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Abstract

This paper investigates whether Large Lan-
guage Models (LLMs), fine-tuned on synthetic
but domain-representative data, can perform
the twofold task of (i) slot and intent detection
and (ii) natural language response generation
for a smart home assistant, while running solely
on resource-limited, CPU-only edge hardware.
We fine-tune LLMs to produce both JSON ac-
tion calls and text responses. Our experiments
show that 16-bit and 8-bit quantized variants
preserve high accuracy on slot and intent detec-
tion and maintain strong semantic coherence
in generated text, while the 4-bit model, while
retaining generative fluency, suffers a notice-
able drop in device-service classification ac-
curacy. Further evaluations on noisy human
(non-synthetic) prompts and out-of-domain in-
tents confirm the models’ generalization abil-
ity, obtaining around 80–86% accuracy. While
the average inference time is 5–6 seconds per
query—acceptable for one-shot commands but
suboptimal for multi-turn dialogue—our results
affirm that an on-device LLM can effectively
unify command interpretation and flexible re-
sponse generation for home automation without
relying on specialized hardware.

1 Introduction

Smart home technologies and IoT devices have
proliferated in recent years, with an expected rise
from 16.6 billion to 18.8 billion connected devices
by the end of 2024 (IoT Analytics, 2024). Major
providers like Amazon, Google, and Apple typi-
cally handle speech recognition and intent detec-
tion on cloud servers, which raises user concerns
about privacy, data ownership, and reliance on pro-
prietary ecosystems (BBC News, 2025). Conven-
tional solutions for home assistants often rely on
specialized, domain-specific classifiers for slot and
intent detection (SID), paired with templated sys-
tem responses. While these approaches can be effi-

*The authors contributed equally to this work.

cient, they can also be rigid, sometimes requiring
precisely phrased user inputs and yielding repeti-
tive or unpersonalized answers.

Recent developments in on-device comput-
ing—coupled with improvements in model com-
pression and quantization (Liang et al., 2021; Gho-
lami et al., 2022; Lang et al., 2024)—have paved
the way for smaller yet still capable language
models to run on commodity hardware. These
models offer privacy benefits and allow customiz-
able local inference with reduced latency. How-
ever, deploying a capable model under strict mem-
ory and computational constraints remains chal-
lenging. Large-scale Transformer-based language
models (Vaswani et al., 2017), and especially
LLMs (Touvron et al., 2023; Dubey et al., 2024;
Bai et al., 2023; Yang et al., 2024; Groeneveld et al.,
2024), have demonstrated remarkable proficiency
in tasks ranging from question answering to text
generation (Arora et al., 2024; Yin et al., 2024), yet
typically demand substantial hardware resources,
restricting them to cloud-based services or large
compute clusters.

This paper explores whether a smaller, fine-
tuned LLM can provide two capabilities essential
to a home assistant—accurate recognition of what
users want (i.e., slot and intent detection), and nat-
ural textual responses—while running entirely on
an edge device with limited CPU and memory. By
unifying these tasks into one end-to-end system,
we eliminate the need for separate domain-specific
classification modules and templated responses, fo-
cusing on efficiency, robust language understand-
ing, and strict correctness in JSON action output.

Additionally, we move away from classic SID
datasets and other general spoken language un-
derstanding benchmarks. Instead, we investigate
whether LLMs can be directly applied to digital
assistant software. To this end, we take the open-
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source Home Assistant software1 as our gold stan-
dard for evaluation, targeting real-world device-
service pairs and actionable JSON outputs.

Contributions. Our contributions can be summa-
rized as follows:2 1 We show that a 0.5B LLM
can be fine-tuned to already jointly handle SID
and response generation with high accuracy. 2
By quantizing the model (from 16-bit to 8-bit and
4-bit), we quantify trade-offs between memory us-
age, accuracy, and generative fluency on CPU-only
edge hardware. 3 We evaluate the approach on
synthetic data, human queries, and out-of-domain
tasks, confirming robust generalization.

