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Abstract

The surge of interest in culture in NLP has
inspired much recent research, but a shared
understanding of ‘‘culture’’ remains unclear,
making it difficult to evaluate progress in
this emerging area. Drawing on prior re-
search in NLP and related fields, we propose
a fine-grained taxonomy of elements in cul-
ture that can provide a systematic framework
for analyzing and understanding research
progress. Using the taxonomy, we survey
existing resources and methods for cultur-
ally aware and adapted NLP, providing an
overview of the state of the art and the research
gaps that still need to be filled.

1 Introduction

Culture is rapidly becoming an important research
topic in Natural Language Processing (NLP), with
a significant recent surge in the number of pub-
lished papers (Figure 1). Current NLP systems,
especially Large Language Models (LLMs), often
lack fairness and diversity in cultural awareness,
which leads to biased performance that dispropor-
tionately favors certain groups, and causes harm
to others (Sambasivan et al., 2021; Johnson et al.,
2022; Cao et al., 2023; Hofmann et al., 2024b). To
build technology that is equitable, inclusive, and
accessible, the NLP community must actively take
the initiative, enhancing LLMs’ cultural aware-
ness and adaptability. Given the keen interest in
this area and its importance for the safety and fair-
ness of LLMs, it is now important to consolidate
existing research on culturally aware and adapted
NLP to take stock of the progress made so far and
to identify research gaps. However, this is chal-
lenged by the lack of a common understanding of
the concept of ‘‘culture’’ in NLP.

Prior work in NLP such as that by Hershcovich
et al. (2022) laid the vital foundations for un-
derstanding how language, culture and society
interact. Hershcovich et al. (2022) proposed a
simple taxonomy derived from the interaction be-
tween language and culture that captures broad
elements of culture (linguistic form and style,
objectives and values, common ground, and about-
ness). More recently, Adilazuarda et al. (2024)
adopted ‘‘proxies of culture’’ (semantic or demo-
graphic proxies). While neither provides a shared
understanding of culture, perhaps unsurprisingly,
language is an essential component of culture in
NLP.

A shared understanding of culture in NLP could
benefit from examining definitions developed in
anthropology and social sciences.1 In these fields
(Tylor, 1871; Kroeber and Kluckhohn, 1952;
White, 1959; UNESCO, 1982; Matsumoto and
Juang, 1996; Blake, 2000; Geertz, 1973; Goffman,
2023), most definitions of culture involve people,
groups, and the interactions within and between
individuals and groups.

Murdock (1940) describes culture as ‘‘idea-
tional’’2 and ‘‘social’’. White (1959) describes
the locus of culture as: (1) ‘‘within human’’ (e.g.,
concepts, beliefs, i.e., ideational), (2) between
‘‘social interaction among human beings’’, and
(3) outside of human but ‘‘within the patterns
of social interaction’’. An examination of such
work reveals that social interactions are critical
components of culture, in addition to ideational
elements. Notably, this social aspect is underrep-
resented in previous cross-cultural NLP research

1They have been thinking about culture for over a century!
2The values, beliefs, norms, and ideas that constitute a

way of life (Murdock, 1940; Briggle and Mitcham, 2012b).
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Figure 1: Papers title and abstract containing ‘‘cul-
ture’’ or ‘‘cultural’’ published in the main and findings
of AACL/EACL/NAACL/ACL/EMNLP and TACL
within 5 years, with normalized percentages based
on the total number of papers at included venues to
date.

(Hershcovich et al., 2022; Adilazuarda et al.,
2024).3

Hence, we combine the emphasis on language
in prior NLP work, while integrating the signifi-
cance of social and ideational elements that shape
culture. This leads us to a working definition of
culture used to taxonomize recent work in NLP
in this survey: Culture encompasses the collective
ideas, shared language, and social practices that
emerge from and evolve through human social
interactions within a society.

Grounded in this working definition, we intro-
duce a new fine-grained taxonomy of culture by
expanding on the basic categories of prior work
(Hovy and Yang, 2021; Hershcovich et al., 2022)
to address above-mentioned issues. We then use
this taxonomy to organize existing works in cultur-
ally aware and adapted NLP, and identify research
gaps. Our survey of 127 publications in leading
*CL venues (see selection method in Appendix A)
provides an up-to-date view of cultural adapta-
tion resources and models and identifies areas of
progress as well as new research opportunities.
We hope our taxonomy and analysis enable and
inspire further research in this important emerging
area.

2 The Taxonomy

In this section, we present our new taxon-
omy of culture. Unlike previous NLP studies
(Hershcovich et al., 2022; Hovy and Yang, 2021)
that sought to define cultural elements, this taxon-
omy (i) is grounded in well-established elements
of culture in anthropology and social sciences

3There is also prior work focusing on social NLP (Hovy
and Yang, 2021), which is related. However, culture is not
the central theme of the work.

(Tylor, 1871; Kroeber and Kluckhohn, 1952;
White, 1959), (ii) consists of more fine-grained
elements than in earlier work, and (iii) allows for
a wider consideration of how social factors and
variations in humans influence culture.

Figure 2 presents a taxonomy of cultural ele-
ments derived from our working definition in §1,
organized into three main branches: ideational,
linguistic, and social.4 The ideational branch
(§3.1; Murdock, 1940; Briggle and Mitcham,
2012a) encompasses the non-material aspects
of culture that constitute a way of life, such
as values or knowledge. The linguistic branch
(§3.2) focuses on cultural variations in language
and linguistic forms, bridging the ideational and
social elements of culture. The social branch
(§3.3) covers key factors in social interaction and
communication, such as relationships or commu-
nicative goals.5 Here, we define each element
based on existing research and relating to example
tasks in the NLP context. We then provide details
and examples from the current literature in §3.1,
§3.2, and §3.3.

Ideational elements are based on well-
established discussions of culture (Tylor, 1871;
Kroeber and Kluckhohn, 1952; White, 1959):

Concepts: basic units of meaning that structure
and facilitate thought, bridging sensory experience
(Jackendoff, 1989, 2012), e.g., cuisines (such as
schnitzel, ratatouille) or holidays (such as Diwali,
Nowruz). Related NLP task examples: question
answering, dialogue generation.

Knowledge: information that can be acquired
through education or practical experience, e.g.,
local agricultural knowledge. Related NLP task
examples: dialogue generation, reasoning.

