
Proceedings of the Tenth Workshop on Noisy and User-generated Text, pages 16–25
May 3, 2025 ©2025 Association for Computational Linguistics

Restoring Missing Spaces in Scraped Hebrew Social Media

Avi Shmidman,1,2,† Shaltiel Shmidman1,‡

1DICTA, Jerusalem, Israel
2Bar-Ilan University, Ramat Gan, Israel

†avi.shmidman@biu.ac.il
‡shaltieltzion@gmail.com

Abstract

A formidable challenge regarding scraped cor-
pora of social media is the omission of spaces,
causing pairs of words to be conflated together
as one. In order for the text to be properly
parsed and analyzed, these missing spaces must
be detected and restored. However, it is partic-
ularly hard to restore whitespace in languages
such as Hebrew which are written without vow-
els, because a conflated form can often be split
into multiple different pairs of valid words.
Thus, a simple dictionary lookup is not fea-
sible. In this paper, we present and evaluate a
series of neural approaches to restore missing
spaces in scraped Hebrew social media. Our
best all-around method involved pretraining a
new character-based BERT model for Hebrew,
and then fine-tuning a space restoration model
on top of this new BERT model. This method
is blazing fast, high-performing, and open for
unrestricted use, providing a practical solution
to process huge Hebrew social media corpora
with nothing more than a consumer-grade GPU.
We release the new BERT model and the fine-
tuned space-restoration model to the NLP com-
munity.

1 Introduction

Scraped corpora of social media tend to contain
many instances of missing spaces, where two or
more words have been run together as one. This
phenomenon is likely due to the fact that the HTML
source of internet pages often encodes different
parts of the text in distinct HTML tags, without
explicit indication of whether two consecutive tags
contain a single word or two separate words. Scrap-
ing algorithms exercise various heuristics to de-
cide whether to add a space or not; however, these
heuristics do not always succeed. In practice, the
NLP researcher is often faced with digital corpora
of scraped social media in which a substantial num-
ber of lines are corrupted with conflated words.
These missing spaces can impair downstream tasks

such as parsing, segmentation, and information re-
trieval. Additionally, when these corpora are used
to train language models, the errors are propagated
forward into the model. Thus, it is essential to
restore missing spaces wherever possible.

The problem of missing spaces is particularly
acute in languages such as Hebrew, in which words
are generally written as consonants alone. The
omission of vowels results in extreme ambiguity,
such that a given sequence of letters can generally
be interpreted as multiple different words (Tsarfaty
et al., 2019). Crucially, this means that when two
words are run together, they generally cannot be
separated by means of a simple dictionary lookup,
because there are multiples ways of splitting the
conflated sequence into two valid Hebrew words.

For instance, here is an actual line contained
in the Hebrew section of the public OSCAR cor-
pus (Ortiz Suárez et al., 2020): אחד קושיכל רמת
יכול! ("Level of difficulty Everyone can do it").
The words קושי! ("difficulty") and כל! ("every") are
conflated together in the corpus as a single string.
However, there is more than one way to split this
string; if we were to apply a dictionary lookup, we
could also split it into the two words קו! ("line") and
שיכל! ("transposed"). Another line in the same cor-
pus contains the conflated string ,קריאהבמה! which
can be split into קריאה! ("reading") and במה! ("in
what"), or into קריא! ("readable") and הבמה! ("the
stage"). Hundreds of thousands of additional sen-
tences within the Hebrew portion of the OSCAR
corpus are similarly corrupted. Yet, the OSCAR
internet crawl is the primary component of virtu-
ally all publically-available Hebrew BERT models,
including heBERT (Chriqui and Yahav, 2021), Ale-
phBERT (Seker et al., 2022), and AlephBertGim-
mel (Gueta et al., 2023).

An efficient context-aware method is needed to
fix this. In this paper, we present and evaluate a
series of neural approaches for the restoration of
the missing spaces within social-media corpora.

16

2 Task Definition

We formalize the space-restoration task as fol-
lows: given an input string s with characters c1...cn
where |s| = n, our goal is to predict a binary la-
bel for each ci, indicating whether a space should
appear before the character at that position. This
formulation treats the problem as a character-level
sequence labeling task, which is particularly suit-
able for languages like Hebrew where subword
boundaries must be handled carefully.

