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Abstract

Autoregressive language models demonstrate
excellent performance in various scenarios.
However, the inference efficiency is limited by
its one-step-one-word generation mode, which
has become a pressing problem recently as
the models become increasingly larger. Spec-
ulative decoding employs a ‘‘draft and then
verify’’ mechanism to allow multiple tokens
to be generated in one step, realizing lossless
acceleration. Existing methods mainly adopt
fixed heuristic draft structures, which do not
adapt to different situations to maximize the
acceptance length during verification. To alle-
viate this dilemma, we propose OPT-Tree, an
algorithm to construct adaptive and scalable
draft trees, which can be applied to any autore-
gressive draft model. It searches the optimal
tree structure that maximizes the mathemat-
ical expectation of the acceptance length in
each decoding step. Experimental results re-
veal that OPT-Tree outperforms the existing
draft structures and achieves a speed-up ratio
of up to 3.2 compared with autoregressive de-
coding. If the draft model is powerful enough
and the node budget is sufficient, it can gen-
erate more than ten tokens in a single step.
Our code is available at https://github
.com/Jikai0Wang/OPT-Tree.

1 Introduction

Large language models (LLMs) (Black et al.,
2022; Touvron et al., 2023; Jiang et al., 2024;
Zheng et al., 2024) have achieved remarkable
performance in various NLP scenarios. As models
increase in size and complexity, the computational
demands for inference rise significantly. Conse-
quently, accelerating decoding is becoming in-
creasingly important to save computing resources
and reduce response time.

∗ Equal contribution.
† Corresponding author.

Autoregressive models (Black et al., 2022;
Zhang et al., 2022; Touvron et al., 2023) usually
generate one token in one decoding step, leading
to limited decoding efficiency. In recent work,
speculative decoding (Stern et al., 2018; He et al.,
2023; Yang et al., 2023; Fu et al., 2024; Cai et al.,
2024; Li et al., 2024) has shown great potential for
lossless accelerated decoding. It applies a ‘‘draft
and then verify’’ mechanism to maintain the orig-
inal output distribution of the target model to
be accelerated. Drafting is performed by a less-
overhead drafting model. The generated draft is
verified in parallel by the target model to gener-
ate multiple tokens in one decoding step, bringing
promising acceleration.

Existing work like EAGLE (Li et al., 2024) has
proposed methods for training small but effec-
tive draft models. Previous work mainly adopts
drafts with structures of sequences or fixed trees.
However, we argue that neither of them is the op-
timal draft structure under a limited node budget.
Sequence-structured drafts (Stern et al., 2018;
Leviathan et al., 2023; Xia et al., 2023; Yang et al.,
2023; Zhang et al., 2023; Fu et al., 2024) contain
redundant nodes. For example, ‘‘A-B-C-D-E’’ and
‘‘A-B-C-F-G’’ have the same prefix ‘‘A-B-C’’,
which is calculated twice during verification.
Therefore, there are only 7 valid tokens among
the 10 nodes of these two sequences. Drafts with
tree structure (He et al., 2023; Cai et al., 2024; Li
et al., 2024; Jeon et al., 2024; Chen et al., 2024)
solved this problem. The same token can appear
only once in the same tree layer. A correspond-
ing tree attention mask is designed for parallel
verification. The specific structure of the tree is
usually heuristic and remains constant. However,
given a node budget, the best structure that max-
imizes the acceptance length during verification
would change according to different inputs in each
decoding step.
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Figure 1: Draft structures used in speculative decoding. The blue node is the last token of the current input. The
green nodes are tokens generated by the draft model. Nodes in the same layer share the same position index.
OPT-Tree varies in each decoding step to achieve a larger acceptance length.

This paper proposes an adaptive and scalable
tree structure called OPT-Tree. It can be applied
to any autoregressive draft model. As is shown
in Figure 1, the tree structure adaptively changes
in each decoding step to maximize the math-
ematical expectation of the acceptance length.
We apply a greedy algorithm to construct an
OPT-Tree in each step. Details are elaborated
in Section 3. We conduct comprehensive experi-
ments in Section 4 to evaluate the effectiveness of
OPT-Tree. Experimental results demonstrate that
OPT-Tree outperforms the baselines and can be
up to 3.2 times faster than vanilla autoregressive
decoding. The mathematical expectation of the
acceptance length is generally positively corre-
lated with the actual acceptance length in practice.
Moreover, OPT-Tree performs well when the tree
size scales up. Using LLaMA-2-7B as the draft
model, LLaMA-2-70B can generate 10 tokens in
a single decoding step with OPT-Tree when the
number of nodes is over 500, which indicates
its great potential for adapting to more powerful
computation resources and more effective draft
models in the future.

