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Abstract
How do people understand and evaluate
claims about others’ beliefs, even though
these beliefs cannot be directly observed?
In this paper, we introduce a cognitive
model of epistemic language interpretation,
grounded in Bayesian inferences about other
agents’ goals, beliefs, and intentions: a
language-augmented Bayesian theory-of-mind
(LaBToM). By translating natural language
into an epistemic ‘‘language-of-thought’’ with
grammar-constrained LLM decoding, then
evaluating these translations against the in-
ferences produced by inverting a generative
model of rational action and perception,
LaBToM captures graded plausibility judg-
ments of epistemic claims. We validate our
model in an experiment where participants
watch an agent navigate a maze to find keys
hidden in boxes needed to reach their goal, then
rate sentences about the agent’s beliefs. In con-
trast with multimodal LLMs (GPT-4o, Gemini
Pro) and ablated models, our model correlates
highly with human judgments for a wide range
of expressions, including modal language,
uncertainty expressions, knowledge claims,
likelihood comparisons, and attributions of
false belief.

1 Introduction

People regularly use and interpret language about
other agents’ beliefs, evaluating rich linguistic
constructions that may involve claims about what
others consider possible (‘‘Grace thinks Katie
might have eaten the cookie’’), what they find
more probable (‘‘Tom thinks Sam is the most likely
to win the election’’), or the relationship of their
beliefs to the world (‘‘John didn’t know that today
was a holiday’’). But since these beliefs are not
directly observable, how do people judge the truth
or acceptability of epistemic claims? Philosophers
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and linguists have long investigated the semantics
of epistemic language (Hintikka, 1962; Partee,
1973; Loar, 1981), offering compositional theories
of how epistemic claims relate to the sets of
worlds deemed possible by an agent (Von Fintel
and Heim, 2011). However, these theories do not
explain how people ground epistemic language in
its context of utterance. If someone says ‘‘Alice
believes it might rain’’, how does her behavior
(e.g., bringing an umbrella) render that statement
more or less plausible or acceptable?

In this paper, we present a computational
model of how people interpret epistemic language
in context, grounded in inferences about what
other agents believe (Figure 1)—a Language-
augmented Bayesian theory-of-mind (LaBToM).
We build upon Bayesian theory-of-mind (BToM),
a framework which casts human mentalizing as
probabilistic inference over a generative model
of rational action and perception (Baker et al.,
2017; Jara-Ettinger et al., 2020). We combine
this framework with the compositionality afforded
by probabilistic extensions of the language-of-
thought hypothesis (Piantadosi, 2011; Goodman
and Lassiter, 2015), developing an epistemic lan-
guage of thought (ELoT) to represent how others
represent the world. We parse natural language
to this representation using grammar-constrained
sequential Monte Carlo decoding (Loula et al.,
2025) of large language models (LLMs), defin-
ing a flexible but structured probabilistic mapping
from epistemic language to epistemic concepts
(Wong et al., 2023). This allows us to quantify the
plausibility of epistemic sentences against BToM
inferences.

To evaluate our model, we run an experiment
where participants watch animations of a player
solving a gridworld puzzle called Doors, Keys, &
Gems (Zhi-Xuan et al., 2020). In these puzzles, the
player has to pick up (single-use) keys that may
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Figure 1: Overview of our model, a Language-augmented Bayesian Theory of Mind (LaBToM). Here, our
model evaluates the plausibility of epistemic language about a player character trying to find keys in boxes so as to
reach one of four goals (gems with different shapes/colors, g1–g4) which may be locked behind doors. (Top) We
translate natural language statements about the player’s initial (σ1) and current beliefs (σ2) into an unambiguous
epistemic language of thought (ELoT) via grammar-constrained LLM parsing. ELoT statements (i.e., epistemic
formulas ϕ) are interpreted with a probability-based semantics (lowered formulas ϕ′). (Bottom) We use our
Bayesian theory-of-mind (BToM) module to produce inferences (bar charts) about the environment state (top left),
the player’s goal (bottom left), and the player’s belief state (right) at each step t, given observations across time.
Each possible belief state bi is itself a distribution over environment states sj , where state sj corresponds to a blue
key being in box j. (Middle) We evaluate the posterior probability∗ of each ELoT statement ϕ from the BToM
inferences at each step t (∗under a 50-50 prior over statement truth). Statement σ1 (‘‘The player thought that the blue
key must be in box 3.’’) increases in probability from t = 6 to t = 9, then stays high, since it becomes clear from
the player looking in box 3 at t = 9 that they initially thought a key must be in box 3. Statement σ2 (‘‘The player
believes that a blue key is more likely to be in box 1 than box 2.’’) decreases in probability as the player walks away
from box 1 at t = 6 through t = 9. However, when the player finds box 3 empty, then moves past box 2 up to box
1 at t = 15, it becomes much more probable that the player currently thinks a key is more likely to be in box 1
rather than box 2.