2 Related Work

Slot and Intent Detection. Traditional ap-
proaches to spoken language understanding (SLU)
often treat SID separately using domain-specific
classification or sequence tagging approaches
(Zhang and Wang, 2016; Wang et al., 2018; Weld
et al., 2022; Qin et al., 2021; Pham et al., 2023).
More recent transformer-based solutions unify both
tasks, leveraging contextual embeddings to im-
prove performance (Castellucci et al., 2019; van der
Goot et al., 2021; Stoica et al., 2021; Arora et al.,
2024) with models like BERT (Devlin et al., 2019).
However, many of these solutions still presume tai-
lored sequence labeling datasets or full-size trans-
former backends. Our work aligns with the shift
to more expressive transformer models for SLU,
but we push inference to a local environment while
also adding dynamic text generation.

Running LLMs on Edge Devices. While train-
ing large-scale LLMs remains computationally ex-
pensive, numerous works explore strategies for
deploying them on edge hardware. Haris et al.
(2024) propose FPGA-based accelerators to re-
duce memory overhead for LLM inference. Zhang
et al. (2024) distribute an LLM across multiple
low-power devices to increase throughput. An em-
pirical footprint study by Dhar et al. (2024) shows
that even 7B-parameter models can strain embed-
ded hardware if not sufficiently compressed. Our
approach uses a much smaller LLM (0.5B–1.5B
parameters) plus weight quantization, showing that
near-commodity devices with 8GB RAM can han-
dle both intent classification and text generation if
the domain is sufficiently specialized.

1https://github.com/home-assistant/core
2We release all our code and models at https://github.

com/Run396/P9.

Partition Train Test Total

Classification 23,372 5,843 29,215
LLM 33,361 2,435 35,796

Table 1: Aggregated Train/Test Splits. For the classi-
fication baseline, 20% of the original training set was
used as test data (after removing multi-intent samples).
The LLM used the full synthetic data; 2,435 remain as
test.

3 Methodology

Our goal is to integrate two core functionalities of
a home assistant into a single model:

• Slot and Intent Detection: The model out-
puts a valid JSON object that maps to a de-
sired service (intent) and device (slot) pair:

{"service": "light.turn_on",
"device": "light.living_room",
"assistant": "Sure, turning on
on the living room light."}

• Natural Language Generation: The model
also produces a textual response confirming
or elaborating on its action, as can be seen
in the example above. The text can then be
propagated to, e.g., a text-to-speech model.

Traditional classifiers only handle device-service
classification and do not produce any text. For user-
facing text, the baseline approach would rely on
templated responses.

3.1 Data and Pre-processing

To the best of our knowledge, there is no ex-
isting human-curated dataset specifically for the
Home Assistant software. Thus, we rely on syn-
thetic data. We use a publicly available synthetic
dataset (acon96, 2024), which consists of 35,840
synthetic examples designed to mimic Home As-
sistant commands. Each instance consists of:

• A User Prompt: e.g., “Turn on the kitchen
light”, “Set the thermostat to 22 degrees”.

• One Valid JSON Action, containing the
service and device fields corresponding to
Home Assistant calls.

• A Natural Language Response: e.g., a para-
phrase or affirmation of the action taken.
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Model Accuracy BERTScore

Baselines
SVC Classifier

Service 76.6 —
Device 45.4 —

DistilBERT
Service 98.8 —
Device 47.9 —

Qwen2.5-0.5B (16-bit) 98.8 0.84
Qwen2.5-0.5B (8-bit) 98.4 0.79
Qwen2.5-0.5B (4-bit) 81.7 0.88

Qwen2.5-1.5B (16-bit) 96.9 0.84
Qwen2.5-1.5B (8-bit) 96.5 0.83
Qwen2.5-1.5B (4-bit) 90.7 0.82

Table 2: Slot/Intent Detection and NLG Results on
Synthetic Test Data. Accuracy is based on exact JSON
match. BERTScore measures semantic similarity of the
generated text vs. gold reference.