2 Preliminaries

In this section, we provide the necessary defini-
tions to establish a clear and precise foundation
for the concepts discussed in this paper.

Inference. After inputting x = (x1, x2, . . . , xl),
where l is the current sequence length, the target
model M and the drafting model Md return the
next word distribution p(yl+1|x1, x2, . . . , xl) and
pd(ŷ

l+1|x1, x2, . . . , xl), respectively, where yl+1

and ŷl+1 are the sampled next words.

Figure 2: Subfigure (a) shows a draft tree, and subfigure
(b) is its corresponding tree attention mask. The value
of the blank position is zero.

Speculative Decoding. In speculative decoding
with tree-structured draft, Md first infers d steps
to generate a draft tree T of depth d and then
M verifies the draft. The verification depends on
the sampling method. For greedy sampling, the
ground truth is the sequence of tokens with the
highest probability for each position output by M .
As is shown in Figure 2, the model can process
the tree structure input in parallel by construct-
ing the corresponding tree attention mask. For all
branches in the tree that contain the root node, the
longest branch with the same prefix as the ground
truth is accepted. Therefore, multiple tokens can
be generated in one decoding step while ensuring
that the generated sequences are consistent with
the original ones. Due to the parallel computing
mechanism, with given computing resources, the
time cost of verification can be considered con-
stant when the length of the verification sequence
is within a certain range. As is shown in Figure 3,
on a 4090 GPU with a model containing 7B pa-
rameters, the time required to verify a sequence of
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Figure 3: The relationship between input length and the
wall time for inference for models of different sizes on
various GPUs.

length 10 is similar to that for a sequence of length
200. Consequently, when discussing the construc-
tion of a draft tree in Section 3, we consider the
node budget of the draft tree as a given condition.

3 OPT-Tree

This section introduces OPT-Tree, an algorithm
for constructing our defined optimal draft tree
structure for any input sequence in speculative
decoding with autoregressive draft models.

Considering a certain step in speculative decod-
ing whose input is x, the draft model Md generates
a draft tree based on x and the given tree structure
T . Draft tree T is defined as follows:

T = (V,E)

V =

l+d⋃

i=l+1

ni⋃

j=1

{
(ŷij , pd(ŷ

i
j))

}
,

(1)

where V and E is the set of all nodes and edges.
ni represents the number of sampled tokens in the
ith layer of T . pd(ŷ

i
j) is the output probability

of token ŷij in Md. For each node in T , if it has
k children, they are k tokens greedily sampled
according to pd from its subsequent token dis-
tribution. Then the target model inputs the draft
tree and the corresponding tree attention mask and
returns the next tokens of each token in T . The
root node is the last token of the current prompt,
which is bound to be accepted. We get the longest
accepted candidate with length A by comparing

the next tokens and the draft tree. For the case
where all leaf nodes are rejected, the acceptance
length is 1.

Given M , Md and n, for input x, an optimal
tree structure Topt should maximize the mathe-
matical expectation of the acceptance length. Note
that Topt changes as the input changes. Since the
optimization goal of the draft model is to make
its output distribution close to the target model
distribution, it is intuitive that the token with a
larger output probability in draft model is more
likely to be accepted. See Appendix A for verifi-
cation of this property. Based on this, we can use
pd as the probability that it will be accepted to
approximately calculate the mathematical expec-
tation of the acceptance length. We use E(A) to
denote the approximation of the expected average
acceptance length, which can be calculated by:

E(A) =
∑

(ŷij ,p̂
i
j)∈T

∏

ŷ∈P(ŷij)

pd(ŷ), (2)

where P(ŷij) is the set of all parent nodes of ŷij
(including itself). Note that the root node is also
considered when calculating E(A).