be hidden in boxes, using them to unlock doors
of the same color to reach one of four valuable
gems. The player’s beliefs and goals are unknown
to our participants, so they must infer these men-
tal states. We ask one set of participants to write
sentences describing the past and present beliefs
of the player, collecting a rich dataset of epistemic
language that includes modal verbs, uncertainty
expressions, knowledge claims, and descriptions
of false beliefs. We task another set of participants
with evaluating these statements, asking them to

rate how likely a statement is given the con-
text. We find that the inferences produced by our
LaBToM model correlate highly with these human
ratings. In contrast, using a lower-level formaliza-
tion of epistemic claims leads to substantially
more parsing errors than our ELoT representation,
and ablated BToM models and multimodal LLM
baselines fail to explain human sentence judg-
ments. These findings illustrate the importance
of a conceptual vocabulary that is aligned with
the structure of epistemic language, and the need
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for a coherent theory-of-mind to systematically
interpret such language.

2 Related Work

Model-theoretic Formal Semantics of Epis-
temic Language. Sentences about what agents
believe or know have been studied extensively
across philosophy and linguistics. Both epistemic
modals (Yalcin, 2007; Coates, 1987; Egan and
Weatherson, 2011; MacFarlane, 2011) and propo-
sitional attitudes (Frege, 1948; Russell, 1903;
Schiffer, 2003) complicate compositional and
model-theoretic approaches to assigning truth
conditions. Standard treatments associate be-
lief sentences with sets of compatible worlds
(Hintikka, 1962; Von Fintel and Heim, 2011),
though the role of an agent’s mental states in
a truth-conditional semantics remains debated
(Egan and Weatherson, 2011). More recent work
grounds the gradedness of belief claims in prob-
ability (Lassiter, 2017; Moss, 2015), which we
follow in this paper. Unlike purely model-theoretic
approaches, however, our model relates epistemic
sentences to a functional theory of agents’ mental
states (Loar, 1981), explaining how people ground
these sentences in agent behavior.

Cognitive Approaches to (Epistemic) Language
Interpretation. Our model draws on accounts
of propositional attitudes (Fodor, 1981) and word
meaning that emphasize the role of mental states
(Loar, 1981; Block, 1987; Lake and Murphy,
2023); it also draws on accounts of the inter-
face between language and conceptual content,
as in cognitive or psychosemantics (Fodor, 1987;
Lakoff, 1988; Jackendoff, 2003) and functional
role semantics (Harman, 1982). We build most
closely upon theories that ground linguistic mean-
ing in a (probabilistic) language of thought (Fodor,
1975; Goodman and Lassiter, 2015; Wong et al.,
2023; Zhang et al., 2023) and models that map
sentences to grounded symbolic representations of
agents’ behavior (Artzi and Zettlemoyer, 2013).

Bayesian Theory-of-Mind. To relate epistemic
sentences to (inferred) mental states, we build on
the Bayesian Theory-of-Mind framework (BToM)
(Baker et al., 2017; Zhi-Xuan et al., 2022), and
related work on epistemic action understanding
(Croom et al., 2023; Shvo et al., 2020). BToM
provides a functional theory of propositional at-
titudes like knowledge and belief, leveraging the

connection between symbolic representations of
the world (used in (inverse) planning (McDermott
et al., 1998)) and our representations of others’
minds.

Theory-of-Mind in Language Models. With
recent advances in LLM capabilities, some re-
searchers have suggested that LLMs might serve
as cognitive models (Binz and Schulz, 2023), in-
cluding as models of theory-of-mind (Strachan
et al., 2024), thereby implicitly capturing the se-
mantics of belief sentences (Piantadosi and Hill,
2022). However, while LLMs perform well on
some ToM tasks, they do not reliably generalize
(Shapira et al., 2024) to richer multi-step (Kim
et al., 2023) or multi-modal contexts (Jin et al.,
2023; Ying et al., 2024a). Our model instead
uses (grammar-constrained) LLMs as a flexible
mappings between language and formal meaning
representations (Wong et al., 2023; Ying et al.,
2023a,b; Zhi-Xuan et al., 2024b), tying language
to an explicit semantics of epistemic concepts.