Values: beliefs, desirable end states or behaviors
ranked by importance that can guide evaluations
of things (Schwartz, 1992). Unlike norms and
morals, values do not inherently involve ethical
judgment, e.g., beauty standards, or perception of
hate speech. Related NLP task examples: content
moderation, debiasing.

4Icons in Figure 2 are created with the assistance of
DALL-E.

5All cultural elements can interact and influence each
other based on context and can be divided into finer groups.
Similar to prior work, our taxonomy abstracts away from
these contextual variations.

653



Figure 2: An overview of the taxonomy with examples of subcategories of future possible expansions. The
elements in culture are organized into three different branches: ideational, linguistic, and social. The ideational
branch (§3.1 encompasses the non-material aspects of culture that constitute a way of life. The linguistic branch
(§3.2) focuses on cultural variations in language and linguistic forms, bridging the ideational and social elements
of culture. The social branch (§3.3) covers key factors in social interaction and communication.

Norms and Morals: set of rules or principles that
govern people’s behavior and everyday reason-
ing (Cialdini et al., 1991; Bicchieri et al., 2018;
Hechter and Opp, 2001; Gert and Gert, 2025),
e.g., filial obedience attitude. Related NLP task
examples: reasoning, safety alignment.

Artifacts: items that are products of human cul-
ture, such as art, poetry (White, 1959), etc. This
is ideational in our taxonomy since we do not
work on physical buildings or tools in NLP. Re-
lated NLP task examples: machine translation
of long-form literature, emotion arc analysis of
movies, memes classification.

Linguistic elements relate to language varia-
tions in the cultural context, based on existing
discussions (Wardhaugh and Fuller, 2021):

Dialects: includes variations of languages in a
systematic way (Fromkin et al., 1998; Trudgill,
2000; Wardhaugh and Fuller, 2021; such as di-
alects continuum, regionalects, sociolects, etc.),
e.g., African American (Vernacular) English
(AAE/AAVE). Related NLP task examples:
machine translation, debiasing.

Styles, Registers, Genres: includes elements
such as formality, variations of language in
situation and communicative forms (Wardhaugh
and Fuller, 2021), e.g., formality in text, slang, or
specific genres like news, folk tales. Related NLP
task examples: style transfer, creative writing
generation.

Social elements focus on social interactions and
communication among humans within the scope
of NLP. Leveraging the work of Hovy and Yang
(2021), we identify relevant elements:

Relationship: connection between two or more
individuals or groups, e.g., father-son, colleagues.
Related NLP task examples: creative writing
generation, dialogue generation.

Context: the ‘‘containers’’ of communications
(Yang, 2019), which can be linguistic such as sur-
rounding sentences or extra-linguistic (Hovy and
Yang, 2021), including social settings (e.g., at a
wedding), non-verbal cues (e.g., gesture), or his-
torical contexts (e.g., colonization). Related NLP
task examples: coreference resolution, pragmatic
inference.

Communicative Goals: the intention behind lan-
guage use, e.g., requests, apologies, persuasion.
Related NLP task examples: intent classification,
emotion classification, human-AI collaboration.

Demographics: the characteristics of people,
e.g., economic income, education level, nation-
ality, location, political view, family status, etc.
Related NLP task examples: content moderation,
personalization.

3 Elements of Culture in Current NLP
(Resources) Literature

In this section, we survey and categorize NLP
resources. Table 1 shows an overview of papers
organized according to the taxonomy.

We observe that in resources, culture can be
captured in (1) the data itself, or (2) in the labels
(e.g., multi-culturally annotated). Further, while
cultural differences are evident in linguistic and
social elements, most current work relies on stan-
dard language or country boundaries, leaving these
elements understudied.
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Element Papers

Concepts

Shwartz, 2022; Majewska et al., 2023; Hu et al., 2023; Kabra et al., 2023
Liu et al., 2024a; Cao et al., 2024b; Jiang and Joshi, 2024; Hu et al., 2024
Vision-Language: Liu et al., 2021; Yin et al., 2021; Thapliyal et al., 2022
Khanuja et al., 2024; Li et al., 2024c; Bhatia et al., 2024; Nayak et al., 2024

Knowledge
Probing: Kassner et al., 2021; Yin et al., 2022; Keleg and Magdy, 2023; Zhou et al., 2024; Bhatt and Diaz, 2024
MMLU: Koto et al., 2023; Li et al., 2024b; Koto et al., 2024a; Wang et al., 2024b; Son et al., 2024
Common sense: Ponti et al., 2020; Wibowo et al., 2024; Koto et al., 2024b; Acquaye et al., 2024; Shi et al., 2024

Values - general
Tay et al., 2020; Ramezani and Xu, 2023; Cao et al., 2023; Wang et al., 2024c
Yao et al., 2024b; Aakanksha et al., 2024

Values - bias

WEAT: Malik et al., 2022; España-Bonet and Barrón-Cedeño, 2022; Mukherjee et al., 2023; Zhao et al., 2023
Sahoo et al., 2023; Naous et al., 2024; Jha et al., 2023; Bhutani et al., 2024; Mukherjee et al., 2024
Sent. Pairs: Nangia et al., 2020; Névéol et al., 2022; Felkner et al., 2023; Sahoo et al., 2024
Other: Campolungo et al., 2022; Sandoval et al., 2023; Attanasio et al., 2023; Bauer et al., 2023
Zhou et al., 2022; Lee et al., 2023a; Palta and Rudinger, 2023; An et al., 2023; Jin et al., 2024; Hsieh et al., 2024

Values - hate Shekhar et al., 2022; Zhou et al., 2023a,b; Lee et al., 2024b; Mostafazadeh Davani et al., 2024

Values - other perceptions
Mohamed et al., 2022; Frenda et al., 2023; Casola et al., 2024; Havaldar et al., 2024
Mohamed et al., 2024; Deas et al., 2024

Norms and Morals

Forbes et al., 2020; Emelin et al., 2021; Ziems et al., 2022b; Kim et al., 2022; Moghimifar et al., 2023
Fung et al., 2023; Pyatkin et al., 2023; CH-Wang et al., 2023; Ziems et al., 2023a; Dwivedi et al., 2023
Rao et al., 2023; Huang and Yang, 2023; Sun et al., 2023; Li et al., 2023b
Zhan et al., 2024; Kim et al., 2024; Bhatt and Diaz, 2024; Vijjini et al., 2024; Liu et al., 2024c

