightly better performance, the
BERTweet classifier was used for subsequent anal-
ysis.

4



Figure 2: Counts of ILI-related GP consultations between 2020 and 2022

3.2 Exceedance detection
Using the classified tweet counts provided by
BERTweet, a cluster of alerts was triggered for
weeks 44-46 and 50-52 of 2022 (Figure 3 – see
Section 2.4 for more details on how this experi-
ment was performed). For ILI GP consultations,
a cluster of alarms were triggered for weeks 48
of 2022, onwards (Figure 5). The classified tweet
counts therefore alerted to a significant increase in
ILI-related tweets approximately 4 weeks before
a corresponding alert was triggered for ILI-related
GP consultations. For tweet counts derived from
ILI keyword matching without classification, no
alerts were triggered (Figure 4).

4 Discussion

This study has demonstrated the utility of using
social-media data to provide early exceedance
alerts of influenza-like illnesses (ILIs) earlier than
routine clinical data. the classified tweet counts
produced an exceedance alert 4 weeks lead time
on routine clinical data. It can supplement existing
evidence for practitioners to assess if a season has
started earlier than anticipated or is more extreme
than usual, and provide public health authorities a
valuable tool to prepare for an incoming surge in
demands on the healthcare system.

Furthermore, this study shows the importance of
correctly classifying first-hand accounts of symp-
toms, as matching on ILI-related keywords alone
produced counts that are heavily biased by mass
media content, not reflective of prevalence of symp-
toms in the community. We show that tweet counts
using keyword matching alone failed to produce
any alarms. Despite the fact that the classifier strug-

gles with some particular linguistic patterns and
contexts, the classified tweet counts does show a
significant increase in tweet counts that coincide
with an increase in GP consultations.

4.1 Limitations

A significant issue is the relative scarcity of Twit-
ter users who enable geolocation. Approximately
3% of tweets matching keywords had geolocation
enabled. An attempt was made to overcome this
by retrieving data without geolocation and estimat-
ing location with the carmen Python library. This
method had its own issues due to the large volume
of key-word matching tweets exceeding the avail-
able quote of the API, but then very few located
to Wales, much fewer than using true geolocation.
The resulting performance was poorer.

The exceedance detection method has limita-
tions. It is only useful for detection of exceedance
in infections with seasonal trends (e.g. influenza).
It can only detect increases higher than on previ-
ous years, but does not provide a quantification
of the magnitude of the increase. An alternative
approach is to use time-series modelling, such as
ARIMA, GAM, etc. which do not rely on seasonal
behaviour. Further evaluation using non-seasonal
outbreaks would be helpful. However a difficulty
arises when considering the overlap of symptom
profiles between seasonal and non-seasonal dis-
eases (e.g. symptoms of non-seasonal Covid-19
overlap with those of seasonal influenza) and are
not easily separated in the data.

A further issue is that the approach to EWD, is
that only significant increases, relative to previous
years will be detected. An increase in healthcare
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Figure 3: Exceedance detection of weekly tweet counts in 2022, geolocated to Wales, classified as mentioning
first-hand accounts of ILI symptoms

Figure 4: Exceedance detection of weekly tweet counts in 2022, geolocated to Wales, matching ILI keywords,
without classification.

Figure 5: Exceedance detection of ILI-related GP consultations in 2022 in Wales.
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burdens may be operationally significant within a
given year, even if it is not statistically higher than
previous years. The approach however, is useful
for detecting increases in healthcare burdens that
are unusually early compared to previous years.

The choice of training dataset has potential is-
sues. There may be language differences between
Wales and the rest of the UK, either use of Welsh
language or Welsh-specific dialects in English spe-
cific to Wales, which the training dataset would not
capture.

For robust exceedance detection, it is recom-
mended to use 5 years of data to compute the base-
line (Noufaily et al., 2013). However due to the
API quota limits on how many historic years’ data
could be retrieved, we could only use 2 years (2020-
2021). This makes it difficult to comprehensively
evaluate the reliability of the method. A further
complication is that these years were significantly
impacted by the Covid-19 pandemic. This is likely
to lead to significant changes in how people en-
gage with social media compared to normal. As
a side note, there is a notable peak in ILI-related
tweets around week 12, which would have been at
the height of the first wave of the pandemic. With
this peak included in the baseline, the threshold for
exceedance will be higher than normal during these
weeks, resulting in under-detection of exceedance.

While the proposed approach shows promise
for providing EWD for infectious diseases, a sig-
nificant setback occurred with the withdrawal of
the free Academic Twitter API in early 2023.
This makes this data source much less accessible.
This has big implications for research and non-
commercial applications such as disease surveil-
lance (Davidson et al., 2023a,b). There are a num-
ber of alternative ’microblogging’ platforms that
have received more attention in the past year, such
as Mastodon, Threads, and Bluesky. However,
these platforms do not have the same volume of
users as Twitter, meaning content relevant for syn-
dromic surveillance will be very sparse. Also, most
of these platforms lack an accessible interface to
facilitate rapid automated data retrieval. Platforms
such as Instagram and TikTok have very large user-
bases, but the predominance of image and video-
based content makes them unamenable to NLP
methods.

More generally, changing patterns in how the
public engage with social media should be consid-
ered. In recent years concerns about privacy and
digital sanctity have driven social media users to be

less inclined to publicly share details of their per-
sonal well-being. A 2018 survey of social media
use in Wales reported only approximately 10% of
users shared details of their health on social media,
and only a quarter of those were shared publicly
(Song et al., 2020). It is expected that this propor-
tion will be lower today. Another study monitored
Twitter usage among participants in a flu symptom
survey (Daughton et al., 2018). This study found
participants rarely tweeted about their symptoms
while experiencing them (of 266 symptom-related
tweets identified, only 3 were made within 2 weeks
of an instance of flu-like symptoms, of which there
were 426). If these usage patterns are reflective of
the wider population, it will significantly impact
on the reliability of social-media as a syndromic
surveillance tool.

Digital representativeness is another issue. So-
cial media platforms disproportionately over-
represent some demographics over others (Ander-
son, 2021). In Wales, there was no significant dif-
ference in social media use across demographics,
although, use of Twitter was lower in more de-
prived areas (Song et al., 2020). The potential for
social media to reach hard-to-reach populations
should be considered for distributing important
public heath guidance to control the spread of dis-
ease.

5 Conclusion

In this paper, we demonstrate that social-media
based syndromic surveillance is capable of pro-
viding an advance warning of healthcare burdens
earlier than traditional syndromic indicators. The
results are encouraging and suggest that an adop-
tion of social media indicators to supplement tradi-
tional disease surveillance is feasible with current
technology. We also demonstrate the importance of
NLP-based classification in identifying references
to first-hand accounts of symptoms experienced.
Nonetheless, validation of these conclusions with
larger datasets is warranted. Furthermore, issues
around access to social media data, digital repre-
sentation and changing patterns of social media
engagement should be considered when using so-
cial media data for syndromic surveillance.
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Abstract

This study explores the differences between
textual and multimodal sentiment annotations
on videos and their impact on transcript-based
sentiment modelling. Using the UniC and CH-
SIMS datasets which are annotated at both the
unimodal and multimodal level, we conducted
a statistical analysis and sentiment modelling
experiments. Results reveal significant differ-
ences between the two annotation types, with
textual annotations yielding better performance
in sentiment modelling and demonstrating su-
perior generalization ability. These findings
highlight the challenges of cross-modality gen-
eralization and provide insights for advancing
sentiment analysis.

1 Introduction

With the rise of the internet and online platforms,
especially the proliferation of social media, user-
generated content (UGC) has become widely ac-
cessible to the public. UGC appears in various
forms and modalities, ranging from online textual
movie reviews on platforms like IMDB1 and Rotten
Tomatoes2, to video blogs (vlogs) in video-sharing
platforms such as YouTube3 and TikTok4.

UGC holds significant value for companies, mar-
keters and politicians (Van Hee et al., 2014), as
it contains sentiment-rich information that can be
leveraged to monitor public opinion and support the
decision-making process (Wankhade et al., 2022).
For instance, sentiment analysis based on tweets
has been utilized to model user satisfaction in mo-
bile payments (Kar, 2021) and predict election out-
comes (Stefanov et al., 2020).

Sentiment analysis on UGC predominantly fo-
cuses on text, partly because textual sentiment mod-
elling is more developed and computationally effi-

1https://www.imdb.com
2https://www.rottentomatoes.com
3https://www.youtube.com
4https://www.tiktok.com

cient compared to other modalities, such as audio
and video. In contrast, systems capable of auto-
matically understanding the content and sentiment
of videos are still in their infancy (Stappen et al.,
2021; Wang et al., 2023). Consequently, sentiment
analysis of non-textual UGC is often converted to
text-based analysis through subtitles or transcripts.
For instance, Stappen et al. (2021) investigated the
use of video transcripts to capture contextual and
emotional information in videos.

A critical question arises when annotating tran-
scripts: Should information from non-textual
modalities be considered during annotation? In
real-life scenarios, sentiment annotations typically
reflect the emotional status across modalities. As
a result, some studies incorporate multimodal in-
formation into the final annotation (Morency et al.,
2011; Pérez-Rosas et al., 2013; Nguyen-The et al.,
2022). However, another common approach is to
perform annotation solely based on textual infor-
mation, excluding other modalities to avoid inter-
ference (Clavel et al., 2013; Stappen et al., 2021;
Bekmanova et al., 2022; Efat et al., 2023). This
approach is practical since the input for sentiment
modelling is usually text, and annotating textual
data is less complex compared to multimodal data.

Both approaches to sentiment annotation have
their merits and are often intertwined. In some
cases, researchers do not differentiate between
them, applying multimodal annotations to textual
sentiment modelling under the assumption that sen-
timent labels across modalities are consistent. How-
ever, this assumption does not always hold true.
For instance, the text “I love this weather” might
be labelled as positive, but when the speaker’s tone
is sarcastic and they wear a frown, the sentiment
might be perceived as negative. Previous studies
have shown that emotion labels in multimodal se-
tups do not always align with those derived from
textual modalities alone (Ellis et al., 2014; Yu et al.,
2020; Du et al., 2023, 2024).
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Accurate annotations are crucial for building ef-
fective models. However, in the field of sentiment
analysis on UGC transcripts, few studies have com-
pared sentiment annotations derived solely from
textual information with those incorporating multi-
modal information, or examined the impact of these
differences on sentiment modelling. To address this
gap, this paper seeks to answer the following re-
search questions:

1. Do sentiment annotations on video transcripts
based solely on textual information differ
from those that include information from other
modalities? If so, to what extent?

2. How does the inclusion or exclusion of non-
textual information in video transcript annota-
tions impact sentiment modelling?

2 Related Studies

A significant portion of sentiment analysis research
has traditionally relied on datasets comprising user-
generated text. Common sources include social
media platforms, such as tweets (Gyanendro Singh
et al., 2020), and reviews from domains like prod-
ucts, hotels, and movies (Van et al., 2022; Thakkar
et al., 2023). While these studies have provided
valuable insights into sentiment classification, they
are predominantly focused on textual data.

Recently, sentiment analysis has evolved beyond
textual analysis to incorporate other modalities,
such as audio and video, giving rise to multimodal
sentiment analysis (Wu et al., 2024). This shift
reflects the growing prevalence of opinion-sharing
in video formats on platforms like YouTube and
TikTok (Zadeh et al., 2017; Gandhi et al., 2023),
where diverse modalities provide richer contextual
information for understanding sentiments.

An essential aspect of multimodal sentiment
analysis is the fusion of different modalities
(Gandhi et al., 2023; Zhu et al., 2023). Fusion
strategies are broadly categorized into two types:
early fusion and late fusion. Early fusion, also
known as feature-level fusion, integrates features
from each modality at the input level, whereas late
fusion, or decision-level fusion, combines the out-
puts of unimodal sentiment analyses to generate
the final prediction. Recently, advanced fusion
approaches, such as tensor fusion networks (Yan
et al., 2022) and dynamic fusion methods (Hu et al.,
2022a), have been proposed to enhance perfor-
mance.

While incorporating non-textual information
generally improves the performance of multimodal
sentiment analysis, there remains a heavy reliance
on textual modalities. This phenomenon, termed
text-predominance, is evident in studies showing a
significant drop in classification accuracy – from
approximately 80% to 54% – when textual informa-
tion is excluded from multimodal models trained
on multimodal data (Liu et al., 2022). In contrast,
removing audio or visual information results in
only a marginal accuracy decline, such as a reduc-
tion from 87% to 85% (Hu et al., 2022b), a trend
corroborated by Wu et al. (2024).

It seems that we can still rely on textual infor-
mation despite the availability of other modalities,
especially when considering the imbalance of the
cost and the improvement when introducing non-
textual modalities. However, when we decide to
take into consideration only the textual modality
of the opinioned videos, which set of annotations
should be used, the textual one or the multimodal
one, as multimodal labels do not always reflect sen-
timental states in texts (Yu et al., 2020; Du et al.,
2024). In the following, we are going to investi-
gate the differences and influence of the two sets
of sentiment annotations.

3 Datasets

The definition of UGC varies across disciplines. In
the context of social media, UGC is defined as any
kind of text, data or action performed by online
digital systems users, published and disseminated
by the same user through independent channels,
that incur an expressive or communicative effect
either on an individual manner or combined with
other contributions from the same or other sources
(Santos, 2022). Based on this definition, we se-
lected two datasets for our study: the UGC dataset
UniC (Du et al., 2024), and the non-UGC dataset
CH-SIMS (Yu et al., 2020).

UniC is an English audio-visual emotion dataset
with independent annotations for each modality
(i.e., text, audio, and silent video) as well as overall
emotion states of the videos. This UGC dataset
comprises nearly 1,000 video clips collected from
YouTube, focusing on the topic of reviews.

CH-SIMS is a Chinese multimodal sentiment
analysis dataset featuring over 2,000 curated video
segments with both multimodal and independent
unimodal annotations. The videos in CH-SIMS
are sourced from movies, TV series, and variety
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shows, implying that the professional actors in CH-
SIMS tend to express emotions more explicitly in
all modalities than the non-professionals in UniC.
This difference may also influence the sentiment
annotations across modalities.

For both datasets, sentiment labels were origi-
nally designed as negative, weakly negative, neu-
tral, weakly positive and positive. In this paper,
we grouped weakly negative and weakly positive
into negative and positive, respectively, for further
experiments and analysis.

4 Experiment

4.1 Statistical Analysis

We first analyzed the sentiment distribution across
modality setups. As shown in Figure 1, the senti-
ment distributions in both datasets vary depending
on the modality setup. Compared to the multimodal
setup, the number of both negative and positive in-
stances decreases in the textual modality, while the
number of neutral instances increases. A possible
explanation for this trend is that the additional in-
formation from audio and visual modalities helps
annotators discern sentiment polarities that might
otherwise be interpreted as neutral in text-only ex-
pressions.

Figure 1: Distribution of textual and multimodal anno-
tations in Unic (left) and CH-SIMS (right).

To evaluate the relationship between annotations
across modalities, we conducted significance tests.
Chi-Square test results indicate that the relationship
between the two types of annotations is statistically
significant and not random, with a P-value of 2.49e-
98 for UniC and a P-value of 6.80e-235 for CH-
SIMS.

To further explore the similarities between the
textual and multimodal annotations, we compared
the two annotation types. In UniC, 63.69% of in-
stances were assigned the same sentiment anno-
tations across the two modality setups, while in
CH-SIMS, this percentage increased to 69.09%.
To measure the agreement between the two an-

notation sets, Cohen’s kappa coefficient (Cohen,
1960) was applied. The results show a higher level
of agreement in CH-SIMS, with a kappa score of
0.5494, compared to 0.4964 in UniC. These find-
ings highlight a notable difference between the two
sets of sentiment annotations, suggesting that the
distinctions are not negligible.

The confusion matrices for the two annotation
types in both datasets, presented in Figure 2, pro-
vide further insights into how sentiment labels
change when transitioning between modalities. For
example, the inclusion of audio-visual information
in UniC led to a shift of approximately 30% of neg-
ative and 12% of positive annotations from their
textual counterparts. This discrepancy is exempli-
fied in Figure 3, where a video clip is annotated
as negative in the text but positive in the multi-
modal context. The sentiment shift primarily arises
from the cheerful tone of voice and the presence
of a smile. In contrast, for CH-SIMS, the corre-
sponding shifts were about 15% and 28%, respec-
tively. These results demonstrate the varied impact
of multimodal information on sentiment annota-
tions across the two datasets.

Figure 2: Confusion matrix (Left: UniC; Right: CH-
SIMS) of textual and multimodal annotations. The fre-
quency is normalized vertically against the number of
textual annotations with different sentiment labels.

Figure 3: A video clip example from UniC.
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Acc-text F1-text Acc-mm F1-mm
Training data mean SD mean SD mean SD mean SD
UniC-text 74.57 1.57 74.62 1.66 54.98 2.14 53.03 1.69
CH-SIMS-text 71.18 0.44 68.33 0.95 59.36 1.27 52.60 0.29
UniC-mm 44.67 1.19 38.66 1.36 58.76 1.03 43.38 0.86
CH-SIMS-mm 60.70 0.87 46.15 2.07 63.03 0.91 45.13 1.22

Table 1: Model performances on test datasets when fine-tuned with textual (text) and multimodal (mm) annotations,
respectively, and evaluated against textual (text) and multimodal (mm) annotations, respectively, from UniC and
CH-SIMS. Accuracy (ACC) and F1-Macro (F1) are averaged from the results of three experiments. SD stands for
standard deviation.

4.2 Sentiment Modelling

To further examine the differences between the
two types of sentiment annotation, we applied
both in the task of transcript-based sentiment mod-
elling by fine-tuning a RoBERTa-base model (Liu
et al., 2019) for UniC and a Chinese RoBERTa
model (Cui et al., 2021) for CH-SIMS, respectively.
Specifically, all instances from both datasets were
shuffled and randomly split in the training, valida-
tion and test sets in an 8:1:1 ratio. The models were
fine-tuned using a learning rate of 1e-5, and a batch
size of 8, and 10 epochs with an early-stopping
strategy.

For evaluation, both accuracy and macro F1
scores were used to assess performance across tex-
tual and multimodal annotations, providing insights
into cross-modality performance and the general-
ization potential between modality setups. Each
fine-tuning experiment was repeated three times
with different random seeds, and the averaged re-
sults are presented in Table 1.

As shown in Table 1, for both UniC and CH-
SIMS, the models fine-tuned with textual anno-
tations performed better when evaluated against
textual annotations than against multimodal anno-
tations. This highlights barriers across modalities
and significant information loss when transition-
ing from multimodal data to a single modality for
both datasets. Interestingly, while the model per-
formed significantly better on textual annotations
from UniC (F1 = 74.57) compared to CH-SIMS (F1
= 68.33), the performance gap narrowed when eval-
uated against multimodal annotations (F1 = 53.03
for UniC versus F1 = 52.60 for CH-SIMS). This
suggests a common limitation in the model’s abil-
ity to generalize from text to multimodality across
both datasets.

The scenario became more complex when multi-
modal annotations were used for fine-tuning. For
both UniC and CH-SIMS, models fine-tuned with
multimodal annotations achieved only moderate

performance (F1 = 42.38 for UniC and F1 = 45.13
for CH-SIMS), reflecting the limitations of text-
based language models in generalizing from textual
to multimodality setups. Additionally, the models’
performance varied when evaluated against multi-
modal annotations versus textual annotations. For
UniC, the F1 score dropped noticeably from 43.38
to 38.66, while CH-SIMS showed a marginal in-
crease, with the F1 score rising from 45.13 to 46.15.
This indicates differing capacities of multimodal
annotations to encapsulate information relevant to
textual annotations.

More notably, when comparing evaluations
against multimodal annotations, models fine-tuned
with textual annotations generally outperformed
those fine-tuned with multimodal annotations for
both datasets. This finding suggests the sentiment
generalization ability of textual annotations in text-
based language models.

5 Conclusion

This study investigated the differences between
sentiment annotations on video transcripts derived
from textual and multimodal setups, as well as their
impact on transcript-based sentiment modelling.

The statistical analysis revealed a significant dif-
ference between the two types of sentiment annota-
tions with absolute similarities less than 70% and
kappa scores less than 0.55, highlighting the in-
fluence of multimodal information on sentiment
labelling in video data. The modelling experiments
further demonstrated that text-based annotations
outperformed multimodal annotations when eval-
uated against both textual and multimodal labels.
Also, a significant cross-modality performance gap
was observed. For instance, the macro F1 score
dropped from 74.62 to 53.03 when the evaluation
labels shifted from text-based to multimodality for
UniC, underscoring the challenges of generalizing
sentiment models across different modalities.

For future research, we will investigate the in-
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corporation of additional modalities (e.g., audio
and facial expressions) and advanced models (e.g.,
multimodal fusion models), enabling a more com-
prehensive and nuanced analysis.

6 Limitations

A notable limitation of this study is the linguistic
difference between the datasets: UniC is in En-
glish, while CH-SIMS is in Chinese. As a result,
the comparison between UGC and non-UGC may
be influenced by cross-cultural differences, which
were not explicitly addressed in this research. Fu-
ture studies should consider incorporating datasets
from the same linguistic and cultural context to
allow for stronger and more nuanced comparisons.
Unfortunately, the current availability of datasets
limits the feasibility of such an approach.
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Abstract

A formidable challenge regarding scraped cor-
pora of social media is the omission of spaces,
causing pairs of words to be conflated together
as one. In order for the text to be properly
parsed and analyzed, these missing spaces must
be detected and restored. However, it is partic-
ularly hard to restore whitespace in languages
such as Hebrew which are written without vow-
els, because a conflated form can often be split
into multiple different pairs of valid words.
Thus, a simple dictionary lookup is not fea-
sible. In this paper, we present and evaluate a
series of neural approaches to restore missing
spaces in scraped Hebrew social media. Our
best all-around method involved pretraining a
new character-based BERT model for Hebrew,
and then fine-tuning a space restoration model
on top of this new BERT model. This method
is blazing fast, high-performing, and open for
unrestricted use, providing a practical solution
to process huge Hebrew social media corpora
with nothing more than a consumer-grade GPU.
We release the new BERT model and the fine-
tuned space-restoration model to the NLP com-
munity.

1 Introduction

Scraped corpora of social media tend to contain
many instances of missing spaces, where two or
more words have been run together as one. This
phenomenon is likely due to the fact that the HTML
source of internet pages often encodes different
parts of the text in distinct HTML tags, without
explicit indication of whether two consecutive tags
contain a single word or two separate words. Scrap-
ing algorithms exercise various heuristics to de-
cide whether to add a space or not; however, these
heuristics do not always succeed. In practice, the
NLP researcher is often faced with digital corpora
of scraped social media in which a substantial num-
ber of lines are corrupted with conflated words.
These missing spaces can impair downstream tasks

such as parsing, segmentation, and information re-
trieval. Additionally, when these corpora are used
to train language models, the errors are propagated
forward into the model. Thus, it is essential to
restore missing spaces wherever possible.

The problem of missing spaces is particularly
acute in languages such as Hebrew, in which words
are generally written as consonants alone. The
omission of vowels results in extreme ambiguity,
such that a given sequence of letters can generally
be interpreted as multiple different words (Tsarfaty
et al., 2019). Crucially, this means that when two
words are run together, they generally cannot be
separated by means of a simple dictionary lookup,
because there are multiples ways of splitting the
conflated sequence into two valid Hebrew words.

For instance, here is an actual line contained
in the Hebrew section of the public OSCAR cor-
pus (Ortiz Suárez et al., 2020): אחד קושיכל רמת
יכול! ("Level of difficulty Everyone can do it").
The words קושי! ("difficulty") and כל! ("every") are
conflated together in the corpus as a single string.
However, there is more than one way to split this
string; if we were to apply a dictionary lookup, we
could also split it into the two words קו! ("line") and
שיכל! ("transposed"). Another line in the same cor-
pus contains the conflated string ,קריאהבמה! which
can be split into קריאה! ("reading") and במה! ("in
what"), or into קריא! ("readable") and הבמה! ("the
stage"). Hundreds of thousands of additional sen-
tences within the Hebrew portion of the OSCAR
corpus are similarly corrupted. Yet, the OSCAR
internet crawl is the primary component of virtu-
ally all publically-available Hebrew BERT models,
including heBERT (Chriqui and Yahav, 2021), Ale-
phBERT (Seker et al., 2022), and AlephBertGim-
mel (Gueta et al., 2023).

An efficient context-aware method is needed to
fix this. In this paper, we present and evaluate a
series of neural approaches for the restoration of
the missing spaces within social-media corpora.
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2 Task Definition

We formalize the space-restoration task as fol-
lows: given an input string s with characters c1...cn
where |s| = n, our goal is to predict a binary la-
bel for each ci, indicating whether a space should
appear before the character at that position. This
formulation treats the problem as a character-level
sequence labeling task, which is particularly suit-
able for languages like Hebrew where subword
boundaries must be handled carefully.

3 Neural Models for Space Restoration

In this study, we develop and evaluate a series of
neural models for the restoration of the missing
spaces.

3.1 Existing Encoder Models for Hebrew

Existing Hebrew encoder-based models such as
mBERT (Devlin et al., 2018), AlephBertGimmel
(Gueta et al., 2023), HeRo (Shalumov and Haskey,
2023), and DictaBERT (Shmidman et al., 2024b)
are trained with a wordpiece tokenizer, which ob-
scures character-level information and impairs their
ability to perform well on character-level labeling
tasks. In contrast, TavBERT (Group, 2023) adopts
a character-based representation for Hebrew, pre-
serving full granularity over all character positions.
TavBERT thus opens the door to the possibility of
training an encoder-based model to perform char-
level predictions for whitespace restoration.

3.2 A New Character-based Encoder Model

As noted, TavBERT provides a possible basis for
training a model to provide character-level predic-
tions for Hebrew words. Nevertheless, at its core,
TavBERT was designed with word prediction in
mind; accordingly, it was trained with a SpanBERT-
style objective, wherein the model is trained to
predict a series of consecutive masked characters,
rather than just a single character. Indeed, as we
will see below (Section 5), fine-tuning TavBERT
for this task results in a low-performing model.

Therefore, as part of this study, we pretrain a new
character-level BERT model for Hebrew, dubbed
DictaBERT-char. Our new model is pretrained
on the standard BERT masked-language-modeling
objective at the character level; that is, it is trained
to predict single masked characters, rather than
spans or wordpieces. We hypothesize that this will
produce a model that is more robustly tuned to the

fine-grained requirements of character-level tasks,
such as the space-restoration task.1

In order to pretrain this new model, we adopt the
same essential training setup and corpus used in the
training of the Hebrew BERT model DictaBERT,
which has been shown to be highly successful on
a wide variety of NLP tasks (Shmidman et al.,
2024b). We make two key modifications: (1) We
use a purely character-level tokenizer to fully cap-
ture potential space boundaries, and (2) we set a
consistent context length of 2048 throughout train-
ing (rather than gradually scaling from 256 to 512),
in order to address the lower compression ratio
when working at the character level.

The model was trained on a DGX Workstation
with 4xA100 40GB GPUs for a total of 31,600
steps. Each step included a batch size of 4,096 ex-
amples, where each example had a context length
of (up to) 2,048 tokens in order to accommodate
the character-level tokenizer. The rest of the param-
eters, including the training corpus, are the same as
DictaBERT, detailed by Shmidman et al. (2024b).

3.3 Decoder-based Models (LLMs)

Generative large language models (LLMs) have
demonstrated remarkable capabilities across many
NLP tasks, including sequence-to-sequence prob-
lems. As these models are generative, we can lever-
age their ability to generate free-form text to solve
char-level tasks such as our space-restoration task.
We explore two avenues regarding LLMs.

First, we fine-tune an open-weight LLM. We
use Dicta-LM 2.0 (Shmidman et al., 2024a), a
7B parameter LLM continuously trained in He-
brew (based on Mistral-7B (Jiang et al., 2023)).
This model is particularly strong regarding Hebrew
tasks, as indicated by its position on the Hebrew
LLM Leaderboard.2

Second, we evaluate a prompt engineering ap-
proach with two state-of-the-art proprietary LLMs:
GPT-4o and GPT-4o-Mini (OpenAI, 2024).

4 Experimental Setup

4.1 Training Corpus

The training data set was created automatically by
augmenting texts and removing spaces randomly.

1We release this model to the public on HuggingFace
under the CC-BY-4.0 license: https://huggingface.co/
dicta-il/dictabert-char

2https://huggingface.co/spaces/
hebrew-llm-leaderboard/leaderboard
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We start with a collection of 150,000 Hebrew sen-
tences from high-quality Hebrew corpora.3 Next,
in 20% of the sentences, we randomly remove be-
tween 1 and 4 spaces.

4.2 Test Corpus
The test data set contains 6,000 sentences, and was
created similarly to the training data, with three
important caveats:

1. We wish to minimize the likelihood of the
models having previously seen any of these
sentences. Therefore, we collect the test
corpus sentences from the newly-released
FineWeb2 corpus (Penedo et al., 2024), af-
ter removing any documents that appeared
in previous Hebrew corpora (such as OSCAR
(Ortiz Suárez et al., 2020) and mC4 (Xue et al.,
2021)).

2. In order to focus the evaluation metrics on the
ability of the models to handle missing spaces,
we removed 1-4 random spaces from each of
the sentences in the test corpus.

3. To ensure that the test data reflects real-world
challenging cases, we only remove spaces be-
tween two words, rather than before or af-
ter punctuation marks. Missing spaces next
to punctuation can easily be fixed using rule-
based methods; the word-conflation errors are
where we need a neural model.

We release the test corpus to the NLP community
so that future studies can reproduce and compare
to the results of this paper.4

4.3 Training Details
4.3.1 Training Encoder Models
We train the encoder models on the sequence la-
beling task described above (Section 2). For each
character, the models are fine-tuned to predict a bi-
nary label indicating whether a space should appear
before it or not.

The BERT encoders generate contextualized
character representations, followed by a linear layer
that maps these representations to logits. We train

3The sentences are gathered from high-quality Hebrew
corpora such as newspapers and ebooks, rather than from
scraped social media, to avoid the possibility that these sen-
tences themselves might already be corrupted with missing
spaces.

4https://huggingface.co/datasets/dicta-il/
hebrew-space-restoration-corpus

by minimizing the cross-entropy loss between the
predicted logits and the true labels.

During initial fine-tuning, we observed that the
model almost exclusively predicted the negative
label, likely due to the the class imbalance (the
average sentence had 115 characters but fewer than
4 missing spaces - a ratio of roughly 99:1). To
address this, we trained the encoder models only on
the 20% of examples where spaces were removed.
Within each example, we also downsampled the
negative labels, keeping only 10% of the li = 0
labels, ensuring a more balanced ratio.

The hyperparameters and loss graphs are de-
tailed in Appendix B.

4.3.2 Training The Decoder-based Model
For the decoder-based fine-tuned model, we train
on the full training data, where 80% of the ex-
amples had no spaces removed. We use a super-
vised fine-tuning (SFT) approach, similar to in-
struction tuning in large language models (Zhang
et al., 2024).

Each example was formatted as:

[SRC] {input sentence} [/SRC]
{output sentence}</s>

We compute the loss only on the completion (i.e.,
the output sentence), ensuring that the model fo-
cuses on predicting the correct restoration of spaces.
Since most of the training examples already con-
tained correctly spaced text, this setup allowed the
model to learn both how to copy well-formed sen-
tences and also how to correct corrupted ones with-
out being biased toward over-inserting spaces.

The hyperparameters and loss graphs are de-
tailed in Appendix C.

During testing, we constrained the model’s out-
put by using guided decoding in the inference en-
gine, in order to prevent any alterations other than
additional spaces. This allowed for a reliable evalu-
ation of its ability to restore proper spacing, without
the need to worry that the generative model might
otherwise modify the text.

4.3.3 Prompting General-Purpose LLMs
To craft an ideal prompt, we used OpenAI’s o1
model (OpenAI, 2024). We provided the model
with a definition of the task as a character-level
sequence labeling task, and we emphasized that the
prompt should clearly instruct the model to modify
only spaces, without altering any other characters.
The final prompt can be found in Appendix D.
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When testing, we verify that the model’s out-
put is "valid", that is, identical to the input except
for the addition of spaces. If the model makes
any other modifications, we treat the sentence as
unchanged, since we cannot reliably evaluate an
output that differed beyond spacing adjustments.
GPT-4o produced valid outputs 95.2% of the time,
while GPT-4o-Mini produced valid outputs only
83.5% of the time.

5 Results

We evaluate each model’s ability to accurately re-
store all missing spaces across the sentences in our
test corpus. We compute precision, recall, and F1
score for restoring a space (a positive label). Re-
sults are presented in Table 1.

Model Precision Recall F1
Our Model (T=0.5) 90.1% 99.0% .943
Our Model (T=0.9) 97.0% 96.7% .968
tau/TavBERT 13.0% 13.4% .131
DictaLM2.0 (FT) 97.5% 97.9% .976
DictaLM2.0-AWQ (FT) 97.2% 97.7% .974
GPT-4o 98.9% 93.6% .961
GPT-4o-Mini 97.7% 84.5% .906

Table 1: Performance on the space restoration task, mea-
sured in terms of precision, recall, F1 for positive labels
(i.e., correctly adding a missing space). For our model
we presented results with two different thresholds.

The fine-tuned 7B-parameter decoder model
(Dicta-LM 2.0) outperforms the other methods,
with our new character-based model not far be-
hind, with both of these models being lightweight
enough to run on consumer hardware. Addition-
ally, we evaluate a 4-bit quantized version of the
model using AWQ quantization (Lin et al., 2023).
This version requires only 5GB of VRAM to run
efficiently and performs nearly as well as the full-
precision model.

To provide a more realistic view of practical
usage, we compared the performance of the 7B
models and the encoder model, as shown in Table
2. Both were evaluated on an RTX 4090 GPU;
we ran our char-based BERT model using the stan-
dard HuggingFace implementation, and we ran the
DictaLM model via vLLM.

Our char-based BERT model outputs logit val-
ues, which are then transformed using softmax into
normalized scores between 0 and 1, allowing us
to set a confidence threshold. Based on this, we
present a graph of its metrics across different thresh-

Figure 1: Precision, Recall, and F1 score of our new
char-based BERT model across different confidence
thresholds, when run on the test set.

olds in Figure 1. Notably, when setting the thresh-
old to 0.9, the F1 score surpasses that of GPT-4o,
as shown in Table 1, and is only slightly shy of the
F1 score achieved by model based on DictaLM 2.0
model (0.968 vs. 0.976). Furthermore, our char-
based BERT model runs nearly 30 times faster than
DictaLM2.0 with guidance, making it a highly effi-
cient method for real-world corpora. In Appendix
A we present examples of output from the model
when run on real-world Hebrew sentences, with a
qualitative analysis of its successes and failures.

Model Time (s) Invalid
New char-based Hebrew BERT 23.46 0
DictaLM2.0 (not guided) 616.8 3.6%
DictaLM2.0 (guided) 676.8 0
DictaLM2.0-AWQ (not guided) 437.3 16.9%
DictaLM2.0-AWQ (guided) 1081.5 0

Table 2: Inference time comparison of the models
running on 12,000 sentences on an RTX 4090. The
"guided"/"not guided" label indicates whether the model
was run with or without the guided backend enforc-
ing valid output (i.e., restricting modifications to only
adding spaces. This increases runtime since the engine
has to construct a new predictions tree for each input).
The third column notes the percentage of outputs that
were invalid, where the model altered more than just
spaces.

6 Conclusion

Almost all of the methods presented here provide
decent accuracy on the space restoration task. How-
ever, because scraped social media corpora tend to
be huge, the decoder-based methods are largely im-
practical, due to issues of speed (thus for the open
Dicta-LM model), or cost (thus regarding the com-
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mercial LLM models). Fortunately, the fine-tuned
character-BERT model which we presented here
provides a practical solution: it is blazing fast, free
for unrestricted use, and achieves accuracy which
rivals the other methods. We are thus pleased to
hereby release this model to the NLP community.

Furthermore, the character-based Hebrew BERT
model which we pretrained as part of this project
is released here as well, so that NLP researchers
can continue to fine-tune it for other character-level
NLP tasks as well.
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A Appendix: Qualitative Analysis

We survey here a set of representative examples of the successes and failures of the best all-around model
presented in the paper (that is, the model based upon the new Hebrew character-based BERT released
with this paper), with the threshold set to 0.9 (the optimal threshold, as per Figure 1 in the paper).

All input examples in this section are taken from the publically-available OSCAR internet crawl
(Ortiz Suárez et al., 2020).

A.1 Successes

We first present a series of cases where the OSCAR lines are missing one or more spaces and our model
successfully restores the spaces in the proper places. These cases demonstrate the strengths and capabilities
of the model:

A.2 Failures

Next, we identify three categories where our model tends to fail:
Failures due to additional typos: When the input text contains additional typographical errors beyond

the missing spaces, our model will sometimes attempt to add spaces in the middle of misspelled words
words, as in the following examples:
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Failures due to proper nouns: Our model does not always recognize proper nouns for what they are,
and sometimes attempts to divide them into two, especially when one (or both) of the resulting pieces is a
common Hebrew word.

Failures due to unusual grammatical suffixes: When the input text contains relatively long words
which also contain a relatively rare grammatical suffix, our model is sometimes fooled and attempts to
add a space before the grammatical suffix, as in the following examples:

In light of these failures, practical use of the model would entail use of additional filters in order to
restrain the model from splitting too eagerly. For instance, an NER model could be used to identify
proper names in the text, and to restrain the space restoration model from splitting those names. Similarly,
in order to avoid the issue with grammatical suffixes, a script could check whether the letters after a
word-split form of the few dozen sequences of letters which comprise Hebrew grammatical suffixes; in
such cases, it would be wise to ignore the additional space predicted by the model.
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B Appendix: Encoder Training Details

The models were fine-tuned on a single NVIDIA A10G GPU. We used a learning rate of 2e− 6, and a
batch size of 16. We trained using mixed BF16 precision, with 500 warmup steps (27%). You can view
the loss graph from the fine-tuning of both tau/tavbert-he and of our new char-based Hebrew BERT
model in Figure 2. Total train runtime was 350 seconds for 30,000 training examples.

Figure 2: Training loss graph when fine-tuning our new char-based Hebrew BERT model and tau/tavbert-he

C Appendix: Decoder Training Details

The fine-tuning of Dicta-LM 2.0 was done on an NVIDIA-DGX with 4xA100 40GB. The training was
done using the HuggingFace TRL library together with DeepSpeed. We set the initial learning rate to
5e-6, with a global batch size of 128 (per device batch size of 4, with 8 gradient accumulation steps). We
used the adamw_8bit optimizer provided by the bitsandbytes library. Total training time was 110 minutes
for 150,000 examples.

D Appendix: Prompt for General Purpose LLMs

Below is the entire prompt used with GPT-4o to complete the missing-spaces task:

You are a specialized tool for detecting and correcting missing spaces in Hebrew
text. In the next message, I will provide you with a single Hebrew sentence.
Your task is:

↪→

↪→

1. Identify any places in the sentence where spaces between words have been omitted.
2. Reinsert these missing spaces so that the sentence becomes correctly spaced.
3. Preserve all other text exactly as it appears in the input. This means:

• Do not alter any words beyond adding missing spaces.
• Do not, under any circumstance, add any letters!
• Do not change or add punctuation.
• Do not correct spelling or grammar (unless it solely involves inserting

spaces).↪→

• Do not rearrange or remove any words or letters.
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• Do not add or modify diacritics (niqqud).

Your output must be the exact same sentence, in Hebrew, with the only difference
being the addition of the missing spaces. If there are no missing spaces,
return the exact input sentence verbatim.

↪→

↪→

{input sentence}
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Abstract

This paper addresses the problem of identi-
fying and analyzing ‘noisy’ spelling errors
in texts written by second language (L2)
learners’ texts in a written corpus. Using
Python, spelling errors were identified in
5774 texts greater than or equal to 66 words
(total=1,814,209 words), selected from a
corpus of 4.2 million words (Juffs, Han,
and Naismith 2020). The statistical analy-
sis used hurdle() models in R, which are ap-
propriate for non-normal, count data, with
many zeros.

1 Introduction

The problem of ‘noisy data’ addressed in this pa-
per is how to automatically identify and analyze
spelling errors in texts written by speakers of En-
glish as a second language. This issue is important
in automated scoring of written texts in high-stakes
tests such as the internet based TOEFL (iBT) and
Duolingo English Test (DET). Tests such as these
use models that include numerous features, and
these features may produce different values depend-
ing on whether they are considering correctly or
incorrectly spelled tokens. Thus, this paper reports
on one method of identifying the rate of spelling
errors in the written output of learners of English
as a second language in an Intensive English Pro-
gram (IEP; Juffs 2020) over time and addresses
the optimal statistical method for measuring those
errors. The first languages (L1s) of these learners
varied in their orthographies from abjads (Arabic),
alphabets (Spanish, Korean), logographic charac-
ters (Chinese), and a mix of logographic and syl-
labaries (Japanese). At the time of data collection,
the IEP had three levels of proficiency with approx-
imate equivalent CEFR levels (Common European

Framework of Reference; Council of Europe, 2001)
as follows: level 3 low-intermediate, CEFR A2-B1;
level 4 intermediate, CEFR B1+-B2; and advanced,
C1 and above. Therefore, this corpus is represen-
tative of the population of IEP students across the
USA at the time of data collection between ap-
proximately 2007-2012. (We note, however, that
international student populations in US IEPs vary
somewhat by region and have varied over time from
the 1960s until present.)

English spelling poses special challenges be-
cause it uses a ‘deep’ orthography, meaning that
the spoken sounds of English do not closely match
their written forms and vice-versa. For example,
the same sound /i/ is represented by different letters
in ‘ea’ as in ‘eat’, ‘e’ as in the first ‘e’ in ‘scene’,
‘ee’ as in ‘see’, and ‘y’ as in ‘quickly’.

Specifically, our research questions were the fol-
lowing. In terms of the rate of spelling errors in
learners’ written texts:

1. How can the spelling errors in a (typed) writ-
ten corpus of 4.2 million words (Juffs, Han, and
Naismith 2020) be automatically and accurately
identified and calculated using Python?

2. Is there an effect for L1?
3. Is there an effect of proficiency level in the

IEP?
4. Is there an interaction between L1 and IEP

level?

2 Related Work

Spelling correction has been a long-standing chal-
lenge in natural language processing (NLP), with
approaches ranging from traditional rule-based
methods to modern deep learning models. Early
spell checkers relied on edit-distance algorithms
such as Damerau-Levenshtein (Damerau 1964,
Mitton 1996), often combined with dictionary-
based look-ups. However, these early methods
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struggled with errors where a misspelling results
in another valid word (e.g., ‘form’ instead of
‘from’). Subsequently, statistical models leveraging
n-grams (Brill and Moore 2000) and probabilistic
approaches (Carlson and Fette 2007) were intro-
duced, enabling some level of context-aware cor-
rection. More recently, deep learning methods have
demonstrated superior accuracy by leveraging con-
textual embeddings (Devlin et al. 2018; Jayanthi,
Pruthi, and Neubig 2020).

Among open-access models used for spell check-
ing, NeuSpell is trained on diverse datasets and uses
contextual embeddings such as BERT and ELMo
(Jayanthi, Pruthi, and Neubig 2020). SymSpell,
though often considered a rule-based system, incor-
porates bigram look-ups to enhance context aware-
ness, allowing it to resolve some ambiguous cases
where single-word spell checkers might fail. Sim-
ilarly, JamSpell incorporates a 3-gram language
model to refine corrections based on surrounding
words (Ozinov 2019). Unlike deep learning models,
which infer spelling corrections from large corpora,
SymSpell and similar models use a pre-compiled
frequency dictionary to determine valid words and
generate correction candidates efficiently (Garbe
2021b). The Spell Checker Oriented Word List
(SCOWL; Atkinson 2019) is one of the most widely
used resources, providing a hierarchical lexicon
of words categorized by frequency and linguistic
validity. Other resources, such as Hunspell and As-
pell, also use wordlist-based approaches, making
them highly efficient for misspellings but limited
when handling real-word errors (Näther 2020).

For L2 learner errors, the choice of a spelling
correction system is particularly important. Rule-
based systems offer a more conservative approach,
as they avoid over-correcting errors that might be
intentional learner choices or non-standard but com-
prehensible variants (Näther 2020). In contrast,
deep learning models, while highly accurate, may
introduce unwanted corrections that mistake the in-
tended choices in learners’ interlanguage (Selinker
1972), particularly when trained on L1-English cor-
pora. Other proprietary systems, such as Google’s
spell checker and Microsoft’s BingSpell, remain
inaccessible for customization, though they benefit
from large-scale user data and adaptive correction
mechanisms. Therefore, in settings or applications
focusing on learner data, a hybrid approach using
open-source tools (e.g., using wordlist-based meth-
ods to avoid excessive intervention, supplemented

by context-aware models for ambiguous cases) may
be the most effective strategy (Bryant et al. 2019;
Omelianchuk et al. 2020). In high-stakes English
proficiency assessments that implement automated
scoring of writing, spelling accuracy is explicitly
listed as a dimension of the scoring models (e.g.,
TOEFL, DET, PTE). However, details about the
spelling error identification methods are scarce.

Although the problem of correcting spelling with
computers has a long history, as far as we are aware,
spelling errors in a second language written corpus
in L2 English with various L1s have not been ad-
dressed. The Pittsburgh English Language Institute
Corpus (PELIC) is unusual in that it contains lon-
gitudinal data in addition to a variety of L1s. In
addition, the appropriate statistical models for ana-
lyzing the rate of errors has not been determined.
Applied linguists are not just interested in compu-
tational detection and correction, but also in the
potential qualitative impact of spelling errors on
human graders, along with pedagogical implica-
tions.

While the cited on-line spelling checking re-
sources are coded in a variety of computer lan-
guages, for applied linguists who work with L2
data, Python is the main programming language,
and so Python was used to provide accessibil-
ity to such researchers. A complete description
of PELIC spelling error identification and correc-
tion is provided at a public GitHub repository
and Jupyter Notebook (Naismith, Starr, and Bacas
2021), where links include the following resources
which were used in this paper:

(1) SCOWL Lists (Atkinson 2019). This website
contains English word lists that contain abbrevia-
tions, acronyms, British, American and Common-
wealth spellings, contractions, and taboo words that
can be used in spell checkers. The resource also
contains scripts in perl for the creation of tailored
lists.

(2) Symspell (Garbe 2021b). Symspell is a
spelling correction algorithm that only deletes er-
roneous spellings according to limited specifica-
tions. Garbe 2021b claims that it is one mil-
lion times faster than other models, for example,
Norvig, which was 80-90% accurate. This pro-
gram deals with single words, compounds, and
word-segmentation. The website contains code in
a variety of programming languages in addition to
Python.

Related work in applied second language read-
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ing and spelling research has noted that for L2, the
challenges of English orthography are compounded
by the influence of their L1 writing systems and
limited vocabulary size (Hamada and Koda 2008,
Humaidan and Martin 2019). An important con-
struct in this domain is lexical quality Perfetti and
Hart 2002, which established the importance of
strong links in the mental lexicon among sound
(phonology), orthography, and meaning. Poor links
among sounds, graphemes, and semantics in any
direction in lexical representations pose problems
in both reading comprehension (Perfetti and Sta-
fura 2013) and writing production (Dunlap 2012).
Moreover, Baker and Hawn 2022 raise the prob-
lem that computer-automated grading may unfairly
disadvantage some groups, known as ‘algorithmic
bias’ in education.

Thus, this work is innovative because it is a
rare(?) example of explicitly interdisciplinary work
drawing on computational linguistics in automatic
spell-checking and correction, applied statistics,
with insights from applied linguistics research on
literacy and instruction.

3 Spelling Identification

Spelling errors were identified using the following
steps. First, SCOWL was consulted, and a SCOWL
file was created and used to decide whether a word
in the IEP texts was ‘real’ or not (SCOWL List
for PELIC). All items were included from the lists
except the abbreviations dictionary. Words that
had previously been considered ‘non-words’ by
dictionaries were added to our list, for example,
‘southside’, which is a neighborhood of Pittsburgh,
‘frisbee’, which is a toy/game, and ‘onsen’, which
is a Japanese loanword for ‘hot spring’. All hy-
phenated words were included as real words, forex-
ample, ‘prize-winning’. After running the revised
dictionary, a list of misspellings with their adja-
cent words was created, followed by a dictionary
of misspelled items. Examples in the dictionary of
common misspellings included ‘*alot’, ‘*becouse’,
‘*sould’, etc.

A Python module, Symspell (Garbe 2021a), was
used that included the spelling errors and correc-
tions for those errors. Examples, of corrections
made are ‘beccuase’ -> ‘because’, ‘nise’ -> ‘nice’,
‘friendlly’ -> ‘friendly’. Only word and bigram fre-
quencies, but not full sentence context, were consid-
ered in resolving the appropriate target. This prac-
tice is consistent with other spellcheckers (Hun-

spell, pyspell, etc.). Thus, following this common
practice the accuracy of corrected tokens will not be
100%. Nevertheless, the accuracy was inspected by
random sampling and found that where the word is
accurately spelled, the checker correctly does noth-
ing 100% of the time (Naismith, Starr, and Bacas
2021), that is, there are no false positives.

An important caveat is that incorrect spellings
that are actual words, for example, the pronoun
‘him’ misspelled as the real word ‘hem’, are not
corrected. Such ‘clang associates’ (Schmitt and
Meara 1997) are not counted as spelling errors in
this automated process because it is difficult to au-
tomatically identify and correct misspellings that
are real words. It might be possible to differenti-
ate clang associates based on part of speech, for
example, noun ‘hem’ vs. pronoun for ‘him’, or fre-
quency of clang associate based on phonology, for
example, ‘ship’ vs. ‘sheep’, but these possibilities
have not yet been explored. Nevertheless, based on
the corrections, it was possible to programmatically
count and tally the misspellings in each text in the
database. These text-based counts were the basis
of the data in the study.

To control for number of errors by text length,
the spelling errors were calculated by dividing the
number of errors by the number of tokens in each
text and multiplying by 100. Because the appro-
priate statistical analysis requires whole numbers
(no decimals), 0.5 was added to the result of all
calculations before the number was converted to an
integer. Thus, 0.287 errors in a text remains 0, but
a score of 0.847 became 1.347, and was converted
to the integer 1.

4 Statistical Models

This section addresses the problem of the appro-
priate statistical model for non-normal count data
with many zeros. Models that permit inferential
quantitative investigation of count data include the
Poisson family of analyses. Zeileis, Kleiber, and
Jackman 2008 provide a detailed review of Pois-
son models that are both suitable and unsuitable
for count data such as the spelling error data under
consideration. Two points about our spelling error
data are relevant here for Poisson analysis. First,
standard Poisson analysis for count data is inap-
propriate for over-dispersed data, that is, data with
very large numbers of outliers. Second, these data
contain very large numbers of zeros, that is, texts
without spelling errors – in fact over 50% for each
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L1 and level. In this context, Crawley 2013 (Chap-
ter 14) also raised the problem of high frequency
of ‘0’ in count data. Zeileis, Kleiber, and Jackman
2008 recommended the ‘hurdle()’ procedure for
data with these characteristics. The hurdle() pro-
cedure is available in the (R package ‘pscl’) and is
discussed in greater detail in the next section.

