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Abstract

Text generation under control, or producing
linguistically coherent and contextually rele-
vant text, has seen tremendous progress thanks
to methods based on PPLM, FUDGE, and
diffusion-based models. Yet current state-of-
the-art models tend to balance control fidelity
with fluency. In addition, classifier-guided
strategies (e.g., PPLM) can be predicted in gra-
dient updates providing less coherent text. In
contrast, autoregressive-based approaches (e.g.,
FUDGE) rely on inflexible generation patterns
that limit creativity. Recent diffusion meth-
ods demonstrate superior performance in iter-
ation and diversity, but indirect methods often
fail to introduce sufficient ways to inject task-
associated knowledge, leading to the need for
many different complex classifier modules dur-
ing both training and inference. To address
this, we introduce a prompt-guided diffusion
framework that seamlessly incorporates struc-
tured prompts into the diffusion steps, provid-
ing precise and flexible control of the generated
text. Each prompt combines a target attribute
(for example, a sentiment tag), an example cor-
responding to that label (for example, a posi-
tive review), and a slot for the generated sen-
tence. By encoding such prompts using large
pre-trained models (such as BART) and inte-
grating these prompts through cross-attention
into the diffusion dynamics, our model achieves
new state-of-the-art performance on a variety
of tasks ranging from IMDB for sentiment, AG-
News for topic, and E2E for structured-output
to text.

1 Introduction

Text generation: a computational paradigm for pro-
ducing meaningful written content with coherence,
often fueled by NLP models. Its uses include chat-
bots, content generation systems, machine transla-
tion, and other areas. Controllability in text gen-
eration concerns the ability to control the outputs
for desired characteristics — including tone, style,

length, or topic based on predefined criteria or user
preference. This is usually done through all sorts
of means, from prompt engineering to fine-tuning
or control tokens. Unconstrained generation, on
the other hand, refers to cases where the generated
content deviates from the requirements, resulting
in out-of-topic content. Such deviations (known
informally as use performance error) are common
due to the inherently random nature of sampling or
subtle modeling of user intention, additional work
is often needed in production to find a satisfactory
balance between controllability and creativity in
the model.

NLP tasks related to text generation generally
relate to a generation task where models attempt to
create a set of coherent, meaningful strings from
some input, based on generative architectures. Re-
searchers have developed various types of genera-
tive strategies. Generative Adversarial Networks
(GANs) compete against a discriminator to gener-
ate text samples. EBMs work by defining an en-
ergy function across the text data, with the model
trained to produce lower energy for valid samples
and higher energy for invalid samples. This allows
for a flexible way to enforce constraints during
the generation process. Flow-based models pro-
duce exact likelihoods by invertible mapping from
simple probability distributions to complex ones,
giving much more control. Diffusion models pro-
gressively synthesize outputs, denoising random
noise through multiple probabilistic steps, yielding
stable and high-quality results. These paradigms
together illustrate the spectrum of mechanisms for
text generation by arranging different trade-offs be-
tween controllability, diversity, and fidelity. This
paper focuses on the application of diffusion mod-
els to the task of text generation.

1.1 Diffusion Model
The diffusion model consists of a Markov chain of
unobservable quantities. It begins with an initial
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data point x0 and incrementally corrupts it with
Gaussian noise until xT , according to the posterior
q(x0:T | x0). The variables x0, . . . , xT have the
same dimensionality as x0. The main objective
is to model the distribution pθ(xt−1 | xt) for the
reverse (denoising) process Ho et al. (2020).

Forward and reverse processes are two key com-
ponents of a diffusion model. The forward process
gradually corrupts data with random noise until it is
practically indistinguishable from pure noise. Then
the reverse phase tries to reconstruct the original
data, learning to deduce how to remove the noise
step by step. In the forward process, the transitions
in the Markov chain are described by a conditional
Gaussian. The generative distribution can be ex-
pressed as 1.

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) =

T∏

t=1

N
(
xt;
√

1− βtxt−1, βtI
) (1)

where every β (fixed or learnable) controls the vari-
ance. As the time T becomes larger, the second as-
sumption states that xT approaches Gaussian noise.