The process of solving Topt is to find a subtree
T of n nodes with the largest E(A) from a com-
plete n-ary tree. If there are no other conditions,
the time complexity of solving this tree is typi-
cally Ω(n2), which is unacceptable. However, by
leveraging certain properties of the draft tree, we
can design a more efficient algorithm to solve
this problem.

For simplicity, we define the probability of the
prefix as p̂:

p̂ij =
∏

ŷ∈P(ŷij)

pd(ŷ). (3)

p̂ij of the root node is regarded as 1. Then we can
simplify the calculation of E(A) as the summa-
tion of the probability of the prefix of all nodes
according to the drafting model:

E(A) =
∑

(ŷij ,p̂
i
j)∈T

p̂ij . (4)

Figure 4 shows a simple example of calculat-
ing p̂ and E(A). E(A) should positively corre-
late with the acceptance length. We discuss their
correlation in Section 4.2.
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Figure 4: An example of a draft tree containing p̂ in
each node. pd and p̂ of the root are regarded as 1. The
value of E(A) is 3.07. See Appendix B for specific
calculation process.

Algorithm 1 Construct an OPT-Tree Topt

Input: Input sequence x = (x1, x2, . . . , xl),
draft model Md, number of nodes n, threshold
δ.

Output: A draft tree Topt.
Initialize a tree T with root node xl
E ← 0
Output distribution Pd(T ) ← Md(T )
T ← topk(Pd(T ), n)
while Depth of tree D(T ) < n and
Esub(T, n)− E > δ do

// Drafting step
E ← Esub(T, n)
Output distribution Pd(T ) ← Md(T )
T ← topk(Pd(T ), n)

end while
Topt ← Select the n nodes with the largest p̂
from T

We use Esub(T, n) to represent the maximum
value of E(A) for all subtrees of T that contain
the root node and have n nodes. Note that the
root node is not considered when calculating node
trees and mathematical expectations.

Then, we propose Algorithm 1 to construct
Topt during the drafting phase for each decoding
step. We initialize T with a root node. At each
drafting step, we greedily sample n tokens with
the largest p̂ in the next token distributions of
nodes in the last layer of T to construct the next
layer. T has d ∗ n nodes at this time. Finally, we
select the n nodes in T with the largest p̂. It is
easy to prove that these n nodes are a subtree of
T , which contains the root node:

Proof. (1) If these nodes can not form a tree with
the root, there is at least one node vi whose parent
node vj is not among these nodes. (2) Since vj is
the parent node of vi, p̂ of vj is larger than p̂ of

Algorithm 2 Speculative Decoding with Adaptive
Draft Tree Structure
Input: Input sequence x = (x1, x2, . . . , xl), tar-

get model M , draft model Md, number of nodes
n, threshold δ.

Output: New input sequence x′ = (x1, x2, . . .,
xl+A)
Topt ← Construct the draft tree with n nodes
mask ← Compute the corresponding tree at-
tention mask
P ← M(Topt,mask)
(yl+1, yl+2, . . . , yl+A) ← V erify(Topt, P )
// Find the longest accepted candidate. If a
sequence of length A − 1 successfully hits, its
next word will also be accepted. So, the total
acceptance length is A.
x′ ← Concat(x, (yl+1, yl+2, . . . , yl+A))

vi. Therefore, vj is also selected. (1) and (2) are
contradictory, so these nodes must be able to form
a subtree of T containing the root node.

We summarize this as Theorem 3.1.

Theorem 3.1. Given the depth of the tree, the top
n nodes of the complete n-ary draft tree with the
largest p̂ form the Topt.

Theorem 3.2. As the drafting step increases,
Esub(T, n) is monotonic non-decreasing.

According to Theorem 3.2, we can get the de-
sired Topt in theory by stopping drafting when
E(T ) no longer increases. However, the draft
model brings additional overhead to the prac-
tice. For autoregressive draft models, the drafting
overhead is proportional to the depth of the draft
tree.

Taking this into consideration, we introduce
a threshold δ when setting the conditions for
terminating drafting. The value of δ should be
controlled between μ and 1, where μ is the time
taken for one drafting step divided by the time
taken for one decoding step.