Artifacts
Epure et al., 2020; Mohamed et al., 2022; Kruk et al., 2023
Jiang et al., 2023; Mohamed et al., 2024; Hobson et al., 2024

Dialects
Ziems et al., 2022a, 2023b; Le and Luu, 2023; Plüss et al., 2023; Kuparinen et al., 2023
Elmadany et al., 2023; Deas et al., 2023; Khondaker et al., 2023; Faisal et al., 2024

Styles, Registers, Genres
Sweed and Shahaf, 2021; Sun and Xu, 2022; Nadejde et al., 2022
Srinivasan and Choi, 2022; Havaldar et al., 2023a

Relationship Li et al., 2023b; Jurgens et al., 2023; Shaikh et al., 2023; Ziems et al., 2023a; Zhan et al., 2024

Context
Forbes et al., 2020; Emelin et al., 2021; Kim et al., 2022; Ziems et al., 2023a; Moghimifar et al., 2023
Rao et al., 2023; Sun et al., 2023; CH-Wang et al., 2023; Zhan et al., 2024

Communicative Goals Emelin et al., 2021; Li et al., 2023b; Zhan et al., 2024

Demographics Frenda et al., 2023; Lahoti et al., 2023; Ziems et al., 2023a; Casola et al., 2024; Lee et al., 2024b

Table 1: Recent resource work considered in §3 by elements (selection method in Appendix A). The three
blocks (divided by double lines) correspond to ideational, linguistic, and social elements, respectively.

3.1 Ideational Elements
3.1.1 Concepts
We can divide concepts into (1) basic concepts
that are ‘‘configured’’ differently, reflecting the
cultural-specific way of thinking,6 and (2) con-
cepts that are unique to a culture (Wierzbicka,
1992).7

Recent NLP research has explored grounding
time expressions across cultures (Shwartz, 2022)
and culinary concepts in recipe adaptations (Cao
et al., 2024b). Additionally, studies have exam-
ined how various cultures use concepts across
categories, such as through metaphors (Kabra
et al., 2023) or traditional proverbs and sayings

6For example, one can explore the citizen science project
for lexicon associations: https://smallworldofwords
.org/en/project/home.

7For example, ‘‘Kopi Ga Dai’’ in Singaporean English
versus ‘‘double-double’’ in Canada, both referring to coffee
with extra sweetness and creaminess, but very different.

(Liu et al., 2024a). In vision and language (VL)
settings, culturally unique concepts have been in-
tegrated into reasoning and captioning tasks (Liu
et al., 2021; Yin et al., 2021; Thapliyal et al., 2022;
Li et al., 2024c) or assess multimodal content
adaptations (Khanuja et al., 2024) and generation
of text-to-image models (Liu et al., 2023c).

These datasets are often small due to high an-
notation costs, and most are only available for
evaluation. Training and evaluation datasets still
lack diversity across cultures, languages, and con-
cept categories (e.g., rituals, aesthetics, spatial
relations).

3.1.2 Knowledge
Cultural knowledge can be factual or common
sense.8 What weather phenomena can be expected

8Common sense and norms are sometimes used inter-
changeably in NLP. Norms are acceptable behavioral patterns
of a group (§2), which we will discuss in §3.1.4.
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if a rapidly rotating tropical storm forms off the
coast of our country? (It’s likely called a hurricane
if one is in the US, a typhoon if one is in Korea.) Is
tofu pudding sweet or salty by default? (In China,
it’s typically sweet in the south but salty in the
north.)

We identified three major types of resources in
NLP literature: (1) probing (by masking entities),
(2) multiple choice question answering (MCQA),
and (3) knowledge bases.

Assessing language models’ knowledge has
long been important, with early studies examining
this across languages predating LLMs (Kassner
et al., 2021; Yin et al., 2022; Keleg and Magdy,
2023; Zhou et al., 2024). Recently, Massive Mul-
titask Language Understanding (MMLU)-style
(Hendrycks et al., 2021) MCQA benchmarks have
advanced LLM development and inspired cultural
variants (e.g., Li et al., 2024b, details in Table 1)
covering aspects like food, history, and geography
in respective languages. However, MMLU-style
benchmarks, often based on standard exams and
textbooks, lack integration with broader cultural
elements. In contrast, other common sense knowl-
edge datasets (e.g., Wibowo et al., 2024; Koto
et al., 2024b) can incorporate other elements under
‘‘linguistic’’ (e.g., in dialects) or ‘‘social’’ (such
as from diverse demographics with geographic
regions) branches.

Finally, integrating knowledge bases (KB) with
models enhances cultural awareness (Bhatia and
Shwartz, 2023) and supports culturally relevant
synthetic data generation (Kim et al., 2023). De-
spite recent efforts in creating cultural KB from
other venues (Nguyen et al., 2023; Fung et al.,
2024; Nguyen et al., 2024), *CL community
examples remain limited.

3.1.3 Values
Diverse ranking of values among groups can re-
sult in differences in aboutness, communication
styles, perceptions, and multiple other dimen-
sions (Hofstede, 1984, 2011). Such differences
in pre-training data can be reflected in LLMs.

Many recent studies on evaluation (Johnson
et al., 2022; Ramezani and Xu, 2023; Cao et al.,
2023; Durmus et al., 2024; Santurkar et al., 2023;
Masoud et al., 2025; Havaldar et al., 2023b;
Wang et al., 2024c, inter alia) show that LLMs
align better with values of WEIRD (Western,
Educated, Industrialized, Rich and Democratic;
Henrich et al., 2010) people, raising concerns

about the fairness and safety of LLMs for others.
Here, Pew Global Attitudes Survey (PEW),9 the
World Values Survey (WVS),10 and the Hofst-
ede Cultural Dimensions (Hofstede, 1984, 2011)
are commonly used for evaluation, along with
regional variants like the European Values Sur-
vey (EVS; EVS, 2011). However, the questions
of how to improve the model’s value alignment
with diverse cultures, what resources to collect
and whom to collect from remain unsolved (Kirk
et al., 2024).

Biases. In contrast to general cultural values,
biases have been long-studied in NLP, such as
gender bias in machine translation (Stanovsky
et al., 2019; Savoldi et al., 2021; Campolungo
et al., 2022; Sandoval et al., 2023; Attanasio et al.,
2023, inter alia) or bias towards particular so-
cial groups. Differences in value ‘‘ranking’’ lead
cultures to exhibit distinct biases toward the same
groups or unique biases specific to certain cultures
(e.g., caste systems, unnatural beauty standards).
These variations are central to the study of cultural
biases and are the focus of our work.