The model learns the reverse path during train-
ing to sample data from random noise p(xT ) =
N (xT ; 0, I) and thereby learns pθ(x0:T ) as in equa-
tion 2.

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt) =

p(xT )
T∏

t=1

N
(
xt−1;µθ(xt, t),

∑

θ

(xt, t)

) (2)

In this Markov chain, we model the dependence
on time of the reverse distribution by 3.

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t),

∑
θ
(xt, t)

)

(3)
The training aims to maximize the likelihood,

which is mathematically equivalent to minimizing
the negative log-likelihood by equation 4.

E[−logpθ(x0)] ≤ Eq[−log
pθ(x0:T )

q(x1:T |x0)
] = Lvlb

(4)
The KL divergence for Gaussians means that the

losses at every step (Equations 5 to 8, above) can
be expressed in KL terms. Therefore, the total loss
is the sum across the chain:

Lvlb =

T∑

k=0

Lk (5)

L0 = − log pθ(x0|x1) (6)

Lt−1 = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (7)

LT = DKL(q(xT |x0)||p(xT )) (8)

2 Related Work

Several studies focused on the adaptation of diffu-
sion models originally developed for image gener-
ation to the discrete textual domain (Li et al., 2022;
Austin et al., 2021). They provide novel methods
to approach the problem of continuous diffusion
processes versus discrete tokens. Some studies
directly construct diffusion as defined in the dis-
crete space and others map the discrete tokens into
a continuous representation where standard diffu-
sion pipelines can work (Austin et al., 2021; Chen
et al., 2022). Savinov et al. (2021) shows how
iterative denoising autoencoders can be placed in a
diffusion context and how repeated denoising steps
approximate the generative capacity of diffusion.
Such approaches can serve as a complement to the
widespread autoregressive models held typical for
text generation, enabling improvements in control-
lability, diversity, and sophisticated dependency
modeling.

These lines of research also investigate how to
use or outgrow diffusion-based text generation.
Diffusion-LM Li et al. (2022), which focuses on
controlling attributes of generated text, e.g., sen-
timent domain. Gong et al. (2022) leverages dif-
fusion models for seq2seq tasks like translation,
indicating their generality. In summary, this line of
work broadens the applicability of diffusion models
beyond the domain of continuous data, paving new
pathways into how discrete textual outputs can be
generated and conditioned.

Diffusion-LM Li et al. (2022) proposes a new
paradigm for text generation by utilizing the it-
erative refinement framework of diffusion mod-
els, which has been traditionally used in the set-
ting of continuous data, directly on text tokens.
Rather than single-pass autoregressive generations,
Diffusion-LM improves the text in multiple passes,
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potentially leading to greater flexibility and vari-
ability in its outputs. This approach trains a token-
level denoiser, allowing the approach to modify
specific attributes (sentiment, length, etc.) at infer-
ence without needing additional retraining.

D3PM Austin et al. (2021) presents a method
for diffusion on structured discrete data (e.g. text,
categorical data). In this technique, a forward cor-
ruption process preserves structural relations, and
a reverse denoising process restores the corrupted
data in iterations by learning a structured proba-
bility form. This approach aims to go beyond the
limitations of traditional sequential text generation
formats, enabling novel forms of discrete data mod-
eling.

SUNDAE Savinov et al. (2021) proposed a new
model of text generation combining the structured
representation power of denoising autoencoders
with a particular set of step-unrolling techniques in
modeling the sequential dependency of text. Next,
while standard DAEs generate text in a single step,
this framework replays the generation process over
an extended range, advising the denoising process
on how to convert an embedding with noise into
intelligible text. Step Unrolling: This allows the
model to learn to incorporate more information
about longer context dependencies while enforcing
a schism between the input and output of the model,
resulting in better-generated text.