A complete decoding step of M is detailed in
Algorithm 2. In practice, both M and Md utilize
key and value cache (Pope et al., 2023) to calculate
attention. This approach ensures that the actual
input length of each drafting step is n, effectively
preventing computational bottlenecks during the
inference process of the draft model, even when
operating under larger tree size budgets.

191



M Md Tree MAL Tokens/s Speedup M Md Tree MAL Tokens/s Speedup

LLaMA-2-7B

None – 1.00 51.89 1.00

LLaMA-2-13B

None – 1.00 26.79 1.00

L-68M
Binary 2.12 68.58 1.32

L-68M
Binary 2.05 40.24 1.50

EAGLE 2.47 77.06 1.49 EAGLE 2.42 46.82 1.75
OPT-Tree 2.58 87.57 1.69 OPT-Tree 2.58 48.10 1.80

L-1B
Binary 3.95 46.10 0.89

L-1B
Binary 3.95 37.37 1.39

EAGLE 4.23 47.74 0.92 EAGLE 4.25 40.12 1.50
OPT-Tree 4.88 52.48 1.01 OPT-Tree 5.20 43.40 1.62

EAGLE
Binary 3.40 107.91 2.08

EAGLE
Binary 3.54 66.24 2.47

EAGLE 3.73 130.50 2.51 EAGLE 3.80 73.97 2.76
OPT-Tree 4.36 132.75 2.56 OPT-Tree 4.35 76.61 2.86

LLaMA-2-70B

None – 1.00 6.29 1.00

Vicuna-33B

None – 1.00 11.25 1.00

L-7B
Binary 4.84 11.05 1.76

V-7B
Binary 4.41 12.49 1.11

EAGLE 4.97 11.35 1.80 EAGLE 4.64 12.99 1.15
OPT-Tree 7.74 11.65 1.85 OPT-Tree 6.51 13.74 1.22

EAGLE
Binary 3.39 17.02 2.71

EAGLE
Binary 2.35 21.13 1.88

EAGLE 3.67 18.81 2.99 EAGLE 2.69 24.92 2.21
OPT-Tree 4.06 19.21 3.05 OPT-Tree 3.06 25.17 2.24

Table 1: Experimental results on MT-Bench. Md being None represents vanilla autoregressive decod-
ing. ‘‘L’’ and ‘‘V’’ in Md column represent ‘‘LLaMA-2’’ and ‘‘Vicuna’’. ‘‘MAL’’ indicates ‘‘Mean
Acceptance Length’’. The best results are shown in bold.

Applying our proposed algorithm to solve Topt

incurs an acceptable time cost. Detailed time costs
for each operation are presented in Section 4.4.

4 Experiments

4.1 Main Results
Setup. We adopt LLaMA-2-7B, LLaMA-2-
13B, LLaMA-2-70B (Touvron et al., 2023), and
Vicuna-33B (Zheng et al., 2024) as target models
to verify the effectiveness of OPT-Tree. We use
a single GeForce RTX 4090 GPU for LLaMA-2-
7B, a single L20 GPU for LLaMA-2-13B and 4
A100-PCIE-40GB GPUs for LLaMA-2-70B and
Vicuna-33B. We choose one or two smaller mod-
els in the same version as the draft model for each
target model. Moreover, we adopt a correspond-
ing EAGLE draft model for each target model.
EAGLE (Li et al., 2024) is an effective speculation
decoding method that trains additional autoregres-
sive heads as draft models. It uses a well-designed
heuristic draft tree structure with 25 nodes. In our
experiments, we regard it as the EAGLE draft
tree. EAGLE is certified by Xia et al. (2024) as the
fastest speculative method in their experiments.
For each target and draft model group, we per-
form speculative decoding with greedy sampling
and compare OPT-Tree with the Binary tree and
EAGLE tree. The temperature is set to zero.

We compare the average acceptance length and
number of tokens generated per second decoding

with different tree structures. The speedup ratio
is calculated according to generation speed. The
number of nodes needs to be controlled within a
certain range to avoid excessive time consumption
in the verification phase. It is treated as a hyper-
parameter chosen in [25, 50, 60] to maximize the
speedup ratio according to different target mod-
els and GPU resources except for the EAGLE
tree. We conduct evaluation on MT-Bench (Zheng
et al., 2024) and GSM8K (Cobbe et al., 2021).