To enable evaluations of cross-cultural varia-
tions in biases and develop transferable de-biasing
methods, recent work has created varieties of cul-
turally aware datasets to aid evaluations, including
targets and attribute word sets, sentence pairs,
conversational and QA data (see Table 1 for the
papers).

Overall, this area shows notable progress com-
pared to other sub-areas. Recent surveys on
general biases cover key topics like evaluation
and de-biasing methods (Sun et al., 2019; Meade
et al., 2022; Dev et al., 2022; Delobelle et al.,
2022), which we refer readers to them for further
details.

Hate. Like biases, perceptions of hatefulness in
the text also vary across cultures, as shown in
recent research on hate speech classification (Sap
et al., 2022; Zhou et al., 2023a,b; Lee et al.,
2023b; Lwowski et al., 2022; Arango Monnar
et al., 2022). Such model disparities may be due to
the data source (i.e., using machine translations,
not native text) or the labeling process. The first is-
sue can be addressed by diversifying data sources,
incorporating authentic local data (Shekhar et al.,
2022; Jeong et al., 2022). The second issue can

9https://www.pewresearch.org/.
10https://www.worldvaluessurvey.org/.
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be mitigated by creating annotations from diverse
cultural groups. Recently, CREHate (Lee et al.,
2024b) investigates variations in hate speech per-
ceptions within the same language, highlighting
the need for further research.

Other Perceptions The perception of polite-
ness, aesthetic appeal, or emotions can also
vary across cultures (House and Kasper, 1981;
Mesquita et al., 1997; Masuda et al., 2008; Ringel
et al., 2019; Abdelkadir et al., 2024). For exam-
ple, whether a piece of text is deemed humorous
or ironic is culturally dependent. Frenda et al.
(2023) and Casola et al. (2024) try to address
this with cross-cultural annotated (multilingual)
irony corpora. Similarly, visual elements in arts
can elicit different emotions in different cultural
groups. ArtELingo (Mohamed et al., 2022, 2024)
provides benchmarks with multilingual captions
and emotion labels for artworks to evaluate mod-
els’ cultural-transfer performance. This research
area is significantly limited.

3.1.4 Norms and Morals
In ethics, a distinction is made between descriptive
and normative morality (Gert and Gert, 2025). In
NLP, this distinction is often overlooked (Vida
et al., 2023) with a greater emphasis on the
‘‘end product’’, which is the final set of rules
or principles and their judgments.11

Several norm banks exist, built through auto-
matic, semi-automatic, or manual methods using
sources like conversations, social media, or gov-
ernment websites (Forbes et al., 2020; Fung et al.,
2023; CH-Wang et al., 2023; Dwivedi et al., 2023).
These norm banks have also been automatically
adapted to defensible norms in fine-grained situ-
ations (Pyatkin et al., 2023; Rao et al., 2023) or
inference tasks (CH-Wang et al., 2023; Huang and
Yang, 2023) for LLM evaluation and adaptation.

For model alignment, several approaches fo-
cus on ‘‘inquisition’’, directly questioning LLMs
about issues through conversation or a QA task
(Kim et al., 2022; Sun et al., 2023; Yu et al.,
2024; Lee et al., 2024a; Yuan et al., 2024). A
challenge with this approach is that a model’s
responses do not always align with its behavior in
usage (i.e., conversation). Thus, culturally aligned
conversational data show greater potential for be-
havior adaptation (Li et al., 2023b; Zhan et al.,

11This is reasonable for standard NLP tasks but should be
re-evaluated for high-stakes judgment-based applications.

2024). However, existing resources have limited
coverage beyond Western, Chinese, and Indian
cultures.

3.1.5 Artifacts
NLP research on artifacts has focused on (mono-
lingual or mono-cultural) artifacts in texts, e.g.,
fairy tales, fiction, poetry, and songs (Yang et al.,
2019; Haider et al., 2020; Chakrabarty et al.,
2021; Xu et al., 2022; Thai et al., 2022; Jiang
et al., 2023; Ou et al., 2023; Li et al., 2023a), or
in multimodal such as movies, humor, and memes
(Sharma et al., 2020; Liu et al., 2022a; Hessel
et al., 2023; Hong et al., 2023), to name a few.
While ‘‘artifacts’’ is an independent cultural ele-
ment, usage in adaptation typically involves tasks
that align with one or more previously mentioned
categories, making design challenging. For ex-
ample, in ArtELingo (in §3.1.3), the input data
focuses on art, while cross-cultural measurement
studies perceptions, which reflect cultural values.
Similarly, translations of literary novels need to
account for concept differences such as names
(Jiang et al., 2023) across cultures. Research on
integrating cross-cultural differences into model-
ing and data acquisition with artifacts remains
limited.

3.2 Linguistic Elements
3.2.1 Dialects
A dialect is a variant of a language (Haugen, 1966)
at the local regional level (e.g., Hessian German),
national level (e.g., Tunisian Arabic), or by other
factors (e.g., AAVE).

Much existing work focuses on dialect identifi-
cation (Salameh et al., 2018; Abdelali et al., 2021;
Hämäläinen et al., 2021; Yusuf et al., 2022), but
how to enable LLMs to serve dialectal communi-
ties remains an open question. Recently, multiple
studies have identified disparities in NLP models
(Ziems et al., 2022a; Le and Luu, 2023; Paonessa
et al., 2023; Deas et al., 2023) when evaluated
across different language variations.

Current dialect datasets primarily consist of
translations between dialects and standard lan-
guages or are created through dialect normaliza-
tion, in text, audio, or both (Plüss et al., 2023;
Kuparinen et al., 2023). Few studies focus on
traditional generation tasks like summarization or
standard benchmark tasks (e.g., classifications or
inferences; Maronikolakis et al., 2022; Held et al.,
2023; Faisal et al., 2024). Overall, research on
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German and English dialects is more advanced
(marginally) than other dialect types.

3.2.2 Styles, Registers, and Genres
Styles, registers (e.g., slang), and genres (e.g.,
news) depend on the context of language use
(Wardhaugh and Fuller, 2021). Compared to other
elements, recent developments in this area appear
limited, with a handful of examples focusing on
slang, formality, or politeness (Sun and Xu, 2022;
Nadejde et al., 2022; Srinivasan and Choi, 2022;
Havaldar et al., 2023a).