3 Computational Model

Our LaBToM model comprises two interlinked
modules. The first module (Figure 1, Top), an
epistemic language of thought (ELoT), models
our capacity to compositionally represent the
world (including the contents of others’ minds)
by combining more basic concepts into richer
thoughts and expressions (Goodman and Lassiter,
2015), and how we flexibly translate such thoughts
from natural language (Wong et al., 2023). The
second module (Figure 1, Bottom), a Bayesian
theory-of-mind (Baker et al., 2017), captures
our intuitive inferences about others’ minds via
Bayesian inference over a generative model of
how agents update their beliefs and act towards
their goals. Epistemic language understanding can
thus be modeled by mapping language into ELoT
formulas, which we evaluate against the inferences
produced by rational mentalizing.

3.1 Interpreting Belief Sentences with an
Epistemic Language of Thought

To represent epistemic concepts in a way that
mirrors the structure of natural language, we
introduce a formal language (Table 1) as our
epistemic language of thought. Drawing upon the
formal semantics of epistemic language (Hintikka,
1962; Lassiter, 2010), we adopt a compositional
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Expression Type Arg. Types Definition
Belief Operators
believes(A,φ) E A,Φ Pr(A,φ) ≥ θbelieves
believesmodal(A,M) E A, E/A M(A)
Knowledge Operators
knowsthat(A,φ) E A,Φ believes(A,φ) ∧ φ
knowsif(A,φ) E A,Φ knowsthat(A,φ) ∨ knowsthat(A,¬φ)
knowsabout(A,C, φ) E A,Φ/O,Φ/O ∃x.C(x) ∧ knowsthat(A,φ(x))
not-knowsthat(A,φ) E A,Φ ¬believes(A,φ) ∧ φ
Certainty Operators
certainthat(A,φ) E A,Φ Pr(A,φ) ≥ θcertain
certainabout(A,C, φ) E A,Φ/O,Φ/O ∃x.C(x) ∧ (Pr(A,φ(x)) ≥ θcertain)
uncertainif(A,φ, ψ) E A,Φ,Φ (Pr(A,φ) < θuncertain) ∧ (Pr(A,ψ) < θuncertain)
uncertainabout(A,C, φ) E A,Φ/O,Φ/O ∀x.C(x) → (Pr(A,φ(x)) < θuncertain)
Modal Verbs
could(φ) E/A Φ λA.Pr(A,φ) ≥ θcould
might(φ) E/A Φ λA.Pr(A,φ) ≥ θmight

may(φ) E/A Φ λA.Pr(A,φ) ≥ θmay

should(φ) E/A Φ λA.Pr(A,φ) ≥ θshould
must(φ) E/A Φ λA.Pr(A,φ) ≥ θmust

Modal Adjectives
likely(φ) E/A Φ λA.Pr(A,φ) ≥ θlikely
degree(likely, A, φ) ΦF A,Φ Pr(A,φ)
Comparatives
more(P, φ, ψ) E/A P,Φ,Φ λA.degree(P,A, φ) > degree(P,A,ψ)
mostsup(P,O,C, φ) E/A P,O,Φ/O,Φ/O λA.degree(P,A, φ(O)) ≥ maxx:C(x) degree(P,A, φ(x))
moststr(P, φ) E/A P,Φ λA.degree(P,A, φ) ≥ αmost · θP

(a) Epistemic terms and definitions (unlikely, less, and least are omitted due to space limits).

Thresholds θ Multipliers α
believes certain uncertain likely unlikely could might may should must most
0.75 0.95 0.70 0.70 0.40 0.20 0.20 0.30 0.80 0.95 1.5

(b) Probability thresholds and multipliers (fitted against human data).

Table 1: Expressions in our epistemic language of thought (ELoT), including (a) epistemic terms and
(b) probability thresholds Θ. ELoT terms may have the following types: E : epistemic formula, Φ: base
formula, ΦF : function term, P: predicate symbol, A: agent, O: object, X/Y: function from X → Y .

degree-based semantics for epistemic concepts
grounded in probability comparisons (Moss, 2015;
Lassiter, 2017). This allows us to quantitatively
evaluate an epistemic expression using probabili-
ties inferred by our BToM module.