A full example can be found in Figure 1 (Ap-
pendix A). We stratify the dataset, maintaining the
inherent imbalance (some device types and services
appear more frequently). There are 38 service la-
bels and 858 device labels. We split into training
and test sets as shown in Table 1. The final training
set for the LLM includes ∼33k examples, and we
set aside 2,435 synthetic samples for evaluation.
Note that for the classification-based baselines, we
split up the train and test set to separately predict
service and device instead of as one prediction,
ending up with double the test data (5,843 samples;
excluding multi-intent examples). The input con-
sists of only the user message and leave the system
message out. A more detailed distribution of the
data can be found in Table 6 (Appendix B).

3.2 Models

Baseline Classifiers. We train a Linear SVC
from Scikit-Learn (Pedregosa et al., 2011) on TF-
IDF features of the user prompt. The classifier out-
puts a concatenated device-service pair, which is
then wrapped in JSON. Additionally, we fine-tune
DistilBERT (Sanh et al., 2019) for classification.
We use the transformers library (Wolf et al., 2020)
for fine-tuning. We train for 1 epoch using a learn-
ing rate of 3×10−4 with the AdamW optimizer,
and a batch size of 64 on a NVIDIA A10 (24GB)
GPUs. Both models have no generative capability,
so user-facing text is templated.

Small Large Language Models. We train using
a chat-style format with user–assistant pairs. We
primarily use the Qwen2.5-0.5B-Instruct model

Model CPU T/Q (s) Load (s)

Baselines
SVC Classifier 4 <1 —
DistilBERT 4 <1 —

Qwen2.5-0.5B (16-bit) 4 6.25 ±3.2
Qwen2.5-1.5B (16-bit) 4 10.81 ±5.6
Qwen2.5-0.5B (8-bit) 4 5.50 ±3.2
Qwen2.5-1.5B (8-bit) 4 10.32 ±5.6

Qwen2.5-0.5B (16-bit) 2 8.49 ±5.6
Qwen2.5-1.5B (16-bit) 2 17.72 ±5.6
Qwen2.5-0.5B (8-bit) 2 7.89 ±5.6
Qwen2.5-1.5B (8-bit) 2 16.11 ±5.6

Table 3: Computation Time. Mean time per query
(T/Q) across 500 samples under different CPU core
counts and quantization levels. Load time is model
initialization.

and the Qwen2.5-1.5B-Instruct (Yang et al., 2024).
We fine-tune both models for one epoch with a
batch size of 4, using the AdamW optimizer at
a learning rate of 2 × 10−5 with a cosine sched-
uler. The maximum sequence length is set to 2,048
tokens. We use the HuggingFace Transformers li-
brary (Wolf et al., 2020) for training on NVIDIA
L4 (24 GB) GPUs.

Quantization. After fine-tuning and having the
original 16-bit model, we produce two quantized
versions of each model: NF8 and NF4 (Dettmers
et al., 2024), using bitsandbytes.3 This allows us to
compare accuracy, generative quality, and inference
speed under varying memory constraints.

3.3 Evaluation

Slot-Intent Detection Accuracy. SID must be
correct with near-exact string matching, as JSON
calls are consumed downstream by the home au-
tomation system. We thus parse the model output
for the service and device fields; if they match
the gold annotation exactly, it is counted as correct.
Any mismatch or invalid JSON results in an error.

For the classification task, instead, we separately
predict service and device using the same classi-
fication model and take the average accuracy.

Text Generation Quality. For the natural lan-
guage responses using the LLMs, we compare
each generated response to the reference using
BERTScore (Zhang et al., 2020).

3See https://github.com/
bitsandbytes-foundation/bitsandbytes. We also
use double quantization.
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Model Accuracy BERTScore

Qwen2.5-0.5B 80.0 0.76
Qwen2.5-1.5B 86.7 0.74

Table 4: Results Out-of-Domain Queries. Accuracy
and BERTScore over 60 OOD samples.

Inference Environment. We simulate a CPU-
only setup on an 8 GB RAM device with up to four
CPU cores. We measure average inference time
on a 500-sample subset, varying both quantization
level and the number of CPU cores.

4 Results

4.1 Slot and Intent Detection

Table 2 shows the SID performance of both the
0.5B and 1.5B LLMs under various quantization
levels, alongside the baseline SVC and DistilBERT.
For the 0.5B model, the 16-bit and 8-bit variants
reach near-perfect accuracy (∼ 99%). The 4-bit
version drops to 81.7%, which is still better than
the the SVC baseline (average 61.0% accuracy) and
DistilBERT baseline (average 73.4% accuracy).