There are, however, other utilitarian efforts that
use encoder-decoder architectures, with latent rep-
resentations, with a strong application-oriented mo-
tivation. Liu et al. (2024) establishes a generalized
view of diffusion, which can be applied to data
across continuous or discrete domains since both
the encoder and decoder may be tailored. Tan et al.
(2023) presents an encoder-decoder breakup for
text diffusion, specifically comprising a spiral in-
terplay structure that expands generational high
quality, whilst letting knowledge waft from their
encoder to its decoder (throughout the diffusion
levels).

These papers cover various techniques for fur-
ther improving text generation using diffusion mod-
els by generally combining PLMs, latent spaces,
and novel training or sampling techniques. Several
of them focus on the synergy between diffusion
and PLM. The proposed approach, Ou and Jian
(2024) suggests a "linguistic easy-first schedule"
to guide the process of diffusion in leveraging lin-
guistic knowledge and PLMs to make the model
generate simpler linguistic structures first.

Many studies explored the combination of dif-
fusion with large pre-trained language models
(PLMs). Ou and Jian (2024) introduce a “linguis-
tic easy-first schedule” that borrows from linguistic
knowledge and leverages PLMs so that simpler
patterns first appear in diffusion-based text genera-
tion. Chen et al. (2023a) present a resource-frugal
diffusion language model with soft-masked noise,
which strikes an equilibrium by preserving essen-
tial linguistic elements.

The domains where diffusion models can be ap-
plied include paraphrasing Zou et al. (2024), dialog
systems Xiang et al. (2024), recommendation en-
gines Li et al. (2023), code generation Singh et al.
(2023), topic modeling Xu et al. (2023), event ar-
gument extraction Luo and Xu (2023), comment
generation Liu et al. (2023), style transfer Horvitz
et al. (2024), Lyu et al. (2023), key phrase ex-
traction Luo et al. (2023), translation Chen et al.
(2023b), poetry generation Hu et al. (2024), text
detoxification Floto et al. (2023), empathetic dia-
log Bi et al. (2023), entity recognition Shen et al.
(2023), text summarization Zhang et al. (2023),
text inference Yuan et al. (2024), and conversation
controllable Chen and Yang (2023).

3 The Proposed Method

Prompt diffusion is an emerging key mechanism
for generative modeling, providing a simple yet
powerful way to condition outputs of a diffusion
model with standard language prompts. While dif-
fusion models have been shown to be powerful
samplers (from images to audio to text), achieving
explicit, fine-grained control has remained a chal-
lenge Nichol and Dhariwal (2021). This is what
makes direct control over the generative process
and steering it toward certain outputs complex.

To address this problem, diffusion strategies
based on prompts condition the diffusion model
on text descriptions (i.e., “prompts”) that describe
the desired properties and guide the generative pro-
cess of the model. Essentially, a big pre-training
language model, e.g. BART, is applied to these
textual prompts to turn them into vector represen-
tations that contain the prompt’s semantic content.
These representations are then fed into the denois-
ing network, often using concatenation methods,
guiding concerning the prompt during each step of
the denoising process.

One particular type of structured prompt uses the
target property, such as a sentiment or topic, along
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with a randomly selected in-class example (to pre-
vent data overlap or leakage), then leaves a blank
for the new sentence. Our diffusion model, which
is based on a transformer, manages the noisy text
embeddings with cross-attention conditioning on
the embeddings of prompt processed by BART (or
any other similar encoder). This design is shown
in figure 1.

Several advantages come with prompt-based dif-
fusion. First, it is highly controllable Sridhar and
Vasconcelos (2024): with meticulously engineered
prompts, one can dictate the style, content, or other
types of attributes, allowing for highly constrained
creative output Zhong et al. (2024). Second, it of-
fers versatility: a single pre-trained diffusion model
can be used on many tasks by simply changing a
prompt instead of fine-tuning each model for each
new objective. It is extremely cost-efficient. Third,
it offers great potential for few-shot or in-context
learning, allowing the model to infer instructions
from a few examples Du et al. (2024).

But writing good prompts is not trivial: badly
written prompts give bad results, and the encoding
of prompts also takes time to generate. Complex
prompts may raise challenges as well in terms of
coherence. Despite that, prompt-based diffusion
is an appealing method, as it provides extensive
user-driven guidance combined with the powerful
generative capability of extensive diffusion models.