5 Results

In addition to L1 and level, other available stu-
dent information that relates to the data includes
standardized proficiency scores of a placement test
and writing sample on entry to the IEP as well as
self-reported biological gender. Neither the place-
ment score nor the writing sample scores corre-
lated at higher than r = -.07 to the number of errors
and were therefore not included in any model even
though these correlations were reliable at p<.0001
due to the large n sizes. Gender was also non-
significant as a predictor.

The percentage of texts with 0 errors are dis-
played in Table 1 by L1 and level. It can be ob-
served that over 50% of texts by each L1 at each
level are error-free. Thus, the data are character-
ized by many scores of 0. In fact, 4554 of the total
5774 texts (78.7%) had 0 errors, not counting un-
known clang associates. The numbers of students
contributing data appear in Table 1. The major-
ity of students at each level were Arabic speakers,
while the fewest were Spanish speakers. Neverthe-
less, variability by L1 and level can be observed
which makes the analysis important for proficiency
assessment. Table 2 reports means and standard

Table 1: Percentage of Texts over 66 words with 0
Spelling Errors and Number of Texts by L1/Level.

Level 3 Level 4 Level 5

L1 %errors Texts %errors Texts %errors Texts

Arabic 61.2 490 77 1126 85.2 709
Chinese 76.5 260 82.0 677 84.2 431
Japanese 70.0 60 79.1 249 90.3 134
Korean 67.0 276 80.7 685 87.9 404
Spanish 63.6 55 79.7 138 73.3 75

deviations of spelling errors, including texts with 0
errors. For example, the Arabic speakers at level 3
have an average of one error per text in their writing
and also standard deviation of 1.52 errors. How-
ever, these means mask the fact that many texts
by Arabic speaking learners have many more than
just one error. The large number of texts reduces
the mean but the visualization in Figure 1 shows

Figure 1: Box Plot Distribution of Errors (including
zeros) in the count data by L1 and Level

the variability more clearly. As evident from Table

Table 2: Spelling Errors per text by L1 and Level
Level 3 Level 4 Level 5

L1 Mean SD Mean SD Mean SD

Arabic 1.05 1.52 0.62 1.35 0.42 0.88
Chinese 0.43 0.55 0.28 0.46 0.33 0.56
Japanese 0.42 0.39 0.64 1.48 0.13 0.22
Korean 0.55 0.73 0.30 0.41 0.24 0.40
Spanish 0.76 0.87 0.27 0.33 0.39 0.51

2, which represents the raw mean errors per stu-
dent in each language group, and Figure 1, which
illustrates the mean proportion of errors per 100
words for each language group, there are large
numbers of texts with zero errors. The errors that
do occur are not normally distributed. Thus, in Fig-
ure 1, the red columns represent Arabic-speaking
students who at level 3 and level 4 have many
more spelling errors per 100 words than other stu-
dents. The boxplot and outliers show that many
more of the Arabic-speaking students’ texts had
errors, frequently over five in each text as indicated
by the circles above the boxes. Based on Zeileis,
Kleiber, and Jackman 2008, analyses showed that
the data are overdispersed. As Crawley 2013 states,
in standard Poisson analyses “it is assumed that
residual deviance is equal to the residual degrees
of freedom (because the variance and the mean
should be the same)”. In these spelling data, a
standard Poisson model revealed that residual de-
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viance was 8422.4 on 5759 degrees of freedom.
Overdispersion can sometimes be dealt with us-
ing the quasi-Poisson technique. However, both
Zeileis, Kleiber, and Jackman 2008 and Hoftstetter
et al. 2016 show that a better method is the hurdle()
technique. This approach provides regressions for
the number of zeros and the count values separately
by factor. Thus, one can determine effects of fac-
tors both on the number of zero counts and the
count data in one model. Recall that all spelling er-
ror counts had been adjusted to ‘count’ integer data,
that is whole numbers for analysis. Following Hoft-
stetter et al. 2016, we evaluated hurdle() and ze-
roinfl() negative binomial logistical regression mod-
els, concluding that the following hurdle() model
was optimal: hnb < −hurdle(PROP3 L1 ∗
levelid, data = L1FW3LNONA,na.action =
na.exclude, dist = ”negbin”).

The results are provided in Table 3, with the
statistics for the count data in the left half of the
table and those for the texts with zero errors in the
right part. In each half of Table 3, the intercept esti-
mates are the log odds of spelling errors compared
to zero errors, the other estimates are the log odds
of those measures compared to the intercept.

Table 3: Hurdle Model Results
Count Model (Truncated NegBin) Zero Hurdle Model (Logit)

Variable Estimate Std. Error Estimate Std. Error

Intercept -1.151 0.891 -0.456 0.092***
L1Chinese -0.904 0.291** -0.726 0.173***
L1Japanese -1.331 0.526* -0.391 0.296
L1Korean -0.917 0.251*** -0.253 0.158
L1Spanish -0.683 0.457 -0.103 0.295
level_id4 -0.075 0.178 -0.752 0.116***
level_id5 -0.224 0.228 -1.293 0.140***
L1Chinese:level_id4 0.193 0.360 0.419 0.212*
L1Japanese:level_id4 0.929 0.600 0.267 0.342
L1Korean:level_id4 0.118 0.326 0.029 0.198
L1Spanish:level_id4 -0.525 0.620 -0.057 0.370
L1Chinese:level_id5 0.478 0.417 0.801 0.242***
L1Japanese:level_id5 0.265 0.813 -0.090 0.429
L1Korean:level_id5 -0.456 0.450 0.023 0.244
L1Spanish:level_id5 0.584 0.649 0.841 0.408*
Log(theta) -2.376 1.014*

Significance Codes: *** p<0.001, ** p<0.01, * p<0.05

Log-likelihood -4537
N 5774

Log odds can be converted to odds using the
exp() function in R Levshina 2015. These con-
verted odds are in Table 4, Appendix A, in the
column Incidence Rate Ratios, produced using the
tab_model() function. The intercept (reference
level) was automatically selected (dummy coded)
as Arabic level 3 in both models. This is why ‘Ara-
bic’ appears nowhere in Table 3. The significance
level of the intercept is an estimate of the outcome

when the L1 and the level are at their reference
levels.

A reliable chi-square statistic for the interaction
of L1 and level_id in the model (df = 16, LRT =
30.37, p = 0.016) revealed that it contains frequen-
cies of errors that are contingent on L1 and level. In
addition, compared to an (inappropriate) standard
Poisson model, the Akaike Information Criterion
(AIC) confirmed that the hurdle() model with
negative binomial was a better fit. The significant
log(θ) = −2.37, p = 0.019 in the count data sec-
tion in Table 3 also confirmed that these data were
overdispersed and that therefore the negative bino-
mial hurdle analytic technique was the appropriate
one (cf. [p. 524-525]Hoftstetter).

Unpacking these statistics, Table 3 can be inter-
preted following [p. 257-266]Levshina) and Hoft-
stetter et al. 2016. Visualization of the count data
in boxplots appears in Figure 1, which included
texts with zero errors. The count model (Inter-
cept) shows the odds of a spelling error Arabic,
level3 = Exp(−1.15) = 0.32, and is not signifi-
cant compared to zero. This result makes sense be-
cause while 39% of texts do contain at least one er-
ror, 61% of level 3 Arabic texts are error free. How-
ever, the odds of a spelling error by Chinese learn-
ers at level3 = Exp(−0.90449) = 0.40 is reliably
lower than the intercept (see Appendix A). Thus,
the odds of Chinese speakers making a spelling
error per 100 words at level 3 are reliably 0.4 times
lower than Arabic at that level due to the negative
estimate. The other L1 data can be similarly inter-
preted. The odds of a spelling error by Japanese,
level3 = Exp(1.33061) = 0.26. Thus, the odds
of Japanese speakers making an error at level 3 are
0.26 times lower than Arabic at that level. Note the
higher variance and lower p value for the Japanese
speakers, which reduces the odds compared to
the Chinese speakers. The odds of a spelling er-
ror by Korean, level 3 speakers is also lower =
Exp(−0.9174) = 0.40. The odds of a spelling
error Spanish, level3 = Exp(−0.68308) = 0.51.
The co-efficient is also negative. However, the
higher variance, lower z, and non-significant p val-
ues mean the Spanish level 3 speakers are not sta-
tistically different from the Arabic level 3 learners
in the count data.

The hurdle model, having selected the count data
with a lower limit of 1, then proceeds to model
the number of texts by L1 and level with 0 errors,
that is, the zero data. For zero hurdle model co-
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efficients, [p. 523]Hoftstetter) state that “the zero
model represents the probability of observing a pos-
itive count”. In this case, the Arabic level 3 inter-
cept with errors is reliable: Exp(−0.456) = 0.63,
which means the odds of Arabic speakers making a
spelling error compared to zero is reliably negative
0.63, with Table 1 showing that 61% of their texts
contain no errors. Only the Chinese speakers show
a difference from the Arabic speakers’ texts being
even less likely to make a spelling error at level 3.
In this case, Chinese speakers at level 3 are 0.48
times less likely than them to produce text with an
error, consistent with the count data. In Table 1,
the level 3 columns illustrate this result, showing
that 76.5% of Chinese learner texts at level 3 have
no spelling errors, which is higher than any other
L1 by over 6%. However, the Japanese, Korean,
and Spanish speakers are not different from Arabic
speakers at level 3.

To the right part of Table 3, in the zero hurdle
model, level-id is statistically significant at both
level 4 and level 5. This result means that the odds
of Arabic speakers’ texts having an error decreased
significantly at level 4 by 0.47 and at level 5 by
0.27 compared to Arabic level 3.

The Chinese speakers’ estimates at level 4 and
level 5 compared to the (Intercept) show a reliable
difference, except this time in a positive direction.
This result means that compared to texts with an
error for Arabic levels 4 and 5, the odds of the
Chinese level 4 and level 5 learner producing a text
with even one error increases by odds of 1.52 and
2.23 respectively. At level 5, the Spanish speakers
also reliably increase the odds of making an error
by 2.32 compared to the intercept, with only 73%
of their texts at level 5 being error-free. No other
comparisons with Arabic-speakers’ level 3 in the
model are reliable.1

6 Discussion

The differences by L1 are statistically reliable ac-
cording to the chi square test on the entire model.
Thus, while spelling mistakes by all IEP learners

1It is possible to make multiple pairwise comparisons by
changing the reference level from Arabic to other L1s. How-
ever, given the limited number of errors and the similar means
and dispersion statistics in Table 2 and Figure 1, it is unlikely
that other pairwise comparisons would be reliable. One possi-
bility was the very low Japanese error rate at level 3 is different
from L1s other than Arabic. Overall, Japanese speakers are
reliably less likely make an error, but Arabic speakers’ odds
of errors increase consistent with the model in which they are
the reference level.

with access to spell-checkers in word processing
software are relatively low, they are noticeably and
reliably different by L1. Moreover, it is important
to note that overall the learners improved in their
accuracy over time.

Returning to the research questions, the re-
sults first demonstrated an effect for L1. When
a text contains errors, Arabic-speaking learners
make more spelling errors than Chinese-speaking,
Japanese-speaking, and Korean-speaking (but not
Spanish-speaking) learners at level 3, but these dif-
ferences disappear at levels 4 and 5. Regarding
texts with 0 errors, the pattern is similar, but the
odds of Chinese-speaking learners making an er-
ror remains somewhat higher at level 4 and level 5
compared to level 3 Arabic speakers. Thus, there
is an interesting interaction and difference between
the Arabic-speaking and Chinese-speaking learners
such that Arabic speakers decrease their proportion
of errors in texts, while Chinese speakers seem to
be more stable compared to the Arabic-speaking
learners. Taken together, a cautious interpretation
of these results suggests the most reliable differ-
ence is between the Arabic-speaking in contrast to
the Chinese-speaking learners as there are differ-
ences between these groups in both the count and
zero hurdle models. While Japanese-speaking, and
Korean-speaking learners at level 3 differ from Ara-
bic speaking learners producing texts with fewer er-
rors, the zero model showed no differences among
these three L1s. The Spanish speakers make errors
at a statistically similar rate to the Arabic speakers.

Second, as to the effect of level of IEP at 4 and
5, we can see that for texts with errors there is no
effect. This means that the rate of errors in texts
varies little across levels overall. However, num-
bers of texts with zero errors increases from level
3 to level 4 and remains steady at level 5. We may
infer that use of the spell-checker with word pro-
cessing skills improved along with knowledge of or-
thography, and especially for the Arabic-speaking
learners.

Third, interactions exist in the rate of errors
among Arabic-speaking learners. A decrease oc-
curred from level 3 to level 4, but not for other
L1s, indicated by the interaction of level for level
4 with numbers of zero error texts. In addition,
for the zero-count data, Chinese speakers showed
an interaction at levels 4 and 5, indicating that the
number of zero error texts remained more constant
compared to Arabic level 3. Figure 1 shows that
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errors by Chinese speakers at levels 4 and 5 remain
higher, while other L1 error rates declined.

To some extent, this outcome is reassuring for
automated scoring of many features, for example
those related to lexical sophistication (vanHout
and Vermeer 2007), because automated measures
of lexical sophistication, for example, Advanced
Guiraud (Daller, Turlik, and Weir 2013), based
on word-processed texts will not unduly penalize
one group at intermediate and high-intermediate
levels, for example, Arabic-speaking learners, by
excluding misspelled low-frequency words, that is,
words with a frequency band higher than 2000 at
a higher rate than other L1s. This possibility had
been suggested by Naismith, Han, et al. 2018 but
now seems to be less of a concern based on this
analysis. This confidence is possible due to the
low number of statistically significant differences
among the groups and the low numbers of errors
per text overall. The group most at risk would be
the Arabic level 3 learners, who made the most
errors. Specifically, automatic scoring of lexical
sophistication measures derived from frequencies
of lemmas in an external corpus will not be affected
by learners losing credit for too many misspelled
words above the 2k frequency band at intermediate
levels and above.

However, Arabic-speaking learners’ errors may
be salient to human raters compared to other L1
groups. This impression arises from the visualiza-
tion of the data, even if it is not statistically robust,
because of the numbers of texts that contain out-
lier tallies of spelling mistakes. Although the L1
effect is only statistically reliable at level 3, the
tendency is very noticeable on a qualitative level at
levels 4 and 5 also. Such a pattern of errors could
cause human raters to negatively perceive Arabic
speakers’ writing, when only 61.2% of their texts
at level 3 are error free compared to Chinese speak-
ers’ 76.5%. Thus, in high stakes testing where both
human and computer-based automatic scoring are
deployed, spelling errors have spelling errors have
the potential to create bias against one group, even
though those learners ‘know’ the items in question.

Moreover, these spelling errors (even when using
word processing software), and the evidence from
the reading studies cited in the introduction, are
indicative of wider problems with lexical quality
Perfetti and Stafura 2013 at the low-intermediate
level (level 3). Thus, these data support interven-
tions with spelling for all L1s, perhaps especially

at the low-intermediate stage at the early stages
of learning. When spellcheckers highlight many
words – including proper names not frequent in
English – it may be difficult for learners to guess
which words are misspelled and, perhaps more im-
portantly, which ones are the correct replacements.
In fact, due to the saliency of spelling errors re-
ported previously by Dunlap 2012 in student tran-
scriptions of their own speech, one IEP instituted
a dictation component as part of its curriculum to
address lexical quality. This decision is given addi-
tional support by these data and other studies such
as those reported in Humaidan and Martin 2019.

7 Qualitative Review of ‘Noisy’ Errors

This section provides a qualitative review of the
type and frequency of orthography mistakes in
these word-processed data to complement the quan-
titative analysis based on automatic tagging in the
previous section. This review provides additional
insights into these ‘noisy’ data that vary by L1 and
proficiency. The process through which this was
done was that the first author, an experienced En-
glish as a second language teacher, reviewed all
the spelling errors in the texts. Thus, the list is not
exhaustive but provides some indication of the chal-
lenges that learners face. The mistakes fall gener-
ally into four categories: (i) mistakes many learners
make with frequent words; (ii) errors across L1s
with the use of English spelling conventions; (iii)
those forms influenced by L1 morpho-phonology;
(iv) forms flagged as errors even though they are
correct, for example, the (now sadly outdated)
blend ‘Brangelina’ or abbreviations, for example,
NHK, CBS (Japanese and US TV stations), and
RMB (= Renminbi, the Chinese currency).

In the first category, regardless of L1 and level,
many learners made mistakes with some frequent
words, for example, ‘because’ (the range of mis-
spellings of this word is very large) and ‘studying’,
with the ‘y’ plus ‘ing’ creating uncertainty. Er-
rors flagged due to spelling conventions of English
double consonants were also frequent across learn-
ers both at morphological boundaries, for example,
*writting, *eightteen, *eatting, vs. *regreting, and
within words, for example, *recomendation, *pro-
fesion vs. *bussiness. Unsurprisingly, given the
different double consonant spelling rules in Span-
ish, Spanish-speaking learners made many errors
with double consonants.

Second, errors influenced by L1 morpho-
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phonology seemed especially frequent at level 3.
Caution is in order as some could be simply ‘typos’,
and others of these errors could be spacing prob-
lems that are influenced by English chunks (e.g.,
many learners made a mistake with *alot) or re-
duced stress on functors such as indefinite articles.
However, Arabic speakers seemed to produce more
with pronouns such as *iowe, and *idid, in addition
to more frequent lack of spacing between indefinite
articles and nouns (e.g., *anest and *abeach). In
addition, trilled /r/ pronunciation could plausibly
have produced *bearrd. Omitted vowels by Arabic
speakers at the lower levels are also quite frequent,
even in common words, but especially with liquids
/l/ and /r/, for example, *evry and *evrybady, but
also other words *amrica and *cmfortable. Such
omission may be attributed to the influence of the
abjad orthography, which only marks some vowels
in Arabic and which also affects reading L2 read-
ing in English (Martin and Juffs 2021). Because
Arabic lacks the phoneme /p/, there is also an occa-
sional, predictable voicing error in orthographic ‘p’
vs. ‘b’ (e.g., *laptob).

For Chinese speakers, it is possible to identify
errors due to syllable structure constraints in Man-
darin, which disallows consonant clusters (some
possible with glides) in onsets and permits only
alveolar and velar nasals in syllable final posi-
tion. Potential examples of such influence include
epenthesis (e.g., *samalled = ‘smelled’ and *sipricy
= ‘spicy’) and what one could term metathesis
*firiend ‘friend’ and *porblem ‘problem’. In gen-
eral, Chinese, Japanese (e.g., *toraditional ‘tradi-
tional’), and Korean speakers (e.g., *zebara ‘zebra’)
seemed more likely to insert a vowel compared to
the Arabic speakers from the examples reviewed
in the data. However, such qualitative observation
would need to be quantitatively confirmed with
inferential statistical analysis.

Finally, all L1s showed influence of vowel qual-
ity pronunciation on spelling, especially the [ae]
as in ‘cat’ vs. [E] in ‘ketchup’, for example, Ko-
rean level 3, *trevel = ‘travel’ and Korean level
4 *demage = ‘damage’ shows vowel raising from
[ae] to [E] in learners’ phonological representations
of these words. (We note that a merger between
these two sounds may be occuring in some En-
glish varieties in Australia and in the northern cities
of the USA near the Great Lakes.) Schwa [@] in
unstressed syllables also caused learners to have
problems in identifying the correct grapheme, for

example, Chinese level 4 *mechine = ‘machine’
and Arabic level 5 *sentance = ‘sentence’. Some
diphthongs (e.g., [ej] for Japanese *fervorite = ‘fa-
vorite’) also posed challenges, but less so.

The impression from this review of specific er-
rors is that the influence of L1 morpho-phonology
on spelling accuracy was more evident at level 3.
This finding suggests that because learners do not
control the pronunciation of the word, it is harder
for them to evaluate choices provided by the spell-
checker. This difficulty is due to their own repre-
sentation of meaning to sound, being influenced
by L1 phonology, is stronger than the link from
meaning to orthography. Thus, this qualitative
review suggests a possible developmental trajec-
tory of orthographic accuracy from influence of L1
pronunciation on spelling accuracy at lower pro-
ficiency progressing to greater challenges based
on proper nouns, abbreviations, and longer, less
familiar technical words at the higher levels. Such
an impression requires careful review of the whole
data set to be supported quantitatively and faces
the challenge of reconstructing the source of each
error, which is a non-trivial task.

It is worth re-emphasizing that a limitation to
this analysis is that we do not account for ‘clang’
effects in the spelling data (e.g., *sees, *case, and
*scene for a target such a ‘cease’) which we found
in responses to prompts in reading vocabulary test
data (Heilman et al. 2010) or ‘hem’ vs. ‘him’,
which actually occurred in the corpus. Automated
spelling correction cannot correct words that are ac-
tually in the dictionary without further refinement
of the correction algorithms. It is possible that were
clang effects included in the analysis as spelling
errors, the results would be different.

8 Conclusion

This paper considered the problem of identifying
and measuring orthographic errors in a written
IEP corpus by five different groups of L1 speakers
across three levels of proficiency. Python coding en-
abled the identification and enumeration of errors.
Using statistical models for overdispersed count
data, the findings are that at the low-intermediate
level, Arabic speakers make errors at a signifi-
cantly higher rate per text than peers from some,
but not all, L1 groups at the same level of profi-
ciency. These L1 differences are reduced at in-
termediate and high-intermediate/advanced levels,
with Chinese-speaking learners changing some-
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what less than other groups in the proportion of
texts with spelling errors. Gender was not found
to be significant, perhaps because so many of the
Arabic-speaking learners were male and hence it is
difficult to tease apart this factor from L1 influence.
The statistical models did not demonstrate impor-
tant differences in the groups in spelling errors at
higher proficiency levels, which should be seen
as a positive outcome for automatic assessment.
However, the large numbers of errors by Arabic
L1 students in some texts could create a perception
that they are worse than other L1 groups, when in
fact they are not at levels 4 and 5.

9 Directions for Further Research

Future research might develop automatic coding
to identify learner errors based on L1 phonologi-
cal influence at lower levels of proficiency to con-
firm the qualitative examples identified in this pa-
per and which are well known to English teach-
ers, for example, confusion among ‘ship’, ‘sheep’,
‘sip’, and ‘seep’, which involves knowledge of con-
trasts between tense vs. lax vowels and alveolar
vs. post-alveolar fricatives. The results also sug-
gest that many low-intermediate students could
benefit from targeted spelling instruction to im-
prove lexical quality. Instructional interventions
can be created to determine if instruction makes
a difference in speeding up the progress and ac-
curacy of learners. This instruction would not
only improve spelling, but also reading comprehen-
sion through improved lexical access during text
processing (e.g., Hopp 2016). It might also help
students make the correct choices when choosing
the appropriate form in spell-checking and poten-
tially improve their grades for mechanics in tests
that grade for that component. Therefore, these
data support the call in Humaidan and Martin 2019
for an additional pedagogical intervention in ortho-
graphic skills that would improve not only writing
but also reading competencies.

Finally, spell-checkers might be made more toler-
ant of common non-English words, acronyms, and
abbreviations, which would further reduce false
positives of ‘errors’ in students’ writing.
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A Appendix A. Table of Effects in hurdle() model2

Table 4: Effects in hurdle() model
Predictors Incidence Rate Ratios CI p
Count Model
(Intercept) 0.32 0.06 – 1.81 0.197
L1 [Chinese] 0.40 0.23 – 0.72 0.002
L1 [Japanese] 0.26 0.09 – 0.74 0.011
L1 [Korean] 0.40 0.24 – 0.65 <0.001
L1 [Spanish] 0.51 0.21 – 1.24 0.135
level_id [4] 0.93 0.65 – 1.32 0.675
level_id [5] 0.80 0.51 – 1.25 0.326
L1 [Chinese] * level_id [4] 1.21 0.60 – 2.46 0.591
L1 [Japanese] * level_id [4] 2.53 0.78 – 8.21 0.121
L1 [Korean] * level_id [4] 1.13 0.59 – 2.13 0.717
L1 [Spanish] * level_id [4] 0.59 0.18 – 1.99 0.397
L1 [Chinese] * level_id [5] 1.61 0.71 – 3.65 0.251
L1 [Japanese] * level_id [5] 1.30 0.27 – 6.41 0.744
L1 [Korean] * level_id [5] 0.63 0.26 – 1.53 0.311
L1 [Spanish] * level_id [5] 1.79 0.50 – 6.40 0.369
Zero-Inflated Model
(Intercept) 0.63 0.53 – 0.76 <0.001
L1 [Chinese] 0.48 0.34 – 0.68 <0.001
L1 [Japanese] 0.68 0.38 – 1.21 0.187
L1 [Korean] 0.78 0.57 – 1.06 0.109
L1 [Spanish] 0.90 0.51 – 1.61 0.726
level_id [4] 0.47 0.38 – 0.59 <0.001
level_id [5] 0.27 0.21 – 0.36 <0.001
L1 [Chinese] * level_id [4] 1.52 1.00 – 2.30 0.048
L1 [Japanese] * level_id [4] 1.31 0.67 – 2.56 0.435
L1 [Korean] * level_id [4] 1.03 0.70 – 1.52 0.884
L1 [Spanish] * level_id [4] 0.94 0.46 – 1.95 0.878
L1 [Chinese] * level_id [5] 2.23 1.39 – 3.58 0.001
L1 [Japanese] * level_id [5] 0.91 0.39 – 2.12 0.834
L1 [Korean] * level_id [5] 1.02 0.63 – 1.65 0.926
L1 [Spanish] * level_id [5] 2.32 1.04 – 5.16 0.039
Observations 5774
R2 / R2 adjusted 0.040 / 0.038

2Variance explained in Poisson/hurdle() models, which are special types of logistic regression, is difficult to interpret. The
table of results from the model in Appendix A includes an R2 statistic that suggests that just 3.8% of the variance in the entire
model (count and zero) is accounted for by the factors of L1 and level. This result is unsurprising given that 78.7% of texts in the
entire sample are error free.
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Abstract

This study explores the automatic normaliza-
tion of noisy and highly technical anomaly re-
ports by an LLM. Different prompts are tested
to instruct the LLM to clean the text without
changing the structure, vocabulary or special-
ized lexicon. The evaluation of this task is
made in two steps. First, the Character Error
Rate (CER) is calculated to assess the changes
made compared to a gold standard on a small
sample. Second, an automatic sequence label-
ing task is performed on the original and on
the corrected datasets with a transformer-based
classifier. If some configurations of LLM and
prompts can reach satisfying CER scores, the
sequence labeling task shows that the normal-
ization has a small negative impact on perfor-
mance.

1 Introduction

This study focuses on the automatic cleaning of
technical and noisy texts and its impact on an auto-
matic fine-grained semantic labeling task. The goal
is to assess the capacity of a generative LLM to au-
tomatically rectify noise phenomenons in technical
texts that are going to be automatically processed
afterwards.

The dataset used in this work is composed of
French written anomaly reports during Ariane 5
rocket maintenance operations. These types of
maintenance records have proven to be not only
filled with words from a technical specialized lex-
icon, but also extremely noisy (text in uppercase,
missing accents, spelling errors and misuse of punc-
tuation) (Bikaun et al., 2024b). As such, we chose
to explore the cleaning of the noise by an automatic
rectification task performed by prompting a generic
pretrained large language model (LLM). Three dif-
ferent LLMs were evaluated, with four different
prompts covering different levels of information.
A first intrinsic evaluation compared the output of
the LLM compared to a gold standard. A second,

extrinsic evaluation consisted in measuring the per-
formance of an automatic sequence labeling task.
We compare the same classifier when trained and
applied to the corrected versus original of the an-
notated data. The results of the automatic semantic
labeling allow us to determine whether these cor-
rections are beneficial to the fine-grain semantic
analysis of those texts.

This article is organized as follows. Section 2 is
a short review of related work on noise in techni-
cal text data. In section 3, we present the dataset
of French anomaly reports and the methods used
to correct the noise. The results of the intrinsic
evaluation are presented in Section 4 and the se-
quence labelling task and its results are presented
in Section 5.

2 Related work

Reporting anomalies is a common procedure in the
space and aviation domain, as it is encouraged and
has become part of the general culture among pro-
fessionals. Numerous studies have been conducted
on using NLP (Natural Language Processing) on
aviation anomaly reports showing that a number
of different techniques can be of use in the treat-
ment of such texts (Yang and Huang, 2023), rang-
ing from text classification to information retrieval
(Tanguy et al., 2016), (Persing and Ng, 2009). The
same kind of anomaly reports dataset used in this
work, focusing on maintenance operations on Ari-
ane 5 rockets, has already been the object of NLP
experiments in Kurela et al. (2020); Galand et al.
(2018) but with other objectives (assessing risk
level) and based on a coarser grain text analysis.
Maintenance reports have also been shown to be
particularly noisy and technical texts (Bikaun et al.,
2024b) (Akhbardeh et al., 2020), and thus are dif-
ficult to process by the usual NLP pipelines con-
ceived for (and from) standardized texts (Brundage
et al., 2021), (Dima et al., 2021).
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Several studies have already explored ways to
clean this type of texts, from rule-based approaches
(Hodkiewicz and Ho, 2016) to lexical normaliza-
tion techniques (Bikaun et al., 2024a). The use
of generative LLMs for correction has also been
studied, for post-OCR noisy texts in Thomas et al.
(2024) and Zhang et al. (2024) and seems to pro-
vide better error reduction rates. Bolding et al.
(2023) has also shown promising results in the use
of an LLM to clean noisy texts while preserving
their semantic integrity. Wang et al. (2024) confirm
these results, but also shows that the performance
of the LLM varies according to the type of noise
and that some models have a better ability to per-
form this task.

3 Corpus, noise and automatic
normalization

Our dataset contains 1050 anomaly reports written
in French in an industrial setting. This sample was
randomly extracted from a much larger database
with tens of thousands similar items. These re-
ports are produced systematically every time an
irregularity (however trivial) is encountered by an
operator in a critical environment. As can be seen
in Table 1, a report consists of a short description
of a problem (average length = 19.3 words per re-
port) filled with acronyms, components identifiers
and specialized lexicon, mostly in telegraphic-like
speech, as can be expected in a workplace commu-
nication between professionals (Falzon, 1987). But
different noise phenomenons are also commonly
found: the text is mostly in uppercase, accents are
absent, punctuation and spacing is not respected,
and some spelling errors can be found. These phe-
nomenons can be explained by a number of factors
related to the conditions in which these texts are
typed and formatted. The goal of this study is to
test if normalizing the text without reformulating
or changing the meaning of the text is possible and
beneficial to its analysis. The usual preprocessing
techniques have proven to be of limited efficiency
on this kind of texts, and run the risk of losing too
much information (Brundage et al., 2021). For ex-
ample, an attempt at POS-tagging on our dataset
with Stanza (Qi et al., 2020) resulted in a 20% error
rate.

For this experiment, we selected three small-
sized quantized LLMs that could be run locally
on a workstation (a constraint due to the confiden-
tiality of the target data), able to process French

and which reach state-of-the-art performance in
generic benchmarks: Meta-Llama-3.1-8B-Instruct,
Meta-Llama-3-8B-Instruct (Dubey et al., 2024) and
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). For
each model, four different prompts were defined
with incrementally additional information. The
first one included only the context of creation of
this dataset (i.e. operators reporting anomalies dur-
ing the maintenance of a rocket) and the requested
task (i.e. remove the noise phenomenons without
altering the meaning). In the second prompt we
added the goal of this operation : to prepare the
text for further processing by a non-specified NLP
program. For the third one, a list of the different
expected types of noise to rectify was given. And
finally, in the fourth prompt, two reports and their
rectified versions were given as examples (few-shot
prompting) (cf. Appendix A). As is commonly rec-
ommended in such cases, all four prompts were
written in standard English, with the explicit indi-
cation that the source and target texts are in French
(Jin et al., 2024). LLM temperature was set to
zero, resulting in deterministic outputs and thus not
requiring several runs.

4 Intrinsic evaluation of the correction

For a first evaluation of the results, the Character
Error Rate (CER) was calculated on a gold stan-
dard of 15 manually normalized reports by the au-
thors. A selection of reports were chosen randomly
and 15 were selected to get a representation of
all the different noise phenomenons. The correc-
tion process is not trivial as each word needs to
be corrected, at least by putting the correct case
back, decisions have to be made regarding abbre-
viations and punctuation, some words can be am-
biguous due to the lack of accents... Table 2 gives
the average CER score for the original and each
prompting of the LLMs. The scores of the three
different LLMs are close, the variations rely on the
prompts. As expected, the first two prompts (with
less developed instructions) give high error rates,
close to the original reports score, which shows
a lot of differences with the gold standard. The
indication of a post-processing goal in the second
prompt did not improve the results and even seems
to have worsened it. However, the addition of the
list of phenomenons to consider lead to significant
improvement. The insertion of examples in the
prompt was not efficient though, and even costed a
few points to the results, except for Mistral.
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Description of the anomaly
PONT 150 KN :DEFAUTS D’ISOLEMENT SUR LES MOTEURS SUIVANTS :MO12 : DIRECTION
GV ===>2,8MohmMO13/14 : DIRECTION MV/PV ===>2,6Mohm ET 1,5MohmMO9 : LEVAGE GV
===>4,7MohmMO6/8 : TRANSLATION MV/PV ===> 4,5Mohm ET 2,3MohmNORME : ISOLEMENT MINI
> 5 Mohm
DEGRADATION BETON DESSUS CARNEAUX :1) DESSUS CARNEAU EAP2.JPG2) DESSUS CARNEAU NORD
1.JPG AFFAISEMENT GENERAL3) DESSUS CARNEAU NORD.JPG

Table 1: Examples of anomaly reports

Dataset Character Error Rate
Original Reports 0.43
Llama 3 prompt 1 0.32
Llama 3 prompt 2 0.35
Llama 3 prompt 3 0.06
Llama 3 prompt 4 0.08

Llama 3.1 prompt 1 0.35
Llama 3.1 prompt 2 0.34
Llama 3.1 prompt 3 0.10
Llama 3.1 prompt 4 0.08

Mistral prompt 1 0.28
Mistral prompt 2 0.39
Mistral prompt 3 0.07
Mistral prompt 4 0.07

Table 2: CER of the automatic rectification

The examples in Table 3 show one report and its
rectification proposed by Llama 3 according to the
different prompts. The text to correct was "SYN-
THESE HSY062 A OFF ATTENDU A ON." (tr.
"Synthesis HSYP62 on OFF expected on ON"). In
this particular report, the expected corrections were
limited: put back the lowercase and put back the
accents on "Synthèse" and the two occurrences of
"à". As already stated, the two first prompts pro-
duced less accurate corrections. In this case (which
is an extreme one) the output contains additional
words and substantial changes in meaning (tr. "on
the occasion of the stop expected on board" for
prompt 1 and "Anomaly analysis - On the occasion
of the offer expected at this moment" for prompt
2). This behavior may even be considered as an
hallucination. Their respective CER scores are 0.47
for prompt 1 and 0.64 for prompt 2. Prompts 3 and
4 got almost perfect results, although they respec-
tively obtained 0.2 and 0.13 CER. In prompt 3, the
punctuation ":" was added, which could be consid-
ered acceptable, and one of the acronym letter was
put in lowercase. For both of the prompts, "on" and
"off" were put in lowercase, which is not the case
for the gold but can hardly be considered a mis-
take. This first intrinsic evaluation allowed us to
identify a subset of promising configurations: we
arbitrarily consider for the extrinsic evaluation the
5 which obtained a CER of less than 0.1 (indicated
in boldface in Table 2).

Dataset Output CER
Original
report

SYNTHESE HSY062 A OFF AT-
TENDU A ON.

0.35

Gold re-
port

Synthèse HSY062 à OFF attendue à
ON.

Llama3
prompt 1

Synthèse HSY062 : À l’occasion de
l’arrêt attendu à bord.

0.47

Llama3
prompt 2

Synthèse HSY062 : Analyse
d’anomalie - À l’occasion de l’offre
attendue à ce moment-là.

0.64

Llama3
prompt 3

Synthèse HSy062 : À off attendu à
on.

0.20

Llama3
prompt 4

Synthèse HSY062 à off attendu à
on.

0.13

Table 3: Examples of correction

5 Evaluation on a downstream task

The second experiment conducted in this study con-
sists in an automatic annotation of the 6 datasets
(the original reports and the five datasets with a
low CER) through a sequence labeling task. The
original reports dataset was manually annotated
based on a twelve-class typology of sequences.
These classes are related to the main type of techni-
cal problem reported (i.e. “leakage”, “malfunc-
tion”, “missing component”...). The annotated
text segments are lexical markers (cues) of the
class ("leak", "leaking", "absence", "missing", "not
present"...). The annotation was performed by three
linguists. The inter-annotator agreement between
the linguists and a field expert was measured with
a gamma score (Mathet et al., 2015) of 0.63. In the
first example in Table 1, the trigger is "DEFAUT"
(tr. "DEFECT") and in the second one, "DEGRA-
DATION". Over the 1050 reports, a total of 1406
segments were identified (1114 are used for train-
ing, 292 for testing, with an unbalanced distribu-
tion of categories). Several fine-tuned transformer-
based token classifiers1 were tested for this task
on the original reports dataset with no preprocess-
ing other than folding the whole text in lower-
case. The two models that gave the best results
for the original corpus on a token-level evaluation
were bert-base-multilingual-uncased (Devlin et al.,

1Hyper-parameters: learning-rate = 1e−5, epoch = 20
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Classifier bert-base-multilingual-uncased camembert-large
Dataset Precision Recall F-score Precision Recall F-score
Original reports 0.72 0.77 0.74 0.71 0.79 0.74
Llama 3 prompt 3 (list) 0.60 0.67 0.64 0.66 0.78 0.71
Llama 3 prompt 4 (examples) 0.63 0.73 0.68 0.58 0.74 0.65
Llama 3.1 prompt 4 (examples) 0.58 0.66 0.62 0.64 0.77 0.70
Mistral prompt 3 (list) 0.57 0.66 0.62 0.63 0.73 0.68
Mistral prompt 4 (examples) 0.62 0.67 0.64 0.62 0.74 0.68

Table 4: Sequence labeling classifier scores

Figure 1: Example of automatic correction impacting the annotation

2019) and camembert-large (Martin et al., 2020)
with respectively 0.68 and 0.67 macro-average F1.
However, given the nature of the manual annota-
tion task, the precise segment boundaries may vary
without meaningful differences. As such, to get a
more accurate view of the scores, the "nervaluate"
metric was used, and especially the "entity-type"
measure2 to compute a labeled sequence based eval-
uation. This measure considers that a sequence
which overlap the gold data is a true positive if the
type (class) is correct. For the two selected mod-
els bert-base-multilingual-uncased and camembert-
large, the entity-type macro-average F1 are both
0.74 (Table 4). Given the tight results, we selected
these two classifier configurations to perform the
automatic labeling on the corrected datasets.

To reverberate the manual annotation from the
original reports to the corrected reports, adjust-
ments had to be done. To that effect, the cor-
responding offsets of the target sequence in the
corrected versions were determined based on the
output of the GNU wdiff utility3, with local ho-
mothety transformations for adapting to insertions
and deletions. The sequence labeling task was then
re-evaluated, using the five corrected versions of
both the training and test sets, without any other
preprocessing except using the lowercase for bert-
base-multilingual-uncased.

The results of the automatic sequence labeling
shown in Table 4 indicate that the rectification did
not increase the scores (best F1 scores in boldface).
Instead, they show slightly lower scores for the best

2https://www.davidsbatista.net/blog/2018/05/
09/Named_Entity_Evaluation/

3https://www.gnu.org/software/wdiff/

two configurations, with 0.71 and 0.70 F1 against
0.74 attained with the original reports dataset. The
camembert-large classifier obtains overall better re-
sults on the rectified data. Potential reasons to this
would be that the model has been trained specif-
ically for French language and as such is able to
handle the accents, whereas bert-base-multilingual-
uncased’s tokenizer strips them. Moreover, this
BERT model is uncased, which was not an issue for
the original reports that were all in uppercase, but
for the rectified datasets, the case issues have been
corrected. As such, camembert-large benefits from
more precise and less ambiguous formulations. The
decrease of the overall scores also implies a loss of
semantic information during the normalization pro-
cess that impacts the performance of the labeling
task.

6 Conclusion

In this study, we have demonstrated that the auto-
matic correction of a technical and noisy text with
an LLM produces mitigated results. The scores
given by the CER seemed satisfactory enough to
assume an efficient correction of the noise, at the
condition that the LLM is accurately prompted
(context, goal of the normalization and list of phe-
nomenons to correct). However, the results of the
sequence labeling task do not confirm this hypoth-
esis. Some semantic information may be lost and
lead to a negative impact on the sequence labeling
task. In the example in Figure 1, we can see a
case where the LLM overcorrected and modified a
critical word. The word "DEFECTUEUX" (tr. "de-
fective") was replaced by "défaut" (tr. "defect"). In
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the reports, "defect/défaut" is often found and used
with the meaning of "problem" or "inadequacy".
As such, it has been manually labeled most of the
time with the label "Out of specification". It differs
from "defectueux/ defective" which means that a
component is not functioning, thus labeled with
"Not working". In this example, by changing this
particular word, the LLM has modified the mean-
ing of the sentence and even its correctness (in this
case "est défaut" is nor grammatically accurate,
nor attested in the corpus). The classifier applied
on the rectified text thus incorrectly labels "est dé-
faut" as "Out of specification", while the original
text get a correct label of "Not Working" for "DE-
FECTUEUX". To conclude, we can say that the
use of transformers models on noisy and technical
data seems to be quite robust and able to cope with
such a corpus, addressing the main types of noise.
However, the noise itself does not seem to bear the
difficulty of the sequence labeling task given the
score obtained on the normalized dataset close to
the score of the original reports dataset.
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A Prompts

Included in prompt
version

Text

1,2,3,4 You are a trained linguist working with maintenance operators. Your task
is to correct sentences written in French by these operators. These texts
describe problems occurring during the maintenance of a rocket. You are
correcting these texts because they contain a lot of noise. You must write
a standardized version of these texts without modifying, reformulating, or
changing any words. Do not alter the vocabulary.

2,3,4 You need to clean these text because they will be automatically processed
afterward.

3,4 Here is a list of the different phenomenons to correct you may encounter :
- missing spaces and punctuation
- mispelled words
- the whole text in uppercase
- missing accents.
Even if you encounter an unfamiliar word, keep it as it is. When displaying
your answer, write only the corrected version of the sentence without
adding line breaks, additional information, explanations, or notes.

4 Here are two examples.
The text "CORROSION LEGERE SUR OVM50005CORROSION PLUS
IMPORTANTE SUR OVM5006 (VANNE ALIM PISCINE)" becomes
"Corrosion légère sur OVM50005. Corrosion plus importante du
OVM5006 (vanne ALIM piscine)."
The text "POULIE DE RENVOI SUR CAISSSON LBS LH2 GRIPPEE
SUR SON AXE." becomes "Poulie de renvoi sur caisson LBS LH2 grippée
sur son axe.".

1,2,3,4 Here is the text to rectify: [text inserted]
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Abstract

We present a suite of experiments that allow
us to understand the underlying challenges of
language model adaptation to nonstandard text.
We do so by designing interventions that ap-
proximate core features of user-generated text
and their interactions with existing biases of
language models. Applying our interventions
during language model adaptation to nonstan-
dard text variations, we gain important insights
into when such adaptation is successful, as well
as the aspects of text variation and noise that are
particularly difficult for language models to han-
dle. For instance, on text with character-level
variation, out-of-the-box performance improves
even with a few additional training examples
but approaches a plateau, suggesting that more
data is not the solution. In contrast, on text
with variation involving new words or mean-
ings, far more data is needed, but it leads to
a massive breakthrough in performance. Our
findings reveal that existing models lack the nec-
essary infrastructure to handle diverse forms of
nonstandard text, guiding the development of
more resilient language modeling techniques.
We make the code for our interventions, which
can be applied to any English text data, publicly
available.

1 Introduction
Nonstandard text is all around us. Whether a user
adopts a regional dialect, follows different spelling
conventions, or uses culturally-specific vocabulary,
encountering text variation in most day-to-day NLP
use cases is inevitable (Blodgett et al., 2016; Huang
et al., 2020). Yet, recent work continues to find
large gaps in performance between standard and
nonstandard text and speech (Kantharuban et al.,
2023; Faisal et al., 2024), and efforts to reduce this
gap are typically case-, variety-, or task-dependent
(Held et al., 2023; Joshi et al., 2024). The distinc-
tion between standard and nonstandard text is often
contextual. In written English, going to is standard,

while gonna or gunna is nonstandard. Likewise,
I am not (standard) contrasts with I ain’t (non-
standard). Similarly, color (American English) vs.
colour (British English) reflects orthographic vari-
ation. Whether deploying a large-scale system for
diverse users or working towards language model
personalization, it is important to understand the
challenges of adapting a language model to differ-
ent varieties. Specifically, how can we improve a
model’s performance in a new domain (in this case,
a new variety) by leveraging knowledge from an
existing one (i.e., the standard one)?

This is tricky; it is difficult to tease apart the
interactions between the complex and intertwined
features that comprise linguistic variation, and the
black-box nature of language models makes it even
more difficult to do so. But we can reach some firmer
conclusions if, on the one hand, we can devise ways
of controlling different levels of text variation, and,
on the other hand, we study the structure of the
model (as opposed to its parameter values). We
find that the model structure itself induces biases
towards the standard variety of a language, and
it does so in different ways at different levels of
linguistic structure.

Current language models like BERT (Devlin
et al., 2019) and GPT (Radford et al., 2019) are
actually a hybrid of two models: a frequency-based
subword tokenizer and a Transformer-based encoder
or decoder. The tokenizer determines subword units,
and the Transformer embeds the subwords into a
vector space where it operates on the vectors. Fre-
quent words are often kept together as a single token,
while infrequent words are often broken up into sev-
eral shorter-length tokens. When both the tokenizer
and the Transformer are biased towards standard
text, a rigid relationship develops between tokens
and their vector representations. Small changes to
the token sequence (e.g., resulting from spelling
variation) can break the model’s ability to under-
stand it properly (Kumar et al., 2020; Soper et al.,
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Figure 1: A sketch of our train/test pipeline.

2021; Blaschke et al., 2023; Srivastava and Chiang,
2023a; Chai et al., 2024). See the example below,
where tok

; denotes tokenization:
coffee tok

; coffee
cofee tok

; co, fe, e
While the model would associate the token coffee
with the appropriate word, one misspelling in the
input means the model must figure out that the token
sequence co, fe, e refers to the same thing as coffee,
which is certainly not trivial. Moreover, since the
subword tokenizer of a pre-trained model cannot
be modified without large-scale retraining, such is-
sues can typically only be addressed through model
adaptation methods (e.g., fine-tuning). However,
because this approach does not resolve the underly-
ing problem, it is crucial to explore the challenges
and success cases in adapting language models to
different forms of nonstandard text.

To this end, we develop synthetic manipulations
that exploit our knowledge of what happens when
a Transformer-based language model interacts with
nonstandard text. Our experiments isolate data-
related factors that can play a role in language
model adaptation (e.g., type, amount, and compo-
sition of training data), and we assemble a suite
of nine interventions to synthetically induce tok-
enization and embedding disruption, grounded in
traits of user-generated text and at different levels
of linguistic structure (e.g., orthographic, morpho-
logical, lexical), in controlled settings. We make
the code for these interventions publicly available.1
Our experiments (outlined in Figure 1) evaluate
and stress-test BERT’s ability to adapt to various
types of nonstandard text under different conditions.
Our findings inform important questions about the
fundamental hurdles of adapting language models

1https://github.com/aarsri/
interventions-linguistic-variation

to nonstandard text:
• Language models adapt more effectively to

lexical variation at the subword and multi-
subword levels (e.g., new words, word senses,
and meanings) during fine-tuning but struggle
with within-subword variation (e.g., character-
level changes, unconventional spellings).

• When handling lexical variation, greater data
availability is vital for successful knowledge
transfer. Multilingual models are also more
helpful in such cases.

• In contrast, for text with character-level vari-
ation (within-subword changes), increasing
data offers limited benefits. Instead, achieving
robustness likely requires alternative solutions.
Monolingual models outperform multilingual
ones in such cases.

2 Related Work

As larger language models with new capabilities
emerge, engaging with nonstandard text (e.g., di-
alects, language varieties, noisy text) – a hallmark
of content generated by today’s diverse user base
– remains a challenge. Language models are not
robust to noisy text, plummeting in performance
when faced with seemingly simple issues like
misspellings, typos, and grammatical errors, even
though such issues naturally arise in almost any use
case (Kumar et al., 2020; Yin et al., 2020; Aspillaga
et al., 2020). These limitations have been docu-
mented even in large models. For instance, Pagnoni
et al. (2024) find that Llama 3 and 3.1 perform
poorly in robustness tests involving character-level
noise, and Chai et al. (2024) highlight the sensi-
tivity of large language models to character-level
variations.

Improving model performance on nonstandard
text is not trivial. For instance, Faisal et al. (2024)
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document a persistent performance gap between
standard and dialectal text, even after in-variety
fine-tuning. Approaches to increasing robustness to
linguistic variation, though often successful, tend
to be highly dependent on the language variety
and task, typically requiring data for each dialect
in question (Held et al., 2023) and exposing dif-
ferences in performance across tasks and varieties
(Srivastava and Chiang, 2023b). Given the vast,
unpredictable nature of user-generated text, which
often involves multiple types of linguistic variation
at once, these challenges become even more pro-
nounced. Thus, it is essential to take a step back
and develop a deeper understanding of why such
adaptation remains difficult and what is needed to
facilitate effective learning.

Past work has explored challenges of cross-
lingual transfer (Philippy et al., 2023). For instance,
Wu et al. (2023) investigate three key factors – em-
bedding space disruption, tokenization changes,
and word order changes – by transforming GLUE
datasets to induce each type of shift. They find that
while language models can adapt to tokenization
and word order changes, they struggle to recover
from embedding space disruption (e.g., learning
new alignments). Similar conclusions are drawn
by Deshpande et al. (2022) and Jain et al. (2022);
Deshpande et al. (2022) highlight the importance
of subword overlap and token embedding align-
ment for successful knowledge transfer, while Jain
et al. (2022) suggest leveraging word alignment and
dictionary matching techniques. Building on these
findings, our experiments examine core features of
nonstandard text and explore their interactions with
these modeling challenges.