3.3 Social Elements
3.3.1 Relationship
In many cultures, communication could differ de-
pending on the relationship between the speakers.
For example, Chinese has distinct terms for elder
vs. younger siblings. Translations to (and from) a
language without this property may result in a loss
of nuances in meaning. In Korea and Japan, mis-
used politeness level in conversation can violate
cultural norms (Matsumoto, 1988; Ambady et al.,
1996), especially in different social relationships.
Additionally, certain relationships exist uniquely
within specific cultures, such as ‘‘Godmother’’.
Considering relationships is important for build-
ing resources and modeling culturally appropriate
methods. Zhan et al. (2024) serve as a recent
example with this consideration.

3.3.2 Context
In NLP, linguistic context could be the sur-
rounding text. Studies by Hovy et al. (2020),
Akinade et al. (2023), and Stewart and Mihalcea
(2024) show that machine translation systems
can fail without appropriate consideration of
linguistic context, revealing its importance in
resource and model development. However, hu-
man communication is much richer, relying on
the extra-linguistic context that situates language
within broader frames of reference.

The extra-linguistic context can be situational
(setting or location where communication occurs;
e.g., at school, in a hospital), historical (past
events; e.g., colonization, that change cultural
values or language use, like in Hong Kong) or
non-verbal (e.g., hand gesture, tone of voice).
Each type shapes and reflects culture. These con-
texts significantly enhance conversational tasks,
norm bank development, and visual-language ap-
plications (Zhan et al., 2023; Ziems et al., 2023a),

enabling NLP models to interpret nuanced lan-
guage elements beyond words, thus improving
response relevance and accuracy.

3.3.3 Communicative Goals

Different cultures can have distinctive communi-
cation styles depending on communicative goals.
For example, people may use indirect language
for refusal (versus direct refusal with a ‘‘no’’)
to avoid confrontation (House, 2005). Cultures
may also exhibit variations in responses to the
same situation (e.g., how to make requests and
when to apologize; Blum-Kulka and Olshtain,
1984). Taking this type of variation into account
is important for cross-cultural pragmatic-inspired
tasks—an area that remains understudied, with
limited examples identified in Table 1.

3.3.4 Demographics

A household with a monthly income of less than
50 US dollars is likely to have different house-
hold items than that with 5000 US dollars (Rojas
et al., 2022). Névéol et al. (2022) also found that
the original English CrowS-Pair dataset relied on
names as proxies for a sociodemographic group
(‘‘Amy for women, Tyrone for African American
men’’; Névéol et al., 2022), whereas the French
version features direct references to sociodemo-
graphic groups. These data differences may stem
not only from cultural influences but also from
the demographics of the data contributors. Where
and from whom one collects data matters, as it
can result in dramatic differences in data and
modeling.

Demographic information is also important in
annotation (Sap et al., 2022; Pei and Jurgens, 2023;
Santy et al., 2023), where a piece of text can be
humorous to some people but offensive to others
(Meaney, 2020). In such cases, culture may exist
in the labels rather than in the data. Recently, Lee
et al. (2024b) and Frenda et al. (2023) show how
to capture different cultural views of annotators
using the same dataset.

3.4 Usage of the Taxonomy

Covering the key elements of culture, our taxon-
omy can act as a useful reference point for NLP
system development, in addition to organizing ex-
isting literature. For example, the development
of culturally aware debiasing should consider Ide-
ational elements such as Values, Norms & Morals,
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as well as Social elements such as Demograph-
ics to inform the focus of debiasing, along with
Linguistic elements such as dialects to inform the
choice of data for the task. The applicable elements
of culture will vary between tasks and contexts,
with the taxonomy acting as a useful checklist.
See Appendix B for additional examples.

4 Culturally Aware Resource Acquisition

Resources discussed in §3 are essential for cul-
turally aware NLP. As additional resources are
much needed, this section surveys methods for
creating new resources (an overview in Appendix
Figure 4).

Resources can be classified based on their
acquisition methods—manual, automatic, or
semi-automatic—and their source types: (1)
newly created (New, from scratch), or (2)
culturally adapted from existing resources (CA,
e.g., through translation from the original data,
followed by culturally appropriate changes).
point (1) captures unique cultural phenomena but
is often limited by funding or access to native
speakers. Point (2) provides an alternative, though
accurately reflecting cultural phenomena can be
challenging.

4.1 Manual: Incorporating Native Speakers,
Communities, and Experts

A common strategy is to employ native speak-
ers or experts (e.g., professional translators or
students) for data acquisition. This can be done
via crowd-sourcing platforms such as Amazon
Mechanical Turk and Prolific (Liu et al., 2021,
2024a) or in a community-driven manner, lever-
aging networks such as Masakhane,12 IndoNLP,13

university mailing lists, or Slack/Discord of
organizations. Involving native speakers and com-
munities to address cultural variations requires
responsible design and thoughtful considerations.

New: Most existing culture resources have been
built by involving native speakers or commu-
nities for dataset acquisition (Liu et al., 2021;
Maronikolakis et al., 2022; Koto et al., 2023;
Kabra et al., 2023). For non-language related com-
munities, WinoQueer (Felkner et al., 2023) utilizes
channels such as Slacks/Discord, and gay Twitter

12https://www.masakhane.io/.
13https://indonlp.github.io/.

to reach the LGBTQ+ community and generates
benchmarks based on community survey results.

CA: When starting from existing datasets, some
works also involved communities (e.g., using sur-
veys) in determining the needed modifications and
supplements to datasets (Névéol et al., 2022; Hu
et al., 2023; Majewska et al., 2023; Jin et al., 2024).
These adaptations range from simple changes,
such as updating names and locations to fit the
target culture, to creating entirely new instances.

In general, native speakers are consulted
throughout the life-cycle of new data acquisition
(from annotations to quality checks). However,
the entire community is rarely consulted during
the initiation stage (i.e., designing tasks). Involv-
ing native speakers can be costly and difficult, but
is a best practice that enhances quality and cultural
authenticity.

4.2 Automatic: Models and Pipelines

Since manual adaptation is slow and hard to scale,
the use of automation has gained popularity in
resource acquisition.