3 Neural Models for Space Restoration

In this study, we develop and evaluate a series of
neural models for the restoration of the missing
spaces.

3.1 Existing Encoder Models for Hebrew

Existing Hebrew encoder-based models such as
mBERT (Devlin et al., 2018), AlephBertGimmel
(Gueta et al., 2023), HeRo (Shalumov and Haskey,
2023), and DictaBERT (Shmidman et al., 2024b)
are trained with a wordpiece tokenizer, which ob-
scures character-level information and impairs their
ability to perform well on character-level labeling
tasks. In contrast, TavBERT (Group, 2023) adopts
a character-based representation for Hebrew, pre-
serving full granularity over all character positions.
TavBERT thus opens the door to the possibility of
training an encoder-based model to perform char-
level predictions for whitespace restoration.

3.2 A New Character-based Encoder Model

As noted, TavBERT provides a possible basis for
training a model to provide character-level predic-
tions for Hebrew words. Nevertheless, at its core,
TavBERT was designed with word prediction in
mind; accordingly, it was trained with a SpanBERT-
style objective, wherein the model is trained to
predict a series of consecutive masked characters,
rather than just a single character. Indeed, as we
will see below (Section 5), fine-tuning TavBERT
for this task results in a low-performing model.

Therefore, as part of this study, we pretrain a new
character-level BERT model for Hebrew, dubbed
DictaBERT-char. Our new model is pretrained
on the standard BERT masked-language-modeling
objective at the character level; that is, it is trained
to predict single masked characters, rather than
spans or wordpieces. We hypothesize that this will
produce a model that is more robustly tuned to the

fine-grained requirements of character-level tasks,
such as the space-restoration task.1

In order to pretrain this new model, we adopt the
same essential training setup and corpus used in the
training of the Hebrew BERT model DictaBERT,
which has been shown to be highly successful on
a wide variety of NLP tasks (Shmidman et al.,
2024b). We make two key modifications: (1) We
use a purely character-level tokenizer to fully cap-
ture potential space boundaries, and (2) we set a
consistent context length of 2048 throughout train-
ing (rather than gradually scaling from 256 to 512),
in order to address the lower compression ratio
when working at the character level.

The model was trained on a DGX Workstation
with 4xA100 40GB GPUs for a total of 31,600
steps. Each step included a batch size of 4,096 ex-
amples, where each example had a context length
of (up to) 2,048 tokens in order to accommodate
the character-level tokenizer. The rest of the param-
eters, including the training corpus, are the same as
DictaBERT, detailed by Shmidman et al. (2024b).

3.3 Decoder-based Models (LLMs)

Generative large language models (LLMs) have
demonstrated remarkable capabilities across many
NLP tasks, including sequence-to-sequence prob-
lems. As these models are generative, we can lever-
age their ability to generate free-form text to solve
char-level tasks such as our space-restoration task.
We explore two avenues regarding LLMs.

First, we fine-tune an open-weight LLM. We
use Dicta-LM 2.0 (Shmidman et al., 2024a), a
7B parameter LLM continuously trained in He-
brew (based on Mistral-7B (Jiang et al., 2023)).
This model is particularly strong regarding Hebrew
tasks, as indicated by its position on the Hebrew
LLM Leaderboard.2

Second, we evaluate a prompt engineering ap-
proach with two state-of-the-art proprietary LLMs:
GPT-4o and GPT-4o-Mini (OpenAI, 2024).

4 Experimental Setup

4.1 Training Corpus

The training data set was created automatically by
augmenting texts and removing spaces randomly.

1We release this model to the public on HuggingFace
under the CC-BY-4.0 license: https://huggingface.co/
dicta-il/dictabert-char

2https://huggingface.co/spaces/
hebrew-llm-leaderboard/leaderboard

17

https://huggingface.co/dicta-il/dictabert-char
https://huggingface.co/dicta-il/dictabert-char
https://huggingface.co/spaces/hebrew-llm-leaderboard/leaderboard
https://huggingface.co/spaces/hebrew-llm-leaderboard/leaderboard

We start with a collection of 150,000 Hebrew sen-
tences from high-quality Hebrew corpora.3 Next,
in 20% of the sentences, we randomly remove be-
tween 1 and 4 spaces.