3 Levels of Text Variation

Variation is a natural response to the productive
nature of language. It can be observed at all levels of
linguistic reasoning (Haber, 1976; Geeraerts et al.,
1994): character-level change (e.g., spelling, abbre-
viation, orthography), morphological and syntactic
variation (i.e., word and sentence structure), lexical
and semantic variation (new word senses and mean-
ings), and variation in style and tone, often related to
language-external sociopolitical factors. Style and
tone variation operate at a higher level of reasoning,
integrating features from the first three categories.
Viewing user-generated text in terms of these core
features elucidates the challenges language models
face in adapting to its variability.

When dealing with nonstandard text, we en-
counter infrequent strings far more often, which
inherently challenges existing biases of language
models and impacts downstream performance. The
tokenizer produces longer sequences of tokens com-
prised of shorter subwords, a phenomenon called
oversegmentation (Soper et al., 2021; Srivastava
and Chiang, 2023a). Shorter subwords can appear in
many more contexts and take on different meanings
each time, a phenomenon called subword replace-
ment (Srivastava and Chiang, 2023a). Even in the
case of new word senses/meanings, for which the
token sequence may not change as much, the model
would lack the relevant knowledge.

Drawing on documented features of user-
generated text, we have devised a suite of 9 inter-
ventions that operate at different levels of linguistic
structure. We apply these interventions to all text
used in our experiments. The interventions fall into
four categories: character-level change, subword
boundary manipulation, morphological variation,
and lexical variation. All the interventions require
the model to learn to map between standard (seen)
and nonstandard (rare or unseen) text for effective
knowledge transfer. However, differences in how
the interventions affect tokenization can influence
the difficulty of learning these mappings during
fine-tuning. For this reason, the interventions are
designed to cause a fair amount of disruption, with
some acting as stress tests. All of our data and ex-
periments are in English, but the algorithmic nature
of many of our interventions can be extended to
other languages.

3.1 Character-Level Change
Character-level change can arise for several rea-
sons, including phonological influences (e.g., ac-
cent, sound change), new methods of writing (e.g.,
social media), and typological errors (Condorelli
and Rutkowska, 2023). We include two interven-
tions under this category; the first is a reflection of
phonological variation, and the second is more of a
stress test.

1. IPA: Letters corresponding to consonants on
the IPA chart that form a minimal feature pair
(voiced vs. unvoiced) are swapped. For exam-
ple, p and b, which differ only in the voicing
feature but share the same place and manner
of articulation, are swapped. Changes to con-
sonants are a hallmark of modern English or-
thographic variation, particularly observed on
social media (Eisenstein, 2015; Ilbury, 2020).
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For instance, such variations are prevalent
in corpora of noisy text like MultiLexNorm
(Van Der Goot et al., 2021); examples in-
clude dese/these, dey/they, smyle/smile, and
sadest/saddest.

boots IPA
; poodz tok

; p, ood, z

2. Shift: A Caesar cipher is applied to the letters
of the alphabet: 𝑎 → 𝑏, 𝑏 → 𝑐, ..., 𝑧 → 𝑎.
This intervention is the most extreme form of
orthographic change, in which every alpha-
betic symbol is renamed. It roughly approxi-
mates situations where a language variety uses
a different alphabet than the standard variety or
where social media trends using symbols that
resemble letters. Shift serves as a stress test,
as well as a means of comparison to milder
interventions like IPA.

boots Shift
; cpput tok

; c, pp, ut

While orthographic changes like the ones above
would ordinarily only require us to learn to map
one character to another (or one spelling of a word
to another, as in texting abbreviations), the struc-
ture imposed by the model makes this task more
complex. As exemplified above, adapting to this
category of variation would require the model to
learn a one-to-many mapping from a single token
to a list of tokens.

3.2 Subword Boundaries
As demonstrated above, linguistic variation often re-
sults in changes to subword token boundaries, which
triggers a domino effect and ultimately results in
lower quality contextual embeddings assigned to
nonstandard text by the model (Kumar et al., 2020;
Soper et al., 2021). Because of this, we include
three interventions that overtly manipulate subword
boundaries, two of which preserve the original
spelling of the word and only split tokens. Success-
ful adaptation would once again involve learning a
one-to-many mapping, but with more of the surface
level appearance (i.e., spelling) intact. Examples
like “ammmazing” (amazing) in MultiLexNorm
(Van Der Goot et al., 2021) resemble this situation.

1. Reg: Subword regularization using the Max-
Match Dropout (Hiraoka, 2022) method for
BERT’s WordPiece algorithm is applied with
a dropout of 0.5. This means 50% of the sub-
word vocabulary is randomly dropped with
each tokenization call.

boots tok
; boots

boots Reg
; boot, s

2. Char: Subword regularization using the Max-
Match Dropout (Hiraoka, 2022) method for
WordPiece is applied with a dropout of 1,
meaning each letter of a word is its own token.

boots Char
; b, o, o, t, s

3. Pig: Words are converted to Pig Latin, in which
the word-initial consonant(s) is moved to the
end, and a suffix (ay or yay) is added. For
example, pig latin becomes igpay atinlay.

boots Pig
; ootsbay tok

; o, ots, bay

3.3 Morphological Variation
In English, morphological variation can occur in
inflectional or derivational affixes (Neef, 2009;
Zanuttini and Horn, 2014). Inflectional endings
are morphemes with grammatical functions that
typically change grammatical features like part of
speech and number (e.g., plural -s). This is a type of
morphosyntactic variation, which relates to gram-
matical acceptability and is often highly stigmatized
– some utterances may be grammatical in one variety
and not in the standard, or vice versa. In contrast,
derivational affixes are used to change the meaning
of a word, which may or may not also change its
part of speech. Unlike inflectional endings, which
are a functional category, derivational affixes have
much more room for variation.

1. −End: Using MorphyNet (Batsuren et al.,
2021), inflectional endings are dropped from
words that have them.

boots −End
; boot tok

; boot

2. Affix: Using MorphyNet (Batsuren et al.,
2021), derivational prefixes and suffixes are
mapped cyclically. For instance, non- becomes
ab-, ab- becomes pre-, etc. Nonsense is now
absense (not “absence”), absence is now pres-
ence, and so on. In this way, we tinker with
part of a word but change its whole meaning.

nonsense Affix
; absense tok

; a, bs, ense

Because the lemma is preserved in these cases,
learning the appropriate knowledge will require a
mix of recovering token mappings and transferring
existing knowledge about the meaning of the word
from the lemma.
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There are several examples of morphosyntactic
variation found in user-generated text (Zanuttini and
Horn, 2014). A common feature in MultiLexNorm
(Van Der Goot et al., 2021) seems to be informal con-
tractions (e.g., “imma,” “finna,” “tryna,” “hella”).
Because these forms have lower preservation of the
lemma, the model may also see them as new words,
bringing us to the final category: lexical variation.

3.4 Lexical Variation
Word-level variation can be just that – a new word
introduced to refer to a specific, perhaps novel,
referent, or to be used in a new context. But lexical
variation can often introduce semantic variation; the
typical process being that a word’s senses expand
and eventually shift to the new meaning, through
specialization, generalization, or subjectification
(Kakharova, 2021; Geeraerts et al., 2024). Such
occurrences are extremely common on social media
and in colloquial settings.

1. Hyp: Exemplifying specialization, through
which a word’s range of reference narrows,
words with hyponyms found in WordNet
(Princeton University, 2010) are replaced by
their hyponym.

boot Hyp
; buskin tok

; bus, kin

2. Ant: Exemplifying subjectification, through
which a word’s meaning becomes more pos-
itive (ameliorization) or negative (pejoriza-
tion), words with antonyms found in WordNet
(Princeton University, 2010) are replaced by
their antonym.

nice Ant
; nasty

With the lexical interventions, the model must learn
to map between contextual meanings of seen words.
Variation is at the subword or multi-subword level.

3.5 Interventions in Action
Through these four categories of interventions, we
are able to examine a range of underlying factors in
modeling and adaptation capability for nonstandard
text, from tokenization-specific issues (character-
level change and subword boundaries), to token-
embedding relationships (morphological variation),
to contextual representation shift (lexical variation).
Moreover, within each category, we include milder,
more realistic interventions (e.g., IPA) and stress
tests (e.g., Shift). Our experiments reveal whether
a model has a chance at recovering each type of

Size Sentences Word Count Quartiles
Average 𝑃25 𝑃50 𝑃75

S 264 19.9 10 18 26
M 2641 18.5 10 16 24
L 26415 18.4 10 16 24

Table 1: Sentence and word count statistics (25𝑡ℎ, 50𝑡ℎ,
and 75𝑡ℎ percentiles) for each data split.

mapping during fine-tuning, and under which data-
related conditions.

4 Data Preparation
To compare the model’s ability to adapt to each
synthetic variety, we fine-tune and test it with the
mask-filling objective on text with the appropriate
intervention applied. We provide a sketch of our
train/test pipeline in Figure 1. All of our data is
sourced from Wikicorpus (Reese et al., 2010) to
reduce external effects of choice of data. We reserve
half the Wikicorpus articles for fine-tuning and half
for testing. These are separated into sentences using
the sentence tokenizer from NLTK (Loper and Bird,
2002). In our experiments, a word is any string that
satisfies Python’s isalpha function and is an element
of NLTK word tokenizer’s output. Sentences with
0 or 1 words are eliminated.

When fine-tuning, we vary the amount of data
used. Each split is a fixed set of sentences sampled
from the fine-tuning articles. The number of sen-
tences in each split covers three orders of magnitude.
We report statistics in Table 1 on sentence length
(measured by number of words) for each split to
demonstrate that they are comparable in this regard.
In addition to varying the data size and intervention,
we also vary the composition of the fine-tuning data.
It could be mixed, meaning the intervention is only
applied to half the sentences, or full, meaning the
intervention is applied to all sentences.

Fine-tuning typically focuses on adapting a model
to a specific task, making it challenging to simulta-
neously adapt the model to a new language variety.
Task-specific factors can also complicate this pro-
cess, especially in experiments involving disrupted
text. For example, some tasks, like intent classifi-
cation, rely on identifying key words in the input,
while others, like sentiment analysis, require an
overall understanding of the sentence, and more
linguistically complex tasks, such as linguistic ac-
ceptability, demand deeper grammatical reasoning.
These variations create a complex interaction be-
tween handling perturbed text and meeting the
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requirements of each task, potentially introducing
bias into the experiment. To avoid these complica-
tions, we select mask-filling as our fine-tuning task.
Mask-filling aligns with the models’ pre-training
objective, allowing fine-tuning resources to focus
exclusively on adapting to the new language variety
without interference from task-specific factors.

Our masking policy during fine-tuning is as fol-
lows. One word per sentence is randomly selected
to be masked. We practice whole-word masking,
meaning the model could be asked to fill one or
more consecutive mask tokens, given the number
of subword tokens that comprise the masked word.
Depending on the word to be masked, it is possible
the intervention does not actually change that word.
While this is natural for fine-tuning, to make sure the
comparison during testing is fair, we mandate that
the word masked at test time is actually modified by
all nine interventions. This filtering yields a test set
of 931 sentences sampled from the testing articles.
For each sentence, the same word is masked in all
interventions/tests for consistency.

5 Experiments
There are four axes of variation in our experiments:
amount of fine-tuning data (small, medium, large),
composition of fine-tuning data (50% (mixed) or
100% (full) of sentences are noised), intervention
to be applied (9 total), and multilinguality (mono-
lingual or multilingual pre-trained model). We use
BERT-base-cased2 (BERT) as the monolingual En-
glish model, and BERT-base-multilingual-cased3
(mBERT) as the multilingual model. We do not
include character-level models like CharacterBERT
(El Boukkouri et al., 2020) and CANINE (Clark
et al., 2022) in our experiments; unlike BERT and
mBERT, they cannot be used out-of-the-box for
mask-filling and would not yield comparable results.
For larger models, it is often unclear whether suc-
cess stems from pre-training exposure, parameter-
based knowledge retention, or true adaptation (our
focus). Using BERT, we minimize such confounds.

For each possible combination of the four axes
of variation, a pre-trained model is fine-tuned on
the corresponding data with the masked language
modeling objective. As described in Section 4, one
word per sentence is masked (whole word masking),
and the fine-tuning objective is to fill the masked

2https://huggingface.co/
bert-base-cased

3https://huggingface.co/
bert-base-multilingual-cased

token(s) with the tokens of the original word.
We use Low-Rank Adaptation (LoRA, Hu et al.

(2021)) for parameter-efficient fine-tuning, which
adapts the attention weights of each Transformer
encoder layer and freezes all other parameters. We
follow Hu et al.’s guidelines for hyperparameter
choice, using the AdamW optimizer (Loshchilov
and Hutter, 2018) with a linear scheduler, LoRA
rank of 8, and LoRA scaling factor 𝛼 of 8. We use
learning rate 7 · 10−4 for the small data amount and
5 · 10−4 for the medium and large data amounts.
On an NVIDIA A10 Tensor Core GPU, fine-tuning
takes 12 seconds/epoch for the small data amount,
2 minutes/epoch for the medium data amount, and
18 minutes/epoch for the large data amount. LoRA
was chosen over standard fine-tuning for two key
reasons: (1) standard fine-tuning is highly suscep-
tible to distribution shift issues, and (2) LoRA
provides greater control over where learning occurs
(in encoder parameters associated with attention).

We measure performance with three metrics:
from most to least strict, exact match, 1-best, and
5-best accuracy. Exact match accuracy measures
for how many masked words each token of the word
is predicted correctly, divided by the test set size. 1-
best accuracy measures the total number of masked
tokens filled correctly (by the top probability predic-
tion) divided by the total number of masked tokens
in the test set. Similarly, 5-best accuracy measures
the total number of masked tokens whose top five
predictions include the correct answer, divided by
the total number of masked tokens in the test set.
The 1-best accuracy metric provides the best sum-
mary of the results Table 2; we include results using
the other two metrics in Tables 5 and 6.

6 Results

The main 1-best results for our experiments are
found in Table 2, and the normalized scores are re-
ported in Table 3. Additional results using the other
metrics are included in Tables 4-6. We reiterate the
categories of interventions (see Section 3) below:

• Character-Level Change: IPA, Shift
• Subword Boundary Variation: Reg, Char, Pig
• Morphological Variation: −End, Affix
• Lexical Variation: Hyp, Ant

6.1 Baselines: We need an intervention!
We include a baseline row for each model (data
amount 0), in which the pre-trained model, without
any additional fine-tuning, is tested on each inter-
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vention. We also include a baseline intervention
None, in which the models are evaluated on the
original text without any intervention applied.

As expected, monolingual BERT is better out-
of-the-box at the mask-filling task on English
Wikipedia text. Fine-tuning without any interven-
tion results in overfitting – an expected outcome, as
the model has already been trained on the same task
with similar data. Thus, we also include relative
performance – each baseline score in Table 2 is nor-
malized by the corresponding None performance
and expressed as a percentage in Table 3. Out-of-
the-box performance (data amount 0) is extremely
low across the board, demonstrating that our exper-
iments will provide clear findings as BERT cannot
already solve these tasks.

6.2 Mixed vs. Full Composition: What is
needed to learn new mappings?

The knowledge transfer that takes place when adapt-
ing a model to a new variety of the language is akin
to learning how to map elements of the standard
variety to the new one. One of the varied parame-
ters of our experiments is whether the fine-tuning
data is mixed (intervention is only applied to 50%
of sentences) or full (intervention is applied to all
sentences). Sometimes, we might expect model
learning to benefit from seeing both standard and
nonstandard versions of text during fine-tuning,
while other times, this only makes learning the
appropriate patterns more difficult.

Our results indicate that the latter holds true
when dealing with linguistic variation; average per-
formance (not including baseline scores) is about
4.2 points, or 36%, higher, with the full composi-
tion (Table 2) rather than the mixed composition
(Table 4). Performance with full composition is also
higher when comparing averages for each interven-
tion category, so the mixed composition does not
provide an advantage for any type of variation tested.
Because of this difference in performance, we refer
only to the full composition results when discussing
and analyzing the remaining factors below.

6.3 Data Size: When is more data needed?
Across our experiments, particularly looking at the
normalized performance relative to the baseline
intervention scores (Table 3), more fine-tuning data
helps. At the same time, the utility of adding more
fine-tuning data differs depending on the type of
mapping needed for a class of interventions.

When it comes to the orthographic interven-
tions (IPA, Shift) and −End, the input sequence
is affected by tokenization-related issues (i.e., over-
segmentation and subword replacement), and the
model must learn one-to-many mappings between
tokens during fine-tuning for successful knowledge
transfer. In this case, simply fine-tuning, even on
the small or medium data amounts, results in a big
improvement, but further improvements are much
smaller. While fine-tuning helps, it is not sufficient
to fully recover the mapping due to the model’s
inability to draw on sub-atomic knowledge (i.e.,
within-subword character-level information).

Subword boundary manipulation still involves
the issues of oversegmentation, but the closeness
in spelling may result in a stronger association by
the model between the contextual representations
of pre- and post-intervention versions of the same
words. When adapting to the synthetic varieties
with subword boundary manipulation, performance
improves gradually as more data is added.

Strikingly, there is an apparent breakthrough ef-
fect when fine-tuning with the largest data size
for the lexical interventions (Hyp, Ant) and Affix.
While the performance attained is comparatively
low for the small and medium data sizes, there is
a massive jump when the large data size is used
for fine-tuning. This is most clearly observed in
the exact-match performance (Table 5) for BERT
and the relative performance for mBERT, which
nears or exceeds 100% in these three tasks. These
tasks require relearning the usage of words in new
contexts. Mapping word-level information (i.e., new
spellings) as well as contextual meaning evidently
requires much more data, but when the data require-
ment is satisfied, the model is capable of recovering
(multi-) subword level information.

6.4 Monolingual vs. Multilingual: Which type
of knowledge is more helpful?

For the most part, the average performance (not
including baseline performance) is extremely close
between BERT and mBERT. Notably, mBERT pro-
vides a substantial advantage for adapting to varia-
tion in meaning (Affix, Hyp, and Ant), providing
a 20% boost in absolute scores (Table 2) and a
74% relative improvement in normalized scores
(Table 3). Because mBERT is trained on several
languages, it is likely not as rigid in terms of relating
words to specific meanings/contexts, providing an
advantage here.
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Interventions
Model Data None IPA Shift Reg Char Pig −End Affix Hyp Ant
BERT 0 58.8 2.6 2.3 7.0 5.4 9.3 1.5 0.1 0.1 0.2

S 52.4 3.4 5.6 9.0 12.2 15.3 32.3 0.3 2.0 2.6
M 48.6 15.3 8.7 12.7 16.1 14.8 28.9 14.5 9.5 19.1
L 47.7 18.8 9.5 11.6 26.5 23.1 37.6 35.7 29.6 29.6

mBERT 0 42.0 2.6 2.2 5.1 6.4 13.8 2.6 1.7 1.7 1.1
S 38.8 10.4 4.4 4.7 11.6 13.6 23.1 1.7 5.2 7.1
M 31.6 12.1 3.7 12.1 20.5 16.7 30.5 18.8 17.6 19.7
L 34.4 13.2 5.2 11.1 29.7 21.3 30.0 41.7 28.9 33.6

Table 2: 1-best accuracy results (single run) for all experiments with the full data composition using the base version
of the model. Data amount 0 denotes the out-of-the-box baseline performance compared to fine-tuning with the
small (S), medium (M), or large (L) data sizes.

Interventions
Model Data None IPA Shift Reg Char Pig −End Affix Hyp Ant
BERT 0 100.0 4.4 3.8 11.9 9.2 15.7 2.6 0.2 0.1 0.3

S 100.0 6.5 10.8 17.2 23.3 29.2 61.7 0.5 3.8 4.9
M 100.0 31.5 18.0 26.1 33.1 30.5 59.4 29.8 19.6 39.3
L 100.0 39.4 19.9 24.4 55.4 48.3 78.8 74.9 62.0 62.1

mBERT 0 100.0 6.1 5.3 12.1 15.1 32.8 6.2 4.1 4.0 2.5
S 100.0 26.9 11.4 12.1 30.0 35.2 59.6 4.3 13.3 18.3
M 100.0 38.4 11.6 38.1 64.9 52.9 96.4 59.5 55.5 62.4
L 100.0 38.4 15.0 32.2 86.2 61.8 87.0 120.9 83.9 97.6

Table 3: Relative performance (single run) normalized by the baseline (None), as percentages using the base version
of the model. Data amount 0 denotes the out-of-the-box baseline performance compared to fine-tuning with the
small (S), medium (M), or large (L) data sizes.

6.5 Implications for User-Generated Text

Our interventions provide insights into how lan-
guage models adapt to the diverse noise patterns
in user-generated text. We examine cases where
token sequences are disrupted but meaning is pre-
served (e.g., character-level changes) and those
where meanings shift with minimal impact on tok-
enization (e.g., lexical variation), as well as interme-
diate cases like subword boundary manipulation.

Our findings show that models struggle to process
variations within subwords. Given the prevalence
of character-level changes in user-generated text,
particularly on social media, fine-tuning on addi-
tional data alone is insufficient for robust adaptation.
This poses challenges for NLP applications in these
domains, especially when users prefer to retain their
stylistic choices rather than conform to standardized
text. At the same time, we find that with sufficient
data, models can learn certain morphological and
lexical variations, making it possible to adapt to new
words, slang, and evolving usage patterns. However,
given the diversity of user-generated content, some
phenomena may be too sparse for effective learning,
highlighting the need for more targeted approaches

beyond data scaling.

7 Conclusion

We introduce a suite of interventions that synthet-
ically modify English text to analyze interactions
between features of nonstandard and user-generated
text with underlying biases of language models. Our
experiments isolate data-related factors that can
contribute to language model adaptation, reveal-
ing critical insights into the limitations of adapting
language models to nonstandard text. We explore
several cases, ranging from character-level changes
that over-segment the token sequence to lexical vari-
ations that alter contextual representations. Some in-
terventions require learning one-to-many mappings
within subwords, while others demand associations
across multiple subwords.

Our findings highlight key adaptation challenges.
BERT-like models struggle to adapt to character-
level changes, even with additional data, but can suc-
cessfully handle lexical shifts and new word senses
with enough exposure to relevant fine-tuning data.
Notably, interventions involving affix changes and
antonym substitutions achieve performance com-
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parable to or exceeding mBERT baselines. This
suggests that while models can effectively learn
word-to-word mappings, structural constraints hin-
der their ability to process finer-grained variations
within subwords or at the character level. These lim-
itations arise from how tokens are segmented and
represented within the model, restricting its ability
to capture within-subword (sub-atomic) variations.

Ultimately, while current models adjust well
to meaning-related variations given enough data,
they struggle with fine-grained structural disrup-
tions, where constituents are smaller than a sub-
word (e.g., character-level). Despite the prevalence
of such variation (e.g., social media), current lan-
guage models lack the capability to facilitate the
required flexibility between tokens and embeddings
for straightforward adaptation methods like fine-
tuning, unless the relevant knowledge is already
incorporated during pre-training. This underscores
the need for more flexible tokenization and mod-
eling approaches, especially for handling the com-
plexities of user-generated text and enabling the
model to effectively capture within-subword (e.g.,
character-level) information.

Limitations

While our experiments explored numerous possibil-
ities within the scope of our study, they are certainly
not exhaustive. We recognized the vast array of po-
tential variations and interventions that could be
considered and aimed to curate a feasible selection
that still offered a diverse representation of linguis-
tic challenges and adaptation scenarios. Beyond the
selection of interventions to design, it would be
valuable to expand the scope of experiments in the
other dimensions, as well: languages, data sizes,
and models.

For instance, our interventions and experiments
were developed and executed in English. While nar-
rowing down the language dimension allowed us to
develop the highly controlled experiments needed
for this study, it also means insights are missing for
languages in which the character-, subword-, and
word-level paradigm used in this work may not apply
in the same way. Examples include languages with
richer morphology (e.g., Turkic languages) and lan-
guages for which characters correspond to syllables,
words, or concepts (e.g., Sino-Tibetan languages).
Similarly, while the code for the interventions can
largely be extended to other Indo-European lan-
guages, it would require more modification before

it could be used for other language families.
Furthermore, while our choices for the small,

medium, and large data sizes are informed by run-
time and typical fine-tuning data sizes in NLP work,
some of our results point to trends as data size
increases. As a result, it would be valuable to ex-
tend these tables to see an even bigger picture as
data size continues to increase. In addition, while
we used LoRA for model adaptation in this study,
there are other approaches that could be explored to
better understand the nuances of parameter-efficient
fine-tuning.

Finally, our work focuses on the widely-used
BERT, which is an Encoder-only language model
of relatively small size. While the small size is
beneficial for our study, as it assures us that the
model has not already seen the intervention tasks
during pre-training, diversity in the type of model
(e.g., encoder-decoder, decoder-only, LLMs) can
help paint a bigger picture for our results and their
implications in a wider range of settings.
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Interventions
Model Data None IPA Shift Reg Char Pig −End Affix Hyp Ant
BERT 0 58.8 2.6 2.3 6.9 5.4 9.3 1.5 0.1 0.1 0.2

S 52.4 2.4 5.9 11.0 11.7 17.4 18.5 0.8 0.6 0.8
M 48.6 7.5 8.3 12.5 13.1 16.3 26.7 10.6 8.3 3.0
L 47.7 14.4 8.3 12.0 19.9 20.3 15.1 25.5 17.0 19.7

mBERT 0 42.0 2.6 2.2 5.1 6.4 13.8 2.6 1.7 1.7 1.1
S 38.8 10.5 1.5 7.4 12.3 10.1 5.2 4.2 1.3 6.8
M 31.6 9.3 4.8 12.8 14.1 16.2 7.6 24.0 9.7 8.5
L 34.4 14.7 6.8 13.0 16.4 16.9 11.9 29.5 25.3 22.8

Table 4: 1-best accuracy results (single run) for all experiments with the mixed data composition using the base
version of the model. Data amount 0 denotes the out-of-the-box baseline performance compared to fine-tuning with
the small (S), medium (M), or large (L) data sizes.

Interventions
Model Data None IPA Shift Reg Char Pig −End Affix Hyp Ant
BERT 0 62.0 0.1 0.0 12.1 0.0 0.0 1.6 0.1 0.0 0.2

S 55.1 0.3 0.0 9.9 0.5 0.0 34.2 0.1 1.8 3.2
M 51.3 2.4 2.3 12.5 1.2 0.2 30.7 3.2 10.1 18.1
L 50.3 9.8 2.2 10.2 7.3 7.5 39.0 25.2 31.2 31.5

mBERT 0 44.8 1.2 0.9 6.8 0.9 1.4 2.9 0.5 1.7 0.8
S 40.7 1.2 0.4 1.8 0.8 0.9 25.5 0.4 7.0 10.4
M 33.6 2.7 0.2 9.9 8.1 2.8 33.3 9.0 13.5 17.1
L 37.0 5.3 0.8 8.5 8.9 7.7 32.2 31.0 27.7 30.5

Table 5: Exact match accuracy results (single run) for all experiments with the full data composition using the base
version of the model. Data amount 0 denotes the out-of-the-box baseline performance compared to fine-tuning with
the small (S), medium (M), or large (L) data sizes.

Interventions
Model Data None IPA Shift Reg Char Pig −End Affix Hyp Ant
BERT 0 77.0 10.5 10.0 13.9 26.4 23.9 21.5 2.2 1.2 0.5

S 74.3 17.1 17.3 23.5 46.6 33.1 47.1 2.0 6.9 8.5
M 74.9 29.3 28.3 27.9 55.6 40.2 46.6 31.7 23.8 31.0
L 62.6 35.2 33.5 27.6 60.0 51.8 55.8 52.6 45.2 45.9

mBERT 0 64.1 6.9 8.6 14.3 25.3 27.4 21.5 4.1 2.6 2.3
S 63.5 21.2 14.3 15.4 44.9 32.8 36.9 5.5 11.2 16.1
M 61.6 24.9 14.4 29.3 55.2 35.2 46.9 31.2 32.5 36.6
L 49.0 25.2 19.3 23.7 62.4 44.7 43.7 56.8 44.7 47.7

Table 6: 5-best accuracy results (single run) for all experiments with the full data composition using the base version
of the model. Data amount 0 denotes the out-of-the-box baseline performance compared to fine-tuning with the
small (S), medium (M), or large (L) data sizes.
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Abstract

This paper investigates whether Large Lan-
guage Models (LLMs), fine-tuned on synthetic
but domain-representative data, can perform
the twofold task of (i) slot and intent detection
and (ii) natural language response generation
for a smart home assistant, while running solely
on resource-limited, CPU-only edge hardware.
We fine-tune LLMs to produce both JSON ac-
tion calls and text responses. Our experiments
show that 16-bit and 8-bit quantized variants
preserve high accuracy on slot and intent detec-
tion and maintain strong semantic coherence
in generated text, while the 4-bit model, while
retaining generative fluency, suffers a notice-
able drop in device-service classification ac-
curacy. Further evaluations on noisy human
(non-synthetic) prompts and out-of-domain in-
tents confirm the models’ generalization abil-
ity, obtaining around 80–86% accuracy. While
the average inference time is 5–6 seconds per
query—acceptable for one-shot commands but
suboptimal for multi-turn dialogue—our results
affirm that an on-device LLM can effectively
unify command interpretation and flexible re-
sponse generation for home automation without
relying on specialized hardware.

1 Introduction

Smart home technologies and IoT devices have
proliferated in recent years, with an expected rise
from 16.6 billion to 18.8 billion connected devices
by the end of 2024 (IoT Analytics, 2024). Major
providers like Amazon, Google, and Apple typi-
cally handle speech recognition and intent detec-
tion on cloud servers, which raises user concerns
about privacy, data ownership, and reliance on pro-
prietary ecosystems (BBC News, 2025). Conven-
tional solutions for home assistants often rely on
specialized, domain-specific classifiers for slot and
intent detection (SID), paired with templated sys-
tem responses. While these approaches can be effi-

*The authors contributed equally to this work.

cient, they can also be rigid, sometimes requiring
precisely phrased user inputs and yielding repeti-
tive or unpersonalized answers.

Recent developments in on-device comput-
ing—coupled with improvements in model com-
pression and quantization (Liang et al., 2021; Gho-
lami et al., 2022; Lang et al., 2024)—have paved
the way for smaller yet still capable language
models to run on commodity hardware. These
models offer privacy benefits and allow customiz-
able local inference with reduced latency. How-
ever, deploying a capable model under strict mem-
ory and computational constraints remains chal-
lenging. Large-scale Transformer-based language
models (Vaswani et al., 2017), and especially
LLMs (Touvron et al., 2023; Dubey et al., 2024;
Bai et al., 2023; Yang et al., 2024; Groeneveld et al.,
2024), have demonstrated remarkable proficiency
in tasks ranging from question answering to text
generation (Arora et al., 2024; Yin et al., 2024), yet
typically demand substantial hardware resources,
restricting them to cloud-based services or large
compute clusters.

This paper explores whether a smaller, fine-
tuned LLM can provide two capabilities essential
to a home assistant—accurate recognition of what
users want (i.e., slot and intent detection), and nat-
ural textual responses—while running entirely on
an edge device with limited CPU and memory. By
unifying these tasks into one end-to-end system,
we eliminate the need for separate domain-specific
classification modules and templated responses, fo-
cusing on efficiency, robust language understand-
ing, and strict correctness in JSON action output.

Additionally, we move away from classic SID
datasets and other general spoken language un-
derstanding benchmarks. Instead, we investigate
whether LLMs can be directly applied to digital
assistant software. To this end, we take the open-
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source Home Assistant software1 as our gold stan-
dard for evaluation, targeting real-world device-
service pairs and actionable JSON outputs.

Contributions. Our contributions can be summa-
rized as follows:2 1 We show that a 0.5B LLM
can be fine-tuned to already jointly handle SID
and response generation with high accuracy. 2
By quantizing the model (from 16-bit to 8-bit and
4-bit), we quantify trade-offs between memory us-
age, accuracy, and generative fluency on CPU-only
edge hardware. 3 We evaluate the approach on
synthetic data, human queries, and out-of-domain
tasks, confirming robust generalization.

2 Related Work

Slot and Intent Detection. Traditional ap-
proaches to spoken language understanding (SLU)
often treat SID separately using domain-specific
classification or sequence tagging approaches
(Zhang and Wang, 2016; Wang et al., 2018; Weld
et al., 2022; Qin et al., 2021; Pham et al., 2023).
More recent transformer-based solutions unify both
tasks, leveraging contextual embeddings to im-
prove performance (Castellucci et al., 2019; van der
Goot et al., 2021; Stoica et al., 2021; Arora et al.,
2024) with models like BERT (Devlin et al., 2019).
However, many of these solutions still presume tai-
lored sequence labeling datasets or full-size trans-
former backends. Our work aligns with the shift
to more expressive transformer models for SLU,
but we push inference to a local environment while
also adding dynamic text generation.

Running LLMs on Edge Devices. While train-
ing large-scale LLMs remains computationally ex-
pensive, numerous works explore strategies for
deploying them on edge hardware. Haris et al.
(2024) propose FPGA-based accelerators to re-
duce memory overhead for LLM inference. Zhang
et al. (2024) distribute an LLM across multiple
low-power devices to increase throughput. An em-
pirical footprint study by Dhar et al. (2024) shows
that even 7B-parameter models can strain embed-
ded hardware if not sufficiently compressed. Our
approach uses a much smaller LLM (0.5B–1.5B
parameters) plus weight quantization, showing that
near-commodity devices with 8GB RAM can han-
dle both intent classification and text generation if
the domain is sufficiently specialized.

1https://github.com/home-assistant/core
2We release all our code and models at https://github.

com/Run396/P9.

Partition Train Test Total

Classification 23,372 5,843 29,215
LLM 33,361 2,435 35,796

Table 1: Aggregated Train/Test Splits. For the classi-
fication baseline, 20% of the original training set was
used as test data (after removing multi-intent samples).
The LLM used the full synthetic data; 2,435 remain as
test.

3 Methodology

Our goal is to integrate two core functionalities of
a home assistant into a single model:

• Slot and Intent Detection: The model out-
puts a valid JSON object that maps to a de-
sired service (intent) and device (slot) pair:

{"service": "light.turn_on",
"device": "light.living_room",
"assistant": "Sure, turning on
on the living room light."}

• Natural Language Generation: The model
also produces a textual response confirming
or elaborating on its action, as can be seen
in the example above. The text can then be
propagated to, e.g., a text-to-speech model.

Traditional classifiers only handle device-service
classification and do not produce any text. For user-
facing text, the baseline approach would rely on
templated responses.

3.1 Data and Pre-processing

To the best of our knowledge, there is no ex-
isting human-curated dataset specifically for the
Home Assistant software. Thus, we rely on syn-
thetic data. We use a publicly available synthetic
dataset (acon96, 2024), which consists of 35,840
synthetic examples designed to mimic Home As-
sistant commands. Each instance consists of:

• A User Prompt: e.g., “Turn on the kitchen
light”, “Set the thermostat to 22 degrees”.

• One Valid JSON Action, containing the
service and device fields corresponding to
Home Assistant calls.

• A Natural Language Response: e.g., a para-
phrase or affirmation of the action taken.
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Model Accuracy BERTScore

Baselines
SVC Classifier

Service 76.6 —
Device 45.4 —

DistilBERT
Service 98.8 —
Device 47.9 —

Qwen2.5-0.5B (16-bit) 98.8 0.84
Qwen2.5-0.5B (8-bit) 98.4 0.79
Qwen2.5-0.5B (4-bit) 81.7 0.88

Qwen2.5-1.5B (16-bit) 96.9 0.84
Qwen2.5-1.5B (8-bit) 96.5 0.83
Qwen2.5-1.5B (4-bit) 90.7 0.82

Table 2: Slot/Intent Detection and NLG Results on
Synthetic Test Data. Accuracy is based on exact JSON
match. BERTScore measures semantic similarity of the
generated text vs. gold reference.

A full example can be found in Figure 1 (Ap-
pendix A). We stratify the dataset, maintaining the
inherent imbalance (some device types and services
appear more frequently). There are 38 service la-
bels and 858 device labels. We split into training
and test sets as shown in Table 1. The final training
set for the LLM includes ∼33k examples, and we
set aside 2,435 synthetic samples for evaluation.
Note that for the classification-based baselines, we
split up the train and test set to separately predict
service and device instead of as one prediction,
ending up with double the test data (5,843 samples;
excluding multi-intent examples). The input con-
sists of only the user message and leave the system
message out. A more detailed distribution of the
data can be found in Table 6 (Appendix B).

3.2 Models

Baseline Classifiers. We train a Linear SVC
from Scikit-Learn (Pedregosa et al., 2011) on TF-
IDF features of the user prompt. The classifier out-
puts a concatenated device-service pair, which is
then wrapped in JSON. Additionally, we fine-tune
DistilBERT (Sanh et al., 2019) for classification.
We use the transformers library (Wolf et al., 2020)
for fine-tuning. We train for 1 epoch using a learn-
ing rate of 3×10−4 with the AdamW optimizer,
and a batch size of 64 on a NVIDIA A10 (24GB)
GPUs. Both models have no generative capability,
so user-facing text is templated.

Small Large Language Models. We train using
a chat-style format with user–assistant pairs. We
primarily use the Qwen2.5-0.5B-Instruct model

Model CPU T/Q (s) Load (s)

Baselines
SVC Classifier 4 <1 —
DistilBERT 4 <1 —

Qwen2.5-0.5B (16-bit) 4 6.25 ±3.2
Qwen2.5-1.5B (16-bit) 4 10.81 ±5.6
Qwen2.5-0.5B (8-bit) 4 5.50 ±3.2
Qwen2.5-1.5B (8-bit) 4 10.32 ±5.6

Qwen2.5-0.5B (16-bit) 2 8.49 ±5.6
Qwen2.5-1.5B (16-bit) 2 17.72 ±5.6
Qwen2.5-0.5B (8-bit) 2 7.89 ±5.6
Qwen2.5-1.5B (8-bit) 2 16.11 ±5.6

Table 3: Computation Time. Mean time per query
(T/Q) across 500 samples under different CPU core
counts and quantization levels. Load time is model
initialization.

and the Qwen2.5-1.5B-Instruct (Yang et al., 2024).
We fine-tune both models for one epoch with a
batch size of 4, using the AdamW optimizer at
a learning rate of 2 × 10−5 with a cosine sched-
uler. The maximum sequence length is set to 2,048
tokens. We use the HuggingFace Transformers li-
brary (Wolf et al., 2020) for training on NVIDIA
L4 (24 GB) GPUs.

Quantization. After fine-tuning and having the
original 16-bit model, we produce two quantized
versions of each model: NF8 and NF4 (Dettmers
et al., 2024), using bitsandbytes.3 This allows us to
compare accuracy, generative quality, and inference
speed under varying memory constraints.

3.3 Evaluation

Slot-Intent Detection Accuracy. SID must be
correct with near-exact string matching, as JSON
calls are consumed downstream by the home au-
tomation system. We thus parse the model output
for the service and device fields; if they match
the gold annotation exactly, it is counted as correct.
Any mismatch or invalid JSON results in an error.

For the classification task, instead, we separately
predict service and device using the same classi-
fication model and take the average accuracy.

Text Generation Quality. For the natural lan-
guage responses using the LLMs, we compare
each generated response to the reference using
BERTScore (Zhang et al., 2020).

3See https://github.com/
bitsandbytes-foundation/bitsandbytes. We also
use double quantization.
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Model Accuracy BERTScore

Qwen2.5-0.5B 80.0 0.76
Qwen2.5-1.5B 86.7 0.74

Table 4: Results Out-of-Domain Queries. Accuracy
and BERTScore over 60 OOD samples.

Inference Environment. We simulate a CPU-
only setup on an 8 GB RAM device with up to four
CPU cores. We measure average inference time
on a 500-sample subset, varying both quantization
level and the number of CPU cores.

4 Results

4.1 Slot and Intent Detection

Table 2 shows the SID performance of both the
0.5B and 1.5B LLMs under various quantization
levels, alongside the baseline SVC and DistilBERT.
For the 0.5B model, the 16-bit and 8-bit variants
reach near-perfect accuracy (∼ 99%). The 4-bit
version drops to 81.7%, which is still better than
the the SVC baseline (average 61.0% accuracy) and
DistilBERT baseline (average 73.4% accuracy).

Interestingly, for the larger 1.5B model, the 16-
bit and 8-bit variants achieve 96.9% and 96.5%
accuracy, respectively, while the 4-bit version gets
90.7%. Thus, while the smaller 0.5B model ac-
tually yields higher raw accuracy in-domain, the
1.5B model remains competitive and in some out-
of-domain tests (next section) performs better.

4.2 Natural Language Generation

Although the 4-bit models suffer in SID accuracy,
Table 2 shows that the 0.5B 4-bit variant has the
highest BERTScore (0.88). This indicates that
while it may misclassify device/service fields, the
generative text can still be fluent and semantically
close to the target. Meanwhile, the 8-bit versions
drop in BERTScore for the 0.5B model (0.79) and
remain steady for the 1.5B model (0.83). Qualita-
tive samples show that small changes in quantiza-
tion can shift the style and lexical choices of the
generated text.

4.3 Inference Time and Memory

Table 3 summarizes the inference speed across
model size, quantization, and CPU core settings.
The 8-bit model is only slightly faster than the 16-
bit model (5.5 s vs. 6.25 s on 4 cores for the 0.5B).
Doubling CPU cores from 2 to 4 reduces latency
roughly by half. The 1.5B model takes longer (up

Model Accuracy BERTScore

Qwen2.5-0.5B 84.0 0.68
Qwen2.5-1.5B 86.4 0.66

Table 5: Results Human-Generated Queries. Accu-
racy and BERTScore over 81 real-user queries.

to 10–17 s per query), which may be borderline for
real-time usage in multi-turn dialogues.

4.4 Out-of-Domain Intents
In Table 4, we evaluate 60 OOD queries that men-
tion either novel device types or services not ap-
pearing in the training set. The 0.5B model scores
80.0% accuracy vs. 86.7% for the 1.5B model, with
BERTScores of 0.76 and 0.74 respectively. The re-
sults suggest that the 1.5B model generalizes some-
what better to unfamiliar domains, though both
degrade compared to in-domain performance.

4.5 Human Prompts
Finally, we tested each model on 81 human-written
prompts. Ten participants (ages 23–69) contributed
typical commands they would issue to a home assis-
tant, including incomplete or ambiguous phrasing.
Table 5 shows that the 0.5B model achieves 84.0%
accuracy, whereas the 1.5B model is slightly higher
at 86.4%. BERTScores are around 0.66–0.68. The
gap vs. synthetic data reflects real-user queries with
more variation and noisy data.

5 Discussion

Despite near-perfect performance on the synthetic
test set, Table 4 and 5 reveal a drop to 80–86% accu-
racy in real or out-of-domain queries. This discrep-
ancy likely stems from the difficulty of handling
spontaneous human phrasing, missing location or
device details, and genuinely novel device types.
Still, the results surpass the SVC and DistilBERT
baseline.

Interestingly, while the 4-bit model can generate
fluent natural language responses (often scoring
the highest BERTScore in the 0.5B case), its clas-
sification accuracy suffers. This underscores that
quantizing a model to extreme levels can degrade
structured predictions more than open-ended text
generation.

Regarding speed, the 1.5B model yields consis-
tent accuracy gains on OOD data but also increases
inference time by up to 2–3×. For single-turn com-
mands, 5–6 seconds per query might be accept-
able, but multi-turn dialogue would require faster or
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more efficient strategies. Future work may explore
parameter-efficient fine-tuning, context truncation,
or advanced quantization (e.g., 8-bit + partial 4-bit
layering) to reduce inference times.

6 Conclusion

We present that LLMs can simultaneously perform
SID and natural language response generation for
a home automation domain. Experiments on an
8GB RAM, CPU-only environment show that 8-bit
quantization largely preserves in-domain accuracy
(up to 99%) and strong text fluency, while 4-bit
introduces significant classification errors despite
retaining good generative capability. We further
demonstrate promising generalization to human-
written prompts and out-of-domain tasks, with ac-
curacy around 80–86%. However, per-query in-
ference times of 5–6 seconds indicate that LLM-
based assistants, as implemented here, are not yet
ideal for fast multi-turn dialogues on edge devices.
Future work can refine these models for faster,
more memory-efficient inference, enabling privacy-
preserving yet flexible home automation assistants.

Limitations

Our use of synthetic data may limit the diversity
of user prompts; while we partially mitigated this
with human-written queries, data coverage remains
a challenge. The model also relies on structurally
valid JSON output. Real-world usage may need
fallback logic to handle malformed or incomplete
responses. Moreover, we focus on a single domain
(home automation); scaling to broader or open-
ended tasks likely requires larger models and may
degrade performance under CPU-only constraints.

Ethical Considerations

We do not foresee any major ethical issues with
this work. The primary domain is home automa-
tion, and the dataset is synthetic or user-provided
under informed consent. Nonetheless, deploying
generative models in user-facing applications re-
quires caution regarding hallucinated or incorrect
responses, as well as user data privacy.
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A Data Examples

We show a data example in Figure 1.
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[
{
"from": "system",
"value": "You are 'Al', a helpful AI Assistant that controls the devices in
a house. Complete the following task as instructed or answer the following
question with the information provided only.\nServices: cover.close_cover(),
cover.open_cover(), cover.stop_cover(), cover.toggle(), lock.lock(),
lock.unlock(), media_player.media_next_track(), media_player.media_pause(),
media_player.media_play(), media_player.media_play_pause(),
media_player.media_previous_track(), media_player.media_stop(),
media_player.toggle(), media_player.turn_off(), media_player.turn_on(),
media_player.volume_down(), media_player.volume_mute(),
media_player.volume_up(), switch.toggle(), switch.turn_off(),
switch.turn_on(), timer.cancel(), timer.pause(), timer.start(duration),
vacuum.pause(), vacuum.return_to_base(), vacuum.start(), vacuum.stop()
Devices: media_player.harman_kardon_aura 'Harman Kardon Glass Speaker'
= standby; vol=0.88\ntimer.kitchen_oven 'Kitchen oven timer' =
active\nlock.office_cabinet 'Office cabinet lock' = unlocked
cover.master_bedroom 'Master Bedroom' = closed
vacuum.hallway_neato 'Hallway path cleaner' = docked
switch.basement_lights 'Basement Lights Switch' = off"

},
{
"from": "user",
"value": "reverse the master bedroom blinds"

},
{
"from": "assistant",
"value": "switching Master Bedroom state as requested\n
```homeassistant

{
\"service\": \"cover.toggle\",
\"target_device\": \"cover.master_bedroom\"

}
```"

}
]

Figure 1: Data Example. In the figure, we show a data example from the acon96 (2024) dataset.
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B Data Distribution Detailed

We show a more detailed distribution of the dataset
in Table 6.
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Class Total Dataset Test

climate.set_fan_mode 1080 0
climate.set_humidity 1080 0
climate.set_hvac_mode 1080 0
climate.set_temperature 1000 0
cover.close 385 35
cover.open 395 40
cover.stop 320 25
cover.toggle 365 25
fan.decrease_speed 360 60
fan.increase_speed 300 40
fan.toggle 390 85
fan.turn_off 390 70
fan.turn_on 405 60
light.toggle 450 90
light.turn_off 2535 600
light.turn_on 11940 150
lock.lock 200 125
lock.unlock 185 125
media_player.media_next_track 55 25
media_player.media_pause 55 25
media_player.media_play 70 25
media_player.media_previous_track 55 25
media_player.media_stop 55 25
media_player.turn_off 25 25
media_player.turn_on 40 40
media_player.volume_down 65 35
media_player.volume_mute 60 30
media_player.volume_up 85 40
switch.toggle 250 50
switch.turn_off 500 175
switch.turn_on 540 165
timer.cancel 600 0
timer.start 600 0
todo.add_item 1560 0
vacuum.pause 15 0
vacuum.return_to_base 150 0
vacuum.start 370 220
vacuum.stop 15 0

Table 6: Detailed Class Distribution Service. Total Dataset vs. LLM Test Subset
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Abstract

Detecting cynical comments in online commu-
nication poses a significant challenge in human-
computer interaction, especially given the mas-
sive proliferation of discussions on platforms
like YouTube. These comments often include
offensive or disruptive patterns, such as sar-
casm, negative feelings, specific reasons, and
an attitude of being right. To address this prob-
lem, we present a web platform for the Spanish
language that has been developed and lever-
ages natural language processing and machine
learning techniques. The platform detects com-
ments and provides valuable information to
users by focusing on analyzing comments. The
core models are based on pre-trained architec-
tures, including BETO, SpanBERTa, Multilin-
gual BERT, RoBERTuito, and BERT, enabling
robust detection of cynical comments. Our plat-
form was trained and tested with Spanish com-
ments from car analysis channels on YouTube.
The results show that models achieve perfor-
mance above 0.8 F1 for all types of cynical
comments in the text classification task but
achieve lower performance (around 0.6-0.7 F1)
for the more arduous token classification task.

1 Introduction

The exponential growth of social networks has cre-
ated an environment where cynical comments, such
as sarcasm, negative sentiments, and dogmatic at-
titudes, can significantly impact discussions and
public perception. In this work, we have focused
on negative comments that could generate dysfunc-
tional behaviors among social media users. Cynical
behavior is a negative attitude with a broad or spe-
cific focus and comprises cognitive, affective, and
behavioral components. Cynicism refers to cus-
tomers’ disbelief of companies or the market due to

customers’ perception of dishonesty and integrity
on the seller’s part (Indibara et al., 2023). Also,
cynicism can generate feelings of betrayal and de-
ception, leading to anger and the desire to stop pur-
chasing products or services from the source that
generates their anger (Chylinski and Chu, 2010).
In this work, we have focused our efforts on the fol-
lowing elements: sarcasm, negative feelings, spe-
cific reasons, and attitude toward being right.

• Sarcasm includes mocking, biting, and cruel
irony that offends or mistreats someone. De-
tecting sarcasm in online conversations is
complex due to its subjective and contextual
nature. What may be evident to a human be-
ing may be challenging to a machine. Failure
to identify sarcasm can lead to misunderstand-
ings, disagreements, and loss in quality of the
online interaction (Gibbs, 2000).

• Negative Feelings are where users reflect neg-
atively on a product, usually in a subjective
way, influenced by their personal experiences.

• Specific reasons are when users identify par-
ticular aspects or components of a product, as
long as the comment contains negative senti-
ment, sarcasm, or attitude of being right—for
instance, seating comfort linked to a comment
with sarcastic content.

• The Attitude of being right is where users
express their rejection of the product and, in
contrast, assert their correctness.

Such expressions come in many forms, written by
users who have directly experienced the products
they are commenting on and by users who have
yet to consume or use the product being discussed.
The automotive industry is relevant to emerging
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economies (Stone and Cabrera, 2024), consumer
decision-making, and the strong influence of online
opinions on brand perceptions, which impacts the
sales of automotive brands. By focusing on this
specific domain, we seek to identify linguistic and
expressive patterns characteristic of cynicism in
digital communication. Furthermore, this analysis
has broader implications, as the methods developed
can be applied to other datasets involving product
reviews, services, or online content, allowing for
a better understanding of the impact of negative
emotions on public opinion.