3.1.1 Representing Epistemic Formulas

We first define our non-epistemic base lan-
guage—a first order logic derived from the Plan-
ning Domain Definition Language (McDermott
et al., 1998). Our language assumes a set of pred-
icates P and functions F used to describe a set
of objects O. Predicates can be combined into
formulas φ ∈ Φ via logical operators or quan-
tification. For example, ‘‘A key is in box 2’’ can
be represented as ∃k.key(k) ∧ inside(k, box2).
Conceptually, a state s of the environment (or an
agent’s mental representation of state s) is just a

large formula: A conjunction of predicates which
fully describe the state. We denote the truth value
of φ in s as �φ�s.

On top of this base language Φ, we intro-
duce epistemic expressions ϕ ∈ E to model
assertions of belief, knowledge, or modal qual-
ifications (Table 1a). Following Lassiter (2017),
the semantics of these expressions are grounded
in the probability function Pr(A, φ) (the prob-
ability assigned by agent A to formula φ)
and comparisons with term-specific thresholds
(Table 1b). For example, the operator might(φ)
takes a first-order formulaφ ∈ Φ, returning a func-
tion λA.Pr(A, φ) ≥ θmight. Combined with the
operator believesmodal(A,F ) = F (A), we can ex-
press the claim that ‘‘A believes it might be thatφ’’
as ϕ = believesmodal(A,might(φ)). This formula
ϕ can be lowered to the probability compari-
son Pr(A, φ) ≥ θmight, which uses θmight as the
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threshold instead of θbelieves due to how our com-
position rules. We call this latter representation a
lowered formula.

A key aspect of ELoT expressions is that they
represent epistemic concepts at a similar level
of granularity as our tested language (English),
simplifying the mapping to ELoT propositions.
In contrast, our lowered representation is just as
expressive, but fails to match the structure of
natural epistemic language. In our experiments,
we show that translating into ELoT significantly
improves the accuracy of semantic parsing.

3.1.2 Translating Epistemic Language
Natural language is varied and imprecise, with
possibly many sentences σ mapping to the same
ELoT formula ϕ (and vice versa). To handle
this diversity, we perform semantic parsing via
grammar-constrained LLM decoding (Shin et al.,
2021; Scholak et al., 2021; Willard and Louf,
2023), producing a flexible context-sensitive
mapping between natural language and ELoT
expressions (Wong et al., 2023). Specifically,
we use sequential Monte Carlo (SMC)-based
grammar-constrained sampling (Loula et al.,
2025), since it avoids the failure modes of beam
search and greedy token-masking (Lew et al.,
2023b). We prompt an LLM (LLaMa 3.1 8B) with
example translations D from English to ELoT and
a sentence σ to translate, using SMC to approxi-
mate the distribution over completions constrained
to the ELoT grammar GE :

ϕ ∼ PLLM(ϕ|σ,D, ϕ ∈ GE) (1)

We run SMC with nσ samples. This produces
weighted samples {(ϕi, wi)}nσ

i=1, and we use the
top-weighted sample as our ELoT translation ϕ.1

3.2 Inferring and Evaluating Beliefs with a
Bayesian Theory-of-Mind

Our ELoT semantics reduces belief expressions
to the probability Pr(A, φ) an agent A assigns
to a sentence φ. But where does Pr(A, φ) come
from? This is the function of our BToM module:
By modeling the functional role that belief plays
in guiding actions, along with the influence of
perceptions on beliefs, an observer can infer what

1The full set of SMC samples can instead be used to
handle ambiguous sentences with multiple plausible ELoT
translations. We leave the study of this to future work.

the agent thinks based on what the agent sees
and does. Following the structure of Partially Ob-
servable Markov Decision Processes (POMDPs)
(Kaelbling et al., 1998), this theory of approx-
imately rational agency can be formalized as a
probabilistic generative model:

Goal Prior: g ∼ P (g) (2)
State Prior: s0 ∼ P (s0) (3)

Belief Prior: b0 ∼ P (b0|s0) (4)
State Transition: st ∼ P (st|st−1, at−1) (5)

Belief Update: bt ∼ P (bt|st, bt−1) (6)
Action Selection: at ∼ P (at|bt, g) (7)

Observations: ot ∼ P (ot|st) (8)

3.2.1 Modeling Perception and Action
Two crucial aspects of our BToM module are how
it models belief updating (Eq. 6) as the result of
perception, and how it models goal-directed ac-
tion given the agent’s uncertain beliefs (Eq. 7). To
model perception, we represent an agent’s belief bt
as a probability-weighted collection {(s̃i, wi)}ns

i=1

of possible environment states s̃i (which are repre-
sented in turn as collections of ELoT predicates).
Given an observation of the environment st (e.g.,
observing that a box is empty), the agent updates
its belief by filtering out inconsistent hypotheses
s̃i, setting wi = 0.