4.2 Test Corpus
The test data set contains 6,000 sentences, and was
created similarly to the training data, with three
important caveats:

1. We wish to minimize the likelihood of the
models having previously seen any of these
sentences. Therefore, we collect the test
corpus sentences from the newly-released
FineWeb2 corpus (Penedo et al., 2024), af-
ter removing any documents that appeared
in previous Hebrew corpora (such as OSCAR
(Ortiz Suárez et al., 2020) and mC4 (Xue et al.,
2021)).

2. In order to focus the evaluation metrics on the
ability of the models to handle missing spaces,
we removed 1-4 random spaces from each of
the sentences in the test corpus.

3. To ensure that the test data reflects real-world
challenging cases, we only remove spaces be-
tween two words, rather than before or af-
ter punctuation marks. Missing spaces next
to punctuation can easily be fixed using rule-
based methods; the word-conflation errors are
where we need a neural model.

We release the test corpus to the NLP community
so that future studies can reproduce and compare
to the results of this paper.4

4.3 Training Details
4.3.1 Training Encoder Models
We train the encoder models on the sequence la-
beling task described above (Section 2). For each
character, the models are fine-tuned to predict a bi-
nary label indicating whether a space should appear
before it or not.

The BERT encoders generate contextualized
character representations, followed by a linear layer
that maps these representations to logits. We train

3The sentences are gathered from high-quality Hebrew
corpora such as newspapers and ebooks, rather than from
scraped social media, to avoid the possibility that these sen-
tences themselves might already be corrupted with missing
spaces.

4https://huggingface.co/datasets/dicta-il/
hebrew-space-restoration-corpus

by minimizing the cross-entropy loss between the
predicted logits and the true labels.

During initial fine-tuning, we observed that the
model almost exclusively predicted the negative
label, likely due to the the class imbalance (the
average sentence had 115 characters but fewer than
4 missing spaces - a ratio of roughly 99:1). To
address this, we trained the encoder models only on
the 20% of examples where spaces were removed.
Within each example, we also downsampled the
negative labels, keeping only 10% of the li = 0
labels, ensuring a more balanced ratio.

The hyperparameters and loss graphs are de-
tailed in Appendix B.

4.3.2 Training The Decoder-based Model
For the decoder-based fine-tuned model, we train
on the full training data, where 80% of the ex-
amples had no spaces removed. We use a super-
vised fine-tuning (SFT) approach, similar to in-
struction tuning in large language models (Zhang
et al., 2024).

Each example was formatted as:

[SRC] {input sentence} [/SRC]
{output sentence}</s>

We compute the loss only on the completion (i.e.,
the output sentence), ensuring that the model fo-
cuses on predicting the correct restoration of spaces.
Since most of the training examples already con-
tained correctly spaced text, this setup allowed the
model to learn both how to copy well-formed sen-
tences and also how to correct corrupted ones with-
out being biased toward over-inserting spaces.

The hyperparameters and loss graphs are de-
tailed in Appendix C.

During testing, we constrained the model’s out-
put by using guided decoding in the inference en-
gine, in order to prevent any alterations other than
additional spaces. This allowed for a reliable evalu-
ation of its ability to restore proper spacing, without
the need to worry that the generative model might
otherwise modify the text.

4.3.3 Prompting General-Purpose LLMs
To craft an ideal prompt, we used OpenAI’s o1
model (OpenAI, 2024). We provided the model
with a definition of the task as a character-level
sequence labeling task, and we emphasized that the
prompt should clearly instruct the model to modify
only spaces, without altering any other characters.
The final prompt can be found in Appendix D.

18

https://huggingface.co/datasets/dicta-il/hebrew-space-restoration-corpus
https://huggingface.co/datasets/dicta-il/hebrew-space-restoration-corpus

When testing, we verify that the model’s out-
put is "valid", that is, identical to the input except
for the addition of spaces. If the model makes
any other modifications, we treat the sentence as
unchanged, since we cannot reliably evaluate an
output that differed beyond spacing adjustments.
GPT-4o produced valid outputs 95.2% of the time,
while GPT-4o-Mini produced valid outputs only
83.5% of the time.