The contributions of our research are as follows:

• We collected and annotated 3705 comments in
Spanish from the YouTube platform, achiev-
ing kappa of 0.841, 0.834, 0.859, and 0.752
for negative feelings, specific reasons, attitude
of being right and sarcasm, respectively.

• We explore detecting cynical comments both
as a token classification task and as a text
classification task.

• We compare various pre-trained models to be
fine-tuned for this task, including SpanBERTa,
BETO, Multilingual BERT, and RoBERTuito.

• We implemented a web platform that auto-
matically analyzes video comments using the
trained models, and allows users to view each
comment’s predictions from each of the four
models. Our models are hosted on the Hug-
ging Face Platform.

Figure 1 shows examples of the elements analyzed
in our platform. Each comment is shown in the
language of study, Spanish, with its English trans-
lation.

2 Related work

Cynical comments are related to negative aspect
and are specific elements that characterize the dark
side of consumers of products or services. The
closest related work are tasks on irony and sarcasm.

Although both irony and cynicism are close be-
cause of the negativity of the content, cynicism
can be understood as an extreme form of irony, in
which criticism is not only insinuated but used to
challenge morality and social conventions openly
(Räwel, 2007). For irony detection, AlMazrua et al.
(2022) created an annota d corpus of tweets with
8089 positive texts in the Arabic language. The
Fleiss’s Kappa agreement value was 0.54, a mod-
erate level. This work uses machine learning and

deep learning models and reports a 0.68 accuracy
with the SVM algorithm. One of the challenges
in this work was detecting implicit phrases as part
of the irony. Maladry et al. (2022) annotate a cor-
pus of 5566 tweets for the Dutch language, with
2783 labeled as irony. This work reported for a bi-
nary classification task a 78.98% for implicit irony
and 78.88% for explicit and implicit sentiment.
The SVM model performed better than the BERT
model. Irony has also been approached with CNNs
and Embeddings (FastText, Word2vec) (Ghanem
et al., 2020). This study analyzed monolingual and
multilingual architectures in three languages, with
the monolingual configuration performing better. A
second approach, RCNN-RoBERTa, consisting of a
pre-trained RoBERTa transformer followed by bidi-
rectional long-term memory (BiLSTM), achieved
0.80 F1 on the SemEval-2018 dataset and 0.78
F1 on the Reddit Politics dataset (Potamias et al.,
2020). In a binary classification task performed
on Spanish variants for Irony detection (Ortega-
Bueno et al., 2019), different representation ap-
proaches, such as word embeddings (Word2Vec,
FastText) and N-grams, were presented. Our re-
search used contextual transformer representations
(BETO, SpanBERTa, RoBERTuito).

Sarcasm detection has received recent NLP re-
search, particularly within sentiment analysis, as
sarcasm often leads to misinterpretations of the
intended sentiment. Early models relied on tradi-
tional machine learning techniques, such as Sup-
port Vector Machines (SVM), which utilized hand-
crafted features like word frequency and sentiment
polarity to detect sarcasm (Băroiu and Trăus, an-
Matu, 2022). However, these methods needed
help to capture sarcasm’s subtleties and context-
dependent nature. Recent advancements have led
to the adoption of deep learning models, includ-
ing Long-Short-Term Memory (LSTM) networks
and Bidirectional Encoder Representations from
Transformers (BERT), which have improved per-
formance. These models can better understand the
context in which sarcasm occurs, such as hyper-
bole, tone, or contrast between expectations and
reality(Zhou, 2023). For instance, models like Cas-
cade use context-driven approaches to capture sar-
casm more accurately by analyzing dialogues on
platforms like Reddit (Hazarika et al., 2018).

Further developments have seen the rise of multi-
modal approaches that incorporate both text and au-
dio and visual data, which enhance detection accu-
racy by providing additional cues like facial expres-
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Figure 1: Examples of cynical comments: purple corresponds to Specific Reason expression; green refers to
Negative Feeling; blue corresponds to Attitude to being right cynical comments; orange corresponds to Sarcasm.

sions or intonation. Ensemble learning techniques,
combining multiple models, have also improved
performance in sarcasm detection by leveraging the
strengths of different algorithms (Lemmens et al.,
2020). Despite these advances, challenges remain,
especially when identifying sarcasm in short texts
(e.g., tweets) or highly nuanced expressions (Son
et al., 2019). Future research will likely focus on
improving model robustness in such environments
and integrating more sophisticated contextual un-
derstanding (Khodak et al., 2018).

The use of AI for detecting cynicism also inter-
sects with ethical concerns. Algorithms designed
to filter harmful content sometimes over-censor,
inadvertently suppressing freedom of speech by re-
moving comments that are not genuinely harmful
but might be misinterpreted by the model (Dietrich,
2024); this delicate balance between moderating
harmful content and preserving free expression is
a continuing challenge for AI developers. Recent
work explores sentiment prediction in online com-
munities, where AI models attempt to predict the
likelihood of cynical comments based on previous
patterns of behaviors (Kumar and Bhushan, 2023).
While promising, these predictive models are still
in the early stages and require more refinement to
effectively capture the nuances of negative emo-
tional expression. Artificial intelligence has come
a long way in detecting explicitly harmful content
in social networks, however, it is still difficult to

accurately identify cynical negative sentiments.

3 Dataset

Our corpus was constructed in several stages. First,
Spanish-language YouTube channels were selected,
primarily from Latin America and focusing on new
car reviews, and their video comments were down-
loaded. These comments were then filtered to in-
clude only those with at least ten words and five
likes, ensuring sufficient text for cynicism analysis
and focusing on relevant discussion. This initial
filtering resulted in 3705 comments. Two human
annotators independently tagged the filtered com-
ments, freely identifying text segments containing
any elements analyzed in this study. To prepare
them for this task, we developed a comprehensive
visual guide, including: an introduction to con-
sumer cynicism and cynical comments: Examples
of different types of cynical comments; Visual ex-
amples demonstrating the annotation process, using
color coding to mark the text. The annotators, a
computer science master’s student, and a computer
science professor, also received a description of
the research context and an explanatory video. To
ensure consistent annotation, a calibration stage
was conducted using 50 comments from the initial
pool (which were subsequently excluded from the
final corpus). Inter-annotator agreement was mea-
sured by checking if one annotator’s marked text
segment was contained within the other’s. A 90%
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Cynical expressions Count Kappa
Negative Feelings 644 0.834
Specific Reasons 381 0.859
Attitude of being right 605 0.752
Suspicions 155 0.550
Sarcasm 256 0.841

Table 1: Dataset of Cynical Comments.

overlap was considered a match. Comments with
less than 90% overlap were deemed disagreements
and were excluded from the final labeled corpus,
which consisted of 2041 comments. Finally, com-
ments tagged as "Suspicions" were also excluded
from the experiments due to their scarcity. Table 1
details the results of the collection.

4 Methodology

We consider two tasks for detecting cynical com-
ments. For token classification, we use the standard
inside-out-inside format for token-by-token classi-
fication. For text classification, we assigned a label
to each YouTube comment as positive for a class
if any part of the comment was annotated for that
class and as negative if no part of the comment was
annotated for that class.

We explored several pre-trained models as po-
tential candidates for fine-tuning and subsequent
evaluation on our dataset:

BETO1 (Cañete et al., 2020) was trained follow-
ing the BERT paradigm (Devlin et al., 2019),
but only on Spanish documents. It is similar
in size to bert-based-multilingual-cased.

SpanBERTa2 was trained following the
RoBERTa paradigm (Liu et al., 2019),
but trained on 18 GB of OSCAR’s Spanish
corpus. It is similar in size to BERT-Base.

mBERT3 was trained on the concatenation of
monolingual Wikipedia corpora from 104 lan-
guages. Even though mBERT was trained
on separate monolingual corpora without a
specific multilingual training objective, it still
exhibits impressive performance on a variety
of multilingual tasks (Pires et al., 2019).

We further investigate a model that was specifi-
cally trained for hate speech detection. This model,
which is designed to identify expressions of neg-
ativity and hostility, could potentially be directly

1https://github.com/dccuchile/beto
2https://github.com/chriskhanhtran/

spanish-bert
3https://github.com/google-research/bert/

applied to our cynicism corpus without requiring
additional fine-tuning:

RoBERTuito4 is based on the RoBERTa model
architecture and the BETO tokenizer (Pérez
et al., 2022). It was trained on 622M tweets in
Spanish from 432k users for hate speech de-
tection, sentiment and emotion analysis, and
irony detection.

For token classification evaluation, a 10-fold
cross-validation method was performed. For each
cynical comment, the following BERT models
were run: SpanBERTa, mBERT, and BETO. The
parameters with the best performance were: 160
epochs, 3 × 10-5 of the learning rate, and a batch
size of 16. The number of epochs during the fine-
tuning was 20, 80, 160, and 200. The batch was
computed with 16 and 32 sizes.

For text classification evaluation, training (75%),
validation (12.5%), and test (12.5%) collections
were constructed. For each cynical comment, the
following models were run: mBERT (fine-tuned on
our annotated data) and pysentimiento/robertuito
(not fine-tuned on our data). We fine-tuned only
mBERT because, as will be seen in the results
section, there were minimal differences between
mBERT and the other pre-trained models. The
mBERT parameters with the best performance
were: 10 epochs and a batch size of 16. How-
ever, the number of epochs during the fine-tuning
was 10 and 20. EarlyStopping was also included.

After the experimentation, the best-performing
models were deployed to the HuggingFace model
hub, and we proceeded with the implementation
of a web platform. The objective was to create
an online platform where the user only places the
link to the YouTube video, and the analysis is per-
formed automatically. The framework is illustrated
in Figure 2. The extraction and data processing
models are executed every time a new YouTube
link needs to be analyzed. The YouTube comments
are extracted with Python using the “youtubecom-
mentdownloader” API. The comments are then sub-
jected to a cleaning, tokenization, and preprocess-
ing process using Python. The TensorFlow models
are used in the web platform through the Hugging-
Face API, which allows models to make predictions
using the resources of that platform.

5 Results

Table 2 shows detailed results of the token classifi-
cation task. The first token (B) of specific reasons
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Figure 2: Framework for the implementation of the platform, “CODISCO”.

B I O

Cynicism Model Precision Recall F1 Precision Recall F1 Precision Recall F1

NF SpanBERTa 0.689 0.715 0.705 0.656 0.657 0.660 0.741 0.740 0.737
NF BETO 0.670 0.688 0.674 0.674 0.644 0.665 0.750 0.766 0.745
NF mBERT 0.666 0.683 0.673 0.668 0.636 0.646 0.736 0.765 0.747

SR SpanBERTa 0.505 0.590 0.544 0.706 0.806 0.745 0.576 0.468 0.488
SR BETO 0.507 0.642 0.565 0.742 0.841 0.778 0.612 0.470 0.500
SR mBERT 0.510 0.575 0.538 0.711 0.816 0.749 0.610 0.480 0.502

AR SpanBERTa 0.593 0.720 0.666 0.745 0.868 0.800 0.620 0.421 0.497
AR BETO 0.593 0.720 0.666 0.745 0.868 0.800 0.620 0.422 0.497
AR mBERT 0.602 0.717 0.682 0.770 0.862 0.775 0.637 0.477 0.547

SC SpanBERTa 0.558 0.679 0.612 0.578 0.706 0.635 0.581 0.382 0.461
SC BETO 0.558 0.685 0.615 0.580 0.745 0.665 0.620 0.383 0.473
SC mBERT 0.567 0.676 0.616 0.572 0.770 0.656 0.610 0.438 0.509

Table 2: Detailed results on treating cynicism detection as a token classification task, for negative feelings (NF),
specific reasons (SR), attitude of being right (AR), and sarcasm (SC).

were the most difficult for models to detect, with
models achieving around 0.538 F1, while the inner
tokens (I) of attitude of being right were the easi-
est, with models achieving around 0.800 F1. The
different transformer models performed roughly
similarly, with all F1s between comparable models
within 0.04 F1 of each other. We can see that the
high F1 values are distributed between the BETO
and the SpanBERTa models. Sarcasm and specific
reasons obtained the lowest F1 values. One possi-
bility for this behavior was the corpus size. We can
observe that tokens with label (I) for the SR and
AR elements are better results than those with label
(B).

Tables 3 and 4 show overall results for the to-
ken classification task (using a macro-average over
the B/I/O labels) and the text classification task,
respectively. As with the detailed token classifica-

Cynicism Model Precision Recall F1

Token classification task

NF SpanBERTa 0.697 0.703 0.696
NF BETO 0.694 0.700 0.693
NF mBERT 0.691 0.695 0.690

SR SpanBERTa 0.598 0.622 0.592
SR BETO 0.621 0.650 0.614
SR mBERT 0.610 0.625 0.597

AR SpanBERTa 0.625 0.668 0.648
AR BETO 0.653 0.668 0.649
AR mBERT 0.668 0.685 0.670

SC SpanBERTa 0.572 0.589 0.569
SC BETO 0.586 0.604 0.584
SC mBERT 0.583 0.628 0.594

Table 3: Overall results of cynical comment detection
as a token classification task, for negative feelings (NF),
specific reasons (SR), attitude of being right (AR), and
Sarcasm (SC).
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Cyn. Model Precision Recall F1

Text classification task

NF mBERT (fine-tuned) 0.902 0.948 0.925
NF RoBERTuito (not fine-tuned) 0.620 0.731 0.671

SR mBERT (fine-tuned) 0.912 0.981 0.945
SR RoBERTuito (not fine-tuned) 0.500 0.128 0.204

AR mBERT (fine-tuned) 0.728 0.981 0.849
AR RoBERTuito (not fine-tuned) 0.461 0.089 0.150

SC mBERT (fine-tuned) 0.678 0.928 0.783
SC RoBERTuito (not fine-tuned) 0.416 0.075 0.127

Table 4: Overall results for detecting cynicism, as a text
classification task, for negative feelings (NF), specific
reasons (SR), and attitude of being right (AR).

tion results, we see that there are only small dif-
ferences between the different pre-trained models
when fine-tuned for token classification, with Span-
BERTa being slightly higher on negative feelings,
BETO being slightly higher on specific reasons,
and mBERT being slightly higher on attitude of
being right. The hardest cynicism type to detect in
a token classification task is specific reasons, while
the easiest is negative feelings.

Table 4 shows that cynicism detection is easier
as text classification than as token classification,
with the mBERT text classifier achieving > 0.8 F1
for all cynicism types. Applying RoBERTuito with-
out fine-tuning to this text classification task results
in lower performance than our fine-tuned models,
as expected. However, the fact that RoBERTuito is
able to achieve 0.671 F1 on negative feeling detec-
tion without any fine-tuning on our corpus indicates
that there is significant overlap between hate speech
detection and negative feeling detection.

6 CODISCO Platform Interface

We evaluated several BERT-based architectures,
of which three have been trained on Spanish cor-
pora (SpanBERTa, BETO and RoBERTuito) and
one was trained on multiple languages (mBERT).
Our prior research suggested that models tuned for
the Spanish language would obtain the best results
(Gonzalez-Lopez and Bethard, 2023). However,
on the current dataset, mBERT, SpanBERTa, and
BETO all performed similarly. For implementing
the platform we thus arbitrarily selected BETO.

We have named our platform CODISCO5, after
its acronym in Spanish (Spanish: Comportamientos
Disfuncionales de los Consumidores). The APIs

5https://www.youtube.com/watch?v=3m9I81EnLrg

generated by the HuggingFace platform are the
following:

• Negative Feelings HuggingFace Model

• Specific Reasons HuggingFace Model

• Attitude of being right HuggingFace Model

• Sarcasm HuggingFace Model

Figure 3 shows graphs of the results of the anal-
ysis of the comments, together with a word cloud.
Figure 4 shows the percentages of each comment
in detail.

As previously defined in section 4, we wanted to
make the interface as easy to use as possible. So,
we decided to develop a single screen where the
input and output processing are performed when
the user enters the internet address of a YouTube
video.

6.1 Platform Output Graphics

6.1.1 Results

This section shows a global summary of the plat-
form’s analysis results: the video’s title, the total
number of comments extracted, and a detailed sum-
mary of the analysis results, including the number
of comments classified in each evaluated charac-
teristic (sarcasm, negative sentiments, specific rea-
sons, and attitude of being right). This overview
provides a clear perspective of the scope and nature
of the comments detected in the video.

6.1.2 Bar Graph

The bar chart visualizes the number of comments
classified as sarcastic versus those without sarcasm.
This graphical representation allows us to quickly
identify the prevalence of sarcasm in the analyzed
data set. It is a valuable tool for understanding
the extent of this dysfunctional behavior in the ex-
tracted comments.

6.1.3 Word Cloud

The word cloud below highlights the most frequent
words found in comments classified as cynical.
This visualization helps to identify linguistic pat-
terns and recurring themes in comments containing
cynicism, providing additional insights into the na-
ture of the content analyzed. The words with the
largest size in the cloud appear most frequently in
this type of comment.
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Figure 3: Output of the analysis with General Results, Bar Graph, and Word Cloud.

Figure 4: Detailed Output of each Comment with its Value obtained in each Category.
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6.2 Usability Survey for CODISCO

We performed a survey of 40 users of the
CODISCO platform. Most users found the plat-
form responsive and effective. The scale used for
the questions was 1 to 10, with 10 being a positive
result. The usability survey questions were:

1. How easy was it for you to understand how to
use this interface on your first attempt?

2. Did you find the interface visually appealing?

3. How satisfied are you with the response and
speed of the interface?

4. How long did it take you to complete your
task using this interface?

5. How intuitive did you find the functions avail-
able in the interface?

Figure 5 shows the results. The colors in the graph
correspond to the five questions asked to the users,
the x-axis corresponds to the users who answered
the survey, and the y-axis shows the scale used.

Some users reported problems when using the
platform on mobile devices, citing difficulties with
the devices, mentioning difficulties with the side
menu “categories”, and visualization problems.
This aspect is critical as it affects the user expe-
rience and usability of the platform in mobile con-
texts. The speed of the interface needs improve-
ment since it obtained low values with respect to
the rest of the questions. This could have been
caused by the speed of the university internet since
those who used the platform and answered the sur-
vey were students from school computers. The
results allowed us to make improvements to the
platform.

7 Discussion

The results obtained in the experiment show that
it is possible to detect the four types of cynical
comments in Spanish with reasonable reliability.
However, we found some points for reflection. Re-
garding the two tasks analyzed, we found that the
performance was higher for the easier text classifi-
cation task and lower for the more difficult token
classification task. However, token classification is
closer to the goal of this work, which is to detect
exactly which part of the comment represents the
cynical comment. It may be helpful to investigate
two-stage approaches, in which text classification
is first used to identify the general region of cynical

comments, and token classification is then used to
delineate specific sentences.

For comments labeled as negative feelings, the
beginnings of utterances (B) were the easiest to
identify, probably because they often begin with
terms used to describe dissatisfaction. For com-
ments labeled as specific reasons and attitudes of
being right, the middle of utterances (I) were the
easiest to identify, probably because these types of
cynicism include car-specific terms that might be
easier to identify. Future work could investigate
whether joint learning of these models could help
better establish the boundaries of the different types
of cynical comments.

Experiments with RoBERTuito highlight that
simply using a trained model for hate speech detec-
tion will not provide a solution for detecting cynical
comments, even in the related category of negative
sentiment: an adjusted RoBERTuito achieves only
0.671 F1, whereas an adjusted mBERT achieves
0.925 F1. Nevertheless, these results indicate some
overlap between the two tasks, and the detection
of cynical comments could benefit from the hate
speech detection models, for example, by using the
predictions of the hate speech model as features in
the cynical comment detection model.

8 Conclusions

The analysis of cynical comments is crucial, as the
sentiments and opinions of vocal customers can sig-
nificantly influence decisions. Even cynical com-
ments may induce undesirable behavior in other
people. We annotated a corpus with four types of
cynical comments: negative feelings, specific rea-
sons, an attitude of being right, and sarcasm. We
trained models on this corpus for text and token
classification tasks.

Our results demonstrate the feasibility of train-
ing models to detect cynical comments accurately
in this domain. We envision our work as a founda-
tional step toward technologies that can quantify
the level of cynicism in YouTube videos. Such anal-
yses could empower companies to position their
products strategically based on consumer percep-
tions. Our implementation with pre-trained models
in Spanish represents a substantial advancement in
comment moderation on platforms like YouTube.
However, areas for improvement include expand-
ing the corpus to encompass more dialectal varia-
tions and enhancing the model’s robustness in am-
biguous contexts. We plan to fine-tune the model
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Figure 5: Usability Survey for CODISCO.

with a complementary corpus for future work. The
platform has the potential to be adapted for other
languages and applications beyond comment mod-
eration, such as sentiment analysis or fake news
detection.

Limitations

First, the exclusive focus on the Spanish language
restricts the direct generalization of the results to
other languages. While Spanish is a global lan-
guage with many speakers, it is essential to rec-
ognize that the linguistic resources and language
models available for Spanish do not yet reach the
same scale and sophistication as those available
for English. This disparity in resource availabil-
ity could influence the performance and accuracy
of the models evaluated in this study. In addition,
specific linguistic features distinctive to Spanish,
such as its richer morphology and flexible syntax,
might require specific adaptations and adjustments
to the language models to achieve optimal perfor-
mance. Second, this study is limited to models
with modest computational requirements and pre-
cludes evaluating the potential performance of the
larger and more advanced language models cur-
rently available. The choice of models with modest
computational requirements is justified by the need
to ensure the reproducibility and accessibility of
the research, allowing other researchers to repli-
cate and extend the results obtained. The scientific

community should interpret the results presented
in this study in the context of the models used. It
should not be considered an exhaustive evaluation
of the potential of natural language processing in
Spanish.
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Abstract

Text generation under control, or producing
linguistically coherent and contextually rele-
vant text, has seen tremendous progress thanks
to methods based on PPLM, FUDGE, and
diffusion-based models. Yet current state-of-
the-art models tend to balance control fidelity
with fluency. In addition, classifier-guided
strategies (e.g., PPLM) can be predicted in gra-
dient updates providing less coherent text. In
contrast, autoregressive-based approaches (e.g.,
FUDGE) rely on inflexible generation patterns
that limit creativity. Recent diffusion meth-
ods demonstrate superior performance in iter-
ation and diversity, but indirect methods often
fail to introduce sufficient ways to inject task-
associated knowledge, leading to the need for
many different complex classifier modules dur-
ing both training and inference. To address
this, we introduce a prompt-guided diffusion
framework that seamlessly incorporates struc-
tured prompts into the diffusion steps, provid-
ing precise and flexible control of the generated
text. Each prompt combines a target attribute
(for example, a sentiment tag), an example cor-
responding to that label (for example, a posi-
tive review), and a slot for the generated sen-
tence. By encoding such prompts using large
pre-trained models (such as BART) and inte-
grating these prompts through cross-attention
into the diffusion dynamics, our model achieves
new state-of-the-art performance on a variety
of tasks ranging from IMDB for sentiment, AG-
News for topic, and E2E for structured-output
to text.

1 Introduction

Text generation: a computational paradigm for pro-
ducing meaningful written content with coherence,
often fueled by NLP models. Its uses include chat-
bots, content generation systems, machine transla-
tion, and other areas. Controllability in text gen-
eration concerns the ability to control the outputs
for desired characteristics — including tone, style,

length, or topic based on predefined criteria or user
preference. This is usually done through all sorts
of means, from prompt engineering to fine-tuning
or control tokens. Unconstrained generation, on
the other hand, refers to cases where the generated
content deviates from the requirements, resulting
in out-of-topic content. Such deviations (known
informally as use performance error) are common
due to the inherently random nature of sampling or
subtle modeling of user intention, additional work
is often needed in production to find a satisfactory
balance between controllability and creativity in
the model.

NLP tasks related to text generation generally
relate to a generation task where models attempt to
create a set of coherent, meaningful strings from
some input, based on generative architectures. Re-
searchers have developed various types of genera-
tive strategies. Generative Adversarial Networks
(GANs) compete against a discriminator to gener-
ate text samples. EBMs work by defining an en-
ergy function across the text data, with the model
trained to produce lower energy for valid samples
and higher energy for invalid samples. This allows
for a flexible way to enforce constraints during
the generation process. Flow-based models pro-
duce exact likelihoods by invertible mapping from
simple probability distributions to complex ones,
giving much more control. Diffusion models pro-
gressively synthesize outputs, denoising random
noise through multiple probabilistic steps, yielding
stable and high-quality results. These paradigms
together illustrate the spectrum of mechanisms for
text generation by arranging different trade-offs be-
tween controllability, diversity, and fidelity. This
paper focuses on the application of diffusion mod-
els to the task of text generation.

1.1 Diffusion Model
The diffusion model consists of a Markov chain of
unobservable quantities. It begins with an initial
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data point x0 and incrementally corrupts it with
Gaussian noise until xT , according to the posterior
q(x0:T | x0). The variables x0, . . . , xT have the
same dimensionality as x0. The main objective
is to model the distribution pθ(xt−1 | xt) for the
reverse (denoising) process Ho et al. (2020).

Forward and reverse processes are two key com-
ponents of a diffusion model. The forward process
gradually corrupts data with random noise until it is
practically indistinguishable from pure noise. Then
the reverse phase tries to reconstruct the original
data, learning to deduce how to remove the noise
step by step. In the forward process, the transitions
in the Markov chain are described by a conditional
Gaussian. The generative distribution can be ex-
pressed as 1.

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) =

T∏

t=1

N
(
xt;
√

1− βtxt−1, βtI
) (1)

where every β (fixed or learnable) controls the vari-
ance. As the time T becomes larger, the second as-
sumption states that xT approaches Gaussian noise.

The model learns the reverse path during train-
ing to sample data from random noise p(xT ) =
N (xT ; 0, I) and thereby learns pθ(x0:T ) as in equa-
tion 2.

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt) =

p(xT )
T∏

t=1

N
(
xt−1;µθ(xt, t),

∑

θ

(xt, t)

) (2)

In this Markov chain, we model the dependence
on time of the reverse distribution by 3.

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t),

∑
θ
(xt, t)

)

(3)
The training aims to maximize the likelihood,

which is mathematically equivalent to minimizing
the negative log-likelihood by equation 4.

E[−logpθ(x0)] ≤ Eq[−log
pθ(x0:T )

q(x1:T |x0)
] = Lvlb

(4)
The KL divergence for Gaussians means that the

losses at every step (Equations 5 to 8, above) can
be expressed in KL terms. Therefore, the total loss
is the sum across the chain:

Lvlb =

T∑

k=0

Lk (5)

L0 = − log pθ(x0|x1) (6)

Lt−1 = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (7)

LT = DKL(q(xT |x0)||p(xT )) (8)

2 Related Work

Several studies focused on the adaptation of diffu-
sion models originally developed for image gener-
ation to the discrete textual domain (Li et al., 2022;
Austin et al., 2021). They provide novel methods
to approach the problem of continuous diffusion
processes versus discrete tokens. Some studies
directly construct diffusion as defined in the dis-
crete space and others map the discrete tokens into
a continuous representation where standard diffu-
sion pipelines can work (Austin et al., 2021; Chen
et al., 2022). Savinov et al. (2021) shows how
iterative denoising autoencoders can be placed in a
diffusion context and how repeated denoising steps
approximate the generative capacity of diffusion.
Such approaches can serve as a complement to the
widespread autoregressive models held typical for
text generation, enabling improvements in control-
lability, diversity, and sophisticated dependency
modeling.

These lines of research also investigate how to
use or outgrow diffusion-based text generation.
Diffusion-LM Li et al. (2022), which focuses on
controlling attributes of generated text, e.g., sen-
timent domain. Gong et al. (2022) leverages dif-
fusion models for seq2seq tasks like translation,
indicating their generality. In summary, this line of
work broadens the applicability of diffusion models
beyond the domain of continuous data, paving new
pathways into how discrete textual outputs can be
generated and conditioned.

Diffusion-LM Li et al. (2022) proposes a new
paradigm for text generation by utilizing the it-
erative refinement framework of diffusion mod-
els, which has been traditionally used in the set-
ting of continuous data, directly on text tokens.
Rather than single-pass autoregressive generations,
Diffusion-LM improves the text in multiple passes,
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potentially leading to greater flexibility and vari-
ability in its outputs. This approach trains a token-
level denoiser, allowing the approach to modify
specific attributes (sentiment, length, etc.) at infer-
ence without needing additional retraining.

D3PM Austin et al. (2021) presents a method
for diffusion on structured discrete data (e.g. text,
categorical data). In this technique, a forward cor-
ruption process preserves structural relations, and
a reverse denoising process restores the corrupted
data in iterations by learning a structured proba-
bility form. This approach aims to go beyond the
limitations of traditional sequential text generation
formats, enabling novel forms of discrete data mod-
eling.

SUNDAE Savinov et al. (2021) proposed a new
model of text generation combining the structured
representation power of denoising autoencoders
with a particular set of step-unrolling techniques in
modeling the sequential dependency of text. Next,
while standard DAEs generate text in a single step,
this framework replays the generation process over
an extended range, advising the denoising process
on how to convert an embedding with noise into
intelligible text. Step Unrolling: This allows the
model to learn to incorporate more information
about longer context dependencies while enforcing
a schism between the input and output of the model,
resulting in better-generated text.

There are, however, other utilitarian efforts that
use encoder-decoder architectures, with latent rep-
resentations, with a strong application-oriented mo-
tivation. Liu et al. (2024) establishes a generalized
view of diffusion, which can be applied to data
across continuous or discrete domains since both
the encoder and decoder may be tailored. Tan et al.
(2023) presents an encoder-decoder breakup for
text diffusion, specifically comprising a spiral in-
terplay structure that expands generational high
quality, whilst letting knowledge waft from their
encoder to its decoder (throughout the diffusion
levels).

These papers cover various techniques for fur-
ther improving text generation using diffusion mod-
els by generally combining PLMs, latent spaces,
and novel training or sampling techniques. Several
of them focus on the synergy between diffusion
and PLM. The proposed approach, Ou and Jian
(2024) suggests a "linguistic easy-first schedule"
to guide the process of diffusion in leveraging lin-
guistic knowledge and PLMs to make the model
generate simpler linguistic structures first.

Many studies explored the combination of dif-
fusion with large pre-trained language models
(PLMs). Ou and Jian (2024) introduce a “linguis-
tic easy-first schedule” that borrows from linguistic
knowledge and leverages PLMs so that simpler
patterns first appear in diffusion-based text genera-
tion. Chen et al. (2023a) present a resource-frugal
diffusion language model with soft-masked noise,
which strikes an equilibrium by preserving essen-
tial linguistic elements.

The domains where diffusion models can be ap-
plied include paraphrasing Zou et al. (2024), dialog
systems Xiang et al. (2024), recommendation en-
gines Li et al. (2023), code generation Singh et al.
(2023), topic modeling Xu et al. (2023), event ar-
gument extraction Luo and Xu (2023), comment
generation Liu et al. (2023), style transfer Horvitz
et al. (2024), Lyu et al. (2023), key phrase ex-
traction Luo et al. (2023), translation Chen et al.
(2023b), poetry generation Hu et al. (2024), text
detoxification Floto et al. (2023), empathetic dia-
log Bi et al. (2023), entity recognition Shen et al.
(2023), text summarization Zhang et al. (2023),
text inference Yuan et al. (2024), and conversation
controllable Chen and Yang (2023).

3 The Proposed Method

Prompt diffusion is an emerging key mechanism
for generative modeling, providing a simple yet
powerful way to condition outputs of a diffusion
model with standard language prompts. While dif-
fusion models have been shown to be powerful
samplers (from images to audio to text), achieving
explicit, fine-grained control has remained a chal-
lenge Nichol and Dhariwal (2021). This is what
makes direct control over the generative process
and steering it toward certain outputs complex.

To address this problem, diffusion strategies
based on prompts condition the diffusion model
on text descriptions (i.e., “prompts”) that describe
the desired properties and guide the generative pro-
cess of the model. Essentially, a big pre-training
language model, e.g. BART, is applied to these
textual prompts to turn them into vector represen-
tations that contain the prompt’s semantic content.
These representations are then fed into the denois-
ing network, often using concatenation methods,
guiding concerning the prompt during each step of
the denoising process.

One particular type of structured prompt uses the
target property, such as a sentiment or topic, along
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with a randomly selected in-class example (to pre-
vent data overlap or leakage), then leaves a blank
for the new sentence. Our diffusion model, which
is based on a transformer, manages the noisy text
embeddings with cross-attention conditioning on
the embeddings of prompt processed by BART (or
any other similar encoder). This design is shown
in figure 1.

Several advantages come with prompt-based dif-
fusion. First, it is highly controllable Sridhar and
Vasconcelos (2024): with meticulously engineered
prompts, one can dictate the style, content, or other
types of attributes, allowing for highly constrained
creative output Zhong et al. (2024). Second, it of-
fers versatility: a single pre-trained diffusion model
can be used on many tasks by simply changing a
prompt instead of fine-tuning each model for each
new objective. It is extremely cost-efficient. Third,
it offers great potential for few-shot or in-context
learning, allowing the model to infer instructions
from a few examples Du et al. (2024).

But writing good prompts is not trivial: badly
written prompts give bad results, and the encoding
of prompts also takes time to generate. Complex
prompts may raise challenges as well in terms of
coherence. Despite that, prompt-based diffusion
is an appealing method, as it provides extensive
user-driven guidance combined with the powerful
generative capability of extensive diffusion models.

Our system combines a large language model
and diffusion for conditional text generation. We
adopt a prompt-learning paradigm that concate-
nates the condition label (e.g., sentiment) with a
relevant example review to form a textual prompt.
Subsequently, this prompt is encoded (e.g., with
BART), bringing about embeddings that guide the
diffusion process. The diffusion model is trained
to predict the noise added at each time step, effec-
tively modeling the reverse diffusion. Therefore,
at inference time, random noise is iteratively con-
verted into meaningful embeddings based on the
guidance of the prompt.

So those final embeddings get passed through
a BART decoder, benefiting from the pre-trained
autoregressive decoding to produce reasonable
text. This pipeline elegantly resolves the shortcom-
ings of a completely embedding-based decoding
(which can be compelled to revert to rough nearest-
neighbor lookups) and produces high-quality text
outputs. The prompt method informs the output
using the desired condition in the prompt but also
dictates the context with the example text, which

{Condition,Example{sentence,label}} target

Text Encoder

Cleaned
latent

Noisy
latent

Diffuser

Predicted
latent

Text Decoder

Diffusion

DenoisingNoise

Figure 1: Our Proposed Method

provides a granular steer for what you would want
to get as output. By leveraging the strengths of a
sizable, pre-trained encoder-decoder (BART) and a
purpose-built diffusion model, the components are
tailored for their tasks, yielding robust performance
on conditional text generation tasks.

4 Experimantal results

We evaluate our approach on three benchmark
datasets: IMDB (50,000 movie reviews for sen-
timent analysis) Maas et al. (2011), AG News
(120,000 news articles across four topics: World,
Sports, Business, and Sci/Tech) Zhang et al.
(2015), and E2E (a data-to-text dataset which
involves restaurant descriptions using structured
attribute-value pairs) Novikova et al. (2017). Each
dataset poses different challenges: IMDB for senti-
ment polarity, AG News for topic coherence, and
E2E for structured semantic fidelity.

Our diffusion training involves two steps: a for-
ward phase where the text embeddings are grad-
ually contaminated with Gaussian noise across
T=1000 time steps, and a reverse phase, during
which a trained model denoises the signal to re-
construct the data. In the forward step, x0 pro-
gressively transforms into xT according to a noise
schedule βt = 0.9, ending with a nearly random
noise state (Equation 1). The model is trained
to predict the noise at each time t concerning
the variational bound (Equation 4), estimating
pθ(xt−1 | xt). Diffusion-based generators instan-
tiate text through a multi-step, iterative denoising
process, allowing fine-grained modifications during
intermediate steps to satisfy conditions such as syn-
tactic or stylistic properties instead of generating
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the text token-by-token as in autoregressive mod-
els. This iterative routine stabilizes training and
provides more robust controllability than single-
pass methods.

Our experiments were conducted using the E2E
dataset, and the results showed that the proposed
method outperformed other approaches. Table
1 lists three generation tasks we experimented
with: semantic content, parts-of-speech (POS), and
length.

For the semantic content task, we supplied a field
(e.g., rating) and provided a value (e.g., 5 stars) to
compute a sentence that would accurately person-
ify the relationship between the field and value
provided, and the ground truth for the same being
the exact match of the ’value’. For the parts-of-
speech task, we generated a sequence of POS tags
to the model (e.g., Pronoun Verb Determiner Noun)
and asked it to output a word sequence of the same
length such that the POS tags were aligned with
the target according to an oracle POS tagger. Suc-
cess was measured using word-level exact matches.
For the length task, we defined a desired length
between 10 and 40 and produced a sequence of up
to ±2 the target length.

We also conduct experiments on IMDb and AG-
News, assessing their quality using metrics such
as BLEU, ROUGH, and BERTScore as shown in
table 2.

The numerical results in Table 1 clearly show
that PromptDiffusion outperforms all prior con-
trollable text generation methods on all features
evaluated: accuracy of semantic content, accuracy
of part-of-speech, and text length. In semantic
content, PromptDiffusion also delivers high accu-
racy of 83% outperforming the previous leading
methods including Masked DiffusionLM + BERT
(82.9%) and DiffusionLEF + BERT (82.4%), with-
out sacrificing the low-perplexity (2.30) and thus
fluency. And while achieving 92.5% in part-of-
speech accuracy, PromptDiffusion outperforms all
other diffusion models and has the lowest perplex-
ity, at 4.7, which means it generates syntactically
more coherent outputs.

Table 2 reveals that PromptDiffusion outper-
forms not only PPLM and FUDGE but also Diffu-
sionLM on the IMDB (sentiment control) and AG
News (topic control) datasets in terms of genera-
tion quality. In extensive evaluation, of the IMDB
dataset, PromptDiffusion achieves BLEU-4 of 10,
ROUGE-L of 30, and BERT-Score of 92, outper-
forming DiffusionLM and GPT-2 by a large mar-

gin. This indicates that PromptDiffusion yields
semantically more aligned and fluent text while
better-preserving intent. These findings further un-
derpin that PromptDiffusion provides a tradeoff
between controllability, fluency, and quality, thus
is a strong competitive to prior generation meth-
ods reaping benefits from traditional structured pre-
trained models (e.g. GPT-2), and because it also
surpasses them in some tasks in text generation.

Diffusion models give controllable text genera-
tion more flexibility and come with significantly
more advantages than autoregressive, VAE, or
GAN-based approaches. While autoregressive
models like GPT predict following a static, token-
by-token order, diffusion models slowly guide la-
tent representations through many iterations. Such
progressive denoising lends itself well to making
subtle tweaks to fit our constraints, such as syntax,
length, or style. Diffusion models manage to strike
the right balance between accuracy and creativity
in comparison to classifier-guided techniques like
PPLM, which tend to generate unintelligible out-
puts owing to erratic updates of gradients, or VAEs
that in most cases hit a wall when it comes to diver-
sity. Diffusion models achieve a balance for gen-
eration by inserting structured prompts (e.g. target
attributes) into continuous input via cross-attention
mechanisms without losing fluency.

5 Conclusion

In this work, we propose a prompt-guided diffusion
framework for controllable text generation that mit-
igates critical limitations of the existing methods
in balancing precision and fluency. Our method
integrates structured prompts that combine target
conditions and in-class examples into the diffu-
sion process, achieving fine-grained control over
attributes such as sentiment, topic, and adherence
to structured data. Dynamic sampling of examples
during training ensures robustness to intra-class
diversity. Future work might investigate hybrid
models that combine the proposed prompt-guided
diffusion either with the retrieval-augmented gener-
ation or few-shot learning, as well as an extension
to multimodal tasks. Such a framework advances
the frontier of controllable text generation by bridg-
ing human intention with generative AI through
intuitive prompting and thus offers a flexible and
scalable solution for real-world deployment.
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semantic content part of speech length
Acc Perp Acc Perp Acc Perp

PPLM 9.9 5.32 - - - -
FUDGE 69.9 2.83 27 7.96 46.9 3.11
DiffusionLM 81.2 2.55 90 5.16 99.9 2.16
DiffusionLM + Bert 77.4 2.68 86.2 5.43 99.9 2.68
Masked DiffusionLM + Bert 82.9 2.30 92.9 4.78 100 2.08
DiffusionLEF 81.7 2.46 91.2 5.09 99.9 2.14
DiffusionLEF + Bert 82.4 2.32 92.4 4.82 100 2.10
PromptDiffusion 83 2.30 92.5 4.7 99.9 2

Table 1: results on E2E dataset for controllable generation

IMDB AG News
BLEU-4 ROUGE-L Bert-Score BLEU-4 ROUGE-L Bert-Score

PPLM 1.6 19 41 2 20 43
FUDGE 1.8 20 43 2.1 22 46
DiffusionLM 7 28 89 7.5 29 90
PromptDiffusion 10 30 92 11 31 91
GPT2 6.1 26 88 6.8 27 89

Table 2: results on IMDB and AGnews
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Abstract

We introduce FaBERT, a Persian BERT-
base model pre-trained on the HmBlogs
corpus, encompassing both informal and
formal Persian texts. FaBERT is designed
to excel in traditional Natural Language
Understanding (NLU) tasks, addressing
the intricacies of diverse sentence struc-
tures and linguistic styles prevalent in the
Persian language. In our comprehensive
evaluation of FaBERT on 12 datasets in
various downstream tasks, encompassing
Sentiment Analysis (SA), Named Entity
Recognition (NER), Natural Language In-
ference (NLI), Question Answering (QA),
and Question Paraphrasing (QP), it consis-
tently demonstrated improved performance,
all achieved within a compact model size.
The findings highlight the importance of
utilizing diverse corpora, such as Hm-
Blogs, to enhance the performance of lan-
guage models like BERT in Persian Natural
Language Processing (NLP) applications.
FaBERT is openly accessible at https:
//huggingface.co/sbunlp/fabert.

1 Introduction

Recently, we’ve seen the rise of sophisticated lan-
guage models like BERT (Devlin et al., 2019),
transforming the understanding of languages, in-
cluding Persian. Whether designed for multiple
languages or specifically for Persian, these models
have been employed across various applications in
Persian Natural Language Processing (NLP). Their
training encompassed a diverse range of textual
sources, including websites like Wikipedia and so-
cial media platforms such as Twitter, as well as
news articles and academic journals.

More recently, Large Language Models (LLMs)
with a substantial increase in parameters have sig-
nificantly reshaped the landscape of NLP, excelling

in a myriad of tasks. Despite their significant con-
tributions, finely-tuned LMs such as BERT still
demonstrate robust performance, achieving compa-
rable results or, in many cases, even outperforming
LLMs in traditional Natural Language Understand-
ing (NLU) tasks, including Natural Language In-
ference (NLI), Sentiment Analysis, Text Classifi-
cation, and Question Answering (QA) (Yang et al.,
2023). Encoder-only models like BERT remain the
workhorses of practical language processing, with
applications ranging from content moderation to
information retrieval systems.

Additionally, LLMs often come with the draw-
back of slower response times and increased la-
tency compared to smaller models. Moreover, the
use of LLMs typically demands advanced hard-
ware, creating accessibility challenges for many
users. Privacy concerns may also emerge when
employing LLMs online. Notably, encoder models
like BERT have found crucial roles in supporting
LLM deployments, serving as efficient filters for
content safety (Ji et al., 2024), performing rapid
document retrieval in RAG systems (Lewis et al.,
2020), and enabling cost-effective preprocessing
of large-scale data (Penedo et al., 2024). Their
compact size and efficient architecture make them
particularly suitable for edge devices and mobile
applications, where computational resources and
power consumption are constrained.

Recent studies (Nguyen et al., 2020; Abdelali
et al., 2021) highlight the value of incorporating
informal text into training corpora, as it improves a
model’s ability to handle colloquial language and
social media content, leading to better performance
on diverse linguistic tasks.

Our motivation is to develop FaBERT, a Persian
BERT model exclusively pre-trained on Persian
blogs, to enhance performance in traditional NLU
tasks and enable efficient processing of both for-
mal and informal texts in the language. Blogs,
which have not previously been utilized for pre-
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training Persian LMs, serve as a rich source of col-
loquial language with flexible sentence structures,
idiomatic expressions, and informal lexicons in-
herent in everyday Persian communication. While
recent models have demonstrated commendable
capabilities, there still remains room for improve-
ment, particularly in tasks involving informal Per-
sian text. Blog content includes diverse and evolv-
ing language variations such as cultural references,
informal lexicons, and slang in Persian, which have
been user-generated across different demographics
over a long period, contributing to FaBERT’s ro-
bust performance.

Our findings reveal that pre-training on the Hm-
Blogs corpus from Persian blogs enhances the
model’s performance, leading to state-of-the-art
results across various downstream tasks. The main
contributions of this paper are:

1. Pre-training a BERT-base model on Persian
blog texts in the HmBlogs corpus and making
it publicly accessible.

2. Evaluating the model’s performance on 12
datasets in various downstream tasks, includ-
ing sentiment analysis, irony detection, nat-
ural language inference, question paraphras-
ing, named entity recognition, and question
answering.

The subsequent sections of the paper are structured
as follows: Section 2 provides an introduction and
comparison of various BERT models employed
for Persian NLP. Section 3 delves into the details
of our corpus, model, and its pre-training proce-
dure. Section 4 compares FaBERT’s performance
in downstream tasks with other models. Finally,
Section 5 concludes the paper by summarizing our
findings.

2 Related Work

BERT that stands as Bidirectional Encoder Repre-
sentations from Transformers, has demonstrated its
exceptional abilities across a wide range of natural
language understanding tasks. Unlike traditional
language models that process text in a unidirec-
tional manner (left-to-right or right-to-left), BERT
considers both the left and right context of words.

BERT’s pre-training involved two training ob-
jectives: Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). MLM randomly
masks words in a sentence, and the model learns

to predict the missing words based on context, en-
hancing its ability to grasp the semantic meaning
and relationships between words within sentences.
On the other hand, in the NSP task, the model has
to predict whether sentence B logically succeeds
sentence A. MLM and NSP are designed for the
model to learn a language representation, which
can then be used to extract features for downstream
tasks. Continuing the discussion, we will present a
selection of Persian-language BERT models.

The most well-known Persian language model
is ParsBERT (Farahani et al., 2021). It was pre-
trained using both MLM and NSP tasks, utilizing a
training corpus collected from 8 different sources.
ParsBERT has become the preferred choice for
Persian NLP tasks, thanks to its outstanding perfor-
mance.

AriaBERT (Ghafouri et al., 2023) is another Per-
sian language model that follows RoBERTa’s en-
hancements (Liu et al., 2019) and utilizes Byte-Pair
Encoding tokenizer. Its diverse training dataset,
exceeding 32 gigabytes, includes conversational,
formal, and hybrid texts.

Additionally, many Multilingual Language Mod-
els have been released since, and few of them in-
clude Persian. Multilingual BERT, also known as
mBERT, was introduced by Devlin et al. (2019).
It was trained with NSP and MLM tasks on the
Wikipedia pages of 104 languages with a shared
word-piece vocabulary. mBERT has shown im-
pressive zero-shot cross-lingual transfer and is ef-
fective in utilizing task-specific annotations from
one language for fine-tuning and evaluation in an-
other. Although mBERT has shown solid per-
formance across different languages, monolingual
BERT models outperform mBERT in most down-
stream tasks.

Similarly, XLM-R (Conneau et al., 2019), an
extension of the RoBERTa model by Facebook AI,
is designed for cross-lingual understanding. This
model was pre-trained with the MLM objective on
a vast corpus comprising more than 2 terabytes of
text from 100 languages and outperformed mBERT
in many downstream tasks.

The models previously reviewed adhere to the
architecture introduced by the original BERT-base
model, featuring 12 layers and 12 attention heads.
While maintaining this consistency, there are varia-
tions in vocabulary size among these models.

A larger vocabulary facilitates the capture of
more unique tokens and their relationships, but it
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comes at the expense of an increased number of pa-
rameters. This, in turn, necessitates more extensive
training data for learning embeddings. Conversely,
smaller vocabularies may struggle to capture all the
details of language, potentially causing information
and context to be lost. An instance is found in the
multilingual model mBERT, which supports 100
different languages with a vocabulary size of only
100,000. Despite the broad language coverage, this
choice leads to a limited set of tokens for each lan-
guage. Consequently, sentences are transformed
into a greater number of tokens, potentially exceed-
ing the maximum supported sequence length and
resulting in the loss of information. Table 1 summa-
rizes the vocabulary size and number of parameters
for each model under consideration.

Model Vocabulary Size (K) # of Parameters (M)

BERT (English) 30 109
mBERT 105 167
XLM-R 250 278
ParsBERT 100 162
AriaBERT 60 132

FaBERT 50 124

Table 1: Vocabulary Size and Parameter Count of Persian
BERT Models

3 Methodology

3.1 Training Corpus

The selection of an appropriate training corpus is
a pivotal element in the pre-training of a language
model. For this effort, we utilized the HmBlogs
corpus (Khansari and Shamsfard, 2021), a collec-
tion of 20 million posts of Persian blogs over 15
years. HmBlogs includes more than 6.8 billion to-
kens, covering a wide range of topics, genres, and
writing styles, including both formal and informal
texts together.

To ensure high-quality pre-training, a series of
pre-processing steps were performed on the corpus.
Many posts written in the Persian alphabet were
erroneously identified as Persian despite not being
in the Persian language. This confusion arises from
the Persian alphabet’s resemblance to the alpha-
bets of other languages like Arabic and Kurdish.
Additionally, some other posts had typographical
errors, very rare words, or the excessive use of lo-
cal dialects. Therefore, a post-discriminator was
implemented to filter out these improper and noisy
posts.

Cleaning documents in Persian poses another
challenge due to the presence of non-standard char-
acters1. These characters look identical to Persian
characters, but their different codes can cause prob-
lems during pre-training. Some Persian blogs may
also use decorative characters to make the text vi-
sually appealing. Such characters were standard-
ized to ensure uniform representation and avoid
potential discrepancies. Additionally, words with
repetitive characters were corrected.

3.2 Pre-training Procedure

We trained a BERT model following the architec-
ture proposed by Devlin et al. (2019). Our BERT-
base model, FaBERT, adheres to the original BERT-
base architecture, consisting of 12 hidden layers,
each with 12 self-attention heads.

We opted for the WordPiece tokenizer over alter-
natives such as BPE, as prior evidence indicates no
performance improvement (Geiping and Goldstein,
2023), and with a conservative stance, we set the vo-
cabulary size to 50,000 tokens. This decision aimed
at finding a balance between capturing linguistic
details and managing the computational demands
associated with larger vocabularies. It’s essential
to note that Persian text includes half spaces, a fea-
ture absent in English. Consequently, the FaBERT
tokenizer has been adapted to handle this feature,
ensuring appropriate representation of texts during
pre-training and fine-tuning.