New: For instance, CANDLE (Nguyen et al.,
2023) proposes a pipeline to extract cultural com-
monsense knowledge using various techniques
like NER extraction, cultural facet classification,
concepts extraction and ranking through algo-
rithms or LMs. NormsSAGE (Fung et al., 2023)
utilizes LLMs for norm discovery from conver-
sation data, then performs model self-verification
to validate and filter the data. CultureAtlas (Fung
et al., 2024) extracts cultural knowledge from
Wikipedia and hyperlinked document pages us-
ing LLMs for filtering and adversarial knowledge
generation.

Recent work has also used sociodemographic
prompting (Santurkar et al., 2023; Deshpande
et al., 2023; Hwang et al., 2023; Beck et al.,
2024)—extending input prompts with sociodemo-
graphic information—to generate outputs tailored
to specific groups. Further research could reduce
data acquisition efforts, particularly for generating
subcultural data variations within WEIRD people.
However, it has also been argued that LLMs do
not accurately mimic individual or group behav-
iors (Argyle et al., 2023; Aher et al., 2023; Beck
et al., 2024).

CA: Putri et al. (2024) examine automatic
adaptation (paraphrasing and concept replace-
ment) of Commonsense QA in Indonesian and
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Sundanese. Current GPT models, however, reveal
disparities in cultural adaptation across languages,
highlighting the need for further research.

4.3 Semi-automatic: Structured Resources,
Model-in-the-loop

As demonstrated by Putri et al. (2024), LLMs
struggle with fully automated cultural adapta-
tions. Alternatively, semi-automatic approaches
combine the quality of manual work with
scalability.

New: Methods have been developed to gen-
erate seed data for iterative human cleaning and
labelling. NormBank (Ziems et al., 2023a) uses
LLMs to generate seed roles and behaviors as
norm candidates in specific situations, which are
then annotated by humans. Similarly, other studies
(CH-Wang et al., 2023; Liu et al., 2024a; Bhutani
et al., 2024) employ prompting techniques to gen-
erate seed data, followed by human annotation on
tasks like cultural bias and social reasoning.

CA: Ziems et al. (2023b, Multi-Value) intro-
duced a framework that leverages the Electronic
World Atlas of Varieties of English (Kortmann
et al., 2020, eWAVE) to create and adapt datasets
covering 50 English dialects. This framework
enabled the adaptation of a standard corpus into di-
alectal forms (Held et al., 2023; Xiao et al., 2023).
However, similar structured resources may not
exist or be suitable for adaptation of other cultural
elements (e.g., for concepts, consistently replacing
‘bread’ with ‘rice’ would not be desirable).

5 Creating Culturally Adapted Models

Most culturally aware NLP research has focused
on resource creation and evaluation, with cultur-
ally adapted model development still emerging.
Here, we review current methods for adapt-
ing pre-trained (L)LMs, covering in-context and
in-weight adaptations (an overview can be found
in Appendix Figure 5). We found that current
cultural adaptation methods in NLP prioritize
technical advancements and isolated cultural ele-
ments, measuring effectiveness solely by standard
task performance.

5.1 In-context Adaptation

The success of LLMs allows for behavior tuning
by prompts or in-context examples. A straight-
forward strategy is to provide the model with
sociodemographic prompts or use ‘‘role-playing’’

(Park et al., 2022; Argyle et al., 2023) of a cul-
ture, as seen in Shaikh et al. (2023) and Hwang
et al. (2023). For knowledge-intensive tasks, cul-
tural knowledge can be added directly to the
prompt, and LLMs can leverage indirect de-
scriptions from external sources or prior model
outputs (Yao et al., 2024a). Lastly, high-level
prompts (or ‘‘constitutions’’, Bai et al., 2022b)
guiding LLM reasoning could improve cultural
alignment alongside demographic-based prompts
(AlKhamissi et al., 2024).

Since different cultures reflect different values,
there is a need to create models that embody
pluralistic cultural values with flexible align-
ment capabilities (Sorensen et al., 2024). Feng
et al. (2024) propose a framework to achieve this
by enhancing pluralistic alignment in LLMs via
collaboration between a high-level LLM and a
group of specialized community LMs (i.e., an
ensemble of LLMs). This framework enables
general-purpose LLMs to flexibly incorporate
diverse cultural and ideological perspectives, re-
flecting both individual preferences and broader
cultural distributions.

A retrieval-augmented approach can further re-
fine cultural alignment by adjusting responses
dynamically. Friedrich et al. (2023) propose
such a method for moral reasoning, where
culture-specific contexts are stored in a retrieval
engine. When asked moral questions, relevant
contexts are retrieved and added to the input, en-
abling the model to respond with cultural nuances.
This method shows promise for adapting LLMs
to evolving cultural information, an aspect often
overlooked in current adaptation methods.

5.2 In-weight Adaptation

5.2.1 Data Augmentation

Acquiring large corpora for supervised cultural
adaptation is challenging. Data augmentation
helps address this, enhancing model robustness.
Li and Zhang (2023) present a data augmentation
method for multilingual multicultural VL reason-
ing tasks, generating code-mixed data by substi-
tuting English concepts with culturally mapped
equivalents. The cultural concept sets (for map-
ping) are built by querying hyponyms, synonyms,
and hypernyms in the ConceptNet (Speer et al.,
2017) and WordNet (Miller, 1992). However, the
optimal resource depends on the specific cul-
tural element being adapted (§3.1). For instance,
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a cultural knowledge base might be better for
norms adaptations.

5.2.2 Continual Pre-training,
Auxiliary Losses

Continual pre-training (CPT, including instruction
tuning), intermediate task training, and multi-task
training with auxiliary losses are methods for
cultural adaptation. CPT fine-tunes a pre-trained
LM with an unlabeled domain or language corpus
before downstream task fine-tuning. It improves
downstream task performance via full-parameter
training (Xu et al., 2019; Han and Eisenstein,
2019; Gururangan et al., 2020) or by training
a few additional parameters while keeping the
model frozen (Wang et al., 2021; Ke et al., 2022).