5 Results

We evaluate each model’s ability to accurately re-
store all missing spaces across the sentences in our
test corpus. We compute precision, recall, and F1
score for restoring a space (a positive label). Re-
sults are presented in Table 1.

Model Precision Recall F1
Our Model (T=0.5) 90.1% 99.0% .943
Our Model (T=0.9) 97.0% 96.7% .968
tau/TavBERT 13.0% 13.4% .131
DictaLM2.0 (FT) 97.5% 97.9% .976
DictaLM2.0-AWQ (FT) 97.2% 97.7% .974
GPT-4o 98.9% 93.6% .961
GPT-4o-Mini 97.7% 84.5% .906

Table 1: Performance on the space restoration task, mea-
sured in terms of precision, recall, F1 for positive labels
(i.e., correctly adding a missing space). For our model
we presented results with two different thresholds.

The fine-tuned 7B-parameter decoder model
(Dicta-LM 2.0) outperforms the other methods,
with our new character-based model not far be-
hind, with both of these models being lightweight
enough to run on consumer hardware. Addition-
ally, we evaluate a 4-bit quantized version of the
model using AWQ quantization (Lin et al., 2023).
This version requires only 5GB of VRAM to run
efficiently and performs nearly as well as the full-
precision model.

To provide a more realistic view of practical
usage, we compared the performance of the 7B
models and the encoder model, as shown in Table
2. Both were evaluated on an RTX 4090 GPU;
we ran our char-based BERT model using the stan-
dard HuggingFace implementation, and we ran the
DictaLM model via vLLM.

Our char-based BERT model outputs logit val-
ues, which are then transformed using softmax into
normalized scores between 0 and 1, allowing us
to set a confidence threshold. Based on this, we
present a graph of its metrics across different thresh-

Figure 1: Precision, Recall, and F1 score of our new
char-based BERT model across different confidence
thresholds, when run on the test set.

olds in Figure 1. Notably, when setting the thresh-
old to 0.9, the F1 score surpasses that of GPT-4o,
as shown in Table 1, and is only slightly shy of the
F1 score achieved by model based on DictaLM 2.0
model (0.968 vs. 0.976). Furthermore, our char-
based BERT model runs nearly 30 times faster than
DictaLM2.0 with guidance, making it a highly effi-
cient method for real-world corpora. In Appendix
A we present examples of output from the model
when run on real-world Hebrew sentences, with a
qualitative analysis of its successes and failures.

Model Time (s) Invalid
New char-based Hebrew BERT 23.46 0
DictaLM2.0 (not guided) 616.8 3.6%
DictaLM2.0 (guided) 676.8 0
DictaLM2.0-AWQ (not guided) 437.3 16.9%
DictaLM2.0-AWQ (guided) 1081.5 0

Table 2: Inference time comparison of the models
running on 12,000 sentences on an RTX 4090. The
"guided"/"not guided" label indicates whether the model
was run with or without the guided backend enforc-
ing valid output (i.e., restricting modifications to only
adding spaces. This increases runtime since the engine
has to construct a new predictions tree for each input).
The third column notes the percentage of outputs that
were invalid, where the model altered more than just
spaces.

6 Conclusion

Almost all of the methods presented here provide
decent accuracy on the space restoration task. How-
ever, because scraped social media corpora tend to
be huge, the decoder-based methods are largely im-
practical, due to issues of speed (thus for the open
Dicta-LM model), or cost (thus regarding the com-

19

mercial LLM models). Fortunately, the fine-tuned
character-BERT model which we presented here
provides a practical solution: it is blazing fast, free
for unrestricted use, and achieves accuracy which
rivals the other methods. We are thus pleased to
hereby release this model to the NLP community.

Furthermore, the character-based Hebrew BERT
model which we pretrained as part of this project
is released here as well, so that NLP researchers
can continue to fine-tune it for other character-level
NLP tasks as well.