As for goal-directed action, our model builds
upon methods for epistemic planning (Bolander,
2017) and belief-space planning in POMDPs
(Littman et al., 1995). Given a belief bt, the agent
engages in instrumental planning to achieve their
goal g, which requires achieving instrumental sub-
goals (e.g., picking up keys), but also gathering
goal-relevant information (e.g., finding out if a key
is in a certain box). We model this by assuming
that the agent acts by approximately minimizing a
cost-to-go estimate Q̂g(bt, a): An estimate of the
optimal cost Q∗

g(bt, a) of reaching g after action
a starting from one’s (uncertain) belief bt. Action
selection can thus be modeled by a Boltzmann
distribution over these Q̂g estimates:

P (at|bt, g) ∝ exp
(
−βQ̂g(bt, a)

)
(9)

To estimate Q∗
g efficiently, we follow recent

advances in inverse planning (Zhi-Xuan et al.,
2024b) by computing the QMDP approximation
(Hauskrecht, 2000) of Q∗

g, averaging over the
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Q-values for each hypothesis (s̃i, wi) in the
belief bt:

Q̂g(bt, a) =
∑

(s̃i,wi)∈bt
wi ·Q∗

g(s̃i, a) (10)

The cost-to-go Q∗
g(s, a) from a known state s can

itself be efficiently estimated by searching for a
shortest path to g from s (Monfort et al., 2015).

3.2.2 Joint Inference of Goals and Beliefs
With this generative model, observers can jointly
infer the agent’s goal g, belief history b0:T , and
environment trajectory s0:T given observations of
the agent’s actions a1:T and partial observations
o0:T of the environment:

P (g, b0:T , s0:T |a1:T , o0:T ) ∝ (11)

P (g, s0, b0)
∏T

t=1
P (bt, at, st, ot|bt−1, st−1)

To ensure tractable posterior inference, we con-
sidered only the set of initial states S0 consistent
with the initial observation o0, and a discrete
set B0 of possible beliefs b0 sufficient to model
comparative likelihood claims (e.g., ‘‘The key
is more likely in box 1 than 2.’’). Specifically,
we consider all beliefs formed by distributing k
particles across ns := |S0| states, resulting in
nb := |B0| =

(
ns+k−1

k

)
distributions. We then

perform exact Bayesian inference over all combi-
nations of goals g, initial beliefs b0, and states
s0, which we implement as a variant of Se-
quential Inverse Plan Search (Zhi-Xuan et al.,
2020) using the Gen probabilistic programming
system (Cusumano-Towner et al., 2019). More
algorithmic details are provided in the Appendix.

3.2.3 Evaluating Epistemic Sentences
By inferring the agent’s belief history b0:T , we can
compute the probability Pr(A, φ) of a formula φ
at time t as the expected truth value under bt:

Pr(A, φ) =
∑

(s̃i,wi)∈bt
wi · �φ�s (12)

We can thus evaluate a epistemic formula ϕ given
a belief bt and environment state st by replacing
Pr terms with their values, then determining the
truth of the resulting expression in state s. We
denote this operation by �ϕ�(st,bt).

However, observers do not have access to the
true st or bt, only inferences about them. As such,

we model human evaluation of a sentence ϕ as a
probabilistic judgment given their inferences:

P (�ϕ�(st,bt)|a1:T , o0:T )
= Est,bt∼P (st,bt|a1:T ,o0:T )

[
�ϕ�(st,bt)

]

While these judgments are made after observing
actions up to time T , ϕ may be retrospec-
tively evaluated as a description of the agent’s
beliefs at any t ∈ [0, T ], with t = 0 and
t = T corresponding to initial and current beliefs,
respectively.

Following Ying et al. (2024b), we also assume
that people provide ratings as if they have a uni-
form prior Uϕ about the truth of ϕ. Under this
prior, ratings of ϕ can be interpreted as a nor-
malized likelihood L̄(�ϕ�(st,bt)|a1:T , o0:T ), which
measures the likelihood of statement ϕ relative
to its negation ¬ϕ. In other words, we assume
that humans rate an epistemic claim more highly
when they have evidence for it. With no evidence,
L̄(�ϕ�(st,bt)|a1:T , o0:T ) = 0.5. Results investigat-
ing the importance of this assumption can be found
in the Appendix.