Interestingly, for the larger 1.5B model, the 16-
bit and 8-bit variants achieve 96.9% and 96.5%
accuracy, respectively, while the 4-bit version gets
90.7%. Thus, while the smaller 0.5B model ac-
tually yields higher raw accuracy in-domain, the
1.5B model remains competitive and in some out-
of-domain tests (next section) performs better.

4.2 Natural Language Generation

Although the 4-bit models suffer in SID accuracy,
Table 2 shows that the 0.5B 4-bit variant has the
highest BERTScore (0.88). This indicates that
while it may misclassify device/service fields, the
generative text can still be fluent and semantically
close to the target. Meanwhile, the 8-bit versions
drop in BERTScore for the 0.5B model (0.79) and
remain steady for the 1.5B model (0.83). Qualita-
tive samples show that small changes in quantiza-
tion can shift the style and lexical choices of the
generated text.

4.3 Inference Time and Memory

Table 3 summarizes the inference speed across
model size, quantization, and CPU core settings.
The 8-bit model is only slightly faster than the 16-
bit model (5.5 s vs. 6.25 s on 4 cores for the 0.5B).
Doubling CPU cores from 2 to 4 reduces latency
roughly by half. The 1.5B model takes longer (up

Model Accuracy BERTScore

Qwen2.5-0.5B 84.0 0.68
Qwen2.5-1.5B 86.4 0.66

Table 5: Results Human-Generated Queries. Accu-
racy and BERTScore over 81 real-user queries.

to 10–17 s per query), which may be borderline for
real-time usage in multi-turn dialogues.

4.4 Out-of-Domain Intents
In Table 4, we evaluate 60 OOD queries that men-
tion either novel device types or services not ap-
pearing in the training set. The 0.5B model scores
80.0% accuracy vs. 86.7% for the 1.5B model, with
BERTScores of 0.76 and 0.74 respectively. The re-
sults suggest that the 1.5B model generalizes some-
what better to unfamiliar domains, though both
degrade compared to in-domain performance.

4.5 Human Prompts
Finally, we tested each model on 81 human-written
prompts. Ten participants (ages 23–69) contributed
typical commands they would issue to a home assis-
tant, including incomplete or ambiguous phrasing.
Table 5 shows that the 0.5B model achieves 84.0%
accuracy, whereas the 1.5B model is slightly higher
at 86.4%. BERTScores are around 0.66–0.68. The
gap vs. synthetic data reflects real-user queries with
more variation and noisy data.

5 Discussion

Despite near-perfect performance on the synthetic
test set, Table 4 and 5 reveal a drop to 80–86% accu-
racy in real or out-of-domain queries. This discrep-
ancy likely stems from the difficulty of handling
spontaneous human phrasing, missing location or
device details, and genuinely novel device types.
Still, the results surpass the SVC and DistilBERT
baseline.

Interestingly, while the 4-bit model can generate
fluent natural language responses (often scoring
the highest BERTScore in the 0.5B case), its clas-
sification accuracy suffers. This underscores that
quantizing a model to extreme levels can degrade
structured predictions more than open-ended text
generation.

Regarding speed, the 1.5B model yields consis-
tent accuracy gains on OOD data but also increases
inference time by up to 2–3×. For single-turn com-
mands, 5–6 seconds per query might be accept-
able, but multi-turn dialogue would require faster or
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more efficient strategies. Future work may explore
parameter-efficient fine-tuning, context truncation,
or advanced quantization (e.g., 8-bit + partial 4-bit
layering) to reduce inference times.

6 Conclusion

We present that LLMs can simultaneously perform
SID and natural language response generation for
a home automation domain. Experiments on an
8GB RAM, CPU-only environment show that 8-bit
quantization largely preserves in-domain accuracy
(up to 99%) and strong text fluency, while 4-bit
introduces significant classification errors despite
retaining good generative capability. We further
demonstrate promising generalization to human-
written prompts and out-of-domain tasks, with ac-
curacy around 80–86%. However, per-query in-
ference times of 5–6 seconds indicate that LLM-
based assistants, as implemented here, are not yet
ideal for fast multi-turn dialogues on edge devices.
Future work can refine these models for faster,
more memory-efficient inference, enabling privacy-
preserving yet flexible home automation assistants.