The total number of parameters for FaBERT
is 124 million. In comparison to other Persian
and multilingual base models outlined in Table 1,
FaBERT is more compact with fewer parameters.

During pre-training, each input consisted of one
or more sentences sampled contiguously from a sin-
gle document. The samples were of varying lengths
to help the model effectively learn the positional
encodings.

We implemented dynamic masking, inspired by
the methodology introduced by Liu et al. (2019),
and omitted the Next Sentence Prediction task from
our pre-training process, as it was demonstrated to
have no discernible positive impact on performance.
The masking rate for dynamic masking was set to
15%. We also utilized the whole word masking
approach for enhanced performance. Unlike tra-
ditional MLM, which randomly masks individual
tokens in a sentence, whole word masking involves

1For instance, Arabic ’ø
 ’ and ’¼’ are occasionally substi-

tuted for Persian ’ø’ and ’¸’.
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Hyperparameter Value
Batch Size 32
Optimizer Adam
Learning Rate 6e-5
Weight Decay 0.01

Hyperparameter Value
Total Steps 18 Million
Warmup Steps 1.8 Million
Precision Format TF32
Dropout 0.1

Table 2: Pre-training Hyperparameters

Figure 1: Train and Validation MLM loss in pre-training

masking entire words. Table 2 details the hyperpa-
rameters used in the pre-training process.

The training was conducted on a single Nvidia
A100 40GB GPU, spanning a duration of 400 hours.
The training data was split into 99% for training
and 1% for validation. The final validation perplex-
ity achieved was 7.76, and the train and validation
loss plot is presented in Figure 1.

4 Experiments and Results

In this section, we assess the FaBERT model across
four different categories of downstream tasks. For
NLI and Question Paraphrasing, sentence pairs are
processed to generate labels based on their relation-
ship. In NER, entities within single input sentences
are labeled at the token level. Sentiment Analysis
and Irony Detection involve processing individual
sentences and assigning corresponding labels. In
Question Answering, models utilize a given ques-
tion and the provided paragraph to generate token-
level spans for answers.

For each task, we fine-tuned FaBERT and com-
pared its performance to other state-of-the-art mod-
els, such as ParsBERT (Farahani et al., 2021), Ari-
aBERT (Ghafouri et al., 2023), and multilingual
models like mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2019). Lastly, we analyze the
effectiveness of FaBERT’s tokenizer and compare
it with other BERT models.

To ensure a fair comparison, all models were

fine-tuned on the same datasets using consistent
train/validation/test splits. For each model and
dataset pair, we performed a grid search over
hyperparameters, selecting the configuration that
achieved the best validation score. The scores re-
ported in this paper correspond to the test set results
obtained under these optimal conditions. Details
of the grid search ranges and dataset splits are pro-
vided in Appendix A.

4.1 Natural Language Inference and Question
Paraphrasing

In this section, we analyze FaBERT’s ability to
understand logical and semantic relationships be-
tween sentences, focusing on tasks like Natural
NLI and Question Paraphrasing. We assess its
performance using the Farstail (Amirkhani et al.,
2023), SBU-NLI (Rahimi and ShamsFard, 2024),
and ParsiNLU Question Paraphrasing (Khashabi
et al., 2021) datasets.

FarsTail
The FarsTail NLI dataset is sourced from multiple-
choice questions from various subjects, specifically
collected from Iranian university exams. Each of
these questions became the basis for generating
NLI instances with three different relationships:
Entailment, Contradiction, and Neutral.

SBU-NLI
SBU-NLI is another dataset containing sentence
pairs categorized into three labels: Entailment,
Contradiction, and Neutral. This data is gathered
from various sources to create a balanced dataset.

ParsiNLU Question Paraphrasing
This task involves determining the relationship be-
tween pairs of questions, specifically classifying
whether they are paraphrases. The dataset is cre-
ated through two means: first, by mining questions
from Google auto-complete and Persian discussion
forums, and second, by translating the QQP dataset
with Google Translate API. As a result, some ques-
tions are presented in an informal fashion.

As observed in Table 3, FaBERT demonstrates
a +1% improvement in F1 for FarsTail, compara-
ble performance to mBERT in SBU-NLI, and a
+2.88% F1 score in the informal ParsiNLU Ques-
tion Paraphrasing dataset.

4.2 Named Entity Recognition
In this section, we assess the efficacy of FaBERT in
NER, a commonly employed intermediate task that
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Model FarsTail SBU-NLI Parsi-NLU QP

ParsBERT 82.52 58.41 77.60
mBERT 83.42 66.38 79.48
XLM-R 83.50 58.85 79.74
AriaBERT 76.39 52.81 78.86

FaBERT 84.45 66.65 82.62

Table 3: Performance Comparison in NLI and Question
Paraphrasing

facilitates information extraction and entity identi-
fication within textual data. Our assessment lever-
aged formal and informal datasets, including ParsT-
wiNER (Aghajani et al., 2021), PEYMA (Shahsha-
hani et al., 2018), and MultiCoNER v2 (Fetahu
et al., 2023). The comparison of different models
for each entity type is detailed in Appendix B.

ParsTwiNER
The ParsTwiNER offers a NER dataset gathered
from 7632 tweets collected from the Persian Twit-
ter accounts, offering diverse informal Persian con-
tent. Annotation by experts in natural language
processing resulted in 24061 named entities across
categories such as persons, organizations, locations,
events, groups, and nations.

PEYMA
The PEYMA NER dataset, derived from formal
text extracted from ten news websites, classifies
words into different categories, encompassing per-
sons, locations, organizations, time, date, and more.
PEYMA is known as a key asset for training and
evaluating NER systems in the Persian language.

MultiCoNER v2
Initially introduced as a part of SemEval task in
2022, MultiCoNER is a multilingual NER dataset
crafted to address contemporary challenges in NER,
such as low-context scenarios, syntactically com-
plex entities like movie titles, and long-tail entity
distributions. The enhanced version of this dataset
was used in the following year as part of the Se-
mEval 2023 task. This version, known as Multi-
CoNER v2, expanded these challenges by adding
fine-grained entities and inserting noise in the input
text. Gathered from Wikidata and Wikipedia, the
dataset spans 12 languages, with Persian being the
focus of our evaluations.

The evaluation metrics used include micro-F1
for PEYMA and ParsTwiNER datasets, and macro-
F1 for MultiCoNER v2. Table 4 provides a de-

Model ParsTwiner PEYMA MultiCoNER v2

ParsBERT 81.13 91.24 58.09
mBERT 75.60 87.84 51.04
XLM-R 79.50 90.91 51.47
AriaBERT 78.53 89.76 54.00

FaBERT 82.22 91.39 57.92

Table 4: Performance Comparison in Named Entity
Recognition

tailed overview of scores achieved by each model.
Across the board, all models demonstrated compa-
rable performance in the PEYMA dataset. How-
ever, FaBERT model exhibited a slight improve-
ment by achieving a +1.09% increase in F1 score
for the informal ParsTwiNER dataset. In the Multi-
CoNER v2 dataset, both FaBERT and ParsBERT
outperformed other models. In general FaBERT
and ParsBERT seem to be great options for appli-
cations involving NER.

4.3 Sentiment Analysis and Irony Detection

In this section, we assess FaBERT’s performance
in classifying expressions. We employed DeepSen-
tiPers (Sharami et al., 2020), MirasOpinion (Asli
et al., 2020), and MirasIrony (Golazizian et al.,
2020) datasets for evaluation.

DeepSentiPers

The DeepSentiPers dataset comprises 9,000 cus-
tomer reviews of Digikala, an Iranian E-commerce
platform. Originally, each sentence’s polar-
ity was annotated using a 5-class label set
E = {−2,−1, 0,+1,+2}, representing senti-
ments from very displeased to delighted. However,
our investigation revealed inconsistencies, particu-
larly between the -1 and -2 categories for negative
sentiments and the +1 and +2 categories for positive
sentiments. Recognizing the overlap between these
closely related labels, we opted for a simplified
3-class labeling approach, classifying sentiments
as negative, neutral, or positive.

MirasOpinion

MirasOpinion, the largest Persian Sentiment
dataset, comprises 93,000 reviews gathered from
the Digikala platform. Through crowdsourcing,
each review was labeled as Positive, Neutral, or
Negative. This dataset was included in the SPAR-
ROW, a benchmark for sociopragmatic meaning
understanding. Participating in the SPARROW
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benchmark (Zhang et al., 2023) allowed us to as-
sess FaBERT against various language models.

MirasIrony

MirasIrony, a 2-labeled dataset designed for irony
detection, encompasses 4,339 manually labeled
Persian tweets. In this dataset, tweets exhibiting a
disparity between their literal meaning and senti-
ment were labeled as positive, while those lacking
this characteristic were labeled as negative. Similar
to MirasOpinion, we assessed the performance of
models on MirasIrony using the SPARROW bench-
mark.

Model DeepSentiPers MirasOpinion MirasIrony

ParsBERT 74.94 86.73 71.08
mBERT 72.95 84.40 74.48
XLM-R 79.00 84.92 75.51
AriaBERT 75.09 85.56 73.80

FaBERT 79.85 87.51 74.82

Table 5: Performance Comparison in Sentiment Analy-
sis and Irony Detection

Macro averaged F1 score serves as the evalua-
tion metric for DeepSentiPers and MirasOpinion,
while Accuracy is employed for MirasIrony. As
presented in Table 5, FaBERT achieved the high-
est scores in sentiment analysis for both DeepSen-
tiPers and MirasOpinion. For irony detection in
the MirasIrony dataset, XLM-R outperforms other
models, securing the leading position with a score
of 75.51%. FaBERT demonstrated notable per-
formance as well, securing the second spot with
74.82% accuracy. Through the SPARROW bench-
mark leaderboard, other models can be compared
with FaBERT on MirasOpinion2 and MirasIrony3

tasks.

4.4 Question Answering

To evaluate the question-answering capabilities
of FaBERT, our experiments encompassed three
datasets: ParsiNLU Reading Comprehension
(Khashabi et al., 2021), PQuad (Darvishi et al.,
2023), and PCoQA (Hemati et al., 2023). Each
dataset is briefly introduced in the following sec-
tions. Table 6 summarizes the performance of dif-
ferent models on each dataset.

2https://sparrow.dlnlp.ai/
sentiment-2020-ashrafi-fas.taskshow

3https://sparrow.dlnlp.ai/
irony-2020-golazizian-fas.taskshow

ParsiNLU Reading Comprehension Dataset
Reading Comprehension is one of the tasks intro-
duced in the ParsiNLU benchmark and involves
extracting a substring from a given context para-
graph to answer a specific question. In order to
create this dataset, they used Google’s Autocom-
plete API to mine questions deemed popular by
users. Starting with a seed set of questions, they
repeatedly queried previous questions to expand on
the set and add more sophisticated ones. After fil-
tering out invalid questions, native annotators then
chose the pertinent text span from relevant para-
graphs that provided the answer to each question.

The evaluation of models on this dataset involves
comparing the answers generated by the models to
the provided ground truth answers. The main met-
rics used are the F1 score, which measures the over-
lap between the predicted and ground truth answers,
and the exact match (EM) score, which checks if
the predicted answers exactly match the ground
truth answers. FaBERT scored +6.24% higher in F1
compared to other models in the ParsiNLU Read-
ing Comprehension task.

PQuAD: A Persian question answering dataset
PQuAD is a large-scale, human-annotated question-
answering dataset for the Persian language. It con-
tains 80,000 questions based on passages extracted
from Persian Wikipedia articles. The questions
and their corresponding answers were generated
through a crowdsourcing process, where crowd-
workers were presented with passages and tasked
with crafting questions and corresponding answers
based on the provided content. Inspired by the
structure of SQuAD 2.0 (Rajpurkar et al., 2018),
PQuAD designates 25% of its questions as unan-
swerable, adding extra complexity to the dataset
and enhancing the evaluative challenge.

In this dataset, in addition to F1 and EM scores,
the evaluation can be broken down into subsets of
questions that have answers (HasAns) and those
that do not have answers (NoAns). By considering
these metrics, the performance of different models
can be compared and analyzed to determine their
effectiveness in answering questions or abstaining
from answering. The authors also provided an esti-
mation of human performance by asking a group
of crowdworkers to answer a subset of questions.
Both FaBERT and XLM-R demonstrate remark-
able capabilities in question answering, achieving a
comparable F1 score performance. However, XLM-
R slightly outperforms FaBERT in this aspect.
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Model ParsiNLU PQuAD PCoQA

Exact Match F1 Exact Match F1 HasAns EM HasAns F1 NoAns Exact Match F1 HEQ-Q HEQ-M NoAns

ParsBERT 22.10 44.89 74.41 86.89 68.97 85.34 91.79 31.17 50.96 41.07 0.81 48.83
mBERT 26.31 49.63 73.68 86.71 67.52 84.66 93.26 26.89 46.11 36.94 1.63 31.62
XLM-R 21.92 42.55 75.16 87.60 69.79 86.13 92.26 34.52 51.12 44.81 0.81 54.88
AriaBERT 16.49 37.98 69.70 82.71 63.61 80.71 89.08 22.68 41.37 32.89 0 40.93

FaBERT 33.33 55.87 75.04 87.34 70.33 86.50 90.02 35.85 53.51 45.36 2.45 61.39

Human - - 80.3 88.3 74.9 85.6 96.80 85.5 86.97 - - -

Table 6: Performance Comparison in Question Answering

PCoQA: Persian Conversational Question
Answering Dataset
PCoQA is the first dataset designed for answer-
ing conversational questions in Persian. It com-
prises 870 dialogs and over 9,000 question-answer
pairs sourced from Wikipedia articles. In this task,
contextually connected questions are posed about
a given document, and models are required to
respond by extracting relevant information from
given paragraphs. This dataset provides a suitable
context for assessing the model’s performance in
Persian conversational question answering, similar
to the English dataset CoQA (Reddy et al., 2019).

For the PCoQA dataset, in addition to F1 and EM
scores, two variants of human equivalence score
(HEQ) are suggested by the authors. HEQ-Q mea-
sures the percentage of questions for which sys-
tem F1 exceeds or matches human F1, and HEQ-
M quantifies the number of dialogs for which the
model achieves a better overall performance com-
pared to the human. FaBERT outperformed other
models with +2.39% higher F1 score, handling
both answerable and unanswerable questions well.
Additionally, the PCoQA dataset proves to be chal-
lenging, with all models scoring noticeably lower
than humans.

4.5 Vocabulary Impact on Input Length

To evaluate the impact of FaBERT’s chosen vocab-
ulary size on its effective maximum input length, a
comparative analysis was conducted across datasets
with longer sentences, including MirasOpinion,
FarsTail, ParsiNLU Reading Comprehension, and
PQuAD. The objective was to examine how dif-
ferent tokenizers, including the one trained for
FaBERT, influence the number of tokens in each
input sentence.

Table 7 provides a summary of median token
counts across the aforementioned datasets. Both
multilingual models faced challenges due to the
lack of sufficient Persian tokens in their vocabu-
laries, potentially impacting their performance on

longer inputs due to loss of information. Pars-
BERT’s tokenizer yields the most compact se-
quences, closely followed by FaBERT. An inter-
esting observation arises in the PQuAD dataset,
where ParsBERT outperforms, likely attributed to
PQuAD’s reliance on Wikipedia, a significant com-
ponent of ParsBERT’s pre-training data.

Overall, FaBERT’s tokenizer, despite having a
vocabulary size half that of ParsBERT, demon-
strated a comparable level of compression. The
detailed boxplots for each dataset are available in
Appendix C.

Tokenizer MirasOpinion FarsTail ParsiNLU RC PQuAD

ParsBERT 27 58 113.5 160
mBERT 44 85 165 235
XLM-R 34 74 142.5 210
AriaBERT 28 66 130 207
FaBERT 28 62 119.5 189

Table 7: Median Token Count Yielded by Different
Tokenizers

5 Conclusion

In this paper, we pre-trained FaBERT, a BERT-base
model from scratch exclusively on the diverse Hm-
Blogs corpus, consisting solely of raw texts from
Persian blogs. Notably, our model’s smaller vo-
cabulary size resulted in a more compact overall
size compared to competitors. FaBERT performed
exceptionally well in 12 different datasets, outper-
forming competitors in nine of them. In the remain-
ing tasks where it did not secure the top position,
it consistently ranked among the top performers,
closely following the highest-performing model.

Our results indicate that texts with diverse writ-
ing styles, both formal and informal, found in
Persian blogs can significantly contribute to the
high-quality pre-training of language models, in-
cluding BERT. The effectiveness of the Hmblogs
corpus in the performance of our BERT model in
downstream tasks demonstrates its potential for be-
ing used in pre-training both language models and
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large language models alongside other relevant Per-
sian corpora. This success aligns with the broader
trend in NLP where encoder-only models continue
to prove their value, particularly in scenarios re-
quiring efficient processing of large-scale text data
while maintaining high performance standards.

The practical advantages of our approach – com-
bining the efficiency of BERT’s architecture with
rich, diverse training data – position FaBERT as a
valuable tool for Persian NLP applications, espe-
cially in resource-constrained environments where
larger models may be impractical. This work not
only advances Persian language processing capabil-
ities but also reinforces the continuing relevance of
carefully designed encoder models in the evolving
landscape of natural language processing.

Limitations

Biases As FaBERT is trained exclusively on blog
data, it inherits potential demographic and socio-
linguistic biases present in Persian online commu-
nities.

Technical Constraints FaBERT, like other
BERT-based architectures, is limited by the stan-
dard 512-token sequence length, which impacts its
ability to process longer documents or capture long-
range dependencies. While our analysis in Sec-
tion 4.5 shows that FaBERT’s tokenizer achieves
good compression for Persian text, this architec-
tural constraint remains a challenge. Recent inno-
vations in transformer models have successfully
addressed long-context limitations (Zhang et al.,
2024), and these advancements could be adapted
to Persian NLP tasks in future research.

Embedding Capabilities The Persian NLP land-
scape faces a scarcity of datasets and bench-
marks for training and evaluating text embed-
dings. Although contrastive learning has demon-
strated success in producing high-quality sentence
embeddings for other languages, the absence of
Persian-specific parallel texts and semantic simi-
larity datasets limits progress in developing such
models for Persian. This gap needs to be addressed,
given the increasing importance of dense retrievers
and semantic search in NLP. Future efforts should
prioritize creating resources tailored for Persian
sentence embeddings to advance applications such
as information retrieval and semantic similarity.
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Appendix For "FaBERT: Pre-training
BERT on Persian Blogs"

A Fine-tuning Hyperparameters

The hyperparameters employed for fine-tuning the
models on each dataset, along with the respective
train/validation/test split sizes, are outlined in Table
8. For the ParsiNLU benchmark, we adhered to
the predefined hyperparameters in the ParsiNLU
source code.

B Detailed NER Results

Tables 9, 10, and 11 present F1 scores for entities
in PEYMA, MultiCoNER v2, and ParsTwiNER
datasets, providing a model comparison for each
entity. For instance, In MultiCoNER v2, FaBERT
excels in recognizing medical entities, and Pars-
BERT is better at identifying creative works.

C Tokenizer Comparison Figures

Figures 2, 3, 4, and 5 illustrate the distribution
of token counts for each model’s tokenizer across
the following datasets: PQuAD, ParsiNLU Read-
ing Comprehension, MirasOpinion, and FarsTail.
These boxplots provide a visual representation of
the variation in token counts for each model.

Figure 2: Token count distribution across tokenizers for
the PQuAD dataset

Figure 3: Token count distribution across model tokeniz-
ers for the ParsiNLU Reading Comprehension dataset

Figure 4: Token count distribution across tokenizers for
the MirasOpinion dataset

Figure 5: Token count distribution across tokenizers for
the FarsTail dataset
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Datasets Train Validation Test Number of Labels Metrics Learning Rate Batch Size Epochs Warmup

DeepSentiPers 6320 703 1854 3 Macro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2
MirasOpinion 75094 9387 9387 3 Macro F1 2e-5, 3e-5, 5e-5 8,16 1 0, 0.2
MirasIrony 2352 295 294 2 Accuracy 2e-5, 3e-5, 5e-5 8,16 3, 5 0, 0.2
PQuAD 63994 7976 8002 - Micro F1 2e-5, 3e-5, 5e-5 8,16 2 0, 0.2
PCoQA 6319 1354 1354 - Micro F1 3e-5, 5e-5 8,16 3, 7 0, 0.2
ParsiNLU RC 600 125 575 - Micro F1 3e-5, 5e-5 4 3, 7 0
SBU-NLI 3248 361 401 3 Micro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2
FarsTail 7266 1564 1537 3 Micro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2
ParsiNLU QP 1830 898 1916 2 Micro F1 3e-5, 5e-5 8,16 3, 7 0
PEYMA 8029 926 1027 - Macro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2
MultiCoNER v2 16321 855 219168 - Micro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2
ParsTwiNER 6418 447 304 - Micro F1 2e-5, 3e-5, 5e-5 8,16 3, 7 0, 0.2

Table 8: Dataset Split Sizes and Fine-Tuning Hyperparameters

Entity Type FaBERT ParsBERT AriaBERT mBERT XLM-R Support

Date 89.16 85.65 85.11 84.56 86.73 208
Location 91.95 91.73 91.46 90.25 92.42 595
Currency 94.34 94.34 83.64 90.57 96.15 26
Organization 88.24 89.37 86.38 84.83 87.25 667
Percent 98.63 98.63 93.33 97.14 94.74 36
Person 95.45 95.29 94.6 90.1 95.75 434
Time 96.97 91.43 96.97 76.47 94.12 16

Micro Average 91.39 91.24 89.76 87.84 90.91 1982
Macro Average 93.53 92.35 90.21 87.7 92.45 1982
Weighted Average 91.37 91.23 89.75 87.81 90.92 1982

Table 9: Comparison of F1 Scores for Each Entity Type in PEYMA

Entity Type FaBERT ParsBERT AriaBERT mBERT XLM-R Support

Event 0.5714 0.4444 0.4118 0.4865 0.2308 14
Location 0.8281 0.8414 0.7991 0.7802 0.8088 221
Nation 0.9 0.7385 0.7246 0.7123 0.7397 30
Organization 0.7364 0.6966 0.6691 0.6462 0.7126 129
Person 0.9344 0.8893 0.8745 0.8216 0.8629 244
Political Group 0.6364 0.6667 0.7442 0.7 0.8 22

Micro Average 0.8222 0.8113 0.7853 0.756 0.795 660
Macro Average 0.7301 0.7128 0.7039 0.6911 0.6925 660
Weighted Average 0.8238 0.8119 0.7881 0.7573 0.7943 660

Table 10: Comparison of F1 Scores for Each Entity Type in ParsTwiNER
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Entity Type FaBERT ParsBERT AriaBERT mBERT XLM-R Support

AerospaceManufacturer 0.7325 0.7127 0.7196 0.6269 0.638 1030
ORG 0.5809 0.5832 0.5348 0.5479 0.5325 18532
MusicalGRP 0.6282 0.6597 0.59 0.613 0.5954 4668
PrivateCorp 0.3822 0.4033 0.3851 0.2605 0.1749 148
CarManufacturer 0.6511 0.7031 0.6631 0.6291 0.6147 2085
PublicCorp 0.6109 0.6377 0.5819 0.5439 0.562 5926
SportsGRP 0.8159 0.8174 0.8012 0.8046 0.7949 6418
Medication/Vaccine 0.7067 0.6837 0.6342 0.6324 0.6582 4405
MedicalProcedure 0.6307 0.5965 0.5592 0.4904 0.5471 2132
AnatomicalStructure 0.6079 0.5827 0.5151 0.4824 0.4978 3940
Symptom 0.5656 0.5368 0.4671 0.4217 0.4109 821
Disease 0.646 0.6256 0.5737 0.5264 0.5652 3989
Artist 0.7384 0.7347 0.6936 0.7122 0.7155 51617
Politician 0.5786 0.6056 0.534 0.5213 0.5141 19760
Scientist 0.3328 0.3669 0.2952 0.2615 0.2625 3278
SportsManager 0.606 0.6232 0.5376 0.4332 0.4494 3009
Athlete 0.5796 0.5992 0.5356 0.5119 0.5357 12551
Cleric 0.5707 0.5535 0.4875 0.4627 0.4332 4526
OtherPER 0.4254 0.4225 0.3544 0.3647 0.3449 21127
Clothing 0.3912 0.3375 0.3293 0.2054 0.2716 239
Drink 0.5244 0.5683 0.5483 0.4646 0.5041 631
Food 0.6063 0.5971 0.574 0.4788 0.5591 3580
Vehicle 0.5388 0.5388 0.5171 0.4659 0.4952 2865
OtherPROD 0.5851 0.5843 0.5453 0.5109 0.5233 10897
ArtWork 0.0919 0.1085 0.1057 0.1077 0.0691 100
WrittenWork 0.5561 0.5541 0.5028 0.5006 0.5079 13530
VisualWork 0.7447 0.7463 0.7095 0.7445 0.7523 25054
Software 0.6448 0.6586 0.5991 0.5913 0.5911 8058
MusicalWork 0.5408 0.5714 0.5239 0.5492 0.545 6292
Facility 0.5673 0.5671 0.5283 0.5317 0.5347 11393
Station 0.7997 0.7863 0.7812 0.784 0.781 2532
HumanSettlement 0.7608 0.7676 0.7517 0.7658 0.7647 55741
OtherLOC 0.37 0.3348 0.3413 0.2965 0.2376 1241

Micro Average 0.6451 0.6517 0.6081 0.6108 0.6145 312115
Macro Average 0.5792 0.5809 0.54 0.5104 0.5147 312115
Weighted Average 0.6491 0.6531 0.6101 0.6111 0.6131 312115

Table 11: Comparison of F1 Scores for Each Entity Type in MultiCoNER v2
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Abstract

Evaluating machine translation (MT) of user-
generated content (UGC) involves unique chal-
lenges such as checking whether the nuance
of emotions from the source are preserved in
the target text. Recent studies have proposed
emotion-related datasets, frameworks and mod-
els to automatically evaluate MT quality of Chi-
nese UGC, without relying on reference trans-
lations. However, whether these models are
robust to the challenge of preserving emotional
nuances has been left largely unexplored. To
address this gap, we introduce a novel method
inspired by information theory which gener-
ates challenging Chinese homophone words
related to emotions, by leveraging the concept
of self-information. Our approach generates
homophones that were observed to cause trans-
lation errors in emotion preservation, and ex-
poses vulnerabilities in MT systems and their
evaluation methods when tackling emotional
UGC. We evaluate the efficacy of our method
using human evaluation for the quality of these
generated homophones, and compare it with an
existing one, showing that our method achieves
higher correlation with human judgments. The
generated Chinese homophones, along with
their manual translations, are utilized to gener-
ate perturbations and to probe the robustness of
existing quality evaluation models, including
models trained using multi-task learning, fine-
tuned variants of multilingual language models,
as well as large language models (LLMs). Our
results indicate that LLMs with larger size ex-
hibit higher stability and robustness to such
perturbations. We release1 our data and code
for reproducibility and further research.

1 Introduction

Machine translation (MT) of Chinese-English news
articles has been claimed to achieve human parity
in recent years (Hassan et al., 2018). However,
research on machine translation of user-generated

1https://github.com/surrey-nlp/homo_gen

content (UGC) like tweets has revealed additional
challenges including problems with handling slang,
emotion, and literary devices like sarcasm and eu-
phemisms (Saadany et al., 2023), as shown in the
example translated by ChatGPT2 and Google Trans-
late in Figure 1. Evaluating MT quality of such
texts has become a challenging and urgent task
for the improvement their translation quality (Qian
et al., 2024c).

Traditional ways of evaluating MT qual-
ity involve metrics such as BLEU (Papineni
et al., 2002), BLEURT (Sellam et al., 2020) or
BERTScore (Zhang et al., 2019) to compare the MT
output with one or several reference translations.
When references are unavailable, quality estima-
tion (QE) methods are often used to predict scores
which approximate human evaluation (Specia et al.,
2018). One approach for QE is fine-tuning multi-
lingual pre-trained language models (PTLMs) us-
ing human evaluation scores. Frameworks like
Multi-dimensional Quality Metrics (MQM) (Lom-
mel et al., 2014), an error-based evaluation scheme,
are commonly employed to obtain the human eval-
uation scores for this purpose.

For machine translation of UGC, Qian et al.
(2023) recruited professional translators to eval-
uate translations of a Chinese UGC dataset us-
ing Google Translate, based on an MQM-adapted
framework. They found that homophone slang
words used by netizens are the most common cause
of errors in the translation of emotions. They
proposed different types of QE models based on
fine-tuning, multi-task learning (MTL) and large
language models (LLMs) for automatic evalua-
tion (Qian et al., 2024c,b) and claimed that their
models achieved state-of-the-art performance in
evaluating MT quality of UGC. In this paper, we in-
vestigate whether their models are robust enough to
cope with newly generated homophones or human-

2Using https://chatgpt.com/ in December 2024.
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Figure 1: An example of the challenges for translating Chinese UGC

improved translations.
In this regard, we propose a method to automati-

cally generate Chinese homophone words to probe
the robustness of these QE systems towards new ho-
mophone words and human-improved translations.
Our contributions can be summarized as follows:

• We leverage self-information in information
theory for the generation of Chinese homo-
phones that can be used to replace the original
word to create new slang, as a novel method.

• We compare the proposed method with an ex-
isting one using percentile score. We evaluate
the two methods based on human evaluation
and show that our approach achieves a higher
correlation with it.

• We utilize generated homophone words and
human-improved translations as perturbed ex-
amples to probe existing QE models. Our anal-
ysis reveals that larger LLMs exhibit greater
stability and robustness to our perturbations.

The rest of the paper is organized as follows:
Section 2 reviews related work on quality evalua-
tion of UGC and Chinese homophone words. Sec-
tion 3 introduces the main dataset used in this study.
Section 4 details the existing generation approach,
our proposed method, and the human evaluation
and perturbation methods. Section 5 presents and
discusses the results of these evaluations. Section 6
concludes the study and outlines future directions,
while Section 7 addresses limitations and ethical
considerations.

2 Related Work

Section 2.1 provides an overview of related work
on the evaluation of UGC translation, and Sec-
tion 2.2 explores studies focused on Chinese UGC
and the generation of homophones.

2.1 Evaluation of UGC Translation

Despite the tremendous improvement of translation
quality since the use of neural machine translation,
MT systems still struggle when translating emotion-
loaded UGC such as tweets. Saadany et al. (2023)
analyzed machine translation of tweets for 6 lan-
guage pairs and found that hashtags, slang, and
non-standard orthography are the most prominent
causes of translation errors. Different from the
language pairs covered by Saadany et al. (2023),
Qian et al. (2023) analyzed the English transla-
tion of Chinese microblog texts. They found that
about 50% of their data have translation errors in
emotion preservation and about 41% are major
and critical errors. Among the causes of errors,
emotion-carrying slang that contains homophones
is the most frequent cause.

To take errors in emotion into consideration dur-
ing evaluation, Saadany et al. (2021) proposed a
sentiment-aware measure for evaluating sentiment
transfer by MT systems. Using human evalua-
tion data based on MQM, Qian et al. (2024c,b)
trained and proposed a series of QE models that
can automatically assess MT quality in terms of
emotion preservation. They fine-tuned and contin-
ued fine-tuned multilingual PTLMs based on Tran-
sQuest (Ranasinghe et al., 2020) and COMET (Rei
et al., 2020; Stewart et al., 2020; Rei et al., 2022),
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two commonly-used QE frameworks. They also
utilized the Nash (Navon et al., 2022) and Aligned
(Senushkin et al., 2023) MTL losses to train mod-
els that can perform sentence- and word-level QE
concurrently. With the recent advancement of
LLMs, Qian et al. (2024b) proposed to prompt and
parameter-efficiently fine-tune LLMs for quality es-
timation of emotion-loaded UGC. They claimed to
achieve state-of-the-art results using LLMs for eval-
uation. However, none of these papers answered
the question: Are these models robust to new homo-
phone slang words? For this purpose, we propose
a method to automatically generate homophone
words to test the robustness of their systems.

2.2 Chinese Homophone Words
There have been extensive debates about what a
word is in Chinese in both natural language process-
ing and linguistic studies, as Chinese does not have
a clear delimiter for word boundaries like spaces in
English. Researchers have tried to define words in
Chinese from different perspectives. Di Sciullo and
Williams (1987) defines the concept of ‘word’ as
the ‘listedness’ characteristic of lexical items, but
the ‘listedness’ criterion fails to include many Chi-
nese words created recently. In Chinese, usually
characters, not words, are listed in lexical dictio-
naries. Another common way of characterizing the
notion of ‘word’ is to use semantic criteria which
define a word as the smallest standalone unit that
carries meaning. However, reducing concepts of a
word to their semantic primitives is an extremely
difficult task (Packard, 2000). From a morphologi-
cal perspective, a word can be defined as the output
of word-formation rules in the language (Di Sciullo
and Williams, 1987). As morphological objects are
an important construct for Chinese, lots of word-
like entities derived using word-formation rules but
are not defined by other criteria, can be included as
words by this definition. A huge amount of Inter-
net slang created by netizens using word-formation
rules such as homophone substitution can be seen
as words under this definition.

Homophone substitution refers to the method
which uses words or characters pronounced alike
but spelt or written differently, and having dif-
ferent meanings from the original word or char-
acter (Meng, 2011), as explained in the exam-
ple “尼玛” in § 4.1. It is extensively used in
many fields in China, such as toponymy or an-
throponymy (Kałużyńska, 2018), as there are so
many homophones in Chinese, given it is a tonal

language. Although there are studies working on
this particular linguistic phenomenon (Meng, 2011;
Chu and Ruthrof, 2017; Kałużyńska, 2018), to the
best of our knowledge, only Hiruncharoenvate et al.
(2015) have proposed a method to automatically
generate homophones using percentile scores (see
§ 4.1 for more details). In order to explore how
to generate homophone words that are more likely
to be used by netizens, we propose to use self-
information (Shannon, 1948) based on the log prob-
ability from language models. We compare our
method with the existing one via human evalua-
tion, and utilize those generated homophones as
perturbations to test the robustness of QE systems
proposed by Qian et al. (2024c,b).

3 Data

We used the Human Annotated Dataset for Quality
Assessment of Emotion Translation (HADQAET)3

from Qian et al. (2023) to sample UGC that con-
tains Chinese homophone slang for automatic gen-
eration. HADQAET was chosen because, 1) its
source texts contain many homophone slang; 2) it
has quality evaluation data such as QE scores for
the MT texts, error words related to emotion preser-
vation and reference translations, and 3) there are
QE systems trained on it (explained in § 4.3).

The source texts of HADQAET originated from
the dataset released by the Evaluation of Weibo
Emotion Classification Technology on the Ninth
China National Conference on Social Media Pro-
cessing (SMP2020-EWECT). It originally has a
size of 34,768 instances. Each instance is a tweet-
like text segment in Chinese, which was manu-
ally annotated with one of the six emotion labels,
i.e., anger, joy, sadness, surprise, fear and neu-
tral (Guo et al., 2021). Qian et al. (2023) randomly
kept 5,538 instances and used Google Translate to
translate them to English. To evaluate translation
quality for emotion preservation, they proposed an
emotion-related MQM framework and recruited
two professional translators to annotate errors and
their corresponding severity. Words/characters
in both source and target that cause errors were
highlighted for error analysis. In addition, they
hired a translation company to post-edit the MT
output to get reference translations (Qian et al.,
2024a). More details about HADQAET can be
found in Qian et al. (2023).

We tokenized the source texts using jieba (Sun,

3https://github.com/surrey-nlp/HADQAET
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Homophone Slang Causing Errors Human Translation Frequencies
尼玛(nima) (f**k) your mother 60
特么(tama) what’s the f**k 51
卧槽(wocao) f**k 22
草泥马(caonima) f**k your mother 22
劳资(laozi) I 12

In total / 167

Table 1: Homophone slang words that cause translation
errors and their frequencies in HADQAET.

2013) and extracted the words that were high-
lighted as causes of error. Following Qian et al.
(2023), we made a frequency list of these error
words and picked those that contain homophone
slang with a frequency higher than 10, under the
supervision of a Chinese native speaker. This pro-
duced a list of 5 homophone slang words (as shown
in Table 1) that are most likely to cause translation
errors. They were used in this paper to generate
homophones that can be used interchangeably in
the original source text. We selected the instances
(167 in total) containing the 5 homophone slang
words from HADQAET, including the source, MT
outputs, evaluation data and reference translations
to probe trained QE systems and test how robust
they are. Methods for homophone generation are
presented in § 4.1. Methods to create perturbed
data for robustness test are described in § 4.4.

4 Methodology

This section presents our methodology for homo-
phone generation and the evaluation of generated
homophones in § 4.1 and § 4.2, respectively. QE
models for robustness test as well as the perturba-
tion methods are elaborated in § 4.3 and § 4.4.

4.1 Homophone Generation

Algorithm 1 Homophone generation
Input: W : words for which to generate homophone
Output: W̃ : homophones of W
Candidate: C : a set of character combinations
that might be W̃ , i.e. W̃ ∈ C
Corpus: D : dictionary of character frequency in Weibo
For wi in W do
wiroot ← Latinize(wi)
Cwi = {Concat(DeLatinize(cjwi

) for cjwi
in wiroot)}

Optional: Cwi ← filter Cwi by D

W̃ ← pick(Cwi)
End for
Return W̃

The method to generate homophone words is
shown in Algorithm 1. Since Chinese is a logo-

graphic language, we need to Latinize Chinese
words into alphabets to get their pronunciation. For
example, we can convert the slang “尼玛” (see Ta-
ble 1 for its meaning) into “nima” using Pinyin,
a system to transcribe Mandarin Chinese sounds
into Latin alphabets. The Latinized words such as
“nima”, which are the root sounds/words (denoted
as wiroot) of the original words, can correspond to
many different Chinese written words4. We can
easily generate numerous different character com-
binations that bear the same or similar sounds (with
different tones) using the root sounds. However,
many of them may not make sense and are unlikely
to be used in real-world scenarios. We call them
candidates (denoted as Cwi) of our final output. We
introduced a pick() function explained in the fol-
lowing subsections to select those that are more
likely to be used by netizens.

Generation of Candidates After Latinization,
we get the root sound of each Chinese character in
the original word, i.e., cjwi

. We gathered all Chi-
nese characters (logographs) of the same root sound
(Latin alphabets) by using the Chinese character
dictionary in jieba for de-Latinization. A simple
concatenation of each character in the same word
can lead to a set of candidates, Cwi . For example,
the slang word “尼玛” has two characters, “尼” ni
and “玛” ma, and each has a long list of homophone
characters such as “你” or “泥” for ni and “吗” or
“嘛” for ma. To reduce the number of candidates,
we first created a dictionary (denoted as D) of char-
acter frequency using the full SMP2020-EWECT
corpus. Then we selected character combinations
whose frequency are higher than 100 to filter out
those infrequent words. This resulted in a set of
172 candidates (34.4 for each) of the 5 selected
homophone slang that frequently cause translation
errors in emotion preservation.

Picking Candidates by Percentile Score We
used the method proposed by Hiruncharoenvate
et al. (2015) as our baseline to pick candidates,
which is explained in Algorithm 2. For each candi-
date h in the set Cwi , we summed up the frequency
of each character cih in candidate/hypothesis h, us-
ing the frequency dictionary D. We ranked them by
the aggregate frequency Fh in an ascending order
for each of the 5 selected slang words. The per-
centile score Pscorewi can be computed by dividing

4The root sound has four different tones. Each corresponds
to many different characters/words.
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the index of a candidate in Cwi
sorted by the number

of candidates in it and multiplying 100. The output
homophone words can be generated by picking the
top k samples.

Algorithm 2 Picking candidates by percentile score
Input: C : sets of candidates for wi in W

Output: W̃ : generated homophones
Corpus: D : dictionary of character frequency in Weibo
For h in Cwi do
Fh =

∑N
i=1 freq(c

i
h) for cih in h, where cih ∈ D

End for
Cwi

sorted ← sort Cwi by Fh

Pscorewi = { index
length(C

wi
sorted )

∗ 100 for index in Cwi
sorted}

W̃ ← Pscorewi [1 : k]

Return W̃

Picking Candidates by Self-information We
propose to pick candidates by self-information as
shown in Equation 1, where P (x) is the probability
of an event x (a word in the candidates in our case)
and I(x) is the self-information, which quantifies
how informative an event is. Our assumption is
that the generated word should be informative and
unique, and at the same time not infrequent. We
employed language models including the Chinese
RoBERTa (Cui et al., 2020) and the Qwen1.5 series
(1.8B, 4B and 7B) models (Qwen Team, 2024) to
get the log probability for our candidates.

I(x) = − log2(P (x)) (1)

4.2 Evaluation of Homophone Words

We recruited two annotators who are frequent users
of the Chinese microblogging platform, Weibo to
rate the 172 generated homophone words from 1 to
5. A score of 5 means the generated homophone
can completely replace the one in the original text.
A score of 1 means it can not replace the original
one at all. A score of 3 is somewhere in between,
meaning that the generated homophone can replace
the original one, but it may take time for some
readers to accept such usage.

The human evaluation was carried out in two sce-
narios: with (given the source microblog text) and
without context (given the generated homophone
along with its original word) to test if context is a
factor that influences the effectiveness of the gener-
ated homophones.

We used the Spearman correlation score (Spear-
man, 1904) to measure how the percentile and the
self-information scores are correlated with the hu-

man rated scores to compare between the two meth-
ods. We also computed the Spearman correlation
score between the scores of the two human annota-
tors for references (see § 5.1 for results).

To provide a quantitative complement to hu-
man evaluation, we fine-tuned the Chinese
RoBERTalarge model (Cui et al., 2020) on the
SMP2020-EWECT dataset, creating an emotion
classifier that achieved a macro F1 score of 0.95.
Manual validation of 100 random samples con-
firmed the classifier’s reliability, yielding an F1
score of 0.90. We then used this classifier to as-
sess whether the predicted emotion labels remained
consistent when original homophone slang was re-
placed with our generated homophone words.

4.3 QE Models for Robustness Test

Since models proposed by Qian et al. (2024c,b)
were all trained on HADQAET, we selected two
fine-tuned (FT) models based on TransQuest and
COMETKIWI (Rei et al., 2022) respectively, one
continued fine-tuned (CFT) model based on Tran-
sQuest, two MTL models based on the Nash loss,
and two instruction-tuned LLMs including Mixtral-
8x7B (Jiang et al., 2024) and Deepseek-67B5, as
well as two parameter-efficiently fine-tuned LLMs
using QLoRA (Dettmers et al., 2023), i.e., FT-Yi-
34B and FT-Deepseek-67B. They were selected
to test how robust QE models are in terms of the
newly generated homophone slang words.

4.4 Perturbation Methods

We propose two perturbation methods to test the
robustness of the selected QE models.

4.4.1 Method 1: Robustness to Homophones
Method 1 is to test the robustness of the QE models
to our generated homophones, which were among
the most frequent causes of translation errors.

We selected the 167 instances from HADQAET
that contain the 5 slang words in the source and
replaced them with top 5 generated homophone
words in human evaluation (see Table 8 in Ap-
pendix A). Everything else remained unchanged.
This led to 5 groups of the 167 instances, namely,
M1G1 to M1G56. The QE scores produced by the
selected models for the 5 groups should be more or
less the same as the scores of the original source-
MT group, namely, G0, if the models are robust.

5https://www.deepseek.com/
6G1 to G5 are in a ranked order based on human evaluation.
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We compared the Spearman and Pearson’s correla-
tion scores among the groups for evaluation.

4.4.2 Method 2: Robustness to Improved
Translations

Method 2 is to test the robustness of the QE models
to translations of improved quality.

We asked a professional translator to correct only
the translation of the homophone slang in the MT
output for these 167 instances to form a perturba-
tion group, i.e., M2G1. We also replaced the entire
MT output with a human reference translation for
the selected instances to form another perturbation
group, i.e., M2G2. M2G1 and M2G2 are used to
compare with G0 to see the increase of QE scores,
since theoretically better translations should have
higher QE scores.

We calculated the percentage of the instances
that see an increase of QE scores produced by
the selected models to evaluate their robustness
to translations of improved quality.

5 Results and Discussion

This section presents and discusses the results of
evaluation of our generated homophone words as
well as the results of our perturbation methods.

5.1 Evaluation of Generated Homophones
We conducted human evaluation of the generated
homophone words under two scenarios: with and
without context. Results are displayed in Tables 2
and 3, respectively.

Methods Annotator 1 Annotator 2 Avg
I using Chinese RoBERTa 0.1257 0.1205 0.1304
I using Qwen1.5-1.8B 0.1957 0.1938 0.1952
I using Qwen1.5-4B 0.2251 0.2040 0.2215
I using Qwen1.5-7B 0.2799 0.2300 0.2647

Percentile score -0.0220 -0.1219 -0.0877

Table 2: Spearman correlation scores of self-formation
(I) obtained on the Chinese RoBERTa, Qwen1.5 series
models and the percentile score with scores annotated
with context by Annotator 1, 2 and their average.

With Context We can see from Table 2 that the
Spearman correlation scores of the percentile score
method are extremely low for scores of both anno-
tators and the average score. Our self-information
method improves the correlation with human an-
notators remarkably. This is particularly obvious
when we used larger models to get the log proba-
bility, since Spearman correlation scores increase
steadily when larger models are used.

We also computed the Spearman correlation
score between the two annotators as a reference
to human-level correlation. Spearman correlation
for the human rated scores is 0.6441, which is still
higher than our method using self-information.

Methods Annotator 1 Annotator 2 Avg
I using Chinese RoBERTa 0.2050 0.3160 0.3018
I using Qwen1.5-1.8B 0.1837 0.3475 0.2867
I using Qwen1.5-4B 0.2197 0.3550 0.3156
I using Qwen1.5-7B 0.2379 0.3743 0.3286

Percentile score 0.0867 0.1516 0.1537

Table 3: Spearman correlation scores of self-formation
(I) obtained on the Chinese RoBERTa, Qwen1.5 series
models and the percentile scores with scores annotated
without context by Annotator 1, 2 and their average.

Group Precision Recall F1 Score Same Label
M1G1 0.8892 0.8862 0.8675 0.8863
M1G2 0.8976 0.9042 0.8904 0.9042
M1G3 0.8618 0.8802 0.8634 0.8802
M1G4 0.8192 0.8802 0.8480 0.8802
M1G5 0.8860 0.8862 0.8764 0.8862

Table 4: Precision, recall, F1 score and percentage of in-
stances that have the same label (same label) compared
with the original human-annotated emotion label.

Without Context Table 3 re-affirms our results
in Table 2: the self-information method obvious
surpasses the percentile score method in Spearman
correlation for all language models.

The Spearman score for the human rated scores
without context is 0.6367, which is similar to
that of with context, but is closer to our self-
information method (0.3286), compared with the
evaluation with context (0.6441 vs 0.2647). This
may be because Chinese is a context-dependent lan-
guage (Stallings, 1975) and adding context to the
generated homophone words might have an impact
on the understanding of their individual meaning.

Emotion Label after Replacement We pre-
dicted the emotion label of the 167 instances that
have been replaced with the 5 generated homo-
phone words in M1G1 to M1G5 in § 4.4.1. Results
are shown in Table 4.

Table 4 indicates that the F1 scores of all groups
are very close to the human validated score (0.90)
of the emotion classifier. Close to 90% of the in-
stances remain the same emotion label as that of
the original source text before homophone replace-
ment. This indicates that our generated homophone
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Groups
FT-COMETKIWI FT-TransQuest CFT-TransQuest MTL-XLM-Vbase MTL-XLM-Rlarge

ρ r ρ r ρ r ρ r ρ r

G0 0.2617 0.3211 0.2518 0.2954 0.2853 0.3219 0.2179 0.2139 0.1958 0.1841
M1G1 -3.59% -6.13% +5.79% +2.51% -8.55% -7.21% -1.83% +5.03% -2.30% -95.88%
M1G2 -0.50% -4.05% +8.21% +6.43% -5.06% -4.90% +13.58% +10.26% -2.76% -22.98%
M1G3 +2.94% +1.99% +0.77% +2.20% -9.46% -6.40% +1.29% -3.23% -5.61% +1.30%
M1G4 +5.85% +3.21% +7.17% +9.62% -16.57% -13.37% +11.92% +6.79% -2.20% +1.09%
M1G5 +1.34% -3.45% +9.99% +7.74% -14.09% -12.84% +0.09% +4.67% +0.82% -49.17%

Table 5: Spearman ρ and Pearson’s r correlation scores of the perturbation groups in Method 1 on fine-tuned
COMETKIWI (FT-COMETKIWI), TransQuest (FT-TransQuest) and continued fine-tuned TransQuest (CFT-
TransQuest) models, and MTL models based on XLM-Vbase and XLM-Rlarge. The values for M1G1–M1G5 are
percentage changes compared to G0. Original values can be found in Table 9 in Appendix A.

Groups
Mixtral 8x7B Deepseek-67B FT-Yi-34B FT-Deepseek-67B
ρ r ρ r ρ r ρ r

G0 0.1886 0.1984 0.2073 0.1338 0.3413 0.3485 0.2802 0.2469
M1G1 -51.73% -131.45% -8.39% -34.39% +21.09% +21.18% -17.20% +11.62%
M1G2 -59.97% -131.45% -26.04% -54.52% -23.22% -22.85% -4.43% -1.01%
M1G3 -71.46% -58.79% -4.63% +7.70% -14.47% -12.51% -6.53% +12.60%
M1G4 -60.18% -84.36% -56.35% -96.49% -16.86% -18.94% +25.91% +55.24%
M1G5 -35.41% -131.35% -37.83% +0.30% -44.92% -36.41% +5.71% +33.86%

Table 6: Spearman ρ and Pearson’s r correlation scores of the perturbation groups in Method 1 on LLMs and
fine-tuned (FT) LLMs as listed in Section 4.3. For M1G1–M1G5, values are expressed as percentage changes
relative to G0. Original values can be found in Table 10 in Appendix A.

words evaluated by human annotators are reliable
in terms of predicting the emotion labels.

5.2 Results of Perturbation Methods

Method 1 Tables 5 and 6 show the results of our
perturbation Method 1, i.e., whether QE models
trained by Qian et al. (2024c,b) are robust or stable
to the generated homophone words, which are most
frequent in causing translation errors.