Recently, Hofmann et al. (2024a) show that
when combined with a geo-location prediction
loss, CPT can help to increase the awareness
of dialectal variations of pre-trained LMs. Wang
et al. (2024a) show that instruction tuning with
instructions containing cultural knowledge can
improve models’ ability in cultural knowledge
reasoning. In VL, Bhatia and Shwartz (2023)
use a cultural commonsense knowledge graph
from Nguyen et al. (2023) for CPT to develop
a geo-diverse LM for commonsense reasoning
tasks. This method category is effective for ad-
dressing diverse cultural elements, but adapting
pre-trained LLMs can result in catastrophic for-
getting (McCloskey and Cohen, 1989, or termed
‘‘alignment tax’’ due to Reinforcement Learning
from Human Feedback (RLHF) tuning, Askell
et al., 2021; Ouyang et al., 2022) potentially wors-
ening their performance on general tasks. This
warrants further investigation.

5.2.3 Other Forms of
Information Integration

Cao et al. (2024a) propose a method that integrates
cultural dimension vectors (derived through a
regression task based on Hofstede Culture Dimen-
sions, Hofstede, 1984) with a mT5 Transformer
model (Xue et al., 2021). These cultural dimension
vectors are added to the hidden states at each layer
to enable culturally informed multi-turn dialogue
classification and prediction.

5.2.4 Parameter-efficient Adaptations
As LMs grow larger, parameter-efficient fine-
tuning methods (i.e., PEFT, by fine-tuning a small
number of parameters, such as the bottle-neck

adapters, Houlsby et al., 2019; LoRA, Hu et al.,
2022, etc.) become increasingly important for task
adaptations. Given their success in cross-lingual
transfer learning (Üstün et al., 2020; Pfeiffer et al.,
2020; Ansell et al., 2021; Liu et al., 2023a, 2024b,
among others), PEFT can be a natural choice for
cultural adaptation of, e.g., dialects.

Recently, HyperLoRA (Xiao et al., 2023) uses
the Hypernetwork (Ha et al., 2017, a neural net-
work for generating parameters) to generate LoRA
adapters based on dialectal features. DADA (Liu
et al., 2023b) proposes to train a pool of dialec-
tal linguistic feature adapters and dynamically
compose the adapters for dialectal tasks. Be-
ing task-agnostic, PEFT methods could prove
important for cultural adaptations beyond dialects.

5.2.5 Outlook: Feedback Learning
The success of LLMs has popularized RLHF
(Christiano et al., 2017; Bai et al., 2022a; Ouyang
et al., 2022; Ivison et al., 2024) and Direct Pref-
erence Optimization (DPO; Rafailov et al., 2023;
Ivison et al., 2023) methods. RLHF fine-tunes
LMs with feedback by fitting a reward model
with human preferences, and then training a rein-
forcement learning-based policy to maximize the
learned reward. DPO avoids RL training by us-
ing a simpler supervised learning objective for an
implicit reward model.

Recent work shows that RLHF can enhance
the performance of multilingual instruction tuning
for LLMs (Lai et al., 2023), while DPO can
improve the multilingual reasoning abilities (She
et al., 2024) and multilingual safety (Aakanksha
et al., 2024) of LLMs. The use of RLHF or
DPO for multilingual multicultural adaptation is
still limited, but these examples suggest that the
direction could be promising.

6 Further Discussions and
Recommendations

As we have seen, significant work remains to be
done on both resources and methods for various
elements of culture.

An area that requires attention is the overall
process of researching culturally aware NLP. As
mentioned previously, a key practice is commu-
nity involvement (§4) to get the process right (Bird,
2020; Liu et al., 2022b; Mager et al., 2023). It is
crucial to assess how target communities can ben-
efit most from technologies. For instance, many
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dialects are primarily oral, and speech-to-speech
or speech-to-text translations could be prefer-
able over text-based applications (Blaschke et al.,
2024). Furthermore, ethical data collection prac-
tices are also critical and technology ownership
must be considered, especially when indigenous
and marginalized communities are involved. For
best practices, we refer the readers to work such as
Bird (2020), Smith (2021), or Cooper et al. (2024)
for further details.

Another key consideration is integrating in-
sights from fields beyond NLP. Cultural adapta-
tion has long been practiced in areas like video
games (O’hagan and Mangiron, 2013), movies
(Pettit, 2009), online learning (Blanchard et al.,
2005), and clinical psychology (Bernal et al.,
1995; Barrera Jr. and Castro, 2006). These ex-
isting practices can serve as a foundation for
adapting NLP applications to meet the needs of
diverse cultural contexts.

Here, we summarize and recommend best prac-
tices based on our prior discussions and the
publications surveyed in the sections referenced
below:

Resource Acquisition
• §4.1, §6: Consult with target cultural

groups throughout design and implementa-
tion, wherever possible.

• §4.3: Use iterative feedback from culture
experts to refine data quality. Automati-
cally acquired resources should also undergo
expert quality checks.

• §6: Ensure an ethical approach to data ac-
quisition and discuss data ownership early
to prevent misuse. This is always important
but particularly critical with indigenous and
marginalized communities.

Model Adaptation
• §5: Incorporate new metrics that assess cul-

tural awareness alongside task performance.

• §5: Consider cultural adaptation as an ongo-
ing, systematic process rather than a one-time
task focused on a single element.

• §5.1: Monitor adaptation performance over
time, especially for the evolving cultural
elements, to maintain model relevance.

• §6: Build on existing knowledge outside of
NLP when applicable.

7 Summary and Future
Research Directions

Culturally aware and adapted NLP has recently
emerged as an important and active research area.
Significant progress has been made in the develop-
ment of resources for capturing various elements
of culture, but the development of NLP methods
is still in its infancy. We will now summarize the
main research gaps identified in this survey with
respect to the categories of our new taxonomy
(§2):

Resources. Currently, resources exist for all
elements of culture, with considerable progress
made on values (§3.1.3, particularly in bi-
ases) and knowledge (§3.1.2, particularly for
MMLU-style cultural knowledge benchmarks).
However, research is lacking in the following
areas:

Gaps in Elements Coverage: While many re-
sources already exist within concepts (§3.1.1),
multilingual data resources covering a diverse
set of concepts (e.g., aesthetics, spatial rela-
tion) in both unimodal and multimodal (§3.1.1)
for generation tasks is lacking. Moreover, most
recent developments in norms & morals are pre-
dominantly in English, reflecting a monocultural
perspective. This highlights the need for more
multilingual and multicultural resources. Addi-
tionally, there is a significant gap in datasets
that focus on different types of value perceptions
(such as emotion and irony, §3.1.3), stylistic vari-
ations (§3.2), and artifacts (§3.1.5) across various
cultural groups, both in different languages and
within languages.