Limitations

Our use of synthetic data may limit the diversity
of user prompts; while we partially mitigated this
with human-written queries, data coverage remains
a challenge. The model also relies on structurally
valid JSON output. Real-world usage may need
fallback logic to handle malformed or incomplete
responses. Moreover, we focus on a single domain
(home automation); scaling to broader or open-
ended tasks likely requires larger models and may
degrade performance under CPU-only constraints.

Ethical Considerations

We do not foresee any major ethical issues with
this work. The primary domain is home automa-
tion, and the dataset is synthetic or user-provided
under informed consent. Nonetheless, deploying
generative models in user-facing applications re-
quires caution regarding hallucinated or incorrect
responses, as well as user data privacy.
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A Data Examples

We show a data example in Figure 1.
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[
{
"from": "system",
"value": "You are 'Al', a helpful AI Assistant that controls the devices in
a house. Complete the following task as instructed or answer the following
question with the information provided only.\nServices: cover.close_cover(),
cover.open_cover(), cover.stop_cover(), cover.toggle(), lock.lock(),
lock.unlock(), media_player.media_next_track(), media_player.media_pause(),
media_player.media_play(), media_player.media_play_pause(),
media_player.media_previous_track(), media_player.media_stop(),
media_player.toggle(), media_player.turn_off(), media_player.turn_on(),
media_player.volume_down(), media_player.volume_mute(),
media_player.volume_up(), switch.toggle(), switch.turn_off(),
switch.turn_on(), timer.cancel(), timer.pause(), timer.start(duration),
vacuum.pause(), vacuum.return_to_base(), vacuum.start(), vacuum.stop()
Devices: media_player.harman_kardon_aura 'Harman Kardon Glass Speaker'
= standby; vol=0.88\ntimer.kitchen_oven 'Kitchen oven timer' =
active\nlock.office_cabinet 'Office cabinet lock' = unlocked
cover.master_bedroom 'Master Bedroom' = closed
vacuum.hallway_neato 'Hallway path cleaner' = docked
switch.basement_lights 'Basement Lights Switch' = off"

},
{
"from": "user",
"value": "reverse the master bedroom blinds"

},
{
"from": "assistant",
"value": "switching Master Bedroom state as requested\n
```homeassistant

{
\"service\": \"cover.toggle\",
\"target_device\": \"cover.master_bedroom\"

}
```"

}
]

Figure 1: Data Example. In the figure, we show a data example from the acon96 (2024) dataset.
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B Data Distribution Detailed

We show a more detailed distribution of the dataset
in Table 6.
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Class Total Dataset Test

climate.set_fan_mode 1080 0
climate.set_humidity 1080 0
climate.set_hvac_mode 1080 0
climate.set_temperature 1000 0
cover.close 385 35
cover.open 395 40
cover.stop 320 25
cover.toggle 365 25
fan.decrease_speed 360 60
fan.increase_speed 300 40
fan.toggle 390 85
fan.turn_off 390 70
fan.turn_on 405 60
light.toggle 450 90
light.turn_off 2535 600
light.turn_on 11940 150
lock.lock 200 125
lock.unlock 185 125
media_player.media_next_track 55 25
media_player.media_pause 55 25
media_player.media_play 70 25
media_player.media_previous_track 55 25
media_player.media_stop 55 25
media_player.turn_off 25 25
media_player.turn_on 40 40
media_player.volume_down 65 35
media_player.volume_mute 60 30
media_player.volume_up 85 40
switch.toggle 250 50
switch.turn_off 500 175
switch.turn_on 540 165
timer.cancel 600 0
timer.start 600 0
todo.add_item 1560 0
vacuum.pause 15 0
vacuum.return_to_base 150 0
vacuum.start 370 220
vacuum.stop 15 0

Table 6: Detailed Class Distribution Service. Total Dataset vs. LLM Test Subset
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