Table 5 presents results obtained on fine-tuned
(FT) COMETKIWI, fine-tuned (FT) TransQuest
and continued fine-tuned (CFT) TransQuest mod-
els as well as MTL models based on XLM-
Vbase (Liang et al., 2023) and XLM-Rlarge (Con-
neau et al., 2020). In each model, G0 serves as
a baseline or reference, but we also assess how
stable the scores remain across M1G1 to M1G5
by reporting how much the score has changed in
relation to G0 in percentages. For instance, if an
M1G1 correlation score deviates greatly from G0
or from the adjacent group M1G2, we consider
that “fluctuation”. We can see from the table that
Spearman correlation scores of M1G1-M1G5 for
MTL models, especially MTL-XLM-Rlarge, fluctu-
ate less than those of the FT or CFT models. This
indicates that they are relatively more stable in pre-
dicting QE scores when tested with the generated
homophone words.

Table 6 shows results obtained on LLMs, includ-
ing prompting LLMs for quality evaluation and
fine-tuning (FT) LLMs as quality evaluators. We
observe that using LLMs for QE is less stable in
terms of score prediction. When we replace the
original slang with our generated ones in the source,
the correlation scores tend to fluctuate more than
those of fine-tuned or MTL models. Among these
LLMs, larger models seem to be better at generat-
ing consistent QE scores than smaller ones, since
Spearman scores of Deekseek-67B or its fine-tuned
version fluctuate less than those of Mixtral 8x7B
and FT-Yi-34B among the perturbation groups.

Models M2G1 (%) M2G2 (%)

FT-COMETKIWI 23.35 53.29
FT-TransQuest 45.86 56.35

CFT-TransQuest 33.15 45.30
MTL-XLM-Vbase 49.72 35.91
MTL-XLM-Rlarge 75.69 67.40

Mixtral 8x7B 67.40 63.54
Deepseek-67B 56.91 74.03

FT-Yi-34B 85.64 83.98
FT-Deepseek-67B 81.77 89.50

Table 7: Percentage of instances that see a QE score
increase after the MT output was improved as described
in Method 2.

103



Method 2 Table 7 displays the percentage of in-
stances that see an increase of the predicted QE
scores after replacing the MT output with improved
translations.

Since MT outputs in M2G2 were replaced with
reference translations, the percentage of instances
that have increased predicted scores should be
higher than those of M2G1, where only transla-
tion of the homophone slang was corrected. Com-
paring between the two groups, we find that for
fine-tuned COMETKIWI and TransQuest models,
though the percentages are usually lower than 50%,
they are higher in M2G2 than in M2G1. Whereas
for MTL models, the percentages of instances that
have increased scores in M2G2 are lower than those
of M2G1, indicating that they are less robust to-
wards improved translations. For LLMs, larger
models such as Deepseek-67B and its fine-tuned
version see an increase of the percentage of the
instances that have increased scores for M2G2,
whereas smaller models do not.

Among all these QE models, LLMs such as FT-
Yi-34B and FT-Deepseek-67B are more likely to
produce increased scores when the translation qual-
ity is improved, like the cases in M2G1 and M2G2,
since more than half of the instances experienced a
score increase. This is consistent with the results
from Table 6, which suggest that LLMs are prone
to change their score prediction when the input has
been changed. LLMs with large size outperform
other QE models in two ways: they better reflect
improvements in machine translation quality, and
they maintain consistent scores when original ho-
mophone slang in the source text is replaced with
generated alternatives.

5.3 Discussion
We observe that although our LLM-based self-
information method lags behind human evaluation,
it is much better than the existing percentile score
method for automatically generating Chinese ho-
mophone words. Due to the context-dependent
nature of the Chinese language, correlation scores
to human evaluation with context can be lower than
those of without context. More experiments and
examples are needed for the validation of this point.

When assessing the robustness of QE models, we
find that LLM-based QE models are more likely
to change their prediction scores when the input is
changed. When the translation quality is improved,
they are more likely to produce increased scores
than fine-tuned COMETKIWI or TransQuest mod-

els or MTL models. However, when the original
homophone words are replaced with our generated
ones (for which human evaluation indicates they
are acceptable), LLM-based models are more likely
to change their predicted scores as well. LLMs
with a larger size such as DeepSeek-67B and its
fine-tuned versions achieved a good balance be-
tween producing consistent scores to generated ho-
mophone words and increased scores to improved
translations, exhibiting great stability and robust-
ness to our perturbations in all groups.

6 Conclusion and Future Work

This paper investigates how robust emotion-related
QE systems are towards emotion-loaded homo-
phone words. For this purpose, we proposed to
use self-information to automatically generate and
select Chinese homophone words that frequently
cause translation errors. We evaluated the efficacy
of our method based on human evaluation and com-
pared it with the baseline, percentile score. We
find that our method can achieve higher correla-
tion with human evaluation than the baseline. We
picked 5 generated homophone words and replaced
the original homophones with our generated ones
in the source as perturbations to test the robustness
of the QE systems trained by Qian et al. (2024c,b),
including fine-tuned COMETKIWI, TransQuest
and MTL models as well as LLMs. At the same
time, we replaced the MT output with improved
translations to test how robust QE systems are to-
wards improved translations. Our results indicate
that LLMs with a larger size such as DeepSeek-
67B exhibited great stability and robustness to all
our perturbation groups. For future work, we plan
to generate homophones at a larger scale and in-
vite more linguists to evaluate their usefulness in
real-world scenarios on social media.

7 Limitations and Ethical Considerations

Due to the size of the HADQAET dataset, only
167 samples that contain 5 most frequent words
causing translation errors were selected in the pa-
per. This size of test set is comparatively smaller
than other robustness tests. We will generate more
homophone words for testing in our future work.

The experiments in the paper were conducted
using publicly available datasets. New data were
created based on those publicly available datasets
using computer algorithms. No ethical approval
was required. The use of all data in this paper
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follows the licenses in (Qian et al., 2023).
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Original Generated Avg Score

尼玛

你妈 5.00
尼妈 3.75
泥马 3.50
尼马 2.75
泥玛 2.50

特么

他妈 5.00
她妈 5.00
它妈 4.00
踏妈 3.50
他玛 1.50

卧槽

我操 5.00
我艹 5.00
窝艹 3.75
窝操 3.25
我草 3.25

劳资

老子 5.00
老资 3.50
老自 2.00
劳子 1.75
劳自 1.50

草泥马

艹泥马 5.00
操你妈 4.50
艹你妈 4.50
草你妈 3.75
草尼妈 3.75

Table 8: Original vs our generated top 5 homophone words and their average human evaluation scores (Avg Score)
with and without context.

Groups
FT-COMETKIWI FT-TransQuest CFT-TransQuest MTL-XLM-Vbase MTL-XLM-Rlarge

ρ r ρ r ρ r ρ r ρ r

G0 0.2617 0.3211 0.2518 0.2954 0.2853 0.3219 0.2179 0.2139 0.1958 0.1841
M1G1 0.2523 0.3014 0.2664 0.3028 0.2609 0.2987 0.2139 0.2247 0.1913 0.0076
M1G2 0.2604 0.3081 0.2725 0.3144 0.2709 0.3061 0.2475 0.2358 0.1904 0.1419
M1G3 0.2694 0.3276 0.2537 0.3019 0.2583 0.3013 0.2207 0.2070 0.1848 0.1865
M1G4 0.2770 0.3315 0.2698 0.3238 0.2380 0.2788 0.2439 0.2284 0.1915 0.1861
M1G5 0.2652 0.3100 0.2770 0.3183 0.2451 0.2806 0.2181 0.2239 0.1974 0.0935

Table 9: Original Spearman ρ and Pearson’s r correlation scores of the perturbation groups in Method 1 on
fine-tuned COMETKIWI (FT-COMETKIWI), TransQuest (FT-TransQuest) and continued fine-tuned TransQuest
(CFT-TransQuest) models and multi-task learning (MTL) models based on XLM-Vbase and XLM-Rlarge.

Groups
Mixtral 8x7B Deepseek-67B FT-Yi-34B FT-Deepseek-67B
ρ r ρ r ρ r ρ r

G0 0.1886 0.1984 0.2073 0.1338 0.3413 0.3485 0.2802 0.2469
M1G1 0.0910 -0.0625 0.1899 0.0878 0.4133 0.4223 0.2320 0.2756
M1G2 0.0755 -0.0625 0.1533 0.0609 0.2620 0.2689 0.2678 0.2444
M1G3 0.0538 0.0817 0.1977 0.1441 0.2919 0.3049 0.2619 0.2780
M1G4 0.0751 0.0310 0.0905 0.0047 0.2838 0.2825 0.3528 0.3833
M1G5 0.1218 -0.0624 0.1289 0.1342 0.1880 0.2216 0.2962 0.3305

Table 10: Original Spearman ρ and Pearson’s r correlation scores of the perturbation groups in Method 1 on LLMs
and fine-tuned (FT) LLMs as listed in Section 4.3.
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Abstract

Multi-domain text analysis presents significant
challenges, particularly in Persian name en-
tity recognition (NER). Using a single model
for multiple domains often fails to capture the
specific features of different domains. That is
why many scientists have focused on prompt-
ing chatbots for this issue. However, studies
show that these models do not achieve remark-
able results in NER tasks without proper fine-
tuning while training and storing a chatbot is
extremely costly. This paper presents a new ap-
proach using one core model with various sets
of domain-specific parameters. By using tech-
niques like LoRAs and pre-fix tuning, along
with extra layers, we train each set of train-
able parameters for a specific domain. This al-
lows the model to perform as well as individual
models for each domain. Tests on various for-
mal and informal datasets show that by using
these added parameters, the proposed model
performs much better than existing practical
models. The model needs only one instance for
storage but achieves excellent results across all
domains. This paper also examines each adap-
tation strategy, outlining its strengths, weak-
nesses, and the best settings and hyperparam-
eters for Persian NER. Lastly, this study intro-
duces a new document-based domain detection
system for situations where text domains are
unknown. This novel pipeline enhances the
adaptability and practicality of the proposed
approach for real-world applications.

1 Introduction

Named entity recognition (NER) is an essential part
of natural language processing (NLP) that helps in
many tasks like information extraction or question
answering. Recently, NER has become even more
important, thanks to the increased interest in NLP,
which gave birth to many new challenges. One of
the most pressing challenges is the adaptation of
NER models to the ever-expanding text domains.
This task becomes particularly difficult as model

Figure 1: Each set of parameters belongs to exactly
one domain but layers are often shared by a couple of
domains.

sizes and inference times increase. The dynamic
nature of natural languages coupled with the di-
verse topics and contexts, presents a formidable
challenge. Especially, for languages like Persian
since there is a huge difference between texts found
on formally written sites like Wikipedia and infor-
mally written texts from social media posts, even
when those posts are made from official pages like
universities. When we look closer, it becomes evi-
dent that models trained within a specific textual do-
main often achieve worse results when confronted
with data from other domains. This performance
gap shows that many sentences require different
entity labels based on their specific context. For
instance, consider the sentence "Tesla was robbed":
in a scientific or historical context, "Tesla" would
likely be tagged as a person, whereas in discussions
related to business or economics, or within the con-
text of a casual tweet, "Tesla" would be categorized
as an organization. This ambiguity poses one of
the primary challenges in accurately identifying
entities, particularly within specialized fields such
as medicine (Kundeti et al., 2016).

Traditionally, the preferred approach was to train
a single transformer model for all domains. The
model would be trained in a way that performs
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well in all domains. However, while we praise
these models for performing well without know-
ing the text domain, these models tend to perform
worse than models trained on a single domain. This
problem has stimulated the exploration of different
strategies to overcome the barriers posed by adapt-
ing to multiple domains in NER. An additional
challenge associated with this approach arises from
the limitation of a single model to produce out-
puts in only one format. Certain domains may
require different sets of labels, leading to the ne-
cessity for varied output formats tailored to each
domain’s needs. The adoption of multiple models
to accommodate various domains introduces sig-
nificant drawbacks, including resource-intensive
requirements such as extensive RAM and storage
constraints, as well as the time-consuming process
of training each instance. Moreover, training a
model for one task should inherently contribute to
the understanding and performance improvement
of another.

To deal with these challenges many have turned
to prompt engineering of generative models such
as OpenAI’s ChatGPT. However, studies show that
without fine-tuning, these models underperform
fine-tuned models by a large margin in many NLP
tasks such as NER (Abaskohi et al., 2024). Fur-
thermore, training these models requires a lot of
computational resources. and a huge sum of data
to train the model. This problem is extremely ex-
acerbated when we look at the languages that are
suffering from a lack of well-labeled and clean data
such as the Persian language. We delve deeper into
the details of these models in section 2.

Therefore, a novel approach is proposed. This
model offers an innovative solution to address these
challenges by leveraging adapters. We incorporate
specific parameters for each domain and create in-
dividual output layers to produce distinct outputs
for each domain. Subsequently, the added param-
eters and the output layers are trained for each
domain. Therefore, each set of these parameters
and layers is only used for certain domains. This
allows the model to perform perfectly in all do-
mains. Given access to a robust pre-trained model,
the core model is frozen; however, it can also be
trained during the training process if a pre-trained
model is unavailable, the layers are shared between
multiple domains, and the adapters are each only
used for a single domain. Remarkably, even when
facing limited data availability, we observe a signif-
icant performance boost compared to other models.

Finally, we introduce an innovative approach for
situations where the domain is unknown.

The rest of this paper is organized as follows:
section 2 gives a brief overview of the related
projects that try to solve these issues. Thereafter,
section 3 explains the proposed architecture of the
multi-Bert model and the model will be thoroughly
evaluated in section 4. Moreover, section 5 will
propose a novel pipeline that deals with the issues
that arise from not knowing the exact domain of
the texts, while section 6 concludes the paper and
section 7 talks about the future possibilities.

2 Related work

Named entity recognition has always been a pop-
ular task in NLP. Many new papers like PUnified-
NER advocate for customizing and training a gen-
erative LLM model capable of understanding di-
verse text domains and label sets (Lu et al., 2023).
By incorporating a lot of information into prompts
and leveraging extensive training data, this model
demonstrates a remarkable capability to label vari-
ous data types with diverse labels. However, other
papers focus on the development of template-free
models utilizing few-shot learning. These stud-
ies introduced models that, with a minimal set of
labeled examples (typically 16, 32, or 64), can
adeptly label texts (Wang et al., 2022; Lu et al.,
2023; He et al., 2023; Ma et al., 2022). How-
ever, these papers still fine-tuned the model. In
fact, it is shown that for some NLP tasks like NER
fine-tuning the model is a crucial step and solely
relying on prompt engineering results in subpar
results (Li et al., 2023). Furthermore, Our experi-
ments with ChatGPT on Arman and ParsTwiNER
datasets have resulted in much worse performance
compared to Bert models. This is in line with other
scientific research done with LLMs like Abaskohi’s
benchmarking of ChatGPT which achieved decent
results on tasks like question answering while get-
ting extremely low results on token classification
tasks. (Abaskohi et al., 2024).

At the forefront of Persian NER, current state-of-
the-art models include BeheshtiNER (Taher et al.,
2020) and ParsBERT (Farahani et al., 2021). a
BERT model fine-tuned for NER tasks. Recent
advancements in Persian NER have predominantly
focused on fine-tuning models to cater to diverse
domains. Outstanding examples of this strategy in-
clude ParsTwiNER (Aghajani et al., 2021), a BERT
model fine-tuned for informal and formal texts.
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However, as seen in this paper, while the model
outperforms the original ParsBert on informal text,
it underperforms on the formal dataset, Arman. An-
other example is Hengam, a BERT model tailored
for token classification in the tagging of formal and
informal texts. As seen, these models exhibit no-
table drawbacks, such as prolonged training times
and diminished performance in previous domains
when adapting to new ones. The need for more
efficient and adaptable models remains an ongo-
ing concern within the landscape of Persian NER
research.

3 The proposed method

To mitigate the challenges posed by time and size
constraints inherent in employing multiple mod-
els, a model called multi-Bert is presented. In
multi-Bert, a single pre-trained model is completely
frozen, while multiple sets of additional parame-
ters and layers are integrated into the model. This
configuration allows for the generation of diverse
results from a single model. Moreover, this design
facilitates training for specific tasks without modi-
fying the underlying base model, thereby safeguard-
ing the performance of one task from affecting an-
other. However, while the domain-specific param-
eters are completely separate from each other, we
use pre-training for each set of parameters on other
sets of data. This approach allows us to leverage
any correlating information that can aid the model’s
performance. As seen in figure 1, the model allows
the selection of task-specific parameters during in-
ference, tailoring the model’s behavior to the re-
quirements of each individual task.

A significant advantage of multi-Bert is its effi-
cient use of adapters compared to traditional fine-
tuning methods. Adapters accelerate the training
process (He et al., 2021), reducing the time re-
quired for each epoch and enabling model conver-
gence in fewer than 10 epochs. This efficiency
allows us to employ a two-step training approach:
first, pre-training one set of parameters on all avail-
able data, and then fine-tuning a copy of these pa-
rameters for each specific task of interest. By lever-
aging task-specific data, we can effectively utilize
cross-task information during fine-tuning.

To incorporate these parameters we utilize
adapters. After exploring various methods and
adapters the most effective techniques were se-
lected. The first chosen adapter is Prefix-tuning (Li
and Liang, 2021). Prefix tuning is a technique

where a small set of learnable parameters, known
as a prefix, is embedded directly into the input of
all layers of a pre-trained language model. This
allows the model to rapidly adapt to task-specific
information without the need to fine-tune all the
model parameters. The prefix acts as a continu-
ous task-specific vector that can influence the be-
havior of the model across all layers, providing a
lightweight and efficient way to customize large
language models for specific tasks. It has been
shown to achieve comparable performance to full
model fine-tuning while requiring the tuning of
only a tiny fraction of the parameters By leverag-
ing the structured nature of prompts, this approach
facilitates prompt-driven learning, a crucial aspect
in multi-domain scenarios. On the other hand, for
adapters, we employ the well-known Low-rank
adaptation method, also known as LoRA (Hu et al.,
2022). This method yields comparable results by
incorporating learnable parameters into the model
layers. LoRA focuses on preserving adaptability
without compromising the integrity of the base
model. By adding parameters to each layer with-
out introducing new ones, LoRAs have emerged
as highly reliable adapters. Their efficiency lies
in seamlessly integrating new parameters into ex-
isting layers, yielding impressive results within a
short time frame, and facilitating straightforward
merging of the new parameters with the existing
layers.

Additionally, a classification layer is introduced
based on the required number of classes. In cases
where tasks share the same output structure, both
the size of output and the specific labels, this layer
can be shared among them. Conversely, for tasks
with differing output structures, we accommodate
multiple final layers tailored to each task’s unique
requirements. This streamlined approach not only
addresses the challenges associated with multiple
models but also provides flexibility in adapting
to diverse task requirements. The effectiveness of
multi-Bert is validated through comprehensive eval-
uations utilizing various parameter addition meth-
ods and task-specific classification layers.
We use a fine-tuned core model, ParsBert which
is arguably the best pre-trained Bert model. There
are a lot of different models pre-trained for the Per-
sian language and each one can be used. However,
based on our calculations ParsBert performs the
best for the NER tasks. Therefore, ParsBert was
used in this study and due to the high performance
of this model, it was frozen throughout the training
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Figure 2: The size of the data in each domain of text greatly differs from one another, which results in massive
challenges.

steps of the multi-Bert model.

There are a few steps to train the model, firstly,
for each domain, exactly one adapter is introduced,
and for each set of adapters, that have the same
output template, a classifier header is included. Ini-
tially, one adapter is trained on all available data
associated with that classifier excluding the domain
of interest for a couple of epochs to ensure the
adapters have all the correlating knowledge from
other domains and the classifier is properly tuned.
Subsequently, this adapter is replicated across all
other adapters of the same classifier and fine-tuned
on each domain separately, until convergence and
before over fitting.

The classifier is only trained when the adapter is
being pre-trained since this step includes all of the
data associated with that particular output scheme.
Furthermore, this layer is frozen during the fine-
tuning of the adapters this helps make the overall
training to be shorter and helps preserve the knowl-
edge of the adapters from inference. After the
training process is complete, there is only one core
model with multiple headers and many domain-
specific parameters. Therefore, we have multi-
ple models each tailored for a single domain that
can perform separately while they share much of
their architecture. The subsequent section outlines
the implementation and workflow of the proposed
model, showing its efficiency and adaptability in
handling multi-domain NER tasks.

4 Evaluation and Results

The proposed model is evaluated by using three
different distinct datasets, each chosen to repre-
sent diverse unique challenges in the realm of NER
and to test the performance of our model in deal-
ing when faced with different challenges. We also
introduce important baselines to show the effective-
ness of our model. Finally, we compare the results
of all the models and discuss the hyperparameters
and advantages of prefix-tuning and LoRAs.

4.1 Datasets
To evaluate the aforementioned strategy the mod-
els are tested on three distinct datasets. For the
first two datasets, we focus on the classic formal
versus informal NER tasks, we utilize the Arman
dataset for formal entities, and ParstwiNER (Agha-
jani et al., 2021), for the informal ones. This dataset
serves as a benchmark for the adaptability of our
model across standard formal and informal con-
texts characterized by minimal noise. This is very
important since in many datasets all the text does
fall into these domains. For instance, if we have a
close look at the data on Twitter’s more established
accounts we see that many tweets are written per-
fectly and cleanly whether in a formal language
or an informal one. However, these two datasets
are extremely standard, they are both based on the
CONLL format, have 21 entity types, and lack con-
siderable errors or use of niche grammar which
makes them very similar to the majority of the text
the core model is trained on. Hence, the results on
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(a) The best score is from the blue line (b) F1 peaks at 22 and 23 and falls after that.

Figure 3: All values are F1 scores of training a pre-trained model with the adapter for 2 epochs.

these two datasets differ from when datasets with
noisy data taken from sites like Twitter are used.

That’s where the third dataset, ParsNER (Asgari,
2021), comes in, ParsNER, This dataset consists of
a huge amount of noise, whether it is words that are
tagged inconsistently or general script errors. More
importantly, the labels of this model are different
from the previous datasets with only nine tags and
a "MISC" tag that is supposed to represent any
other tag, and probably any other dataset, since it’s
not based on a standard. The data is taken from
posts on Twitter pages reflecting different topics.
Thus, the data is clustered and grouped in different
domains. These domains are extremely different
from each other and as we mentioned at the start of
the paper, the tagging will be greatly influenced by
the topic at hand as a word like "Iran" is probably a
"loc" when we are talking about travel and an "org"
when we are talking about economics. This feature
turns the differences in domain huge as we will see
in later results that models that are specialized in
the domain greatly outperform general models.

Moreover, the number of entries in each domain
differ from one another you can see the number of
entries in each domain in the figure 2. Normally,
we would not be able to share one model for this
dataset with the previous ones due to these huge
differences. Still, with multi-Bert, we will use
our model to achieve state-of-the-art results across
all of our domains and datasets to show that this
model can truly be a solution fit for all problems.
Therefore, we have two sets of data with different
outputs each one has other domains that we need
to focus on and we will show that one instance of
our model can give state-of-the-art results across
all of these domains and datasets.

4.2 Baselines

For the baseline, we introduce two models that we
expect our model to perform between them. Firstly,
our lower bound baseline is a general model that
is trained on all of the domains however since a
model cannot give outputs in two different formats
like our multi-Bert we train two general models
one for the first two datasets and another for all the
domains in the ParsNER dataset. These general
models are trained by fine-tuning our pre-trained
core model on the concatenation of all domains.
However, we also design an upper-bound baseline.
We fine-tune the core model on all of our data and
fine-tune it on a single domain, we do this twelve
times for each single domain. This is an extremely
time-consuming experiment and the result is twelve
huge models that are not a feasible solution. How-
ever, this does give us the best possible solution.
Furthermore, ChatGPT is used to tag the sentences
in the formal and informal datasets. However, a
simple prompt is used that gives the model the
desired tags and asks the model to tag each word.
Using approaches like few-shot learning or training
the model might achieve greater results but those re-
quire a huge sum of data and computational power,
that the abstinence of it, is the main problem we
are trying to solve.

4.3 Hyper-parameters setting

One of the main challenges of using adapters in
general is the complex parameters. In this paper,
we used an approach that closely resembles grid-
search. Firstly we set all parameters to every num-
ber that is apart from each other eight(4, 12, 20, e.g)
after finding the best performing sets of parameters,
we adapt the model to all possible parameters in
the range. After many experiments on our different
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Model Domains

acad art econ fun game news med it sport travel

Gen-Bert-9 82% 66% 70% 69% 78% 79% 83% 86% 81% 76%
Spec-Bert 86% 87% 93% 90% 96% 93% 95% 93% 95% 90%
Multi-lr 70% 78% 80% 86% 90% 87% 86% 83% 92% 87%
Multi-pre 90% 87% 86% 92% 91% 97% 93% 94% 93% 95%

Table 1: The F1 Scores of the general Bert is overshadowed in any domain but the difference is much more visible
in smaller domains

datasets, we came to the final conclusion that the
best number of tokens to add to our prompt is 22.
Adding fewer tokens to each input layer results in
worse performance while adding more tokens leads
to no positive change in the model performance,
if not worse, and only leads to much longer train-
ing time. For the LoRA model, we also did the
same thing but the only difference is that there are
two parameters and the result is dependent on their
combinations. Thus, Moreover, we use a batch size
of 16 with a learning rate of 0.0001 as it has proven
to give the best results.

As we see in the figure 3 the performance of
the model rises up to the 18 parameters and starts
falling significantly which makes choosing the 22
an easy choice. However, it’s a little more com-
plicated for the LoRA model since the results of
the model for each value of R or alpha are depen-
dent on the value of the other one. We came to
the conclusion that for our named entity recogni-
tion task the best combination is LoRA alpha and
r of 1 and 3 respectively. With these hyperparam-
eters, the prefix model adds 468,490 parameters,
and the LoRA model adds 136,714 parameters to
the model, which constitute 0.38% and 0.11% of
the model parameters, respectively. Since the base
model has 124 million parameters, the added pa-
rameters are less than 1% of the model parameters,
and having a few of these adapters is very low-cost.

Model parameters Save/trainable

Bert-21 117,722K 100%
Multi-Bert-lr 118,070K 0.294%
Multi-Bert-pre 119,522K 1.503%
ChatGPT 175B 100%

Table 2: Only a small percent of the parameters are
trained and saved for Multi-Bert

4.4 Training details

In this section we will discuss the details of the
models and the training procedure. The table 2
shows the number of parameters. The models were
trained on a t4x2 for 30 epochs and saved the best
model.

4.5 Results

As we see in the final results at table 3 and table
1 the general model under-performs in every do-
main. It is clear that the general model performs
better at Formal v. Informal task compared to the
10-domain task for multiple reasons. Firstly, the
data between the two classes are more even, we
see that in the second general model, the domains
with much smaller datasets are clearly forgotten
for the sake of the bigger domains. Secondly, the
more the number of our domains is, the harder
it becomes for the model to adapt to all of them.
We see that in the results of the domains that have
much less data compared to their competitors, the
model gets over-fixated on the other domains and
greatly under-performs in these domains while do-
ing relatively well in the domains with more data.
When we look at the F1 score of the specialized
models we see that even though each one of them
is trained on all of the data and specialized on a
single domain they do not outperform our model by
a huge margin, in fact, the multi-Bert with prompt-
tuning outperforms fine-tuning a model on multiple
instances by a small margin. Another important ob-
servation is that prompt-tuning outperforms LoRA
and is championed as the best way to create this
model. This is due to the problem of limited data.
Adapters require more data to train effectively. For
this simple reason, we see that LoRA gives us re-
sults close to the fine-tuned ones, but is greatly
overshadowed by prompt-tuning for the domains
with much smaller datasets.
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Figure 4: The models specialized on News, politics and economy get the tag of US right. Text from the political
domain of ParsNER. Text translation: The Saudi prince proved to be a loyal ally to the United States.

Model Arman ParstwiNER

General-Bert-21 95.2% 75.4%
Spec Bert 99.6% 81.7%
Multi-Bert-lr 99.4% 80.8%
Multi-Bert-pre 99.3% 83.1%
ChatGPT 67.8% 55.7%

Table 3: Multi-Bert achieves similar results to a whole
specialized Bert.

4.6 Discussion

So the model is getting better results, but why and
where are these improvements? To answer these
essential questions in this section the domain mod-
els are tested on a particular example from the
ParsNER dataset in the general news section. The
translation of the sentence goes "The Saudi prince
proved to be a loyal ally to the United States". The
word United States has a huge ambiguity here, if
the loyalty is to the land of the country it needs
to be labeled as "LOC", however, if the point is
to be loyal to the government of the country the
label would be "ORG". To us, humans, labeling
this sentence might not be that hard, after all from
the tone and the context we might be able to un-
derstand that the context of the sentence is politics.
But this sentence proves to be exceptionally hard
for the model, as seen in the figure 4 not only do the
travel domains get this answer wrong but general
models and others such as the ones designed for IT
news also get this sentence wrong while the mod-
els that know the context of politics, economics or
even general news get it right. This also outlines
that a small boost goes a long way as seen in some
specialized models.

5 Document-based classifier pipeline

In this section, we address the challenges posed
by the absence of domain knowledge and propose
an innovative solution to overcome this obstacle.
Fortunately, determining the domain of a given
text becomes relatively straightforward when the
text is sufficiently long or when multiple samples
are available. Nevertheless, feeding multiple sam-
ples simultaneously to a model is impractical, as it
may lead to unwanted interference among distinct
entries. To tackle this issue, we introduce a new
pipeline by fine-tuning a new set of parameters to
our core model.

To achieve this objective, we aggregate every
set of elements (for example 8 elements) and as-
sign them a label representing the domain of the
data. Subsequently, we shuffle the data from all
domains and train a new adapter for the model
with the additional parameters tailored for a text
classification task. Upon completion of the train-
ing process, we construct our pipeline as seen in
the figure 5. When employing the model for in-
ference—whether it involves tagging a series of
comments on a website, tweets within a Twitter
thread, or processing a lengthy book—we provide
512 tokens from the text to the model to find the
domain and based on the identified domain, we ap-
ply the respective parameters from the core model
to obtain the final results.

It is important to note that since we utilize the
core model already employed in our token classi-
fication tasks and entirely freeze the core model
during the classifier training, this pipeline does not
adversely impact the main token classification mod-
els. To train, we concatenate each 8 input rows as
one input. However, we only concatenate up to a
length of 512. Therefore, if the sum size of 5 ele-
ments exceeds 512 we only concatenate 5 elements
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Figure 5: One forward pass determines the domain of a set which then can be used for each single input.

and cut the first 512 tokens of it. Consequently,
each group of inputs turns into one input with the
label of the dataset they are picked from. Then,
we mix and shuffle all of the data and train and
evaluate the model on all the data.

For the formal and the informal datasets, we get
an accuracy of 100%. This is reasonable consid-
ering the distinctions between these two datasets.
However, when we look at the ParsNER dataset
we get an accuracy of 97% which is decent since
we have 8 different classes. Moreover, even if this
model fails to predict the right domain of the text, it
does not guarantee a wrong final output as the cho-
sen version may generate correct results. In fact,
the decided domain is probably extremely close
for this mix-up to happen. Hence we can use this
pipeline to use the collection of texts to decide on
their context and then process them normally one
by one.

6 Conclusions

This paper proposed the multi-Bert model. This
model is designed to perform well for all domains
with any set of outputs. This is thanks to the de-
liberate design of this model by adding parameters
for each domain and output layers for different sets
of outputs coupled with the faster training time.
This design allowed the model to perform the task
on all domains perfectly. Moreover, this paper
evaluated the proposed model on Arman (a formal
dataset), ParstwiNER (an informal dataset), and
the ParsNER, a collection of ten datasets from dif-
ferent contexts with large amounts of noise. The
results proved that this model performs as well as
the state-of-the-are for each domain, if not better.

In addition, we also proposed a pipeline that can
decide the domain of the data when a small set of
sentences are available. We observed that if we
use the model for sets of 8, it could understand
the formality of the inputs completely with a 100%
accuracy and can classify the exact domain of the
news with an astonishing accuracy of 97% for the
ParsNER dataset.

7 Future works

There is much to do in the future as this paper is
only one step toward dealing with multi-domain
problems. Firstly, creating a Multi-Bert with
the newer proposed ModernBERT might achieve
greater results (Warner et al., 2024). Secondly,
the effectiveness of chatbots should be tested in
multi-domain settings with fine-tuning. Due to
limited computational resources, we only tested
prompt engineering for generative LLMs but as
seen in other papers generative LLMs do not have
satisfying performance without proper fine-tuning
(Abaskohi et al., 2024). While no one has actually
fine-tuned these models for NER, fine-tuning these
models will probably give us better results com-
pared to smaller models like BERT. However, this
task needs a huge amount of computational power.
Last but not least, the proposed method approach
should be tested for other low-resource NLP tasks
such as question answering. Domain knowledge
becomes even more important in generative tasks
such as translation and question answering since
the generated text also needs to be in the domain
of the incoming text. However, in such research,
using BART or generative LLMs such as LLAMA
might give better results.
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Limitations

This work is limited by the smaller architectures
of the Bert model. While the smaller size and pa-
rameter count helps us fine-tune the model with
low computation power it limits the results we are
able to get compared to huge generative models.
Moreover, the proposed approach is only tested for
the Persian language and only for the NER task.
Furthermore, the tests on ChatGPT are done with
a simple prompt, while our results are in line with
some of the found research in this field engineer-
ing greater prompts or using few-shot approaches
might result in a higher F1 score. However, due
to the huge difference in performance compared
to the fine-tuned models used in this paper it is
extremely likely that any prompt would achieve a
accuracy close to the trained Bert models.
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Abstract

Named Entity Recognition (NER), a funda-
mental task in Natural Language Processing
(NLP), has shown significant advancements
for high-resource languages. However, due
to a lack of annotated datasets and limited
representation in Pre-trained Language Mod-
els (PLMs), it remains understudied and chal-
lenging for low-resource languages. To ad-
dress these challenges, we propose a data aug-
mentation technique that generates culturally
plausible sentences and experiments on four
low-resource Pakistani languages; Urdu, Shah-
mukhi, Sindhi, and Pashto. By fine-tuning
multilingual masked Large Language Models
(LLMs), our approach demonstrates significant
improvements in NER performance for Shah-
mukhi and Pashto. We further explore the ca-
pability of generative LLMs for NER and data
augmentation using few-shot learning.

1 Introduction

The performance of Named Entity Recognition
(NER) in low-resource languages faces challenges
due to the scarcity of annotated datasets and insuffi-
cient coverage in masked Large Language Models
(LLMs) (Subedi et al., 2024). Causal LLMs, on
the other hand, demonstrate their performance by
achieving moderate scores for NER (Chen et al.,
2023; Ye et al., 2023). These challenges make it
difficult to develop effective NLP applications and
highlight the need of focused effort to improve the
applicability of these models on available datasets
for low-resource languages.

Data augmentation approaches could be effec-
tive to enhance the NER datasets for low-resource
languages. One such approach is the Easy Data
Augmentation (EDA) (Wei and Zou, 2019), that
offers simple and effective techniques, including
synonym replacement, random insertion, random
swap, and random deletion (Khalid et al., 2023; Liu
and Cui, 2023; Litake et al., 2024). However, EDA

Original Sentences

Urdu: مشیر خارجہ 

Shah.: اوتھے

Sindhi: جي آدمشماري ا��ل ڇھن لکن ھئي

Multilingual Entity Clusters

PER LOC ORG

آج (افغانستان)LOC جائیں گے PER(سرتاج عزیز)

دے سیکرٹری نے خطاب کیتا ORG(پنجابی ادبی بورڈ)

(�راچيءَ)LOCان مھل

Augmented Sentences

Urdu: مشیر خارجہ 

Shah.: اوتھے

Sindhi: جي آدمشماري ا��ل ڇھن لکن ھئي

PER(ممنون حسین)

دے سیکرٹری نے خطاب کیتا ORG(لاہور آرٹس کونسل)

(لندن)LOCان مھل

آج (چین)LOC جائیں گے

Foreign adviser Sartaj Aziz will visit Afghanistan today.

The secretary of the Lahore Arts Council spoke there.

The secretary of the Punjabi Literary Board spoke there.

At that time the population of London was about six lakhs.

At that time the population of Karachi was about six lakhs.

Foreign adviser Mamnoon Hussain will visit China today.

Figure 1: Examples of clustering-based data aug-
mentation applied to three sample sentences. Entity
mentions are represented in orange, blue and green
colors.

can produce linguistically implausible text lack-
ing verbal agreement based on gender and number.
Additionally, EDA may produce out-of-context or
offensive data for culturally sensitive content. This
can affect the generalizability and learning of NER
models. We aim to enhance NER performance
for Pakistani low-resource languages by employing
effective data augmentation as shown in Figure 1.

Four Urdu sentences are shown in Fig-
ure 2, illustrating the problem of implausibil-
ity. Urdu, Shahmukhi and Sindhi require ver-
bal agreements, and augmenting entities from
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کل (لاہور آرٹس کونسل)ORG نےانٹرنیشنل ڈانس ڈے کا پروگرام منعقد کیا

The annual global religious gathering of (Minhaj-ul-Quran
Movement)ORG will be held tomorrow.

(Lahore Arts Council)ORG organized the program of
International Dance Day yesterday.

-3

-4

(مومنہ)PER گورنمنٹ گرلز ہائی سکول میں پڑھتی ہے۔ -1

(Chaudhry Muhammad Sarwar)PER has reached Lahore
this morning.

-2

(Momina)PER studies in Government Girls High School.

(تحریک منہاج القرآن)ORG کا سالانہ عالمی مذہبی اجتماع کل ہو گا۔

(چوہدری محمد سرور)PER آج صبح لاہور پہنچ گئے ہیں۔

Figure 2: Sample Urdu sentences for the analysis
of EDA. Named entities are highlighted in bold.

the sentences 1 and 2, could result in disagree-
ments. Momina (Nom.Fem.Sg) is a feminine
name that has agreement with the verb paRHtI
(study.Hab.Fem.Sg), while Chaudhry Muhammad
Sarwar (Nom.Masc.Sg) is a masculine name that
agrees with the verb gaE (go.Past.Masc.Sg.Hon).
Replacing these named entities can produce im-
plausible text; for instance, the sentence Chaudhry
Muhammad Sarwar studies in Government Girls
High School would violate the verbal agreement
rules of the language. The named entities in the
last two sentences are considered opposites within
the community, and replacing such named entities
can produce text that is very offensive to the native
community. The generated sentences remain gram-
matically correct but create contextual ambiguity.

We propose a cross-lingual data augmentation
technique by clustering named entities as shown
in Figure 1. This technique improves the quality
of culturally sensitive content and grammar of the
augmented text. We performed unsupervised entity
clustering and entity replacement by aligning clus-
ters for the source and candidate named entities of
each type. NER experiments were conducted for
low-resource settings as well as for entire datasets.
We compared the results with EDA-based and gen-
erative augmentation methods for mono- and mul-
tilingual settings by fine-tuning the Glot500 (Imani
et al., 2023) and XLM-RoBERTa (Conneau et al.,
2019) models. Shahmukhi and Pashto datasets
demonstrated significant improvements, produc-
ing F1 scores of 88.06 and 88.29 with increases of
5.53 and 1.81 points, respectively.

Zero- or few-shot learning is relevant in low-
resource scenarios where even augmented datasets
are limited in size. We explore the capabilities of
causal LLMs to perform NER and data augmenta-

tion for our low-resource languages using few-shot
learning. The key contributions of this paper are as
follows:

• We propose a novel cross-lingual augmenta-
tion technique that uses cluster dictionaries to
produce culturally and linguistically plausible
augmentations.

• We demonstrate the effectiveness of the pro-
posed technique in multilingual NER exper-
iments by utilizing cross-lingual representa-
tions.

• We provide insights into the potential of
causal LLMs to perform NER and data aug-
mentation for low-resource languages using
few-shot learning.

2 Related Work

Manually annotated corpora are crucial for achiev-
ing state-of-the-art results in NER (Mayhew et al.,
2023). Cross-lingual transfer also supports gener-
alization and enhances the performance of mod-
els (Ding et al., 2024; Mo et al., 2024; Cotterell
and Duh, 2024; Le et al., 2024; Hu et al., 2020).
Data augmentation techniques enhance the size and
learning capabilities of datasets for low-resource
languages (Litake et al., 2024; Ye et al., 2024;
Lancheros et al., 2024). For the task of NER, three
data augmentation methods are mainly used; Easy
Data Augmentation (EDA) (Wei and Zou, 2019)
and its variants, translation-based methods and gen-
erative LLMs. EDA-based techniques demonstrate
enhanced NER performance for low-resource lan-
guages (Litake et al., 2024). The data augmentation
quality can be enhanced by using contextualized
word embeddings (Torres et al., 2024) and cosine
similarity (Bartolini et al., 2022).

Data augmentation based on back-translation
has shown improvements for code-switched NER
(Sabty et al., 2021). The translation-based data aug-
mentation technique that performs cross-lingual en-
tity augmentation also improves the performance
of NER models (Liu et al., 2021; Lancheros et al.,
2024; Chen et al., 2022).

The capabilities of causal LLMs are being ex-
plored for data augmentation (Evuru et al., 2024;
Ye et al., 2024) and underlying NLP tasks such as
NER (Naguib et al., 2024; Villena et al., 2024; Lu
et al., 2024). Generative data augmentation tech-
niques have demonstrated improvements (Evuru
et al., 2024; Liu et al., 2022; Ye et al., 2024).
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Figure 3: Cluster-based data augmentation process, which contains three phases. The entity clustering
phase extracts unsupervised clusters for each entity type, alignment phase aligns cluster dictionaries with
respect to the source (original) entities and the final phase ranks the source entity mentions with the best
candidate. The original dataset corresponds to the manually annotated dataset, while the augmented
dataset is the updated version obtained through the augmentation process.

Masking-based generative methods have produced
better NER results by generating more plausible
data augmentations (Song et al., 2024).

Causal LLMs are further employed to perform
NER with zero- and few-shot learning (Naguib
et al., 2024; Villena et al., 2024) as an alternative
approach to data augmentation. These models are
also progressing in various text domains (Lu et al.,
2024; Monajatipoor et al., 2024). These advance-
ments highlight the need to investigate the capabil-
ities of these models for low-resource languages.

3 Cross-Lingual Data Augmentation

The languages selected in this work are topolog-
ically related and culturally similar. In terms of
named entities, they share similar names, loca-
tions and organizations. Given these similarities,
cross-lingual representation could be helpful in im-
proving the performance of NER for the regional
languages. Additionally, data augmentation tech-
niques have shown improvements for low-resource
languages, but EDA-based methods are blunt and
may produce culturally offensive and/or ungram-
matical sentences by replacing entities with the
other entities of the same type without any addi-
tional semantic information. Out of 100 randomly
selected sentences, 32 instances of verbal disagree-
ments and three of sensitive religious named enti-
ties were found. These percentages estimate the
occurrence of such issues in the augmented data.
To address these issues, we propose a data augmen-
tation technique that generates more sensible sen-
tences and produces competitive NER performance

for the selected low-resource languages. The next
section describes our proposed technique, followed
by descriptions of EDA-based random replacement
and generative approaches.

3.1 Cluster-basedAug.

We propose a hybrid data augmentation technique
inspired by EDA, combined with the application of
unsupervised entity clustering. The technique con-
sists of three phases; entity clustering, alignment,
and ranking as illustrated by Figure 3.

Entity Clustering Named entities were clustered
using context-free word embeddings from pre-
trained models (Grave et al., 2018; Tehseen et al.,
2023), where each word has a single embedding
regardless of its context which are helpful in clus-
tering process. We employed the K-Means clus-
tering algorithm to cluster entities based on their
embeddings and cosine similarity. While clustering
is an unsupervised method, we interpreted these
clustering representing specific categories for each
entity type. To evaluate the effectiveness of the
approach, we manually assessed the unsupervised
clustering of 200 entities for each entity type in
Urdu. The person and location types were catego-
rized into two clusters; masculine and feminine for
persons, and country/continent and city/places for
locations. In contrast, named entities from the orga-
nization type were grouped into ten clusters; enter-
tainment, financial, health/education, justice/govt,
news, politics, religious, water/electricity, abbre-
viations and miscellaneous. The accuracies for
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correctly clustered named entities were 86.0% for
persons, 87.5% for locations, and 84.5% for or-
ganizations, as determined through manual eval-
uation. The K-means clustering approach was
implemented using NLTK’s KMeansClusterer to
categorize named entity embeddings into distinct
groups. The clustering process utilized cosine dis-
tance as the similarity metric, ensuring that entities
with similar vector representations were grouped
together effectively. To enhance the stability and
robustness of the clustering process, we performed
25 repetitions. For clustering, separate dictionaries
of unique named entities were created based on the
splits of annotated training sets.

We achieve a single feature vector by averaging
the vectors for each token in an entity of the lo-
cation and organization types. However, person
names have a specific pattern in Pakistani culture.
The first name usually belongs to the individual, fol-
lowed by a family name. A feminine first name is
typically followed by a masculine name, that could
be the name of the father, tribe, caste, or creed.
For instance, in the entity mention Madiha Khalid,
Madiha is the feminine name followed by the mas-
culine name Khalid. Similarly, many names, par-
ticularly masculine names, begin with a title rep-
resenting a designation, tribe, caste, or creed. We
prepared a list of these titles to filter them out and
used first names to obtain feature vectors. This
approach improved the performance of clustering.

Alignment The prepared clusters are aligned be-
tween the source and candidate entity mentions.
The source entity refers to the original entity men-
tion in the dataset, while the candidate entity is the
one selected to replace the source entity. In the
alignment phase, the cluster ID of the source en-
tity is determined by looking it up in the manually
identified clusters. A dictionary containing unique
named entities from the corresponding cluster is
then passed to the next phase.

Ranking The ranking procedure is performed in
two steps. In the first step, an entity is selected
from a randomized cluster dictionary by computing
highest cosine similarity with respect to the source
entity mention. Unlike the clustering process, con-
textualized word embeddings from Glot500-base,
which has data coverage of all our selected lan-
guages, are used to select similar candidate entities.
This step generates five augmented sentences for
each original sentence. In the second step, micro
F1 score is computed for augmented sentences to

assess their plausibility, using Glot500-base model
fine-tuned on multilingual datasets. This pretrained
model automatically validates each generated can-
didate. The tokens of each augmented sentence are
fed into the model to predict the named entities.
The sentence with the highest F1 score is selected
to be a part of the augmented dataset. The F1 score
is computed by treating the model output as the
predicted annotation, while the manually annotated
named entities in the augmented sentence serve as
a reference in the process. We further prepared mul-
tiple augmented datasets by including one sentence
with the highest score (X1), two sentences with top
two scores (X2) and all augmented sentences with
an F1 score of 1.0.

3.2 Random Replacement (EDA-RRAug.)

The random replacement data augmentation is a
straightforward approach which is based on EDA
methods (Wei and Zou, 2019). The augmentation
process has two steps; 1) take all sentences in the
training data with labeled named entities, 2) for
each entity mention in a sentence, replace it with
a named entity of the same type. The second step
continues until all entity mentions in a sentence are
replaced randomly. As a result, a new augmented
dataset is produced, which is added to the training
set to enhance its size and diversity. This method
is simple and efficient to implement, but it may
produce contextually implausible text that could be
incorrect or offensive to the community.

3.3 GenerativeAug.

To add the contextual information in the data
augmentation, we performed generative data aug-
mentation using LLaMA3 (Touvron et al., 2023)
with few-shot learning. The approach is similar to
the entity-level augmentation proposed by Ye et al.
(2024). We employed instruction-finetuned version
of LLaMA3 (LLaMA3-8B-Instruct). We selected
LLaMA3 due to its open-access nature and strong
few-shot learning capabilities. LLaMA3 has been
trained on a diverse multilingual corpus, but its
direct exposure to Pakistani languages is limited.
However, Urdu is a widely spoken language
with significant online resources, LLaMA3
demonstrates moderate performance in generating
Urdu text. We constructed a prompt by providing
three examples containing each entity type and
instructed the model to replace entity mentions
with similar entities. The augmentation was
performed for low-resource training sets due to
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time and resource constraints. The prompt that we
used for data augmentation is given below:

You are an expert in augmenting data for
named entities for Urdu language. The in-
put contains the ORIGINAL TEXT followed
by the AUGMENTED TEXT. Perform augmen-
tation by replacing named entities with new
entities of the same type and return the AUG-
MENTED TEXT. Three examples are given for
your reference:
EXAMPLE 1:
ORIGINAL TEXT:
AUGMENTED TEXT:

4 Languages and Datasets

Pakistan is home to many widely spoken languages,
each with unique linguistic characteristics and cul-
tural significance. Urdu is the national language of
Pakistan that has 232 million speakers worldwide.
Shahmukhi (Punjabi), Sindhi, and Pashto have 67,
30 and 40 million speakers, respectively (Eberhard
and Fennig, 2024). These languages pose several
challenges for the task of NER, such as absence of
capitalization, contextual ambiguity, flexible word-
order, and agglutinating nature (Khalid et al., 2023;
Ehsan and Hussain, 2021; Ahmed et al., 2024).
The statistics of the selected datasets are shown
in Table 1. Despite the larger sample sizes in
Shahmukhi, Sindhi, and Urdu datasets, they face
limited domain coverage, incomplete NER labels,
low sentence-to-entity ratio, and noisy annotations,
underscoring their low-resource status. The MK-
PUCIT, Shahmukhi and SiNER datasets were re-
leased without validation sets; therefore, we used
10% of the train sets for validation.

Urdu: Being in the Vital category (Eberhard and
Fennig, 2024), Urdu is relatively resource-rich com-
pared to the regional languages. Several NER
datasets are available for Urdu with different data
annotations and sizes (Khana et al., 2016; Hussain,
2008; Jahangir et al., 2012; Malik, 2017). How-
ever, we experimented with Urdu-Wikiann (Rahimi
et al., 2019; Lovenia et al., 2024) and MK-PUCIT
(Kanwal et al., 2019), which are larger datasets an-
notated with coarse-grained named entities; person,
location and organization.

Shahmukhi: There is only one NER dataset
available for Shahmukhi, which has been anno-
tated using person, location, and organization types

Lang./Dataset Type Train Test Val.
PER 6,839 363 340

Urdu / LOC 6,891 334 352
Urdu-Wikiann LOC 6,891 334 352

ORG 6,759 323 327
# Sents. 20,000 1,000 1,000
PER 11,965 5,215 –

Urdu / LOC 23,880 8,380 –
MK-PUCIT ORG 8,665 3,014 –

# Sents. 24,080 16,609 –
PER 4,655 1,957 –

Punjabi / LOC 1,855 648 –
Shahmukhi ORG 538 236 –

# Sents. 13,547 5,821 –
PER 12,894 5,564 –

Sindhi / LOC 2,769 630 –
SiNER ORG 1,331 891 –

# Sents. 31,870 7,418 –
PER 32 28 39

Pashto / LOC 37 45 45
Pashto-Wikiann ORG 43 38 33

# Sents. 100 100 100

Table 1: Type-wise statistics of the datasets for
Urdu, Shahmukhi, Sindhi and Pashto.