Results. Experimental results are shown in
Table 1 and Table 2. Note that using LLaMA-2-1B
as the draft model can hardly speed up decoding
when the target model is LLaMA-2-7B because
the difference in inference time between the two
models is too small. EAGLE draft models achieve
strong performance with fewer parameters, thus
providing better acceleration than the small mod-
els in the same series with the target models.
OPT-Tree outperforms other tree structures in
terms of mean acceptance length in each group
of experiments, especially when the performance
of the draft model is close to the target model
(e.g., LLaMA-2-70B combined with L-7B and
Vicuna-33B combined with Vicuna-7B), indicat-
ing its high upper limit. Since OPT-Trees are usu-
ally deeper than binary trees and EAGLE trees,
they incur more overhead when drafting. There-
fore, from the perspective of tokens per second,
the improvement is not as significant as that from

192



M Md Tree MAL Tokens/s Speedup M Md Tree MAL Tokens/s Speedup

LLaMA-2-7B

None – 1.00 52.76 1.00

LLaMA-2-13B

None – 1.00 27.10 1.00

L-68M
Binary 2.20 73.49 1.39

L-68M
Binary 2.21 45.18 1.67

EAGLE 2.63 85.62 1.62 EAGLE 2.60 52.83 1.95
OPT-Tree 2.78 96.43 1.83 OPT-Tree 2.81 53.54 1.98

L-1B
Binary 3.55 40.69 0.77

L-1B
Binary 3.76 36.54 1.35

EAGLE 3.87 44.42 0.84 EAGLE 4.10 37.29 1.38
OPT-Tree 4.46 50.83 0.96 OPT-Tree 5.10 42.97 1.59

EAGLE
Binary 3.52 118.15 2.24

EAGLE
Binary 3.80 73.30 2.70

EAGLE 3.83 137.41 2.60 EAGLE 4.06 80.47 2.97
OPT-Tree 4.68 140.55 2.66 OPT-Tree 5.03 80.94 2.99

LLaMA-2-70B

None – 1.00 6.38 1.00

Vicuna-33B

None – 1.00 10.74 1.00

L-7B
Binary 4.85 11.20 1.76

V-7B
Binary 4.95 13.15 1.22

EAGLE 4.98 11.51 1.80 EAGLE 4.81 13.38 1.25
OPT-Tree 7.62 12.10 1.90 OPT-Tree 6.35 13.98 1.30

EAGLE
Binary 3.62 18.63 2.92

EAGLE
Binary 2.82 25.20 2.35

EAGLE 3.91 20.42 3.20 EAGLE 3.15 28.37 2.64
OPT-Tree 4.55 20.50 3.21 OPT-Tree 3.47 28.76 2.68

Table 2: Experimental results on GSM8K. Md being None represents vanilla autoregressive decoding.
‘‘L’’ and ‘‘V’’ in Md column represent ‘‘LLaMA-2’’ and ‘‘Vicuna’’. ‘‘MAL’’ indicates ‘‘Mean
Acceptance Length’’. The best results are shown in bold.

the mean acceptance length. Tokens per second are
affected by different hardware resources and ran-
dom errors. In addition, some method-independent
techniques can also be used to reduce computa-
tion time. For example, the unchanged part of the
attention mask in the drafting phase can be ini-
tialized only once and called multiple times, thus
saving the time of multiple initializations. In order
to make a fairer comparison in our experiments,
we avoid these tricks to be consistent with EA-
GLE’s practice. Overall, OPT-Tree outperforms
the baselines. It can be up to about 3.2 times
faster than vanilla autoregressive decoding. The
similar performance on both datasets verifies the
robustness of the proposed method.

4.2 Correlation between E(A) and A

The theory of OPT-Tree is based on the premise
that E(A) is positively correlated with actual
A. We record the values of E(A) and A of
OPT-Tree in about 8000 decoding steps for 4
groups of M and Md. Figure 5 shows the re-
sults. The value of E(A) is rounded. The darker
areas in the four images are basically distributed
along the main diagonal line. When E(A) of the
tree is larger, it also tends to get a more con-
siderable acceptance length after verification. A
stronger draft model shifts the distribution to the
lower right corner. These phenomena corrobo-
rate our theoretical analysis. In addition, in the

Figure 5: Correlation between E(A) and A. The hor-
izontal axis represents E(A), and the vertical axis
represents A. Each square shows the number of times
the corresponding situation occurs. The darker the
color, the more times it indicates.