4 Experiments

To evaluate our model on a diverse dataset of
epistemic language (Table 2), we conducted a
two-part human experiment. We first recruited
participants to write English sentences describing
the current and initial beliefs of a player character
as it navigated a gridworld puzzle that required
finding keys hidden in boxes. Next, we asked
two groups of participants to rate how likely
these sentences were to be true given the player’s
behavior, with one group rating sentences about
the player’s current beliefs, and the other rating
sentences about initial beliefs.

With this data, we evaluated our model by:
(i) assessing the translation accuracy of our
ELoT module, investigating the importance of
our ELoT representation (vs. the lowered form)
and its impact on grammar-constrained LLM de-
coding; and (ii) testing our full LaBToM model in
its ability to capture human interpretation of epis-
temic language, comparing human ratings against
LaBToM inferences. Model and experiment code
is available at https://osf.io/xq9c4/.

4.1 Scenario Construction
We constructed 20 scenarios in the Doors, Keys,
& Gems environment with varied maze designs
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Factor Description Count
Examples Current Initial

Possibility Sentences with modal verbs such as might, could and must. 66 / 241 46 / 228
The player believes box 1 may contain a blue key or a red key.
The player believes if the red key is not in box 2 then it must be in box 3.

Probability Sentences with probability expressions such as likely, uncertain, etc. 28 / 241 28 / 228
The player thought that box 1 was most likely to contain a red key.
The player is unsure what color the key in box 2 will be.

Compositionality Sentences that embed compound propositions (conjunctions, disjunctions, etc.). 49 / 241 69 / 228
The player thinks that there’s more likely to be a red key in box 1 or 3 than box 2.
The player believes that if box 1 does not have a blue key, then box 3 has a blue key.

Knowledge Sentences that make knowledge or ignorance claims. 17 / 241 20 / 228
The player already knows for sure there is no key in box 1 or box 2.
The player did not know if box 2 contained a red key.

Table 2: Overview of our dataset of 464 human-written epistemic sentences, broken down by factors.

and item locations (Figure 3). In each scenario,
there were 4 goal gems with different shapes
(triangle, square, hexagon, circle), some of which
were locked behind doors. Scenarios also had 2 to
3 boxes with up to 2 colored keys among them.
The player’s actions were varied across scenarios
to elicit inferences about a diversity of epistemic
states, such as ignorance about key locations or
false confidence about the location of a key.

4.2 Collecting Epistemic Language
In the first part of the experiment, we recruited
42 US participants via Prolific (mean age: 36.02
years, SD: 10.1 years; 16 women, 26 men). Fol-
lowing a tutorial, participants watched 10 scenario
animations, with each stopping before the player
reached their goal and all relevant keys were re-
vealed. Participants were then asked to write at
least two sentences about the player’s likely be-
liefs at the end of the scenario (current beliefs),
and another two sentences about the player’s be-
liefs at the start of the scenario (initial beliefs).
To ensure that these sentences focused on beliefs
about the environment, we instructed participants
to describe the player’s beliefs about the contents
of the boxes. We excluded 8 participants for fail-
ing to follow these instructions, and about one
third of remaining sentences (see Appendix). This
process left us with 241 (228) statements about
current (initial) beliefs, which were then anno-
tated with factors by two experimenters. Table 2
illustrates the diversity of language we collected.

4.3 Evaluating Epistemic Language
For the next part of our experiment, we recruited
94 US participants via Prolific to evaluate current
belief statements (mean age = 35.7 years, SD =

12.4 years, 67 women, 27 men), and another 104
US participants to evaluate initial belief statements
(mean age = 35.27 years, SD = 11.7 years, 69
women, 33 men, 2 non-binary). Each participant
was shown 10 out of 20 scenario animations, and
was asked to rate the goals and beliefs of the player
at several judgment points during each animation.
For goals, participants were shown a checkbox for
each gem, and asked to select all gems likely to be
the agent’s goal. This served as both an attention
check and an additional data source for model
validation. For beliefs, participants were shown
2 belief statements selected from our dataset of
human-written statements, and asked to rate how
likely each statement was on a scale from 1 to 7.
These ratings were normalized between 0 and 1
for our analysis. We excluded 7 participants from
the current belief condition and 5 from the initial
belief condition for low outlying scores on the
goal inference subtask.