(Ahmad et al., 2020). The quality of the dataset
was further enhanced by using the BIO annota-
tion scheme (Tehseen et al., 2023). The dataset
contained some annotation inconsistencies. To en-
sure the validity of our NER results, we manually
reviewed and corrected the annotations in one thou-
sand sentences from the test set. While this review
process was conducted to enhance the reliability of
our evaluation.

Sindhi: Ali et al. (2020) released the first
large annotated dataset for the Sindhi language
called SiNER. We experimented with three coarse-
grained entity types to make it compatible with the
other datasets.

Pashto: Pashto lacks in fundamental language
processing tools (Eberhard and Fennig, 2024). We
used the Pashto dataset from Wikiann (Rahimi
et al., 2019) that contains 100 sentences for train,
test and validation sets. Since the dataset was auto-
matically annotated and exhibited some annotation
inconsistencies, we reviewed the test set manually
to ensure valid NER results.

5 Experimental Setup

We conducted NER experiments designed to im-
prove performance for low-resource languages,
where supervised models often struggle due to lim-
ited annotated datasets. This research addresses
three key questions; 1) How effective are data
augmentation techniques to enhance NER for low-
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resource languages? 2) Do cross-lingual data rep-
resentations improve NER performance in multi-
lingual settings? 3) How does few-shot learning
compare to fully supervised models as an alterna-
tive to data augmentation? We hypothesize that
cross-lingual representations, combined with mul-
tilingual datasets improve NER results for topolog-
ically related and culturally similar languages.

5.1 NER Models and Architectures

For our NER experiments, we employed two
pre-trained multilingual masked language mod-
els: Glot500-base (Imani et al., 2023) and XLM-
RoBERTa-large (Conneau et al., 2019).

• Glot500-base supports over 500 languages
and is based on RoBERTa’s (Conneau et al.,
2019) architecture. It uses transformer-based
contextualized token embeddings and is par-
ticularly designed for low-resource languages
like Urdu, Shahmukhi, Sindhi, and Pashto.

• XLM-RoBERTa-large is another transformer-
based multilingual models that supports 100
languages, including Urdu, Sindhi, and Pashto.
It is pre-trained on massive multilingual text
corpora using masked language modeling
(MLM) objectives.

To fine-tune these models for NER, we added
a token classification layer on the top of the final
transformer layer which receives the hidden states
from the last layer of the model and computes the
multi-class probability distribution over the entity
classes for each token. This setup classifies tokens
into person, location and organization categories.

We fine-tuned both models on mono- and mul-
tilingual datasets to investigate their performance
for NER for low-resource setting by including 100,
200, 500 and 1000 train samples. Additionally,
we experimented with the data augmentation tech-
niques to further improve NER performance for
low-resource languages.

5.2 Few-Shot Learning with Causal Models

While the primary focus of this paper is on data
augmentation techniques to enhance NER perfor-
mance in low-resource languages, we also explore
few-shot learning as an alternative approach. Al-
though various causal LLMs have recently been
evaluated for the task of NER, they still struggle
to compete with state-of-the-art supervised models
(Naguib et al., 2024; Villena et al., 2024; Lu et al.,

2024). This raises a research question; how well do
these models perform in low-resource languages?

We performed NER by using a few-shot learn-
ing approach by prompting LLaMA3-8B-Instruct1

and Mistral-7B-Instruct-v0.32 which are instruc-
tion tuned. LLaMA3-8B is trained on 15 trillion
tokens with a context length of 8K. Mistral-7B also
has the same context length but its training size
is not disclosed. We created a prompt, similar to
GenerativeAug., describing details of the task by
providing three examples for each language (Ap-
pendix E). The inputs and outputs were format-
ted as sequences of texts and NER labels. For
erroneous outputs, the number of labels matching
the number of tokens in the input was selected
for evaluation. We evaluated the performance of
both causal models on 1,000 sentences from each
dataset.

6 Results and Discussion

We use micro F-scores to ensure a balanced evalu-
ation of NER performance across all entity types.
Table 2 presents Micro-F1 score for low-resource
NER experiments using monolingual and multi-
lingual data settings. The training sets contain
100, 200, 500 and 1,000 samples for each dataset.
In the multilingual settings, we combined train-
ing samples from all selected languages (Urdu,
Shahmukhi, Sindhi, and Pashto). To maintain bal-
anced representation, we ensured that each lan-
guage contributed an equal number of samples in
low-resource scenarios. The results are presented
from fine-tuned Glot500-base and XLM-RoBERTa-
large models. Similarly, Table 3 shows NER results
for the entire datasets. The training samples in all
augmented datasets were doubled in one iteration,
and the NER results are presented after this itera-
tion. Further analysis from multiple iterations is
presented in the Appendix C.

Our data augmentation technique improved NER
results for low-resource languages by reducing the
generation of grammatically implausible and cul-
turally offensive content. The augmentation tech-
nique helps maintain semantics and cultural ap-
propriateness, that highly impacted the model per-
formance. The model trained on the augmented
datasets demonstrated higher generalizability due
to less exposure to the contextually implausible in-

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

2https://huggingface.co/mistralai/Mistral-7B-v0.3
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Monolingual Settings Glot500-base XLM-RoBERTa-large
Dataset Augmentation 100 200 500 1000 100 200 500 1000

Urdu-Wikiann

Original dataset 70.93 77.23 83.51 80.24 72.77 71.21 84.21 87.21
GenerativeAug. 77.13 79.29 84.24 86.81 79.66 83.85 85.01 85.50
EDA-RRAug. 74.87 77.42 84.57 85.87 71.75 80.27 82.79 85.84
Cluster-basedAug. 76.62 81.00 83.78 85.31 75.24 80.79 84.30 85.97

Shahmukhi

Original dataset 59.62 65.27 71.92 75.44 53.67 59.44 70.65 75.58
GenerativeAug. 53.83 62.45 69.85 74.89 58.81 58.64 66.96 74.68
EDA-RRAug. 58.44 63.98 70.34 73.87 51.95 64.75 72.40 75.32
Cluster-basedAug. 60.78 68.03 73.17 77.11 59.61 65.89 74.19 77.40

SiNER

Original dataset 62.25 69.61 75.82 80.27 73.63 78.16 81.22 82.80
GenerativeAug. 53.76 60.64 69.09 73.76 64.12 71.58 73.81 77.09
EDA-RRAug. 64.69 72.29 73.50 72.65 75.40 75.22 80.01 83.00
Cluster-basedAug. 65.64 71.17 76.88 79.46 74.27 75.96 81.60 84.48

Pashto-Wikiann

Original dataset 32.86 – – – 44.24 – – –
GenerativeAug. 45.66 – – – 45.26 – – –
EDA-RRAug. 45.75 – – – 48.92 – – –
Cluster-basedAug. 48.54 – – – 50.00 – – –

Multilingual Settings Glot500-base XLM-RoBERTa-large
Dataset Augmentation 100 200 500 1000 100 200 500 1000

Urdu-Wikiann

Original dataset 73.12 74.82 84.45 84.90 63.32 78.25 82.33 80.97
GenerativeAug. 78.92 79.67 84.16 85.77 77.78 80.93 82.07 85.43
EDA-RRAug. 72.75 77.43 83.04 83.98 79.13 78.70 81.10 82.02
Cluster-basedAug. 76.83 82.25 84.35 85.34 78.60 79.49 81.14 83.21

Shahmukhi

Original dataset 65.33 69.21 75.84 79.38 56.87 67.85 72.27 76.66
GenerativeAug. 64.32 68.45 74.46 77.45 65.69 69.23 74.68 78.21
EDA-RRAug. 66.23 69.34 74.48 78.32 65.90 69.44 75.86 77.26
Cluster-basedAug. 68.88 73.47 77.51 80.01 67.83 71.38 73.79 78.90

SiNER

Original dataset 62.35 67.78 73.85 78.83 67.37 74.02 76.42 79.23
GenerativeAug. 58.53 65.30 71.78 73.59 56.76 68.78 75.19 76.96
EDA-RRAug. 64.72 69.71 74.30 77.84 69.79 74.48 76.06 79.77
Cluster-basedAug. 66.76 73.22 76.26 79.61 71.99 75.24 78.40 80.45

Pashto-Wikiann

Original dataset 62.26 67.68 73.68 78.58 67.01 73.79 76.22 78.96
GenerativeAug. 58.51 65.19 71.62 73.43 65.68 68.66 74.98 76.73
EDA-RRAug. 64.66 69.53 74.12 77.59 69.60 74.32 75.86 79.53
Cluster-basedAug. 66.63 73.12 76.05 79.35 71.78 74.98 78.17 80.21

Table 2: Micro-F1 scores of fine-tuned multilingual Glot500-base and XLM-RoBERTa-large models
for NER in low-resource settings. The results of the cluster-based augmentation are compared against
the original training set, generative augmentation from LLaMa3 (GenerativeAug.) and EDA - Random
Replacement (EDA-RRAug.).

formation. This confirms that grammatically and
contextually inappropriate data can degrade the
model performance by introducing noise and re-
ducing its ability to generalize effectively. The
following paragraphs present a comparison of data
augmentation techniques for each dataset.

Urdu-Wikiann The Urdu-Wikiann dataset
demonstrates inconsistent performance for differ-
ent augmentation techniques, which is caused by
three main reasons. First, Urdu is a resource-rich
language compared to the other three regional
languages and fine-tuning using cross-lingual
data augmentation enhances its diversity, but does
not significantly impact NER results due to the
large size of the dataset. Second, causal LLMs,
such as LLaMA3 have better support for Urdu
compared to the other three languages as Urdu
dataset shows improvements using GenerativeAug.

method. Third, the Urdu-Wikiann dataset is an
automatically annotated dataset that may have
some inconsistencies (Mayhew et al., 2023)
which can limit the effectiveness of cross-lingual
augmentation.

Shahmukhi The Shahmukhi dataset demon-
strates consistent performance with cluster-based
data augmentation as the proposed method gener-
ates plausible augmentations that leads to improved
results. The fine-tuned XLM model produced a
state-of-the-art F1 score of 88.06 in multilingual set-
tings using the BIO annotation scheme, which out-
performs the previous best score of 75.55 (Tehseen
et al., 2023).

However, GenerativeAug. decreased NER perfor-
mance for Shahmukhi. The causal model produced
various augmentations that violated entity types,
resulting in incorrect labeling. The low scores in-
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Monolingual Settings Glot500-base XLM-RoBERTa-large
Dataset Augmentation Precision Recall F1 Score Precision Recall F1 Score

Urdu-Wikiann
Original dataset 95.46 95.86 95.66 95.80 96.75 96.28
EDA-RRAug. 94.89 96.38 95.63 96.08 96.08 96.08
Cluster-basedAug. 94.51 94.61 94.56 93.97 94.34 94.16

Shahmukhi
Original dataset 79.12 73.92 76.44 80.77 73.40 76.91
EDA-RRAug. 85.58 76.96 81.04 85.55 79.76 82.55
Cluster-basedAug. 84.04 82.23 83.13 86.52 78.71 82.43

SiNER
Original dataset 90.50 85.69 88.03 88.78 89.12 88.95
EDA-RRAug. 88.66 87.88 88.27 88.14 90.10 89.11
Cluster-basedAug. 87.49 88.82 88.15 87.50 89.68 88.58

Pashto-Wikiann
Original dataset 51.55 32.29 39.71 49.74 38.86 43.63
EDA-RRAug. 46.45 47.77 47.10 48.19 53.45 50.68
Cluster-basedAug. 43.93 46.96 45.40 54.23 46.54 50.09

Multilingual Settings Glot500-base XLM-RoBERTa-large
Dataset Augmentation Precision Recall F1 Score Precision Recall F1 Score

Urdu-Wikiann
Original dataset 95.93 96.38 96.16 96.09 96.43 96.26
EDA-RRAug. 96.10 96.75 96.42 95.02 95.58 95.30
Cluster-basedAug. 96.07 96.18 96.12 96.23 96.28 96.25

Shahmukhi
Original dataset 83.63 80.70 82.14 83.36 81.71 82.53
EDA-RRAug. 87.98 83.43 85.64 88.51 83.62 86.00
Cluster-basedAug. 89.03 85.50 87.22 89.29 86.85 88.06

SiNER
Original dataset 87.99 84.82 86.37 87.12 86.35 86.73
EDA-RRAug. 88.01 86.91 87.46 90.52 86.33 88.38
Cluster-basedAug. 89.19 86.69 87.92 89.33 87.80 88.56

Pashto-Wikiann
Original dataset 87.78 84.63 86.18 86.77 86.18 86.48
EDA-RRAug. 87.51 86.72 87.12 90.15 85.94 88.00
Cluster-basedAug. 89.00 86.29 87.62 89.14 87.45 88.29

Table 3: Micro-F1 scores of fine-tuned multilingual Glot500-base and XLM-RoBERTa-large models
for complete datasets. The results of the cluster-based augmentation are compared against the original
training sets and EDA - Random Replacement (EDA-RRAug.). Improved scores are highlighted in bold.

dicate that multilingual causal LLMs have limited
support for low-resource languages. The cluster-
based data augmentation technique outperformed
other two augmentation methods in both monolin-
gual and multilingual experiments.

SiNER For the Sindhi dataset, the cluster-based
cross-lingual augmentation improved NER results
in a multilingual setting by utilizing cross-lingual
representations. This approach introduced linguis-
tic variation and diversity that enhanced the models’
ability to generalize. For the entire dataset, EDA-
RRAug. demonstrated improved results by adding
cross-lingual entities that enriched the training set,
making it a suitable augmentation technique for
Sindhi in a monolingual training setup. However,
GenerativeAug. had a negative impact on all low-
resource training sets, highlighting limited capabil-
ities of causal LLMs for low-resource languages.
Sindhi’s use of Arabic script with additional unique
letters, unlike Urdu, Shahmukhi, and Pashto, may
negatively impact multilingual fine-tuning

Pashto-Wikiann The Pashto-Wikiann dataset
demonstrates significant improvements with data
augmentation techniques, especially in a multilin-

gual setup, except for GenerativeAug.. The best
reported F1 score for Pashto is 82.0 achieved from
an HMM-based tagger (Momand et al., 2020). By
using cluster-based augmentation, the multilingual
fine-tuned Glot500 and XLM models produced F1
scores of 87.62 and 88.29, respectively. However,
these findings should be interpreted with caution
due to the small size of the training and evaluation
sets, which may limit the generalizability of the
results.

Few-Shot Learning Table 4 presents NER results
obtained from causal LLMs using few-shot learn-
ing. The performance of both LLaMA-3-8B and
Mistral-7B on low-resource languages is not re-
markable. LLaMa-3 performed better for Shah-
mukhi; however, its performance on Urdu, a rel-
atively high-resource language, is quite low. The
few-shot NER results indicate that causal LLMs are
still far behind in NER for low-resource languages.

6.1 Limitations

Despite demonstrating significant advantages in
the application of cross-lingual data augmentation,
this study has a few limitations. The Shahmukhi,
SiNER and MK-PUCIT datasets contain some an-
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LLaMA-3-8B-Instruct
Dataset Precision Recall F1 Score
Urdu-Wikiann 20.13 24.26 22.00
Shahmukhi 74.63 72.06 73.32
SiNER 39.98 48.66 43.89
Pashto-Wikiann 48.46 56.76 52.28

Mistral-7B-Instruct-v0.3
Dataset Precision Recall F1 Score
Urdu-Wikiann 42.54 45.29 43.87
Shahmukhi 41.49 47.13 44.13
SiNER 27.02 38.40 31.72
Pashto-Wikiann 47.29 54.95 50.83

Table 4: Micro-F1 scores by few-shot learning NER
from LLaMA3-8B-Insruct and Mistral-7B-Instruct-
v0.3. Both models have been evaluated for 1,000
sentences from each dataset except Pashto-Wikiann
that has only 100 samples.

notation inconsistencies and errors that affect the
overall performance of the models. Furthermore,
the cluster-based data augmentation technique used
entity clusters by employing an unsupervised clus-
tering algorithm. The accuracy of the clustering
process poses a limitation on the quality of the
augmentation. Future work should focus on im-
proving the annotation quality and consistency of
such datasets.

7 Conclusion

This study explored various data augmentation
techniques and their effect on the task of NER
for low-resource languages. We used pre-trained
LLMs on mono- and multilingual setups. Our find-
ings highlight that cluster-based data augmenta-
tion improves NER performance for Shahmukhi,
Sindhi and Pashto datasets by incorporating lin-
guistically plausible text and cross-lingual diversity.
Urdu-Wikiann, an automatically annotated dataset,
does not take advantage of cross-lingual augmen-
tations. Generative augmentation shows improved
results on Urdu, while have a negative impact on
the other three regional languages. Few-shot learn-
ing with causal models reveal their current limi-
tations for low-resource languages when used for
data augmentation and NER. Overall, the research
emphasizes the potential of hybrid data augmenta-
tion techniques to enhance NER performance for
low-resource languages.
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A MK-PUCIT Dataset

The MK-PUCIT dataset was released with IO
(Inside-Outside) annotation that has some anno-
tation inconsistencies and errors. We converted it
to the BIO (Begin-Inside-Outside) scheme auto-
matically. For missing annotations, we extracted
dictionaries with unique entities for each entity
type from the training set and mapped the miss-
ing annotations throughout the dataset. After the
mapping process, there was an overall increase of
19.9% in entity mentions for the train set and an
increase of 13.8% for the test set. This highlights a
significant number of missing annotations. Table 1
presents the updated statistics of the MK-PUCIT
dataset.

We performed NER experiments by fine-tuning
the Glot500 model and compared the results with
different versions of the dataset in mono- and multi-
lingual settings. Table 5 shows NER results for the
MK-PUCIT. The original dataset, after conversion
from IO to BIO scheme, performs with a micro
F1 score of 68.47. By performing the entity map-
ping for missing annotations, its performance was
enhanced by 8.69 points, which is a significant im-
provement. Its performance remains in the same
range in a multilingual setup. F1 scores for the
other three languages are lower compared to Urdu-
Wikiann, therefore, we selected the Urdu-Wikiann
dataset for multilingual NER experiments in this
study.

Monolingual NER
Dataset Precision Recall F1 Score
MK-PUCITOriginal 74.27 63.51 68.47
MK-PUCITMapped 81.14 73.56 77.16
MK-PUCITCombined 83.26 72.27 77.37
Shahmukhi 81.89 74.75 78.15
SiNER 81.44 79.76 80.59
Pashto-Wikiann 81.32 79.62 80.46

Table 5: NER results by fine-tuning Glot500-base
on the MK-PUCIT dataset. The fine-tuned model
has been trained on; 1) original dataset after con-
version from IO scheme to BIO, 2) with entity
mapping for missing annotations, 3) multilingual
setup by combining datasets of four languages.

B Dataset Analysis

To investigate the capability of pre-trained models
to generalize cross-lingual entity representations,
we analyzed the ratio of named entities which are
common in both training and test sets. The main
objective of this analysis is to determine whether

the models are only memorizing seen examples or
if they are improving generalization in multilingual
training setup?. Table 6 shows type-wise presence
of entity mentions from the test sets in the training
sets. The analysis is given for both, mono- and mul-
tilingual datasets. All four datasets demonstrate a
minor increase in seen examples from monolingual
to multilingual datasets. The small increase in the
ratio of seen entities is evident that the models en-
hance their learning by generalization and produce
better NER results in multilingual setups.

C Augmentation Analysis

The cluster-based data augmentation has been per-
formed to produce enhanced datasets with multiple
iterations. The X1 iteration shows a single pass of
augmentation, X2 iteration depicts two passes, and
so on. In this section, we present an experimen-
tal analysis of the cluster-based augmentation with
respect to different augmentation iterations.

Table 7 presents the NER results from the fine-
tuned Glot500 model with mono- and multilingual
low-resource data settings. The micro F1 scores
are compared against one and two iterations. The
Urdu-Wikiann dataset demonstrates some improve-
ments for X_2 in the monolingual setup using 100
and 200 samples. However, there is a decrease in
the performance in multilingual experiments for
all the other training sets. Similarly, Shahmukhi
shows improved performance in monolingual setup
and performance degradation in multilingual train-
ing. The SiNER and Pashto-Wikiann datasets also
follow the similar trend for low-resource training
splits.

Table 8 further shows NER results after fine-
tuning on the entire datasets. In monolingual exper-
iments, SiNER shows a subtle increase in scores
with X_2 iterations in both mono- and multilingual
setups. However, all the other datasets demonstrate
performance degradation with the increase of it-
erations of data augmentations. Based on these
NER results, we presented results and comparisons
against one iteration of data augmentation in the
results section of the paper.

Additionally, we compared the data augmen-
tation method by selecting all correct sentences
from the top five candidates with one and two it-
erations. Table 9 shows the comparison for low-
resource settings. In the low-resource datasets,
Urdu-Wikiann and Shahmukhi datasets perform
better for only 100 samples for both mono- and mul-
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Monolingual Datasets
Urdu-Wikiann Shahmukhi SiNER Pashto-Wikiann

PER 254, 82.2% 482, 48.59% 555, 32.04% 3, 10.71%
LOC 102, 30.82% 140, 52.83% 115, 28.97% 5, 12.5%
ORG 234, 77.74% 66, 42.86% 57, 22.62% 8, 23.53%
Total 590, 62.69% 688, 48.75% 727, 30.53% 16, 15.68%

Multilingual Datasets
Urdu-Wikiann Shahmukhi SiNER Pashto-Wikiann

PER 255, 82.52% 507, 51.11% 559, 32.27% 6 21.43%
LOC 106, 32.02% 151, 56.98% 116, 29.22% 11 27.5%
ORG 234, 77.74% 69, 44.81% 57, 22.62% 9 26.47%
Total 595, 63.23% 727, 51.52% 732, 30.74% 26, 25.49%

Table 6: Analysis of presence of named entities of test sets in monolingual and multilingual training sets.

Monolingual Setup 100 200 500 1000
Datasets X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_2
Urdu-Wikiann 76.62 76.48 81.00 82.32 83.78 83.13 85.31 84.73
Shahmukhi 60.78 62.24 68.03 68.79 73.17 73.03 77.11 78.15
SiNER 65.64 65.66 71.17 70.84 76.90 78.67 79.46 79.77
Pashto-Wikiann 48.54 48.51 – – – – – –

Multilingual Setup 100 200 500 1000
Datasets X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_2
Urdu-Wikkiann 76.83 70.81 82.25 74.75 84.35 81.79 85.34 84.27
Shahmukhi (1k) 68.88 65.55 73.47 70.59 77.51 75.56 80.01 79.52
Sindhi 66.76 68.77 73.22 71.72 76.26 75.89 79.61 79.01
Pashto 66.63 68.67 73.12 71.60 76.05 75.68 79.35 78.81

Table 7: Micro-F1 scores by fine-tuning Glot500-base on low-resource multilingual datasets by using data
augmentation with one (X_1) and two (X_2) iterations.

tilingual experiments. The other data splits start
performance degradation. SiNER demonstrates
some improvements for 1,000 sentences in mono-
lingual experiment and for 100 train samples for
multilingual setup. The performance degradation
is observed for all the other training sets. Pashto-
Wikian is a smaller dataset that contains only 100
sentences and it shows improvements by learning
cross-lingual representations in multilingual setup.

We further compared the results by selecting
all correct sentences for entire datasets as shown
in Table 10. The F1 score for Urdu-Wikiann re-
mains in the same range for monolingual training
but deceases significantly in the multilingual train-
ing setup. However, F1 scores for Shahmukhi and
Sindhi are quite low compared to X_1 and X_2
iterations. Pashto-Wikiann shows the similar be-
haviour.

The Shahmukhi and SiNER datasets were fur-
ther analyzed for one, two and three augmentation
iterations for low-resource monolingual settings
as shown in Table 11. Shahmukhi shows improve-
ments by training with three iterations. However, in
the multilingual setup, it shows performance degra-
dation when adding more augmented sentences (Ta-
ble 10). On the other hand, SiNER performs with
mixed results but it also demonstrates decreased

performance in multilingual training setup with in-
creased data augmentation iterations. Based on
these analysis, augmentation with one iteration
produces optimal performance for Urdu-Wikiann,
Shahmukhi, SiNER and Pashto-Wikiann datasets.
Therefore, in the main paper, we presented the re-
sults achieved by using one iteration of the cluster-
and EDA-based data augmentation methods for all
the selected datasets.

Table 12 presents the F1 scores for Shahmukhi
and SiNER Few-Shot experiments with five differ-
ent randomly selected training sets to analyze the
variation in scores across datasets. Pashto-Wikiann
is a small dataset with only 100 instances, and our
data augmentation technique does not perform well
on Urdu-Wikiann; therefore, we experimented only
on the Shahmukhi and SiNER datasets. Shahmukhi
exhibits a consistent trend across all Few-Shot set-
tings, with a mean score closely aligning with the
actual scores. However, SiNER, on the other hand,
demonstrates higher variance for to the smaller
number of examples.

D Hyperparameters

In the fine-tuning process, the learning rate of 2e-5
was used along with the AdamW optimizer. The
batch size was set to 8, which helped to maintain
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Monolingual Setup X_1 X_2
Datasets Precision Recall F_1 Precision Recall F_1
Urdu-Wikiann 94.51 94.61 94.56 93.75 94.14 93.94
Shahmukhi 84.04 82.23 83.13 82.33 82.20 82.27
SiNER 87.49 88.82 88.15 88.91 88.01 88.48
Pashto-Wikiann 52.08 45.45 48.54 58.46 41.45 48.51
Multilingual Setup X_1 X_2
Datasets Precision Recall F_1 Precision Recall F_1
Urdu-Wikiann 96.07 96.18 96.12 94.76 95.70 95.23
Shahmukhi 89.03 85.50 87.22 86.83 86.08 86.45
SiNER 89.19 86.69 87.92 88.16 88.01 88.08
Pashto-Wikiann 89.00 86.29 87.62 87.85 87.54 87.69

Table 8: Micro-F1 scores by fine-tuning Glot500-base on multilingual setting for the entire datasets by
using data augmentation with one (X_1) and two (X_2) iterations.

Train Size Iteration Urdu-Wikiann Shahmukhi SiNER Pashto-Wikiann
Monolingual Setup

100
X_1 76.62 60.78 65.64 48.54
X_2 76.48 62.25 65.66 48.51
All correct 72.31 64.39 65.27 49.78

200
X_1 81.00 68.03 71.17 –
X_2 82.32 68.79 70.84 –
All correct 81.18 67.85 71.46 –

500
X_1 83.78 73.17 76.88 –
X_2 83.13 73.03 78.67 –
All correct 84.57 73.87 76.00 –

1000
X_1 85.31 77.11 79.46 –
X_2 84.73 78.15 79.77 –
All correct 81.76 77.16 80.98 –

Multilingual Setup

100
X_1 76.83 66.88 66.76 66.63
X_2 70.81 65.55 68.77 68.67
All correct 79.10 67.85 64.89 64.84

200
X_1 82.25 73.47 73.22 73.12
X_2 74.75 70.59 71.72 71.60
All correct 79.58 71.55 72.84 72.70

500
X_1 84.35 77.51 76.26 76.05
X_2 81.79 75.56 75.89 75.68
All correct 81.49 76.00 77.03 76.86

1000
X_1 85.34 80.01 79.61 79.35
X_2 84.27 79.52 79.01 78.81
All correct 85.03 79.13 79.18 79.53

Table 9: Micro-F1 scores by fine-tuning Glot500-base on monolingual and multilingual low-resource
datasets by using data augmentation with one (X_1) and two (X_2) iterations and all correct from top five
augmentations.
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Monolingual Setup
Dataset X_1 X_2 All correct
Urdu-Wikiann 94.56 93.94 94.58
Shahmukhi 83.13 82.27 81.79
SiNER 88.15 88.48 86.84
Pashto-Wikiann 48.54 48.51 49.78

Multilingual Setup
Urdu-Wikiann 96.12 95.23 91.82
Shahmukhi 87.22 86.45 83.42
SiNER 87.92 88.08 84.82
Pashto-Wikiann 87.62 87.69 84.52

Table 10: Micro-F1 scores by fine-tuning Glot500-base on monolingual low-resource datasets by using
data augmentation with one (X_1) and two (X_2) iterations and all correct from top five augmentations.

Train Size Iteration Shahmukhi SiNER

100
X_1 60.78 65.64
X_2 62.25 65.66
X_3 61.85 65.03

200
X_1 68.03 71.17
X_2 68.79 70.84
X_3 70.35 70.38

500
X_1 73.17 76.88
X_2 73.03 78.67
X_3 73.89 75.98

1000
X_1 77.11 79.46
X_2 78.15 79.77
X_3 77.68 80.53

Table 11: Micro-F1 scores by fine-tuning Glot500-base on monolingual low-resource datasets by using
data augmentation with one (X_1), two (X_2) and three (X_3) iterations.

memory and training efficiency. The models were
fine-tuned by setting various number of epochs for
low-resource datasets depending on the training
samples. Early stopping was further implemented
based on the micro F1 score on the validation set.
The maximum sequence length was set to 100 to-
kens. These hyperparameters ensured optimal per-
formance of the models.

E Few-Shot NER - Prompt

You are an expert in identifying named entities for
language. The INPUT contains text followed by an
OUTPUT sequence of BIO labels. Perform named
entity recognition and return the labels. Three ex-
amples are provided for your reference:
EXAMPLE 1:
INPUT: Foreign advisor Sartaj Aziz will visit
Afghanistan today.
OUTPUT: O O B-PER I-PER O O B-LOC O.
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Shahmukhi
RUNs 100 200 500 1000
Run 1 62.12 66.04 72.05 76.69
Run 2 60.77 67.00 71.47 75.45
Run 3 60.49 65.86 72.62 77.15
Run 4 61.81 64.85 73.36 77.23
Run 5 62.58 67.33 72.05 74.98
Mean 61.55 66.22 72.31 76.30
Variance 0.7963 0.9698 0.5098 1.0511
Standard Deviation 0.8924 0.9848 0.7140 1.0252

SiNER
RUNs 100 200 500 1000
Run 1 64.81 70.40 75.83 77.78
Run 2 60.54 66.62 75.21 79.32
Run 3 63.40 65.89 74.94 76.81
Run 4 63.67 69.44 74.57 78.74
Run 5 64.65 69.86 73.55 79.45
Mean 63.41 68.44 74.82 78.42
Variance 2.9505 4.1682 0.7155 1.2437
Standard Deviation 1.7177 2.0416 0.8458 1.1152

Table 12: Mean, variance, and standard deviation by fine-tuning Glot500-base for Shamukhi and SiNER
Few-Shot settings on five randomly selected train sets.
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Abstract

Automated content moderation for collabora-
tive knowledge hubs like Wikipedia or Wiki-
data is an important yet challenging task due to
multiple factors. In this paper, we construct a
database of discussions happening around arti-
cles marked for deletion in several Wikis and
in three languages, which we then use to evalu-
ate a range of LMs on different tasks (from
predicting the outcome of the discussion to
identifying the implicit policy an individual
comment might be pointing to). Our results
reveal, among others, that discussions leading
to deletion are easier to predict, and that, sur-
prisingly, self-produced tags (keep, delete or
redirect) don’t always help guiding the classi-
fiers, presumably because of users’ hesitation
or deliberation within comments1.

1 Introduction

Wikipedia and its sister Wikis play an indispensable
role as a collaborative knowledge source, and are
widely used by students (Selwyn and Gorard, 2016)
and the general public (Singer et al., 2017; Lem-
merich et al., 2019) alike. They fulfill use cases that
range from core knowledge go-tos, as well as “free”
supporting documentation for content providers
and search engines (e.g., Google2 or YouTube3).
However, due to their size and, most importantly,
their collaborative nature, ensuring high quality in
these platforms is challenging, especially given the
need to “map” content to existing policies at least
semi-automatically (Ribeiro et al., 2022). This
is particularly relevant in the GenAI era, as AI-
generated content has proliferated throughout the
Internet (Brooks et al., 2024).

1Dataset available at: https://huggingface.co/
datasets/hsuvaskakoty/wider.

2https://en.wikipedia.org/wiki/Relationship_
between_Google_and_Wikipedia

3https://support.google.com/youtube/answer/
7630512?hl=en

Figure 1: Example of a Deletion Discussion in English
Wikipedia

More generally, content moderation in online
platforms is often the outcome of group coordina-
tion and communication (Chidambaram and Tung,
2005; Jensen and Scacchi, 2005; Butler et al.,
2008). Unsurprisingly, NLP plays an important
role in automating this process. For example, Sing-
hal et al. (2023) defined a framework for social
media moderation as a function of community
guidelines, policy enforcement and violation de-
tection. Some prominent examples of works con-
nected with such a framework are: policy based
content moderation in Facebook (Sablosky, 2021),
rule-breaking behavior analysis on Reddit (Chan-
drasekharan et al., 2018), and topic based con-
tent moderation discourse on X (Alizadeh et al.,
2022). In the case of Wikis, both the guidelines
and the rules that govern the quality of their content
are maintained by contributions from the commu-
nity (Seering, 2020), where discussion-based ap-
proaches towards content moderation are the norm.
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Task Lang. Platform Label Set

Outcome
Prediction

En

Wikipedia delete, keep, redirect, no-consensus, merge, speedy keep, speedy delete,
withdrawn

Wikidata-ent. delete, keep, merge, redirect, no-consensus, comment
Wikidata-pr. delete, keep, no-consensus
Wikiquote delete, keep, redirect, merge, no-consensus
Wikinews delete, keep, speedy delete, comment

Es Wikipedia borrar (delete), mantener (keep), fusionar (merge), otros (others)
Gr Wikipedia Διαγραφή (delete), Διατήρηση (keep), Δεν υπάρχει συναίνεση (no-

consensus)
Stance
Detection

En Wikipedia delete, keep, merge, comment

Policy
Prediction

En Wikipedia Wikipedia:Notability, Wikipedia:What Wikipedia is not, Wikipedia:No
original research, Wikipedia:Verifiability, Wikipedia:Arguments to
avoid in deletion discussions, Wikipedia:Biographies of living persons,
Wikipedia:Criteria for speedy deletion, Wikipedia:Articles for deletion,
Wikipedia:Wikipedia is not a dictionary, Wikipedia:Deletion policy

Table 1: Label set for the different tasks and datasets we consider in this paper (Outcome, Stance, and Policy), for
three languages (English: En, Spanish: Es, and Greek: Gr) and five (4+1) platforms (Wikipedia, Wikidata-Entity
(ent.) and Property (pr.), Wikinews, and Wikiquote).

The way this generally works is that, given an arti-
cle flagged by a community member, users justify
their stance towards it and its adherence to the poli-
cies, and then editors act. However, manual efforts
to clear the backlog are insufficient. Therefore,
NLP techniques for predicting the outcome of a
deletion discussion, or for capturing a user’s stance
towards a specific article are critical (Mayfield and
Black, 2019b; Kaffee et al., 2023). Despite this
need, there is a surprising lack of work beyond
Wikipedia, and there is almost no published work
that looks at non-English languages (with the ex-
ception of Kaffee et al. (2023)). Moreover, in-depth
comparative analyses of parameter-efficient tech-
niques have also been so far largely unexplored.

We therefore aim to address all of the above with
an analysis on a novel collection of deletion discus-
sions, in three languages and four platforms. These
discussions come, if resolved, alongside the dis-
cussion outcomes (generally speaking, suggesting
to keep or delete the article, although the actual
outcome tags are more fine grained than this), with
individual comments having their own stance and
referring to specific policies Kaffee et al. (2023).
Our classification experiments set strong baseline
results for the community to build upon, and pro-
vide insights into these community-led activities.

2 Tasks and dataset Construction

We consider three tasks, namely (1) Outcome pre-
diction - given a full discussion around an article

Language Platform Total

en

Wikipedia 18,528
Wikidata-entities 355,428
Wikidata-properties 498
Wikinews 91
Wikiquote 695

es Wikipedia 3,274
gr Wikipedia 392

Table 2: Overall number of deletion discussions per lan-
guage and platform in the outcome prediction dataset.

marked for deletion, predict the final decision; (2)
Stance detection, i.e. given an individual com-
ment, determine its stance towards the decision to
be made for that article; and (3) Policy predic-
tion, where again, given one single comment, we
want to determine the policy that comment is most
likely be referring to (Figure 1 shows an exmaple).
We build a novel dataset for outcome prediction,
while for the other two tasks we largely rely on the
dataset from Kaffee et al. (2023) (although with
some important modifications to enable the goal
of this paper, namely an in-depth analysis). We
provide more detail about these datasets in the fol-
lowing subsections.

2.1 Outcome Prediction

We retrieve and clean deletion discussions program-
matically4 for three different languages and four

4We use the WIDE-ANALYSIS toolkit:
https://pypi.org/project/wide-analysis/ (Borkakoty and
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Platform Language Example title Discussion (truncated) Outcome

Wikipedia en Beast Poetry
Editor 1: Keep in one form or another.
Editor 2: One option could be to re-frame the article
to be about the book.

Keep

Wikidata-Ent en Q28090948 Editor 1: no description : Vandalism. Delete

Wikidata-Prop en JMdict sequence number
(P11700)

Editor 1: Deleted - ( ) Support I assume no
comments have been made because this is a clear
case to delete...

Delete

Wikinews en Mugalkhod Jeedga Mutta or-
ganizes mass marriage in
Belgaum, India

Editor 1: There is no further meaningful work on
the article.
Editor 2: All advice ignored, kill it with cleansing
fire and stop wasting time.

Speedy delete

Wikiquote en 3rd Rock From The Sun

Editor 1: Two reasons to delete this:
- It is a copy of about half of quotes on IMDB
- 3rd Rock from the Sun is a different article.
Editor 2: Merge, perhaps with some trimming.

Merge

Wikipedia-Es es Héroes: El legado de la
Evolución

Editor 1: Bórrese Irrelevante enciclopédico.
Editor 2: Bórrese Irrelevante. Borrar

Wikipedia-gr gr Μουσείο Μιχάλη Τσαρτ-
σίδη

Editor 1: Σχόλιο Διαφωνώ έντονα με την
λογική/φράση «Απλώς ένα από τα πολλά ανά
την Ελλάδα μουσε...
Editor 2: Ο μόνος λόγος διαγραφής μπορεί να
είναι η παραβίαση πνευματικών.

διαγραφή

Table 3: Examples for different platforms and languages, alongside outcome labels.

platforms (with Wikidata being split in two: prop-
erties and entities, as their discussions happen sep-
arately). In terms of coverage, for small platforms
with less activity such as Wikinews or Wikiquote5,
we consider all data available in their website at
the time of scraping, whereas for larger and more
active platforms like Wikidata, we consider the last
4 full years (from 2021 to 2024, both inclusive). La-
bel sets per task are provided in Table 1, whereas
statistics in terms of raw size can be found in Table
2.

2.2 Dataset for Stance Detection and Policy
Prediction

For stance detection and policy prediction we use
the existing WIKI-STANCE dataset (Kaffee et al.,
2023). We keep the stance detection dataset as-is,
including their original label set. However, for pol-
icy prediction, we consider a reduced label set in
order to perform error analysis, and so keep only
the top 10 most frequent labels (as opposed to the
92 contained in the original dataset). This change,
however, has a small effect on the overall dataset
size, as retaining only these labels still results in
roughly 80% of the original dataset. As an exam-
ple, policy labels contained in the original dataset

Espinosa-Anke, 2024).
5According to Wikimedia Statistics, in 2024 Wikipedia

and Wikidata received 130 Billion and 3 Billion pageviews,
whereas Wikinews and Wikiquote received 77 Million and
179 Million respectively.

like Wikipedia: Userfication, Wikipedia:
Record charts or Wikipedia: Attack page ac-
count for only 106, 105 and 102 instances, respec-
tively (out of 437,770, which means a negligible
percentage, around 0.02%).

3 Experiments

With these datasets in place, we proceed to run
classification experiments.

3.1 Outcome Prediction
While previous works (Mayfield and Black, 2019a)
cast outcome prediction as binary classification
(Delete and Keep), we follow Wikipedia’s official
guidelines6 and propose a more nuanced scheme
(again, c.f. Table 1) and re-cast it as a multi-
class classification. Following Mayfield and Black
(2019b), we have two set ups: Masked, where la-
bels are redacted from the comments, and Full-
text where classifiers see the full dataset, including
the self-assigned labels (which in theory act as ex-
tremely informative features about the stance of
each comment and therefore good predictors of the
final outcome of the discussion - however, as we
will see, this is not always the case). We evaluate
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), DistilBERT (Sanh et al., 2020) (all in Base
and Large), and Twitter-RoBERTa-Base (Barbieri

6https://en.wikipedia.org/wiki/Wikipedia:
Guide_to_deletion
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Input Type Model Wikip. Wikid.-ent Wikid.-pr Wikin. Wikiq.

Fulltext

RoBERTa-B 0.56 0.61 0.56 0.4 0.71
RoBERTa-L 0.58 0.63 0.62 0.47 0.76
BERT-B 0.56 0.57 0.54 0.4 0.7
BERT-L 0.58 0.62 0.61 0.47 0.73
DistilBERT 0.55 0.56 0.5 0.39 0.57
Tw.-RoBERTa-B 0.49 0.6 0.55 0.4 0.7

Masked

RoBERTa-B 0.49 0.51 0.56 0.36 0.62
RoBERTa-L 0.52 0.61 0.56 0.42 0.65
BERT-B 0.49 0.57 0.56 0.33 0.7
BERT-L 0.5 0.62 0.6 0.36 0.72
DistilBERT 0.43 0.56 0.5 0.27 0.32
Tw-RoBERTa-B 0.46 0.52 0.42 0.3 0.38

Table 4: F1 Scores for fine-tuned models in Wikipedia (Wikip.), Wikid.-end (Wikidata, entities subset), Wikid.-pr
(Wikidata, entities subset), and Wikiq. (Wikiquote), both for (a) full text and (b) masked text inputs. Models are
identified by their versions: Tw (Twitter), B (Base) and L (Large).

et al., 2020) (in order to explore the effect of mod-
els tailored to user-generated content). Information
about training, validation and tests splits, and im-
plementation details, are provided in Appendices
A (Table 10) and B, respectively. Furthermore, we
divide our set of experiments in three scenarios:
in-platform, cross-platform and multilingual.

3.1.1 In-platform
We train each model with platform-specific training
sets under both masked and full text settings, and re-
port F1 results in Table 4. As expected, we can see
that hiding the self-reported tags generally causes a
drop in performance across the board, most notice-
able in the X (Twitter)-specific model. We can also
see that RoBERTa large is always the best model
in full text, while this is more inconsistent in the
masked setup. Further per-label analysis of the dif-
ference between the full text and masked settings
for RoBERTa large (the best performing model) is
provided in Figure 2, which shows confusion matri-
ces for the Wikipedia-en dataset. The performance
drop for ‘keep’, ‘merge’ and ‘withdrawn’ suggests
that editors are more decisive about deletion of the
article than keeping it. It also shows that full text
is almost always useful, but interestingly, merge
decisions benefit less from seeing these tags, likely
because merging discussions are often less explicit
and drift more between deletion and keep. Another
interesting finding (which is consistent across both
platforms) is that the withdrawn outcome often
gets confused with keep, again reinforcing this idea
of more ambiguity when the decision is not lead-

(a) Fulltext Setting

(b) Masked Setting

Figure 2: Confusion Matrix for RoBERTa-Large model
in Outcome Prediction Task.

ing towards deletion. Next, no consensus outputs
seem very hard to predict, with an almost even split
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between predictions spread among the correct class
(no consensus), delete and keep. And finally,
a striking result is the massive confusion between
speedy delete and delete in the masked setting.
This suggests that, in practice, there virtually no
difference in how editors talk about deleting arti-
cles, but they are however implicitly opinionated
about how urgently the decisions needs to happen.

Another interesting perspective on this exper-
iment is the option to explore more efficient ap-
proaches than simply fine-tuning an arguably large
model, especially given that the size of the datasets
is very varied. To test our hypothesis that sim-
pler approaches could be beneficial, we evaluate a
SetFit (Sentence-transformer Fine-tuning ) model
(Tunstall et al., 2022). SetFit is a simple yet power-
ful technique that fine-tunes a sentence transform-
ers model7 by artificially sampling training pairs
for a contrastive learning stage, and uses the fine-
tuned embeddings as feature vectors for a logis-
tic regression classifier. Note that, in SetFit, in
the embedding fine-tuning stage a large number
of document pairs can be generated, specifically
K(K − 1)/2, where K is the number of labeled
examples (i.e., the original training set). There-
fore, we subsample the original training sets into
a smaller stratified training set of 100 labeled ex-
amples. We found a striking boost in performance
with this model, especially for smaller datasets (like
Wikinews), which suggestst that, in production en-
vironments, SetFit could be an efficient and highly
performing option. We show a SetFit vs best model
comparison in Table 5.

3.1.2 Cross-platform
In previous training experiments, we observe
that models struggle to perform well in smaller
datasets, likely due to the lack of training data
(like Wikinews, where the performance was lowest
on average for all models, with some cases up to
30% drop - as in the case of the Twitter-specialized
model). This motivates us to explore the potential
of a cross-platform training regime, under the hy-
pothesis that many features in deletion discussions
might be similar across Wiki-platforms. We there-
fore perform an experiment where, for each model
and training set, we evaluate on the test set of all
the Wiki-platforms. Due to the variation in label
sets, we simplify this experiment and map all the

7We used BAAI/bge-base-en-v1.5 (Xiao et al., 2023),
a model roughly 3 times smaller than our best performing
fine-tuned models.

Platform Setting Model F1

Wikipedia
Fulltext RoBERTa-L 0.60
Masked RoBERTa-L 0.52
Fulltext SetFit 0.65
Masked SetFit 0.57

Wikidata-ent
Fulltext RoBERTa-L 0.63
Masked RoBERTa-L 0.61
Fulltext SetFit 0.88
Masked SetFit 0.87

Wikidata-pr
Fulltext RoBERTa-L 0.62
Masked BERT-L 0.60
Fulltext SetFit 0.61
Masked SetFit 0.70

Wikinews
Fulltext RoBERTa-L 0.47
Masked RoBERTa-L 0.42
Fulltext SetFit 0.57
Masked SetFit 0.44

Wikiquote
Fulltext RoBERTa-L 0.76
Masked BERT-L 0.72
Fulltext SetFit 0.87
Masked SetFit 0.44

Table 5: Best model vs. SetFit results.

labels of each dataset to only keep and delete, the
two common labels in all the datasets. We test the
models in the fulltext setting.

The expectation from the results listed in Table
6 would be to have a bold diagonal, i.e., a model
trained on dataset X would be expected to be the
best on the test set for X. While this is primarily the
case, we find a comparable performance in other
datasets, indicating a subtle but prominent gener-
alization of the models across the platforms. The
outlier in this trend is Wikinews, where we see both
Wikipedia and Wikidata Entity-derived models per-
forming better than the in-domain model. This
can be attributed to the size of Wikinews dataset,
which may not be enough for the models learn plat-
form specific patterns. In fact, for this case, train-
ing on the most general dataset (i.e., Wikipedia)
yields the best performance, specifically a non-
negligible 11% increase in F-1. The performances
of Wikidata-entity and property across all other
platform is also quite similar, despite of the large
difference in data instances between them, further
signaling the similarity in contents between the two
important components of the same platform. How-
ever, there is an important difference, it seems that
Wikidata properties transfers well into Wikidata
entities (with only a 2% drop in F1), however this

137



Wikip. Wikid.-ent Wikid.-pr Wikin. Wikiq.
Wikip. 0.76 0.63 0.67 0.55 0.14
Wikid.-ent 0.43 0.89 0.87 0.33 0.63
Wikid.-pr 0.61 0.71 0.83 0.04 0.1
Wikin. 0.44 0.42 0.39 0.35 0.04
Wikiq. 0.07 0.04 0.05 0.01 0.94

Table 6: Results of F1 scores of model performance on
different test sets (columns represent the data models
were trained on and rows represent the data model is
tested on.).

Language Model F1 (FT) F1 (M)

gr

XLM-R-Base 0.47 0.38
XLM-R-Large 0.59 0.49
MBERT 0.59 0.40
Tw.-XLM-R 0.44 0.40
SetFit 0.81 0.60

es

XLM-R-Base 0.66 0.47
XLM-R-Large 0.88 0.85
MBERT 0.70 0.67
Tw.-XLM-R 0.56 0.46
SetFit 0.90 0.61

Table 7: F1 score for Fulltext (FT) and Masked (M)
settings for multilingual models in Spanish (es) and
Greek (gr).

is not the case vice versa, as a Wikidata entities-
trained model falls short by 12% vs the in-domain
model (trained on Wikidata properties).

Amongst all the similar performances from the
models, an obvious outlier is Wikiquote, which
fails to perform well on the other datasets, and
all of the other models also fail to perform on
the Wikiquote dataset, clearly showing the distinc-
tive nature of Wikiquote discussions. However, it
should be noted that compared to other popular
platforms like Wikipedia, Wikiquote has a smaller
editor base8, which could cause a lack of diver-
sity, consistency and overall quality, such as un-
moderated discussions or inconsistencies between
outcomes.

3.1.3 Multilingual
For multilingual datasets (Wikipedia-es and
Wikipedia-gr), we experiment with XLM-R (Con-
neau, 2019) (Base and Large, XLM-R-Base and
XLM-R-Large), Multilingual BERT (MBERT) (De-
vlin et al., 2018), and Twitter-XLM-R (Tw.-XLM-
R) (Barbieri et al., 2020) (to explore if a model
specialized on Twitter, another instance of user-
generated content, could give advantages). We also

8According to Wikiquote’s official Wikipedia page, it only
has 474 active editors as compared to Wikipedia’s 126,324
(in other words, Wikiquote has only 0.004% of the editors of
Wikipedia).

introduced SetFit in this experiment, on top of a
multilingual embedding model9. Due to the large
data difference between the languages we consider
(c.f. Table 2), as well as them having a different set
of outcome labels, a cross language comparison is
perhaps not appropriate, and therefore we discuss
classification results on both languages separately.

Table 7 shows results following a similar perfor-
mance pattern as the English experiment, with a
significant difference between fulltext and masked
setups. However, it is worth noting that XLM-R-
Large and MBERT trained and tested on masked
data in Spanish were able to come very close to
the fulltext variant. This clearly points to Span-
ish editors using more explicit language when dis-
cussing whether an article should be deleted, giving
a stronger signal to a classifier even after mask-
ing these self-assigned labels. This can be further
verified in confusion matrices (on the fulltext set-
ting, Figure 4), where the Greek model struggles
to distinguish between delete and no consensus,
which is certainly not the case in Spanish. Con-
cerning the SetFit results, these are, again, sur-
prisingly good, being the best model on the same
test sets over fully fine-tuned models, with the ex-
ception only of the masked experiment, where it
is outperformed by XLM-R-Large and MBERT.
We attribute this to a potential mismatch of the
style/topics/theme of the subsampled dataset and
the training set. We leave for future work perform-
ing multiple runs to evalute the robustness of SetFit
(or other approaches based on synthetic data gener-
ation) when datasets are varied.