LLaMA-2-70B+LLaMA-2-7B group, high values
of E(A) and A (e.g., E(A) = 14, A = 15) are
generally found, which demonstrates the potential
of OPT-Tree to adapt to stronger draft models and
larger draft tree sizes.

4.3 Scaling the Draft Tree Size
We conduct experiments to explore the changes
in mean acceptance length with larger tree sizes.
We compare OPT-Tree with Sequoia (Chen et al.,
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Figure 6: Mean acceptance length under different tree
sizes under two sets of experiments.

2024) using LLaMA-2-7B and LLaMA-2-70B as
target models. Sequoia is a scalable draft tree that
uses dynamic programming to solve for the tree
structure. It requires the target and draft models
to be used in advance to infer some samples to
determine the best structure. The tree structure is
fixed when doing speculative decoding. We use
200 samples in C4 (Raffel et al., 2020) to con-
struct the Sequoia trees. Temperature is set to 0
in the experiments.

The results are shown in Figure 6. OPT-Tree
outperforms Sequoia under various tree sizes.
For LLaMA-2-7B+LLaMA-2-68M, the mean ac-
ceptance length increases when the number of
nodes is smaller than 130 for both OPT-Tree and
Sequoia. When the number of nodes exceeds 140,
the mean acceptance length increases slowly. For
LLaMA-2-70B+LLaMA-2-7B, the growth of mean
acceptance length with Sequoia stabilizes when
the number of nodes exceeds 150. In contrast,
OPT-Tree can consistently improve the mean ac-
ceptance length even with more than 500 nodes.
Since LLaMA-2-7B is a strong draft model for
LLaMA-2-70B, the mean acceptance length can
achieve 10 with an OPT-Tree of 500 nodes. A
tree with 500 nodes costs a large amount of
computation time for LLaMA-2-70B with A100-
PCIE-40GB GPUs, thus being unable to speed
up decoding in our practice. However, this cost
may be acceptable if more powerful computa-
tional resources are equipped in the future.

Figure 7: The average time cost of different operations
in each decoding step. Tree operations include initial-
izing the tree, updating the tree, calculating the optimal
tree, and calculating the corresponding tree attention
mask. The drafting time cost is the entire time to cre-
ate a draft tree minus the time for tree operations. Its
main component is the time of multiple draft model
inferences. The verification time cost is mainly in the
inference of the target model.

4.4 Time Cost Analysis

In this section, we discuss the overhead of apply-
ing OPT-Tree. We conduct experiments with 4
groups of models on A100 GPUs. The number of
nodes is set to 50. The temperature is set to 0.

Figure 7 displays the time cost of the oper-
ations in speculative decoding with OPT-Tree.
Each pie in the figure represents the average wall
time of one speculative decoding step, composed
of tree-related operations time, drafting time, and
verification time. Since the cost of tree-related
operations is independent of the size of the draft
and target models, these costs will constitute a
smaller proportion when the models are larger.
In the model setting with the least number of pa-
rameters, the time overhead of tree-related op-
erations accounts for 6.3%. However, given the
improvements in draft quality achieved by OPT-
Tree, these costs are justified. When the model
becomes sufficiently large (e.g., LLaMA-2-70B+
LLaMA-2-7B), the time overhead associated with
tree operations is negligible.
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Figure 8: The mean acceptance length (length) and to-
kens/s (right) under different thresholds on MT-Bench.
The target model is LLaMA-2-7B. The blue and orange
dashed lines in the right figure represent the values of
μ with LLaMA-2-68M and EAGLE as the draft model,
respectively.

4.5 Impact of the Threshold

Considering that the overhead of the draft model
is proportional to the depth of the tree, the tree
that maximizes the acceptance length does not
necessarily have the highest speed-up ratio. There-
fore, we experiment to study the mean acceptance
length and tokens/s under different thresholds.