Our system combines a large language model
and diffusion for conditional text generation. We
adopt a prompt-learning paradigm that concate-
nates the condition label (e.g., sentiment) with a
relevant example review to form a textual prompt.
Subsequently, this prompt is encoded (e.g., with
BART), bringing about embeddings that guide the
diffusion process. The diffusion model is trained
to predict the noise added at each time step, effec-
tively modeling the reverse diffusion. Therefore,
at inference time, random noise is iteratively con-
verted into meaningful embeddings based on the
guidance of the prompt.

So those final embeddings get passed through
a BART decoder, benefiting from the pre-trained
autoregressive decoding to produce reasonable
text. This pipeline elegantly resolves the shortcom-
ings of a completely embedding-based decoding
(which can be compelled to revert to rough nearest-
neighbor lookups) and produces high-quality text
outputs. The prompt method informs the output
using the desired condition in the prompt but also
dictates the context with the example text, which

{Condition,Example{sentence,label}} target
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Noisy
latent

Diffuser

Predicted
latent
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Figure 1: Our Proposed Method

provides a granular steer for what you would want
to get as output. By leveraging the strengths of a
sizable, pre-trained encoder-decoder (BART) and a
purpose-built diffusion model, the components are
tailored for their tasks, yielding robust performance
on conditional text generation tasks.

4 Experimantal results

We evaluate our approach on three benchmark
datasets: IMDB (50,000 movie reviews for sen-
timent analysis) Maas et al. (2011), AG News
(120,000 news articles across four topics: World,
Sports, Business, and Sci/Tech) Zhang et al.
(2015), and E2E (a data-to-text dataset which
involves restaurant descriptions using structured
attribute-value pairs) Novikova et al. (2017). Each
dataset poses different challenges: IMDB for senti-
ment polarity, AG News for topic coherence, and
E2E for structured semantic fidelity.

Our diffusion training involves two steps: a for-
ward phase where the text embeddings are grad-
ually contaminated with Gaussian noise across
T=1000 time steps, and a reverse phase, during
which a trained model denoises the signal to re-
construct the data. In the forward step, x0 pro-
gressively transforms into xT according to a noise
schedule βt = 0.9, ending with a nearly random
noise state (Equation 1). The model is trained
to predict the noise at each time t concerning
the variational bound (Equation 4), estimating
pθ(xt−1 | xt). Diffusion-based generators instan-
tiate text through a multi-step, iterative denoising
process, allowing fine-grained modifications during
intermediate steps to satisfy conditions such as syn-
tactic or stylistic properties instead of generating
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the text token-by-token as in autoregressive mod-
els. This iterative routine stabilizes training and
provides more robust controllability than single-
pass methods.

Our experiments were conducted using the E2E
dataset, and the results showed that the proposed
method outperformed other approaches. Table
1 lists three generation tasks we experimented
with: semantic content, parts-of-speech (POS), and
length.

For the semantic content task, we supplied a field
(e.g., rating) and provided a value (e.g., 5 stars) to
compute a sentence that would accurately person-
ify the relationship between the field and value
provided, and the ground truth for the same being
the exact match of the ’value’. For the parts-of-
speech task, we generated a sequence of POS tags
to the model (e.g., Pronoun Verb Determiner Noun)
and asked it to output a word sequence of the same
length such that the POS tags were aligned with
the target according to an oracle POS tagger. Suc-
cess was measured using word-level exact matches.
For the length task, we defined a desired length
between 10 and 40 and produced a sequence of up
to ±2 the target length.

We also conduct experiments on IMDb and AG-
News, assessing their quality using metrics such
as BLEU, ROUGH, and BERTScore as shown in
table 2.