Acknowledgements

This work has been funded by the Israel Sci-
ence Foundation (Grant No. 2617/22) and by
the European Union (ERC, MiDRASH, Project
No. 101071829; Principal investigators: Nachum
Dershowitz, Tel-Aviv University; Judith Olszowy-
Schlanger, EPHE-PSL; Avi Shmidman, Bar-Ilan
University, and Daniel Stoekl Ben Ezra, EPHE-
PSL), for which we are grateful. Views and opin-
ions expressed are, however, those of the authors
only and do not necessarily reflect those of the Eu-
ropean Union or the European Research Council
Executive Agency. Neither the European Union
nor the granting authority can be held responsible
for them.

References
Avihay Chriqui and Inbal Yahav. 2021. Hebert &

hebemo: a hebrew bert model and a tool for po-
larity analysis and emotion recognition. Preprint,
arXiv:2102.01909.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Tau NLP Group. 2023. Tavbert: Hebrew character-
based bert model. Accessed: 2025-01-21.

Eylon Gueta, Avi Shmidman, Shaltiel Shmidman,
Cheyn Shmuel Shmidman, Joshua Guedalia, Moshe
Koppel, Dan Bareket, Amit Seker, and Reut Tsar-
faty. 2023. Large pre-trained models with extra-
large vocabularies: A contrastive analysis of hebrew
bert models and a new one to outperform them all.
Preprint, arXiv:2211.15199.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven
Le Scao, Thibaut Lavril, Thomas Wang, Timothée

Lacroix, and William El Sayed. 2023. Mistral 7b.
arXiv preprint, arXiv:2310.06825.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2023.
AWQ: Activation-aware weight quantization for
LLM compression and acceleration. arXiv preprint
arXiv:2306.00978.

OpenAI. 2024. GPT-4o system card. arXiv preprint
arXiv:2410.21276.

OpenAI. 2024. OpenAI o1 System Card. arXiv preprint
arXiv:2412.16720.

Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît
Sagot. 2020. A monolingual approach to contextual-
ized word embeddings for mid-resource languages.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1703–
1714.

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec,
Bettina Messmer, Negar Foroutan, Martin Jaggi, Le-
andro von Werra, and Thomas Wolf. 2024. Fineweb2:
A sparkling update with 1000s of languages.

Amit Seker, Elron Bandel, Dan Bareket, Idan
Brusilovsky, Refael Greenfeld, and Reut Tsarfaty.
2022. AlephBERT: Language model pre-training
and evaluation from sub-word to sentence level. In
Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 46–56, Dublin, Ireland. Association
for Computational Linguistics.

Vitaly Shalumov and Harel Haskey. 2023. Hero:
Roberta and longformer hebrew language models.
arXiv:2304.11077.

Shaltiel Shmidman, Avi Shmidman, Amir DN Cohen,
and Moshe Koppel. 2024a. Adapting llms to hebrew:
Unveiling dictalm 2.0 with enhanced vocabulary and
instruction capabilities. Preprint, arXiv:2407.07080.

Shaltiel Shmidman, Avi Shmidman, Moshe Koppel, and
Reut Tsarfaty. 2024b. MRL parsing without tears:
The case of Hebrew. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
4537–4550, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Reut Tsarfaty, Shoval Sadde, Stav Klein, and Amit
Seker. 2019. What‘s wrong with Hebrew NLP?
and how to make it right. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
259–264, Hong Kong, China. Association for Com-
putational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual

20

https://arxiv.org/abs/2102.01909
https://arxiv.org/abs/2102.01909
https://arxiv.org/abs/2102.01909
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://huggingface.co/tau/tavbert-he
https://huggingface.co/tau/tavbert-he
https://arxiv.org/abs/2211.15199
https://arxiv.org/abs/2211.15199
https://arxiv.org/abs/2211.15199
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.16720
https://huggingface.co/datasets/HuggingFaceFW/fineweb-2
https://huggingface.co/datasets/HuggingFaceFW/fineweb-2
https://doi.org/10.18653/v1/2022.acl-long.4
https://doi.org/10.18653/v1/2022.acl-long.4
https://arxiv.org/abs/2407.07080
https://arxiv.org/abs/2407.07080
https://arxiv.org/abs/2407.07080
https://aclanthology.org/2024.findings-acl.269
https://aclanthology.org/2024.findings-acl.269
https://doi.org/10.18653/v1/D19-3044
https://doi.org/10.18653/v1/D19-3044
https://doi.org/10.18653/v1/2021.naacl-main.41

pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2024. In-
struction tuning for large language models: A survey.
Preprint, arXiv:2308.10792.