Finally, we asked ourselves the question of why
a strong multilingual model (XLM-R) further spe-
cialized on multilingual data from social media
(Tw.-XLM-R) model would perform so poorly on
another instance of user-generated texts which, as
we can see from the examples in Tables 3 and 8, are
not so different from well-formed tweets (note that
in the original sampling from Barbieri et al. (2020)
a few heuristics were put in place to filter out pure
noise like all-emoji tweets). One approach to gain
further insights is by computing pseudo (log) like-
lihood (Salazar et al., 2019) over sequences in the
dataset from different models by taking a sample
of the data, masking the actual (sub)word one at a
time, and compute the loss of the models, and aver-
aging over the whole sequence. Higher likelihood

9Specifically, paraphrase-multilingual-MiniLM-L12
-v2.
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Policy Example Instances

Wikipedia:Notability [WP:N] Fails and with only routine coverage. 232,422 (70.22%)
Wikipedia:What Wikipedia is not If there are sources linking this to the attack. 34,559 (10.44%)
Wikipedia:No original research "WP:OR, . Mishmash of random trivia. 13,583 (4.10%)
Wikipedia:Verifiability I’m leaning delete per as this is completely unverified. 12,531 (3.78%)
Wikipedia:Arguments to avoid in deletion discus-
sions

Her own work is admittedly ordinary, even run-of-the-mill. 8,105 (2.44%)

Wikipedia:Biographies of living persons Because of BLP requirements, it needs to be rewritten. 7,346 (2.21%)
Wikipedia:Criteria for speedy deletion In regards to the above comment about speedy deletion. 5,833 (1.77%)
Wikipedia:Articles for deletion What searches did you do to establish notability? 5,758 (1.75%)
Wikipedia:Wikipedia is not a dictionary Clearly a lexical entry and in violation of policies. 5,474 (1.65%)
Wikipedia:Deletion policy In this case, I don’t see the point of a redirect. 5,332 (1.61%)

Table 8: Top 10 Policies of policy prediction task dataset with examples and number of instances (with percentage
of the complete dataset).

typically points to a model with a “good grasp” of
the presented data (domain, style, themes, etc), as
shown, e.g., in the context of temporal adaptation
(Loureiro et al., 2022). To this end, we computed
pseudo log likelihood over a sample of 1,000 Greek
Wikipedia articles. We find the distribution in Fig-
ure 3, which, instead of a curve-shaped distribution
(which would be the ideal), has two clear spikes,
which suggests that this particular Twitter model
might struggle to generalize (very low likelihood
scores). Further analysis into the role of tokeniza-
tion is left for future work.

3.2 Stance and Policy prediction

Stance detection classifies a moderator’s opinion
towards the article using stance labels (keep, delete,
merge, comment), while policy prediction identi-
fies an explicitly or implicitly mentioned Wikime-
dia policy (refer to Table 8 for illustrative exam-
ples). Both are comment level tasks. We experi-
ment with the same base models from the Outcome
Prediction task. We report our results in Table

Figure 3: Normalized perplexity distribution for Twitter-
XLM-Roberta in a sample of the Greek Wikipedia.

(a) Wikipedia-Es

(b) Wikipedia-Gr

Figure 4: Confusion Matrix for XLM-RoBERTa-Large
model in Outcome Prediction Task for Spanish and
Greek Wikipedia.

9, which shows results for both tasks according
to weighted F1-score. We are interested primar-
ily in this metric to understand the benefit of such
models for the platform as a whole, rather than in-
vestigating nuances in individual categories which
account, in practice, for a very small proportion
of the dataset. We still perform per-label analysis,
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Stance Policy
Acc, Prec. Rec. F1 Acc, Prec. Rec. F1

RoBERTa-B 0.90 0.83 0.78 0.81 0.83 0.70 0.56 0.61
RoBERTa-L 0.94 0.85 0.81 0.83 0.86 0.74 0.62 0.67
BERT-B 0.89 0.81 0.80 0.80 0.81 0.65 0.49 0.55
BERT-L 0.91 0.84 0.82 0.83 0.84 0.71 0.59 0.63
DistilBERT-B 0.90 0.83 0.74 0.78 0.80 0.69 0.46 0.50
Tw.-RoBERTa-B 0.88 0.80 0.66 0.70 0.81 0.68 0.53 0.58
SetFit 0.83 0.81 0.82 0.82 0.66 0.68 0.67 0.67

Table 9: Stance and policy prediction results (with
Weighted-F1 scores).

but we believe weighted F1 in this scenario sends
a clearer takeaway message to those interested in
automating content moderation in these platforms
in production environments.

3.2.1 Stance Detection
Similar to Kaffee et al. (2023) we pose our stance
detection task as a 4-class classification with the
labels delete, keep, merge and comment, where
the first three labels carry the same meaning as
the outcome prediction task, and comment means
the discussion goes on. Our stance detection re-
sults are comparable to the ones reported in Kaffee
et al. (2023), which in fact points to their strong
and robust model, since their reported results were
in macro F1, and are only slightly lower than ours
(80% macro F1, vs our 83% weighted F1). In terms
of analysis, we do not find any major differences be-
tween RoBERTa-Large and BERT-Large, although
as is the norm in this paper, Tw.-RoBERTa-B does
not perform well. Following from our previous ex-
periments, we also test the ability of SetFit in these
tasks. In this case, we also downsample the training
and validation sets, in this case, from the original
to 1,000 (train) and 300 (validation) stratified sam-
ples, with the test set staying the same for enabling
a comparison. While not clearly outperforming the
other models, as it was the case in previous experi-
ments, it turned out to be an extremely competitive
option, rivaling fully fine-tuned PLMs.

3.2.2 Policy Prediction
We modify the policy prediction task into a 10-label
setup and follow a similar experimental setup as
in previous sections. Our results show that with
this task formulation works quite well, with 0.67
F1 for the best model (RoBERTa-Large) as shown
in Table 9. In terms of comparison with previ-
ous works, Kaffee et al. (2023) reported Accuracy
figures about 0.75 on the original dataset (90+ la-
bels), whereas we achieve about 10 points more
in a trimmed down version. This suggests that the
very long tail of about 80 infrequent labels and

Figure 5: Confusion Matrix for RoBERTa-Large in Pol-
icy Prediction.

the likely under-performance on them does not im-
pact the overall picture, and we can conclude that
both their models and ours would behave similarly
if deployed. The most interesting part of this ex-
periment, however, is again looking at sources of
confusion in the test set. In Figure 5 we see, for
RoBERTa-Large, a well formed diagonal showing
the correlation between actual and predicted labels.
However, two major confounding sources emerge:
‘Notability’ and ‘What Not’ (shortened for ‘What
Wikipedia is Not’). Notability is less surprising as
this is the most frequent category, but ‘What Not’
seems to be an overly generic category acting as
a superset of other finer grained policies like ‘Not
a Dict’ (Wikipedia is Not a Dictionary). It would
be interesting to explore the actual differences in
comments pointing to these arguably interrelated
policies, which could perhaps lead to merging them
or further splitting ‘What Not’ into others.

4 Conclusion

Automated Content moderation is a challenging
yet important part of maintaining healthy content
in community driven Wiki-platforms. Through this
work, we analyze four different Wiki-platforms and
three languages to give an all-round understanding
of automated content moderation scenarios in these
Wikis. Our analysis shows that these community
based platforms can highly benefit from the usage
of PLM based content moderation strategies, and
to that end, we contribute a dataset and a range of
strong baseline results from different PLMs for the
community to build on.
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Limitations

Our work does not extensively explore all deletion
discussions obtainable from Wikipedia (throughout
the years), even though it can be obtained using
our package. We also do not explore any other
LMs except BERT-family of models, and due to
lack of domain data for sentiment analysis and
offensive language detection, we do not train our
own models for those tasks. Finally, the tool we
propose here can be made better with integration
of more analytical tasks and capabilities of model
based activities, such as fine-tuning.

Ethics statement

We believe that enhancing quality control for
Wikipedia and other sibling Wiki platforms, which
is the most popular online encyclopedia through
content moderation is always of utmost importance.
There is importance of Wikipedia as a viable knowl-
edge source for users, and a data source for today’s
NLP research is undeniable. This calls for the
necessity of tools that enable automated content
moderation, so that the discussions that happens
behind the curtain of Wikipedia articles regarding
its reliability should maintain its standard, while
providing resolution for the disputed ones.
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A Train/Validation/Test Splits

The data splits with number of instances used in
this paper are described in Table 10.

B Training details and results for
Outcome Prediction

Following are the details of different hyperparam-
eters we use in our experiments, which as can be
seen vary across datasets due mostly to dataset size.

Lang. Platform Data Rows Total

en

Wikipedia
Train 12,963

18,528Val 1,856
Test 3,709

Wikidata-ent
Train 248,871

355,428Val 35,558
Test 70,999

Wikidata-pr
Train 349

498Val 52
Test 97

Wikinews
Train 63

91Val 9
Test 19

Wikiquote
Train 484

695Val 69
Test 142

es Wikipedia
Train 2,291

3,274Val 294
Test 689

gr Wikipedia
Train 274

392Val 35
Test 83

en Stance
Train 372,033

437,770Val 21,961
Test 43,776

en Policy
Train 274,867

341,337Val 30,540
Test 35,930

Table 10: Data distribution statistics, divided in 3 blocks:
English Outcome Prediction (top), Multilingual Out-
come Prediction (middle), and (English) Stance and
Policy Prediction (bottom).

• Number of epochs: 20 (Outcome Prediction)/
5 (Stance/Policy detection)

• Learning rate: 1e-5 (Outcome Prediction)/ 2e-
6 (Stance/Policy detection)

• Batch size: 4

• Optimizer: Adam

• Resource used: NVIDIA RTX 4090
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Abstract
We present ongoing research on automatic post-
processing approaches to enhance the readabil-
ity of noisy speech transcripts in low-resource
languages, with a focus on conversational
speech in Latvian. We compare transformer-
based sequence-labeling models and large lan-
guage models (LLMs) for the standard punctu-
ation and capitalization restoration task, while
also considering automatic correction of mis-
pronounced words and disfluency, and partial
inverse text normalization. Our results show
that very small LLMs (approx. 2B parame-
ters), fine-tuned on a modest text corpus, can
achieve near state-of-the-art performance, ri-
valing orders of magnitude larger LLMs. Ad-
ditionally, we demonstrate that a fine-tuned
Whisper model, leveraging acoustic cues, out-
performs text-only systems on challenging con-
versational data, even for a low-resource lan-
guage. Error analysis reveals recurring pitfalls
in sentence boundary determination and dis-
fluency handling, emphasizing the importance
of consistent annotation and domain adapta-
tion for robust post-processing. Our findings
highlight the feasibility of developing efficient
post-processing solutions that significantly re-
fine ASR output in low-resource settings, while
opening new possibilities for editing and for-
matting speech transcripts beyond mere restora-
tion of punctuation and capitalization.

1 Introduction

Automatic punctuation and capitalization restora-
tion has been widely studied as a post-processing
step for automatic speech recognition (ASR) sys-
tems, aiming to improve transcript readability and
facilitating downstream NLP tasks such as machine
translation, named entity recognition, etc.

Early methods leveraged statistical approaches,
such as n-gram language modeling and prosodic
cues (Stolcke et al., 1998; Beeferman et al., 1998),
as well as sequence labeling techniques like Con-
ditional Random Fields (CRFs) (Lu and Ng, 2010;

Wang et al., 2012) and Maximum Entropy models.
With the advent of deep learning, recurrent neu-
ral networks (RNNs) and long short-term memory
(LSTM) models proved to be more efficient in mod-
eling sequential dependencies (Tilk and Alumäe,
2015). Bidirectional RNNs and transformer-based
architectures further enhanced accuracy by using
richer contextual representations (Yi and Tao, 2019;
Nguyen and Salazar, 2019).

Recent work has demonstrated that transformer-
based models outperform previous neural ap-
proaches. BERT-based models, such as RoBERTa
and ELECTRA, have achieved state-of-the-art re-
sults on punctuation restoration by leveraging large-
scale pretraining (Devlin et al., 2018; Poláček et al.,
2023). Other studies have explored multilingual
transformer models such as XLM-RoBERTa (Con-
neau et al., 2020) to address punctuation restoration
across multiple languages.

End-to-end ASR models, such as OpenAI’s
Whisper (Radford et al., 2023), directly gener-
ate transcriptions with punctuation and capitaliza-
tion. Whisper is trained on large-scale weakly su-
pervised data, allowing it to outperform conven-
tional ASR models that require separate punctua-
tion restoration modules.

Recent advances in large-scale auto-regressive
large language models (LLMs), such as GPT-
4 (OpenAI et al., 2024), have introduced new
paradigms for punctuation restoration. Unlike con-
ventional sequence labeling approaches, GPT-style
models perform text infilling and editing, enabling
them to restore punctuation in a generative man-
ner. Recent developments in open-source multi-
lingual LLMs have led to the creation of smaller
models that effectively support low-resource lan-
guages (Dargis et al., 2024).

Developing robust punctuation restoration mod-
els relies on sufficiently large and representative an-
notated corpora. Europarl (Koehn, 2005) and TED-
LIUM (Rousseau et al., 2014) have been widely
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used, but they often lack domain-specific noise
typical of real-world ASR. Fu et al. (2021) demon-
strated that domain-adaptive fine-tuning with n-
gram similarity-based data sampling can improve
model robustness. Data augmentation methods that
simulate ASR errors have also been shown to yield
significant performance gains (Alam et al., 2020).

For Latvian (approx. 1.5M native speakers), rele-
vant work on punctuation restoration includes (Sal-
imbajevs, 2016; Vāravs and Salimbajevs, 2018),
which focus on bidirectional models and sequence
labeling for punctuation and capitalization. One
publicly available resource is a proprietary on-line
service that allows users to correct the punctua-
tion and formatting of a text, where the underly-
ing model, likely an encoder-decoder, is trained
on academic texts1. Another publicly available re-
source is an open-source punctuation model based
on XLM-RoBERTa2 (Guhr et al., 2021), trained
on Europarl data. The best available end-to-end
Latvian ASR models that include text formatting
are whisper-large-v3 and whisper-large-v3-lv, the
latter being fine-tuned on the dataset described in
Section 2 as well as on the Common Voice 19.0
dataset3 (Dargis et al., 2024).

Our contributions in this study are as follows:

• We demonstrate that even the smallest gener-
ative LLMs (i.e., in the 2B parameter range)
can be fine-tuned on a relatively small text
corpus to achieve near state-of-the-art results,
bridging the gap between reference text for-
matting and noisy ASR output.

• We present a thorough error analysis highlight-
ing common pitfalls, such as mispunctuation,
ambiguous sentence boundaries, and speaker
disfluencies.

• Beyond punctuation and capitalization, we
show that LLMs can partially learn error cor-
rection and inverse text normalization from
limited data, underlining their potential to fur-
ther refine ASR outputs in low-resource set-
tings.

1https://salieckomatus.lv
2https://huggingface.co/1-800-BAD-CODE/

xlm-roberta_punctuation_fullstop_truecase
3https://huggingface.co/AiLab-IMCS-UL/

whisper-large-v3-lv-late-cv19

2 Dataset

We use the LATE-Media corpus4 (Auzina et al.,
2024a,c), which comprises approximately 70 hours
of conversational Latvian speech from broadcast
recordings, sourced from public media. The data
includes both spontaneous and prepared speech
(but not read speech) from more than 250 speak-
ers, offering a diverse range of speaking styles and
topics.

Transcriptions are provided in standard Latvian
orthography, with additional punctuation and gram-
mar rules applied. When necessary, annotations
in square brackets capture non-standard pronun-
ciation (e.g., “lasām [lasam]”) and foreign words
(e.g., “Rail [reil] Baltica [boltik]”). The corpus also
documents the reading of numbers, accounting for
syntactic agreement in context (e.g., nominative vs.
dative forms). This rich annotation scheme ensures
that spontaneous variations – such as word repeti-
tions, truncated words, and different realizations of
abbreviations – are properly represented.

To simplify the punctuation restoration task, we
unify several less frequent or inconsistently anno-
tated marks by replacing them with periods. Specif-
ically, we map exclamation marks, ellipses, and em
dashes to periods. We also ignore seldom-used
marks such as colons and semicolons, which tend
to be subjectively annotated. These steps reduce
annotation noise and help stabilize model perfor-
mance in subsequent training and evaluation.

The dataset statistics, including the distribution
of punctuation, capitalization types, average sen-
tence length, and correction annotations, are pre-
sented in Table 1.

Train Dev Test
Comma 56268 1624 1595
Period 49599 2363 2389
Question 3454 409 419
Title 73675 3172 3257
Upper 3528 87 78
Avg Sent Len 10.3 7.6 7.2
Corrections 4541 80 85

Table 1: Dataset statistics for punctuation, capitalization
and sentence lengths.

4https://korpuss.lv/en/id/LATE-mediji
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3 Experimental Setup

In our experiments, we address the following key
research questions:

• How do small generative models compare to
larger models in punctuation and capitaliza-
tion restoration tasks for a low resource lan-
guage, and how does their performance de-
grade on ASR-generated transcripts?

• To what extent are models capable of correct-
ing transcript text without introducing unnec-
essary modifications?

• What are the predominant error types?

We evaluate two distinct scenarios: formatting
ASR-generated transcripts and formatting manu-
ally transcribed reference text. This setup allows
us to assess how models handle noisy ASR outputs
and whether they can refine reference transcripts
without unnecessary modifications. The evalua-
tion of ASR-generated transcripts is conducted on
the outputs of whisper-large-v3-lv, currently the
strongest open-source Latvian ASR model. We
use publicly available salieckomatus.lv and XLM-
RoBERTa (Guhr et al., 2021) as baselines. Addi-
tionally, we evaluate the performance of whisper-
large-v3 and whisper-large-v3-lv.

Performance is measured using F1-score (F1)
for punctuation restoration and capitalization. To
ensure that models do not introduce unnecessary
modifications, we also compute the word error rate
(WER) on the normalized formatted transcript. A
heuristic fuzzy alignment method is used to align
incorrectly recognized words and words that dif-
fer in spoken and written forms, such as number
expressions, acronyms, and abbreviations.

For LLMs, we employ the following task-
specific prompt:

“You are a skilled editor specializing in
Latvian transcripts. Your task is to for-
mat this short (under 30 seconds) ASR-
produced transcript by adding punctu-
ation (use only commas, periods, and
question marks), capitalization, and mak-
ing minimal edits for readability. Correct
grammar, mispronounced words, and ab-
breviations as needed. Convert numbers
into their written form. Do not alter the
sentence structure or meaning – only re-
fine specific words, punctuation, and for-

matting while keeping it as close to the
original as possible.”

For fine-tuned models, we use a shorter prompt,
observing no noticeable drop in performance:

“Proofread the provided Latvian tran-
script by inserting appropriate punctua-
tion and applying proper capitalization.”

Models are fine-tuned exclusively on the training
split, without incorporating any external data. The
fine-tuning uses a linearly decreasing learning rate
of 2e-5, a warm-up ratio of 0.1, a batch size of 32,
and runs for 3 epochs.

4 Results

The results of our experiments are presented in Ta-
ble 2. Generative models, such as GPT-4o and GPT-
4o mini, demonstrate strong capabilities for Latvian
punctuation and capitalization tasks. However, they
also introduce unintended transcript modifications,
reflected in elevated WER – an issue which can po-
tentially be mitigated with more extensive prompt
optimization.

Fine-tuned (FT) models show significant gains in
consistency, with GPT-4o FT achieving the highest
overall performance (F1 scores of 81.5 for punctu-
ation and 84.4 for capitalization). Notably, smaller
fine-tuned models (e.g., Gemma-2B, EuroLLM-
1.7B) perform at levels comparable to GPT-4o mini,
suggesting that the model size alone does not dic-
tate effectiveness for this task.

Table 3 highlights a key limitation of generative
models if compared to BERT-based models – un-
intended alterations to the transcripts. This issue
is especially pronounced in the case of non-fine-
tuned models. GPT-4o, for example, often attempts
to enhance fluency by removing words deemed su-
perfluous (e.g., “And my”→ “My”) or by adding
implied speech elements (e.g., “tea, coffee”→ “tea
or coffee”). The most frequently observed and po-
tentially the most influential errors are word substi-
tutions that alter the meaning or introduce syntactic
agreement errors. Although prompt optimization
can partially address these issues, they remain chal-
lenging to be completely eliminated without highly
descriptive prompting and provision of examples
for in-context learning.

Smaller generative models like GPT-4o mini
can introduce more pronounced substitutions (e.g.,
“bračka” (brother) → “brāk, a” (defect)) as well
as occasionally produce non-existent words (e.g.,
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Model
Punctuation Capitalization

WER
Comma Period Question Total Title Upper Total

whisper-large-v3 64.1 73.0 63.3 68.4 72.2 41.7 72.0 31.3
whisper-large-v3-lv 77.5 79.9 72.1 78.3 81.9 53.3 81.8 12.7
ASR Output
XLM-RoBERTa 74.7 78.8 57.5 75.1 79.0 46.2 78.9 12.7
salieckomatus.lv 74.9 75.9 40.7 73.1 77.6 22.2 77.4 13.1
GPT-4o 78.1 80.8 62.6 78.2 81.4 36.4 81.3 13.2
GPT-4o FT 81.2 84.0 68.9 81.5 84.6 38.5 84.4 12.5
GPT-4o mini 74.4 80.0 57.5 75.8 79.8 36.4 79.7 15.2
GPT-4o mini FT 79.3 82.0 64.2 79.3 82.5 41.7 82.4 12.7
EuroLLM-1.7B-Instruct FT 78.8 82.5 60.1 79.0 82.8 53.8 82.7 12.8
gemma-2-2b-it FT 79.5 81.5 63.2 79.1 82.0 41.7 81.9 12.7
Reference Transcripts
XLM-RoBERTa 77.9 79.7 62.4 77.4 84.3 72.7 84.3 0.0
salieckomatus.lv 77.6 76.7 43.2 74.8 81.6 43.5 81.4 1.4
GPT-4o 80.9 82.4 67.6 80.5 86.6 48.3 86.4 3.0
GPT-4o FT 85.9 86.0 76.5 85.1 91.8 83.9 91.8 0.4
GPT-4o mini 76.7 81.5 63.2 78.0 84.9 58.3 84.8 4.7
GPT-4o mini FT 83.1 84.0 70.0 82.4 89.7 80.0 89.6 0.3
EuroLLM-1.7B-Instruct FT 83.2 84.9 69.1 82.8 89.6 90.3 89.6 0.4
gemma-2-2b-it FT 82.7 83.1 68.1 81.6 88.3 75.0 88.3 0.4

Table 2: Results on test split: F1 scores for punctuation and capitalization, and WER.

“paliec” (stay) → “palik, ” (∅), “filmēs” (will
shoot)→ “filmes” (∅)).

Overall, fine-tuning reduces unintended text
changes by an order of magnitude for all model
sizes. While fine-tuned models in the two billion
parameter range rarely alter transcripts, the errors
they produce typically manifest as ungrammatical
forms rather than semantic substitutions.

The Whisper model fine-tuned for Latvian (i.e.,
whisper-large-v3-lv) achieves WER of 12.7, signif-
icantly outperforming the base Whisper large-v3
model while maintaining strong punctuation and
capitalization scores.

Models generally perform better on reference
transcripts than on ASR outputs, which is expected
since ASR-generated text contains recognition er-
rors that interfere with punctuation and capitaliza-
tion. Similarly, fine-tuned LLMs outperform their
non-fine-tuned counterparts when applied to ASR
outputs.

We manually annotated 100 samples to analyze
errors made by the various models. In the cases of
mismatched predictions, we categorized errors as
follows:

• Actual errors: incorrect punctuation place-
ment, capitalization mistakes, or misinterpre-

tation of sentence boundaries (57 cases).

• Alternative formatting choices: instances
where a model’s output differs from the ref-
erence but remains grammatically valid (43
cases).

For 21 of the cases, we had to listen to the au-
dio to apply a correct markup, highlighting the
importance of audio features, for example, “Labi.
Sakratı̄ts ir.” (‘Well. Shaken [it] is.’) vs. “Labi
sakratı̄ts ir.” (‘Well shaken [it] is.’). This also ex-
plains the better question mark performance for
whisper-large-v3-lv without any extra processing.

We further evaluated model performance in cor-
recting mispronounced words: by using annotated
mispronunciations, number expressions, and gen-
erally acceptable written forms annotated in the
dataset. Approximately 50% of these cases were
correctly replaced by LLMs, suggesting a potential
for these models to learn error correction and in-
verse text normalization tasks for the low-resource
Latvian from relatively small datasets. However,
further investigation is needed, since the current
test set is too small for a reliable evaluation.

We have also evaluated a broader set of punctu-
ation marks. However, because of their low fre-
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Model Changed Utt. Substitute Inflect Delete Insert
XLM-RoBERTa 0.0
salieckomatus.lv 10.0 58 16 16 11
GPT-4o 16.4 42 21 29 8
GPT-4o FT 1.4 79 14 0 7
GPT-4o mini 24.6 41 24 28 7
GPT-4o mini FT 1.5 67 25 8 0
EuroLLM-1.7B-Instruct FT 2.7 69 8 15 8
gemma-2-2b-it FT 1.7 47 27 20 7

Table 3: Error analysis of changed utterances by error type, based on a manual review of a sample of 100 utterances
(or fewer if fewer were found) in each model’s test split. All values are percentages.

quency beyond commas, periods, and question
marks, these results can currently only be consid-
ered preliminary and are not yet reliable. Moreover,
their usage in conversational ASR transcripts is of-
ten subjective, justified by increased inter-annotator
disagreement.

5 Conclusion and Further Work

End-to-end ASR systems, such as Whisper fine-
tuned for Latvian (using a relatively small amount
of data), already provide reasonably well-formatted
transcripts for general-domain speech by leverag-
ing acoustic features that are unavailable in text-
only approaches. However, even without acoustic
cues, formatting performance can be improved with
LLMs using a prompt-based approach. Further
task-specific fine-tuning yields the best and most
stable results, and it is feasible even with smaller
LLMs in the 2B parameter range on a small dataset.
Larger models often provide higher accuracy but
come with increased computational costs and de-
ployment complexity.

Audio features (pauses, intonation) remain a cru-
cial signal for punctuation restoration. Sentence
boundaries in speech are often ambiguous, with
multiple valid interpretations, and better annotation
guidelines could improve consistency. One major
challenge in training ASR models for Latvian and
other low-resource languages is the lack of datasets
that include both conversational speech and format-
ted transcriptions. LLMs enable transcript trans-
formations such as inverse text normalization and
error correction by leveraging their built-in lan-
guage knowledge, even when trained on relatively
small datasets. Thus, fine-tuned LLMs can ex-
pedite the addition of such formatting to existing
orthographically transcribed datasets, for instance,
the LATE-Conversational speech corpus (Auzina

et al., 2024b) which comprises 35 hours of informal
conversations in Latvian – this is currently a work
in progress, to be followed by human verification
and evaluation.

6 Limitations

Our models are evaluated on a single dataset for
Latvian, limiting generalizability to other domains
or languages. Future research should extend these
evaluations to multiple datasets.

ASR errors significantly impact formatting per-
formance. Introducing ASR-like noise or synthetic
errors during training could improve robustness
but risks unintended meaning changes if not done
carefully.

In fields like law or medicine, over-corrections
can subtly alter meaning. Generative and punc-
tuation models may introduce edits beyond basic
formatting, risking inaccuracies in sensitive tran-
scripts. Hence, they should be used cautiously
when exact fidelity to the original speech is re-
quired.
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Abstract

We manually normalize noisy Japanese expres-
sions on social networking services (SNS) to
improve the performance of sentiment polarity
classification. Despite advances in pre-trained
language models, informal expressions found
in social media still plague natural language
processing. In this study, we analyzed 6,000
posts from a sentiment analysis corpus for
Japanese SNS text, and constructed a text nor-
malization taxonomy consisting of 33 types of
editing operations. Text normalization accord-
ing to our taxonomy significantly improved the
performance of BERT-based sentiment analysis
in Japanese. Detailed analysis reveals that most
types of editing operations each contribute to
improve the performance of sentiment analysis.

1 Introduction

For research and development of sentiment anal-
ysis models, datasets with sentiment labels for
text on social networking services (SNS) are avail-
able (Mohammad and Bravo-Marquez, 2017; Mo-
hammad et al., 2018; Plaza del Arco et al., 2020;
Bostan et al., 2020). In Japanese, sentiment analy-
sis datasets for SNS posts such as WRIME1 (Kaji-
wara et al., 2021; Suzuki et al., 2022) are available.
Text from social media often contains informal
Japanese expressions such as misspellings and In-
ternet slang. These noisy texts may degrade the
performance of natural language processing, in-
cluding sentiment analysis.

In this study, to improve the performance of
sentiment analysis in Japanese, various noisy ex-
pressions in SNS texts were manually normalized.
We performed text normalization on 6,000 posts
from the WRIME dataset, and organized the edit-
ing operations contained therein into 6 major cat-
egories and 33 subcategories. Then, our detailed
analysis based on this Japanese text normalization

1https://github.com/ids-cv/wrime

taxonomy revealed which type of normalization
contributes to improved performance of sentiment
analysis in Japanese.

Experimental results showed that our text nor-
malization improved the performance of sentiment
analysis in Japanese. Furthermore, our detailed
analysis reveals that most types of normalization
contribute to improved performance in sentiment
analysis. Among them, there were notable improve-
ments due to the normalization of casual/formal
sentence endings, missing symbols, abbreviations,
and inconsistencies in hiragana, katakana, and
kanji.2 In contrast, since the normalization of pro-
nunciation variations worsened the performance
of sentiment analysis, the pronunciation variations
may express the writer’s emotions. We plan to re-
lease1 our 6,000 normalized post pairs with our
Japanese text normalization taxonomy.

2 Related Work

Noisy expressions found in social media deteriorate
the performance of various natural language pro-
cessing such as word segmentation and sentiment
analysis. To address this issue, text normalization
has been studied. Text normalization corpora have
been developed for various languages, including
English (Liu et al., 2011; Han and Baldwin, 2011;
Yang and Eisenstein, 2013; Baldwin et al., 2015),
German (Sidarenka et al., 2013), Spanish (Alegria
et al., 2013, 2015), Turkish (Çolakoğlu et al., 2019),
Danish (Plank et al., 2020), Italian (van der Goot
et al., 2020), Thai (Limkonchotiwat et al., 2021),
and Vietnamese (Nguyen et al., 2024), to facil-
itate the development of data-driven approaches
for text normalization. For text normalization in
Japanese, approaches to sequence labeling (Sasaki
et al., 2013; Osaki et al., 2017) and sequence-to-
sequence generation (Ikeda et al., 2016; Saito et al.,

2Japanese text can be written in three types of letters: hira-
gana, katakana, and kanji.
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2017) have been proposed. However, these pre-
vious studies are based on small parallel corpora
of about 1,000 sentence pairs (Sasaki et al., 2013;
Kaji and Kitsuregawa, 2014; Osaki et al., 2017;
Higashiyama et al., 2021), automatically gener-
ated corpus (Ikeda et al., 2016), and non-public
corpora (Saito et al., 2013, 2017). Therefore, a
larger-scale parallel corpus that is freely available
for Japanese text normalization is desired.

3 Japanese Text Normalization for
Sentiment Analysis in Social Media

This section describes what types of text normaliza-
tion are covered in this study and how we perform
text normalization.

3.1 Japanese Text Normalization Taxonomy

Combining the 14 types of Japanese text normal-
ization employed in previous studies (Saito et al.,
2013; Sasano et al., 2013; Osaki et al., 2017; Hi-
gashiyama et al., 2021) and the 19 new types of
normalization that we found by analyzing Japanese
SNS texts in WRIME, we define a Japanese text
normalization taxonomy consisting of 6 major cat-
egories and 33 subcategories.3 Table 1 lists the
taxonomy and its examples.

Typos and Misspellings As in the previous
study (Saito et al., 2013), we define misspellings
as separate subcategories of misuse of kanji and
typos. We also employ the missing characters that
have been employed in the previous study (Osaki
et al., 2017). In addition, since conjugation errors
were frequently observed, this is newly added as
an independent category.

Even minor changes such as the presence or ab-
sence of punctuation can affect the performance
of sentiment analysis. We therefore introduce a
new subcategory, missing symbols. This type of
normalization not only completes punctuation but
also encloses proper nouns in parentheses.

Dialect In addition to characteristic expressions
such as Internet slang and censored words, SNS
texts frequently contain expressions that reflect the
writer’s personality, such as regional dialect and

3The “similar forms” employed by previous studies (Saito
et al., 2013; Sasano et al., 2013) were not employed in this
study because they did not appear in our analysis. For example,
this category includes ネ申 → 神, うれ∪い → うれしい,
etc. Our analysis covers 6,000 posts from the WRIME dataset,
which consists of SNS texts posted from 2010 to 2020.

unique sentence endings that are rarely seen in nor-
mal written language. As in previous studies (Saito
et al., 2013; Osaki et al., 2017), we employ these
types of normalization.

Also, casual and formal forms are made consis-
tent. Because of the frequency of each, this study
divides the subcategories according to whether the
editing point is sentence-ending or not, thus pro-
viding subcategories for casual/formal sentence
endings and casual/formal functional expressions.

Alternative Spellings Alternative spellings,
which have been employed in previous stud-
ies (Saito et al., 2013; Osaki et al., 2017;
Higashiyama et al., 2021), are often found on SNS
text. Since abbreviations are often used due to
character count constraints, we use the category
of abbreviations independently of changes in
character types: hiragana, katakana, and kanji.

Along with pronunciation variations, homo-
phones, and small/large characters employed in
many previous studies (Saito et al., 2013; Sasano
et al., 2013; Osaki et al., 2017; Higashiyama et al.,
2021), we also employ synonyms (Sasano et al.,
2013) and loanwords (Higashiyama et al., 2021).
Considering compatibility with pre-trained lan-
guage models, synonyms are paraphrased into the
most frequent expressions, and loanwords are trans-
lated or transliterated into hiragana or kanji.

There was also variation in the use of parenthe-
ses and other symbols. Therefore, we also add the
category of symbol conversion.

Emphasis Expressions Inserted sounds, inserted
symbols, and repetition of characters and sym-
bols, which have been employed in the previous
study (Osaki et al., 2017), are also frequently used
in social media for the purpose of emphasis. To
eliminate redundancy and to make these expres-
sions consistent across the corpus, they are also
normalized in this study.

Some posts list parallel items with bullet points
or word order changes to uncommon or unreadable
sentences. We newly normalize and edit them into
fluent and complete sentences.

Simplification As a new major category, we in-
troduce a new category of “simplification” to para-
phrase complex expressions or to complement miss-
ing information. We employ five types of subcate-
gories: lexical/phrasal simplification to paraphrase
complex expressions and SNS-specific expressions
such as neologisms and coined words, completion
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1. Typos and Misspellings Example

Missing Symbols 暑い→暑い。 ,天地明察を見たい→『天地明察』を見たい
Missing Characters‡ みんな起きている→みんなが起きている,とこ→ところ
Conjugation Errors 見てたら→見ていたら,起きれて→起きられて
Typos∗‡§ 腸がが→腸が,きます！れ→きます！！
Misuse∗ 以外に少ない→意外に少ない

2. Dialect Example

Casual/Formal Sentence Endings ～だ。→～です。 ,食いたい。→食べたいです。
Casual/Formal Functional Expressions っていう話→という話,奪われるから→奪われるので
Internet Slang∗‡ ワロタでした→笑いました ,ググったら→検索すると
Regional Dialect∗‡ やん→でしょうね,おめんど→あなたたち
Unique Sentence Endings ますわよ→ますよ,っす→です
Censored Words∗ N__K → NHK

3. Alternative Spellings Example

Hiragana/Katakana/Kanji∗‡§ 欲しい→ほしい,スカート＋ヒール→スカートとヒール
Abbreviations∗‡ ネット→インターネット,コロナ→新型コロナウイルス感染症
Pronunciation Variations∗†‡ いくん→いくの,こりゃ→これは
Synonyms 本日→今日,お菓子→菓子
Symbol Conversion 「悪の教典」→『悪の教典』,。。。→…。
Loanwords§ good night →おやすみなさい,オーダー→注文
Homophones∗†‡ 行けそーな→行けそうな, °C →度
Small/Large Characters∗†‡§ まぁまぁ→まあまあ,ヮィャレス→ワイヤレス

4. Emphasis Expressions Example

Inserted Sounds∗†‡§ よーし→よし,雨かあ→雨か
Inserted Symbols‡ "一般的な人" →一般的な人
Word Order Changes そのまま私が食べるパンを→私が食べるパンをそのまま
Repetition‡ え？？？？？？？→え？？,いやいやいやいやいや→いやいや
Bullet Points 結論: →結論として言えるのは、

5. Simplification Example

Completion 撮ればよかったな→撮ればよかったなと後悔しています
Lexical/Phrasal Simplification カットに行く→美容院に行く,ノミの心臓→臆病
Deletion 男（ひと）→男,せいで(おかげで) →おかげで
Fusion 今朝方のツイート。酔っていた→今朝方のツイートは酔っていた
Splitting 買い物に行き、買った服を→買い物に行きました。買った服を

6. Emotional Expressions Example

Numerical Expressions 21時→ <num>時,ひとつ→ <num>つ,数回→ <num>回
Emotional Symbols (笑) → <joy>, (怒) → <anger>
Emoticons (●´з｀●) → <joy>, orz → <sadness>
Emojis ☆→ <joy>, ♪♪ → <joy><joy>

Table 1: Japanese text normalization taxonomy as defined in this study and examples for each subcategory. The
symbols in the subcategory represent the type of normalization employed in previous studies, where ∗ is (Saito et al.,
2013), † is (Sasano et al., 2013), ‡ is (Osaki et al., 2017), and § is (Higashiyama et al., 2021), respectively.

of missing information, deletion of redundant infor-
mation, splitting and fusion of sentences to improve
readability across sentences.

Emotional Expressions In SNS text, emoticons
and emojis are frequently used to express the
writer’s emotions. While these can be valuable
cues for sentiment analysis, there are diverse ex-

pressions, for example, “（笑）” and “www” to
express feelings of joy. Therefore, to effectively
utilize these for sentiment analysis, a new major
category of “emotional expressions” is defined.
This type of normalization groups emoticons, emo-
jis, and emotional symbols such as “（笑）” into
Plutchik’s basic eight emotions (Plutchik, 1980)
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and replaces them with special tokens such as
<joy> and <sudness> that are assigned to each
emotion. In addition, numerical expressions are
also replaced with the special token <num>.

3.2 Details of Our Text Normalization

This section provides details on text normalization
methods for each major category. Note that, as
shown in Figure 1, multiple parts of a post may
be normalized at the same time, and that multi-
ple types of normalization may be applied to one
expression.

Typos and Misspellings All errors are revised
to the correct wording. In addition, missing punc-
tuation should be completed, and proper nouns,
including the titles of books and movies, should be
consistently enclosed in parentheses with『』.

Dialect Styles of sentence endings and functional
expressions consistently transfer from casual to
formal. Other types of dialects are normalized
while using web searches as much as the annotator
can detect.

Alternative Spellings Pronunciation variations,
homophones, and small/large characters are revised
to the correct wording. For symbol conversion, a
sequence of punctuations is replaced by an ellipsis,
and a comma at the end of a sentence is replaced by
a period. Here, parentheses are consistently used
with a single「」 for utterances and a double『』
for proper nouns.

Loanwords written in alphabetic or katakana
characters are replaced with their Japanese coun-
terparts when fluency can be improved by trans-
lation or transliteration. In addition, hira-
gana/katakana/kanji, abbreviations, and synonyms
are replaced with high-frequency words. Here,
word frequencies are counted from the Japanese
edition of the CC-1004 (Wenzek et al., 2020),
a large-scale Web corpus, by word segmenta-
tion5 (Kudo et al., 2004) of the text. Note that we
therefore do not replace high-frequency abbrevia-
tions. For example, common abbreviations, such
as “TV”, are left as abbreviations because they are
more frequent than the formal name of “television”.
However, proper nouns are not abbreviated regard-
less of their frequency.

4https://data.statmt.org/cc-100/
5https://github.com/neologd/

mecab-ipadic-neologd

すっごく ワクワク する

凄く ワクワク します
(Iʼm very excited.)

Inserted Sounds
Casual/Formal 
Sentence Endings 

Hiragana/Katakana/Kanji

すごく

Figure 1: Example of our text normalization.

Emphasis Expressions Repetition of symbols,
characters, words, or phrases should be limited to
two times following the previous study (Osaki et al.,
2017). Redundant sounds and symbols are also
removed. Bullet points are expanded into sentences
and word order is reformatted to improve fluency.

Simplification To improve readability, long com-
pound sentences that should be expressed in mul-
tiple sentences are split, while short multiple sen-
tences that should be expressed in one sentence are
fused. Missing information should be completed if
it can be inferred by the annotator, while redundant
information should be deleted for simplicity. We
paraphrase technical terms, low-frequency words,
onomatopoeia, and other difficult-to-understand ex-
pressions into general and objective expressions.

Emotional Expressions Emojis, emoticons,
and other emotional symbols are replaced
with following special tokens according to
Plutchik’s basic eight emotions (Plutchik, 1980):
<anger>, <disgust>, <fear>, <joy>, <sadness>,
<surprise>, <trust>, and <anticipation>. An-
notators choose which of the special tokens to re-
place the emotional symbols with, based on the
context. We replace all numbers with the special
token <num>, without regard to how large or small
the numerical expressions are. However, we do
not edit numerical expressions that are part of id-
ioms, because replacing them would change their
meaning.

4 Experiment

Our experiments evaluate the performance of senti-
ment polarity classification on sentences with indi-
vidual or all normalizations, and assess the effec-
tiveness of preprocessing with text normalization.
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4.1 Settings
Task We evaluate the performance of Japanese
sentiment polarity classification on the WRIME
dataset (Kajiwara et al., 2021; Suzuki et al., 2022).
This is a dataset of Japanese SNS posts labeled with
five levels of sentiment polarity (-2, -1, 0, 1, 2) by
the text writer. We used quadratic weighted kappa
(QWK) (Cohen, 1968) as our evaluation metric.

Annotation For this experiment, we manually
performed the text normalization described in the
previous section on a total of 6,000 posts from
WRIME, consisting of 5,000 posts from the train-
ing set and 500 posts each from the validation and
evaluation sets. Annotations of text normalization
were performed by three of the authors. First, one
of the authors performed text normalization on the
original posts. Then, another one of the authors
evaluated the acceptability of their normalization
and modified them as necessary. Finally, the re-
maining one author categorized each text normal-
ization example based on our taxonomy.

Model Our sentiment analysis models were built
by fine-tuning pre-trained Japanese BERT (Devlin
et al., 2019) on the training set described above.
For fine-tuning, AdamW (Loshchilov and Hutter,
2019) was used for optimization, the batch size
was set to 64, and training was terminated when
the QWK in the validation set stopped improving
by 3 epochs. The learning rate was chosen from
{1, 2, 3, 4, 5} × 10−5 to achieve the highest QWK
in the validation set. We used two types of BERT,
a base6 model and a large7 model, and added nine
types of special tokens to the vocabulary for emo-
tional and numerical expressions. In the following
sections, we report the average score of 5 experi-
ments conducted while changing the random seed.

4.2 Result
Table 2 shows the experimental results. The “Man-
ual” columns that we trained and evaluated us-
ing our normalized dataset perform better in sen-
timent analysis than the “Baseline” columns that
we trained and evaluated using the dataset without
normalization. The performance improvement in
sentiment analysis by text normalization is consis-
tent for the two types of BERT models. These ex-
perimental results show that the text normalization

6https://huggingface.co/tohoku-nlp/
bert-base-japanese-whole-word-masking

7https://huggingface.co/tohoku-nlp/
bert-large-japanese

Baseline Manual Automatic

BERT-base 0.506 0.582 0.517
BERT-large 0.511 0.589 0.522

Table 2: Evaluation of sentiment polarity classification
by quadratic weighted kappa. “Baseline” is the perfor-
mance for text without normalization, “Manual” is for
manually normalized text, and “Automatic” is for auto-
matically normalized text, respectively.

based on our taxonomy is effective for sentiment
analysis in Japanese.

4.3 Analysis: Evaluation by Subcategory

To clarify which type of text normalization con-
tributes to improved performance in sentiment anal-
ysis, Table 3 shows the results of training and eval-
uating the BERT-large model with datasets normal-
ized to each subcategory exclusively. The other ex-
perimental settings are the same as in Section 4.1.

For most subcategories, our text normalization
improved the performance of sentiment analysis.
The worse performance of sentiment analysis when
only pronunciation variations were normalized
suggests that changes in pronunciation are more
likely to express the writer’s emotions.

Text normalization for the four categories of
casual/formal sentence endings, missing symbols,
hiragana/katakana/kanji variations, and abbrevi-
ations achieved significant performance improve-
ments of more than 3 points each. The diversity
of texts, including these spelling inconsistencies,
is a factor that hinders the training of sentiment
analysis models.

4.4 Analysis: Automatic Text Normalization

We tried automatic text normalization by fine-
tuning BART8 (Lewis et al., 2020), a pre-trained
sequence-to-sequence model, using our text nor-
malization dataset. In fine-tuning, we applied vo-
cabulary expansion as in BERT in Section 4.1, used
AdamW (Loshchilov and Hutter, 2019) for opti-
mization, set the batch size to 8, and terminated
training when the cross-entropy loss on the valida-
tion set stopped improving by 3 epochs.

The performance of text normalization was eval-
uated by BLEU (Papineni et al., 2002) on the eval-
uation set, and the results showed a significant im-
provement from BLEU=47.4 without normaliza-

8https://huggingface.co/ku-nlp/
bart-large-japanese
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Category Subcategory # QWK

Baseline (w/o normalization) 0.511
Apply all types of normalization 0.589

Typos and Misspellings

Missing Symbols 4,453 0.555
Missing Characters 3,604 0.529
Conjugation Errors 1,328 0.526
Typos 55 0.538
Misuse 45 0.513

Dialect

Casual/Formal Sentence Endings 5,321 0.559
Casual/Formal Functional Expressions 1,923 0.511
Internet Slang 539 0.515
Regional Dialect 319 0.522
Unique Sentence Endings 128 0.523
Censored Words 16 0.527

Alternative Spellings

Hiragana/Katakana/Kanji 2,480 0.550
Abbreviations 1,262 0.541
Pronunciation Variations 1,031 0.509
Synonyms 886 0.525
Symbol Conversion 461 0.537
Loanwords 273 0.518
Homophones 132 0.532
Small/Large Characters 63 0.514

Emphasis Expressions

Inserted Sounds 963 0.518
Inserted Symbols 331 0.538
Word Order Changes 293 0.538
Repetition 288 0.525
Bullet Points 43 0.525

Simplification

Completion 918 0.520
Lexical/Phrasal Simplification 771 0.530
Deletion 220 0.518
Fusion 105 0.517
Splitting 38 0.531

Emotional Expressions

Numerical Expressions 968 0.533
Emotional Symbols 259 0.535
Emoticons 180 0.515
Emojis 47 0.521

Table 3: Performance of sentiment polarity classification by BERT-large evaluated with quadratic weighted kappa
(QWK) when only the subcategories in each row are normalized. If that normalization improves performance
over the baseline, the values in the QWK column are highlighted in bold. The # column shows the number of
normalizations that fall into each subcategory out of the 6,000 posts we analyzed.

tion to BLEU=62.0, indicating the effectiveness
of automatic text normalization. The “Automatic”
column in Table 2 shows the performance of sen-
timent analysis trained and evaluated using an au-
tomatically normalized dataset. Not surprisingly,
automatic text normalization did not contribute to

the improved performance of sentiment analysis as
much as its manual counterpart. Nevertheless, con-
sistent performance improvements were achieved
for both types of BERT models. More training data
would improve the performance of automatic text
normalization, but that is left as our future work.
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Text Label

Original post しもんぬきゃわ Negative
Automatic normalization 仕事に行きません。 Very Negative
Manual normalization 下野紘が可愛いです。 Very Positive
Reference Hiro Shimono is cute. Very Positive

Original post ふふってなった Negative
Automatic normalization ふふっていました。 Negative
Manual normalization ふふっとなりました。 Neutral
Reference It made me smile. Positive

Original post あたまもおなかもいたい。どっちかにしてほしい Neutral
Automatic normalization あたまもお腹も痛いです。どっちかにしてほしいです。 Negative
Manual normalization 頭もお腹も痛いです。 どちらかにしてほしいです。 Negative
Reference I have a headache and a stomachache. Pick a side! Negative

Original post 私３Ｆ3列26 Positive
Automatic normalization 私は列です Positive
Manual normalization 私は<num>階の<num>列<num>番の席です。 Neutral
Reference I am on the third floor, row 3, seat 26. Very Negative

Table 4: Examples of text normalization and its sentiment analysis. Reference rows are the English translation of
the normalized text and the correct emotional polarity label annotated by the writer who posted the original text.

4.5 Qualitative Evaluation

Table 4 shows examples of text normalization and
the results of its sentiment analysis. As in these
examples, sentences consisting only of hiragana
characters deteriorate the performance of sentiment
analysis. Conversely, sentences that do not con-
tain hiragana characters, as in the bottom example,
are also difficult. If these can be properly normal-
ized, expressions such as “可愛い (cute)” and “痛
い (ache)” appear as cues to positive or negative
emotions, contributing to improved performance of
sentiment analysis. In the bottom example, the nu-
merical expression represents the negative emotion
of distant, but normalization of the numerical ex-
pression has made it difficult to read that emotion.
Although the normalization of numerical expres-
sions contributes to sentiment analysis on average,
it can also have a negative impact, as in this exam-
ple. In some cases, automatic text normalization
almost works, as in the second and third examples,
but in others, as in the first example, it generates
text that is off the mark.

5 Conclusion

In this study, we worked on text normalization as a
preprocessing to improve the performance of senti-
ment analysis for Japanese SNS texts. We defined

a Japanese text normalization taxonomy consist-
ing of 33 types of editing operations and manu-
ally normalized 6,000 posts. Experimental results
showed that both automatic and manual text nor-
malization consistently improved the performance
of sentiment analysis. In manual text normaliza-
tion, most types of normalization improved the
performance of sentiment analysis, respectively.
Our detailed analysis reveals that pronunciation
variations should not be edited, and are a useful
linguistic phenomenon for sentiment analysis.

Limitations

We released a dataset of manually normalized
Japanese text from 6,000 posts (about 11,000 sen-
tences) on social media. Our corpus is larger, con-
sidering that the Japanese text normalization cor-
pora available in previous studies are about 1,000
sentence pairs. However, it is an insufficient size
compared to corpora available for other text-to-text
generation tasks such as machine translation, gram-
matical error correction, and text simplification.
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