Figure 8 shows the experimental results on
LLaMA-2-7B. The mean acceptance length drops
as the threshold grows when using LLaMA-2-68M
as the draft model. However, there is a slight
fluctuation for the EAGLE draft model. This is
because E(A) and A are not completely equiv-
alent. We calculate μ for each group of models,
which is the time of one drafting step divided by
the time of one decoding step. A threshold that is
too large will reduce the tree’s depth, thus reduc-
ing the value of A. On the other hand, a threshold
that is too small may make the tree too deep and
increase the cost of drafting. When the depth of
the tree increases by one but the increment of the
E(A) does not exceed μ, it is not worth increasing
the depth. Therefore, we set a threshold between
μ and 1 in practice. LLaMA-2-68M and EAGLE
achieve the highest acceleration when δ = 0.2 and
δ = 0.8, respectively.

4.6 Performance on Non-greedy Settings

In the decoding setting of non-greedy sampling
(random sampling), we only modify the acceptable
tokens during the verification phase. We evaluate
OPT-Tree on these non-greedy settings, where the
temperature exceeds 0.

We perform speculative decoding with OPT-
Tree on the MT-Bench dataset for all groups of
models in 4.1 with the temperature set to 1. Table 3

M Md MAL Tokens/s Speedup

LLaMA-2-7B

L-68M 2.72 88.90 1.71
L-1B 5.25 49.76 0.96
†EAGLE 3.37 101.63 1.96
EAGLE 4.07 125.79 2.42

LLaMA-2-13B

L-68M 2.26 43.45 1.62
L-1B 4.23 37.84 1.41
†EAGLE 3.45 63.13 2.01
EAGLE 4.13 69.27 2.21

LLaMA-2-70B
L-7B 7.17 11.87 1.89
†EAGLE 3.51 15.93 2.53
EAGLE 4.09 18.92 3.01

Vicuna-33B
V-7B 4.91 13.48 1.20
†EAGLE 2.70 19.91 1.77
EAGLE 2.89 25.31 2.25

Table 3: Performance of OPT-Tree on MT-Bench
with the temperature set to 1. ‘‘L’’ and ‘‘V’’ inMd

column represents ‘‘LLaMA-2’’ and ‘‘Vicuna’’.
‘‘MAL’’ indicates ‘‘Mean Acceptance Length’’.
‘‘†’’ means using the EAGLE tree.

Figure 9: The two figures on the left and right are the
mean acceptance length and tokens/s with OPT-Tree
with different temperatures on MT-Bench. The target
model is LLaMA-2-7B.

displays the experimental results. The mean accep-
tance length and the speedup ratio of speculative
decoding with OPT-Tree are slightly lower when
the temperature is set to 1 than when the tem-
perature is set to 0. Since the draft tree greedily
samples tokens with higher probability, the pos-
itive correlation between E(A) and A will be
weakened in the decoding of random sampling.
Therefore, it is typical for the acceleration of spec-
ulative decoding to drop when the temperature is
greater than 0. The improvement of OPT-Tree
for EAGLE draft model is more significant in
this setting. Figure 9 shows specific changes in
mean acceptance length and tokens/s with differ-
ent temperature values. Both metrics drop as the
temperature rises in general. But even when the
temperature is set to 1, OPT-Tree can still pro-
vide high speedup compared to vanilla autoregres-
sive decoding.
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Figure 10: An example of speculative decoding with OPT-Tree on LLaMA-2-70B. Text on a blue background is
the input prompt. Blue text represents drafts generated by LLaMA-2-7B and accepted by LLaMA-2-70B. Red text
represents the next token for each accepted draft, which is generated by LLaMA-2-70B during the verification.

4.7 Case Study

We show an example of speculative decoding with
an OPT-Tree of 50 nodes on LLaMA-2-70B with
LLaMA-2-7B as the draft model in Figure 10.
The threshold is 0.7, and the temperature is 0. The
mean acceptance length is 9.34, and the genera-
tion speed is 12.07 tokens per second. Most words
(blue text) are generated by the draft model and
then verified by the target model. Each couple of
red words and the continuous blue text in front
of it is generated in a single decoding step of the
target model. The appearance of red words is either
because the depth of the draft tree is limited or
because none of the candidates for this position
hits the target. Prepositions (e.g., in, for, and with),
conjunctions (e.g., and and or), articles (e.g., a and
the), punctuation, and other words which have
no apparent practical meanings in the drafts are
prone to be rejected during the verification phase.
In addition, the beginning of new sentences in
drafts tends to be rejected because it has no solid
sequential association with the previous word.