The numerical results in Table 1 clearly show
that PromptDiffusion outperforms all prior con-
trollable text generation methods on all features
evaluated: accuracy of semantic content, accuracy
of part-of-speech, and text length. In semantic
content, PromptDiffusion also delivers high accu-
racy of 83% outperforming the previous leading
methods including Masked DiffusionLM + BERT
(82.9%) and DiffusionLEF + BERT (82.4%), with-
out sacrificing the low-perplexity (2.30) and thus
fluency. And while achieving 92.5% in part-of-
speech accuracy, PromptDiffusion outperforms all
other diffusion models and has the lowest perplex-
ity, at 4.7, which means it generates syntactically
more coherent outputs.

Table 2 reveals that PromptDiffusion outper-
forms not only PPLM and FUDGE but also Diffu-
sionLM on the IMDB (sentiment control) and AG
News (topic control) datasets in terms of genera-
tion quality. In extensive evaluation, of the IMDB
dataset, PromptDiffusion achieves BLEU-4 of 10,
ROUGE-L of 30, and BERT-Score of 92, outper-
forming DiffusionLM and GPT-2 by a large mar-

gin. This indicates that PromptDiffusion yields
semantically more aligned and fluent text while
better-preserving intent. These findings further un-
derpin that PromptDiffusion provides a tradeoff
between controllability, fluency, and quality, thus
is a strong competitive to prior generation meth-
ods reaping benefits from traditional structured pre-
trained models (e.g. GPT-2), and because it also
surpasses them in some tasks in text generation.

Diffusion models give controllable text genera-
tion more flexibility and come with significantly
more advantages than autoregressive, VAE, or
GAN-based approaches. While autoregressive
models like GPT predict following a static, token-
by-token order, diffusion models slowly guide la-
tent representations through many iterations. Such
progressive denoising lends itself well to making
subtle tweaks to fit our constraints, such as syntax,
length, or style. Diffusion models manage to strike
the right balance between accuracy and creativity
in comparison to classifier-guided techniques like
PPLM, which tend to generate unintelligible out-
puts owing to erratic updates of gradients, or VAEs
that in most cases hit a wall when it comes to diver-
sity. Diffusion models achieve a balance for gen-
eration by inserting structured prompts (e.g. target
attributes) into continuous input via cross-attention
mechanisms without losing fluency.

5 Conclusion

In this work, we propose a prompt-guided diffusion
framework for controllable text generation that mit-
igates critical limitations of the existing methods
in balancing precision and fluency. Our method
integrates structured prompts that combine target
conditions and in-class examples into the diffu-
sion process, achieving fine-grained control over
attributes such as sentiment, topic, and adherence
to structured data. Dynamic sampling of examples
during training ensures robustness to intra-class
diversity. Future work might investigate hybrid
models that combine the proposed prompt-guided
diffusion either with the retrieval-augmented gener-
ation or few-shot learning, as well as an extension
to multimodal tasks. Such a framework advances
the frontier of controllable text generation by bridg-
ing human intention with generative AI through
intuitive prompting and thus offers a flexible and
scalable solution for real-world deployment.
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semantic content part of speech length
Acc Perp Acc Perp Acc Perp

PPLM 9.9 5.32 - - - -
FUDGE 69.9 2.83 27 7.96 46.9 3.11
DiffusionLM 81.2 2.55 90 5.16 99.9 2.16
DiffusionLM + Bert 77.4 2.68 86.2 5.43 99.9 2.68
Masked DiffusionLM + Bert 82.9 2.30 92.9 4.78 100 2.08
DiffusionLEF 81.7 2.46 91.2 5.09 99.9 2.14
DiffusionLEF + Bert 82.4 2.32 92.4 4.82 100 2.10
PromptDiffusion 83 2.30 92.5 4.7 99.9 2

Table 1: results on E2E dataset for controllable generation

IMDB AG News
BLEU-4 ROUGE-L Bert-Score BLEU-4 ROUGE-L Bert-Score

PPLM 1.6 19 41 2 20 43
FUDGE 1.8 20 43 2.1 22 46
DiffusionLM 7 28 89 7.5 29 90
PromptDiffusion 10 30 92 11 31 91
GPT2 6.1 26 88 6.8 27 89

Table 2: results on IMDB and AGnews
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