4.3.1 Statement Selection

To ensure that the belief statements evaluated by
our participants were (i) diverse and (ii) rated
enough times to ensure sufficient statistical power
(88% power at Cohen’s d = 0.8), we selected
5 statements per scenario (3 plausible, 2 implau-
sible) from our full dataset of statements. The
plausible statements were chosen by sampling
many sets of 3 statements out of all those written
for a scenario, then selecting the set that scored
highest on a diversity metric derived from the
factors in Table 2 (see Appendix for details). We
then manually added 2 more statements that were
originally written for other scenarios, and which
we evaluated to be implausible descriptions of the
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target scenario. Participants were shown 2 of these
5 statements at random in each scenario.

4.4 ELoT Parser Evaluation
We evaluated the suitability of ELoT formulas
as representations of epistemic sentences by in-
vestigating (i) the impact of using ELoT as the
translation target (instead of the lowered form,
which lacks epistemic operators besides Pr) and
(ii) the value of the associated ELoT grammar GE
in constraining LLM outputs.

To do so, we created gold translations of the
subset of statements selected for human evaluation
(125 statements) into ELoT formulas and their
lowered forms. We then compared the translations
produced by grammar-constrained SMC decoding
(nσ = 10 samples) of LLaMa 3.1 8B against
these gold translations in terms of both strict
equality and approximate semantic equivalence
(i.e., cases of reasonable alternative translations
of the original English statement). As baselines,
we used unconstrained self-consistency sampling
(Wang et al., 2023) with LLaMa 3.1 8B and
the instruction-tuned Gemini Flash 8B, sampling
nσ = 10 times and taking the majority answer.
All methods used the same prompt format (see
Appendix), with 36 example translations.

4.5 LaBToM Fitting and Evaluation
We evaluated our LaBToM model on all 20 sce-
narios, producing normalized likelihood scores
for the 5 current and 5 initial belief statements per
scenario. We then computed Pearson’s r between
these scores and average human ratings. We fit our
model parameters to maximize r, fitting the belief
thresholds Θ := (θbelieves, θcould . . .) via coordi-
nate ascent, and the inverse temperature β via grid
search (see Appendix for robustness analyses).
This produced the fitted values for Θ in Table 1,
and β = 23/2. For the set of possible initial agent
beliefs B0, we fixed the number of belief particles
to k = 3 to ensure tractable exact inference.

Alongside this direct comparison with
human-provided ratings, we evaluated our
model on the full dataset of 469 human-written
statements by pairing each statement with either
the scenario it was written for (in-context) or
1–2 other scenarios with the same map layout
but distinct agent trajectories (out-of-context).
This allowed us to compare each statement’s
in-context normalized likelihood L̄ with its (aver-
age) out-of-context likelihood score. Reasonable

models of epistemic language interpretation
should assign higher likelihood scores to most
statements when they are evaluated in-context vs.
out-of-context.

4.6 Baselines

To assess the import of a sufficiently rich theory
of mind for epistemic language understanding,
we evaluated several ablations of our model
under simplified assumptions about the agent’s
beliefs or planning abilities. We also evaluated
two state-of-the-art multi-modal LLMs, thereby
testing the degree to which grounded evaluation of
epistemic language can be achieved with sufficient
scale:

True Belief. The True Belief ablation assumes
that the observed agent has fully accurate beliefs
about the environment (i.e., they already know
where all the keys are located), equivalent to the
full model from Ying et al. (2024b). The observer
starts with a uniform prior over these true beliefs.

Non-Planning. The Non-Planning ablation as-
sumes that the agent is incapable of planning
towards instrumental subgoals (such as keys), and
instead optimizes the heuristic of moving physi-
cally closer to the goal. This is implemented by
using the Manhattan distance to the goal as the
agent’s cost-to-go estimate Q̂g.

Multi-modal LLMs. We use GPT-4o (text &
image input, gpt-4o-2024-05-13) and Gem-
ini 1.5 Pro (text & image or video input) as
multi-modal LLM baselines, providing them the
same instructions as human participants (see
Appendix for a unimodal baseline). Each base-
line was run 3 times with a temperature of 1.0.
In addition to providing an image or video of the
scenario showing the actions up to each judgment
point, we used the following prompting methods:

Plans: The prompt plainly describes the agent’s
actions over time (e.g., the player moves right five
times), and also describes the agent’s observations
(e.g., the player opens box 1 and finds a red key).

Narratives: A rich narrative of agent behavior is
included in the prompt, providing key information
about the scene (e.g., which gems are locked
behind doors, which keys are visible), while also
describing the agent’s movements in relation to
relevant objects (e.g., the player moves right five
times, going past box 1 towards box 2).
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Parser Translation Accuracy (s.e.)
ELoT Lowered

Exact Equiv. Exact Equiv.