5 Related Work

Speculative decoding (Stern et al., 2018; Xia
et al., 2023; Leviathan et al., 2023; Chen et al.,
2023a) accelerates autoregressive decoding by
drafting and then verifying while ensuring consis-

tent output. Drafting methods are mainly divided
into independent drafting and self-drafting. Inde-
pendent drafting leverages an external low-cost
model. SpecDec (Xia et al., 2023) trains a non-
autoregressive model for drafting while others
(Leviathan et al., 2023; Chen et al., 2023a; Spector
and Re, 2023; Chen et al., 2023b, 2024) directly
utilize a smaller version of the target model. In ad-
dition, REST (He et al., 2023) proposed a retrieval-
based drafting method. Self-drafting uses the
original information of the target model to draft.
Yang et al. (2023) adopt an early-exiting mecha-
nism for drafting. Similarly, Zhang et al. (2023)
performs adaptive layer skipping in the drafting
phase. Lookahead Decoding (Fu et al., 2024) de-
signed an algorithm for parallel drafting and verifi-
cation. MEDUSA (Cai et al., 2024) trains multiple
decoding heads to obtain candidates for multiple
steps from original features in parallel. Consid-
ering that different sampling results at each step
in drafting will affect the distribution of subse-
quent output, EAGLE (Li et al., 2024) designed
an autoregressive head, which introduced the em-
bedding of each word in the drafting stage.

The verification method has evolved from
sequence-structured verification to tree-structured
verification. Early work (Stern et al., 2018;
Leviathan et al., 2023; Xia et al., 2023; Yang
et al., 2023; Zhang et al., 2023; Fu et al., 2024)
verifies drafts in the form of one or several se-
quences. However, as the number of verification
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tokens increases, there are a large number of pre-
fix duplications between sequences, resulting in
redundant calculations. To alleviate this problem,
recent work (He et al., 2023; Cai et al., 2024; Li
et al., 2024; Jeon et al., 2024) uses tree-structured
heuristic drafts and designs the corresponding at-
tention masks for parallel verification. Chen et al.
(2024) proposed Sequoia, an algorithm for build-
ing draft trees, which performs well as the tree
size scales up.

6 Conclusion

In this paper, we propose a novel and effec-
tive method called OPT-Tree to construct adap-
tive draft tree structures for speculative decoding,
which is applicable to any autoregressive draft
model. OPT-Tree maximizes the mathematical
expectation of the acceptance length under any
limited draft tree size. Experimental results across
ten sets of target and draft models using two
datasets demonstrate that OPT-Tree outperforms
existing draft structures, achieving lossless ac-
celeration of up to 3.2 times compared to va-
nilla autoregressive decoding. Furthermore, when
paired with a robust draft model, OPT-Tree consis-
tently increases the mean acceptance length even
with over 500 nodes, showcasing its potential in
scenarios with ample computational resources.
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A The Relationship between the Output Probability of the Draft Model and the
Probability of Acceptance

Figure 11: Acceptance frequency with different range of draft model output probability.

We counted the frequency of token acceptance under different draft model output probabilities when
using LLaMA-2-7B and the EAGLE draft model for speculative decoding. Figure 11 shows the
experimental results. The acceptance frequency is positively correlated with the output probability.

B Calculation Process in Figure 4

To calculate E(A) by pd (left tree):

E(A) = 4× (0.5× 0.8× 0.5 + 0.2× 0.8× 0.5 + 0.5× 0.6× 0.4) —— Layer 3
+ 3× [0.8× 0.5× (1− 0.5− 0.2) + 0.5× 0.1

+ 0.6× 0.4× (1− 0.5) + 0.4× 0.2] —— Layer 2
+ 2× [0.5× (1− 0.8− 0.1) + 0.4× (1− 0.6− 0.2)] —— Layer 1
+ 1× (1− 0.5− 0.4) —— Root

= 3.07

To calculate E(A) by p̂ (right tree):

E(A) = 1 + 0.5 + 0.4 + 0.4 + 0.05 + 0.24 + 0.08 + 0.2 + 0.08 + 0.12

= 3.07
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