21

https://doi.org/10.18653/v1/2021.naacl-main.41
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792

A Appendix: Qualitative Analysis

We survey here a set of representative examples of the successes and failures of the best all-around model
presented in the paper (that is, the model based upon the new Hebrew character-based BERT released
with this paper), with the threshold set to 0.9 (the optimal threshold, as per Figure 1 in the paper).

All input examples in this section are taken from the publically-available OSCAR internet crawl
(Ortiz Suárez et al., 2020).

A.1 Successes

We first present a series of cases where the OSCAR lines are missing one or more spaces and our model
successfully restores the spaces in the proper places. These cases demonstrate the strengths and capabilities
of the model:

A.2 Failures

Next, we identify three categories where our model tends to fail:
Failures due to additional typos: When the input text contains additional typographical errors beyond

the missing spaces, our model will sometimes attempt to add spaces in the middle of misspelled words
words, as in the following examples:

22

Failures due to proper nouns: Our model does not always recognize proper nouns for what they are,
and sometimes attempts to divide them into two, especially when one (or both) of the resulting pieces is a
common Hebrew word.

Failures due to unusual grammatical suffixes: When the input text contains relatively long words
which also contain a relatively rare grammatical suffix, our model is sometimes fooled and attempts to
add a space before the grammatical suffix, as in the following examples:

In light of these failures, practical use of the model would entail use of additional filters in order to
restrain the model from splitting too eagerly. For instance, an NER model could be used to identify
proper names in the text, and to restrain the space restoration model from splitting those names. Similarly,
in order to avoid the issue with grammatical suffixes, a script could check whether the letters after a
word-split form of the few dozen sequences of letters which comprise Hebrew grammatical suffixes; in
such cases, it would be wise to ignore the additional space predicted by the model.

23

B Appendix: Encoder Training Details

The models were fine-tuned on a single NVIDIA A10G GPU. We used a learning rate of 2e− 6, and a
batch size of 16. We trained using mixed BF16 precision, with 500 warmup steps (27%). You can view
the loss graph from the fine-tuning of both tau/tavbert-he and of our new char-based Hebrew BERT
model in Figure 2. Total train runtime was 350 seconds for 30,000 training examples.

Figure 2: Training loss graph when fine-tuning our new char-based Hebrew BERT model and tau/tavbert-he

C Appendix: Decoder Training Details

The fine-tuning of Dicta-LM 2.0 was done on an NVIDIA-DGX with 4xA100 40GB. The training was
done using the HuggingFace TRL library together with DeepSpeed. We set the initial learning rate to
5e-6, with a global batch size of 128 (per device batch size of 4, with 8 gradient accumulation steps). We
used the adamw_8bit optimizer provided by the bitsandbytes library. Total training time was 110 minutes
for 150,000 examples.

D Appendix: Prompt for General Purpose LLMs

Below is the entire prompt used with GPT-4o to complete the missing-spaces task:

You are a specialized tool for detecting and correcting missing spaces in Hebrew
text. In the next message, I will provide you with a single Hebrew sentence.
Your task is:

↪→

↪→

1. Identify any places in the sentence where spaces between words have been omitted.
2. Reinsert these missing spaces so that the sentence becomes correctly spaced.
3. Preserve all other text exactly as it appears in the input. This means:

• Do not alter any words beyond adding missing spaces.
• Do not, under any circumstance, add any letters!
• Do not change or add punctuation.
• Do not correct spelling or grammar (unless it solely involves inserting

spaces).↪→

• Do not rearrange or remove any words or letters.

24

• Do not add or modify diacritics (niqqud).

Your output must be the exact same sentence, in Hebrew, with the only difference
being the addition of the missing spaces. If there are no missing spaces,
return the exact input sentence verbatim.

↪→

↪→

{input sentence}

25