Resources considering social elements of
culture (§3.3) also remain limited. For exam-
ple, collecting speaker relationships in dialogue
datasets or distinguishing age groups in social
norms datasets. These are needed to address the
intricate relationship between culture and people
in NLP.

Training Data and ‘‘CultureGLUE’’: Most ex-
isting resources focus on evaluation, providing
benchmarks and test sets that enable researchers
to assess the performance of models. While these
evaluation resources are crucial for cultural adap-
tation, there is a pressing need for training data.
Further, current evaluation resources often focus
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on individual elements of culture. A unified, cul-
tural benchmark like GLUE (Wang et al., 2019)
does not yet exist for all cultural elements across
diverse groups. Developing a multicultural ‘‘Cul-
tureGLUE’’ may be challenging at the moment,
but a reasonable first step is to focus on individual
cultures, ensuring a diverse range of tasks and
comprehensive element coverage.

Modeling. While modeling methods for culture
are generally under-explored, continual pretrain-
ing (§5.2.2) and prompting (§5.1) have received
marginally more attention than other approaches.
Research areas needing further exploration in-
clude:

PEFT-based Transfer Learning: Exploration of
PEFT-based transfer learning techniques beyond
dialects is limited (§5.2.4). Given their success in
other NLP areas, these techniques warrant further
investigation into other elements of culture, such
as for values or norms & morals. A potential ap-
proach involves using WVS survey data, similar
to Li et al. (2024a), to train PEFT-based modules
focused on values. However, it is crucial to inves-
tigate whether survey data alone is sufficient for
effective training.

Feedback Learning and Other LLM Specialties:
Leveraging the success of LLMs and feedback
learning presents promising new avenues for cul-
tural adaptation (§5.2.5). A potential bottleneck
is acquiring large, culturally diverse preference
datasets for model adaptation and training
culturally aligned reward models. This could be
addressed by large-scale data collection efforts,
as demonstrated by Kirk et al. (2024), or through
the generation of synthetic data (Aakanksha et al.,
2024). For synthetic data, using techniques such
as role-playing and the creation of repositories
of cultural personas could facilitate culturally
sensitive model training.

Evolving Culture: Culture evolves gradually
(Boyd and Richerson, 1988; Whiten et al., 2011),
yet there have been few discussions on how
to model and adapt to evolving culture. Future
research should focus on methods that address
the dynamic nature of culture. One potential
approach is the use of retrieval-augmented
systems to integrate evolving information (§5.1),
which ensures models’ relevance to cultural shifts
over time.

Overall. Below, we discuss two overall research
gaps.

Adaptation in the Social Context: As a key mo-
tivation of this paper, culture emerges from and
is shaped by social interactions among humans
within a society (§1). However, an important
question remains unanswered in the existing
literature: Should the cultural adaptation of mod-
els occur within a situated social context and
structure? Exploring this could present new av-
enues for interdisciplinary research (e.g., with
human-machine collaboration, social psychology,
or anthropology).

‘‘Surface’’ versus ‘‘Deep’’ Adaptation in NLP:
Resnicow et al. (1999) devise cultural adaptations
for public health research into surface and deep
adaptations, where the former considers familiar
languages and concepts to the target groups, and
the latter considers social and historical factors
that influence the behaviors of the target groups.

In NLP, surface adaptations might include using
the same language as a culture and recognizing
explicit cultural differences (e.g., asking LLMs
‘‘what is the meaning of ...’’). In contrast, deep
adaptations might enable a model to ‘‘behave’’
(e.g., make decisions, pragmatically comply, etc.)
like a member of a culture without explicit in-
quisition (see Figure 3 in the Appendix for an
illustration).

As we have seen from prior work described
in §3 or §5, only a few current studies focus on
adapting the behavioral aspect of models (which is
becoming increasingly important with LLMs), and
there has been no work to date on measuring the
depth and progress of cultural adaptations or when
a model is fully culturally aware and culturally
competent. Further research could explore these
areas.

8 Conclusions

This work proposes a new extensive taxonomy
of culture that expands on earlier works in NLP
and is grounded in well-established anthropology
and social sciences literature. The taxonomy pro-
vides a systematic framework for understanding
and tracking progress in the emerging area of
culturally aware and adapted NLP. However, our
taxonomy is not without its limitations. Future
research could refine the taxonomy in areas like
values or communicative goals by adding further
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subcategories and providing a better understand-
ing of interactions between the elements of culture
(e.g., shifting values’ impact on social norms over
time).

We survey existing resources and methods in
this area according to the taxonomy classes, iden-
tifying areas of strength as well as areas where
research remains to be done. Our paper summa-
rizes the state of the art and provides ideas for
future research in this exciting and important area.
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Röttger, Andrew M. Bean, Katerina Margatina,
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A Method

We examine the main and findings papers from the
leading *CL venues, including: ACL, EMNLP,
AACL, EACL, NAACL, and TACL published
since 2020 (5-year span). The initial set of papers
was identified using the following search terms:
‘‘culture’’, ‘‘cultural’’, ‘‘geo-diverse’’, ‘‘socio’’,
‘‘social’’, ‘‘moral’’, ‘‘norms’’ in the title and ab-
stract. Initially, we collected 336 papers, using
human verification to exclude papers that did not
consider cultural variations, as well as papers that
solely focus on analysis and probing (as they are
beyond the scope of our survey). The final paper
count is 127. For more on probing and analysis,
please refer to the recent surveys like Adilazuarda
et al. (2024). We further acknowledge the limita-
tion of missing relevant papers from other sources
and papers without explicitly mentioning any of
the search keywords. However, our goal is not
to conduct a systematic review, but to propose
a taxonomy and understand the progress in NLP
for this research area and identify research gaps.

We believe that focusing on *CL venues is an
appropriate choice for this purpose.

B Additional Examples of Use Cases for
the Taxonomy.

Another example of applying this taxonomy is the
development of culturally aware conversational
AI for educational purposes. Such development
should be informed, at a minimum, by relevant
Knowledge (e.g., Facts), appropriate Style, under-
standing of the Communicative Goals (e.g., that of
teaching) and consideration of Relationships (e.g.,
that of a teacher and student). These are merely
example elements and applications to consider.

Figure 3: An illustration of surface versus deep
culturally adapted NLP model.
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Figure 4: Categorization of the methods for resource acquisitions with representative examples.

Figure 5: Categorization of the adaptation modeling methods and examples in each category.
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