Grammar-Constrained SMC (Loula et al., 2025)
LLaMa 3.1 8B 0.81 0.91 0.34 0.42

(.03) (.03) (.04) (.04)

Unconstrained Sampling + Majority Vote
LLaMa 3.1 8B 0.65 0.69 0.32 0.36

(.04) (.04) (.04) (.04)
Gemini Flash 8B 0.69 0.80 0.60 0.68

(.04) (.03) (.04) (.04)

Table 3: Translation accuracy for ELoT vs.
lowered formulas as the translation target,
compared across sampling methods and LLMs in
terms of exact equality (Exact) or semantic equiv-
alence (Equiv.). ELoT serves as a better target and
constraint for translation.

Few-Shot Prompting: After describing the plan
or narrative, we provide the LLM with human
ratings for the 4 other statements tied that scenario,
before querying its rating for the target statement.

5 Results

ELoT is a superior translation target and
guide for (grammar-constrained) LLM pars-
ing. We report translation accuracy in Table 3.
In confirmation of the idea that our ELoT formal-
ism captures the semantics of belief sentences at
the right level of granularity, we find that translat-
ing English into ELoT is up to 2.4 times as accurate
as translating into the lowered form, even though
they have the same expressive capacity. ELoT
also increases the benefit of grammar-constrained
SMC decoding, leading to an improvement of 0.20
in equivalence accuracy for LLaMa 3.1 8B. In con-
trast, using the lowered grammar leads to only an
0.06 improvement over unconstrained generation.
We show example translations and errors for each
representation in Table 4. These findings high-
light the importance of ‘‘language-of-thought’’
representations that are aligned with the struc-
ture of natural language, in line with work tying
language use to the structure and acquisition of
compositional concepts (Wong et al., 2022).

Overall, grammar-constrained SMC decoding
into ELoT with LLaMa 3.1 8B performs the best,
achieving 91% equivalence with our gold trans-
lations. Upon inspection (see Appendix), we find
that unconstrained sampling often leads to syn-
tax errors not corrected for by majority voting.

Gemini Flash 8B also exhibits low sample di-
versity typical of instruction tuning, such that
majority voting gives no improvement. In com-
parison, grammar-constrained SMC produces not
just accurate translations, but a distribution over
reasonable translations, since SMC performs pos-
terior sampling rather than optimization (Loula
et al., 2025; Lew et al., 2023b). In future work,
this could be used to more precisely model the
interpretation of ambiguous epistemic language.

LaBToM correlates highly with human ratings
of epistemic statements. As Table 5 shows,
our full model produces statement scores that
correlate highly with human ratings (r = 0.76)
across both current and initial belief conditions.
In the Appendix, we show results using the gold
ELoT translations (r = 0.81), and a per-factor
breakdown. Plotting average human judgments
against LaBToM inferences (Figure 2, Row 1),
we also find a strong qualitative fit: Factoring out
incorrect ELoT translations (black dots), LaBToM
generally assigns high or low ratings to sentences
when humans do, using the ends of the scale as
appropriate. In contrast, our ablated models do
poorly, either because they fail to track how the
player updates their beliefs (True Belief, Current
r = 0.09), or fail to infer the player’s initial beliefs
(Non-Planning, Initial r = 0.07). These findings
hold even when the parameters of our full model
are adversarially optimized (see Appendix).

SotA multimodal LLMs struggle at grounded
evaluation of epistemic language. The
multi-modal LLM baselines also perform less
well than LaBToM despite extensive prompting,
with the strongest LLM baseline (GPT-4o with
images, narratives, and few-shot prompting)
achieving human correlations of only 0.59 and
0.41, respectively. Increasing information in
the prompt improves performance, although
the Gemini models do poorly regardless, even
with full scenario videos. We find that LLM
performance is lower on initial belief sentences,
suggesting that they are better at tracking how
agents’ current beliefs change, but worse at
inferring past beliefs.

Figure 2 illustrates the difference between our
model and the best performing GPT-4o base-
line (I+Na+FS) in greater detail. Despite few-shot
prompting, GPT-4o tends to assign ratings of 0.8
or more to many statements that humans find

621



Parser Example
English The player believes that box 3 is empty.
ELoT Gold believes(player, formula(empty(box3)))

Grammar-Cons. believes(player, formula(empty(box3)))
Unconstrained believes(player, empty(box3)) (Syntax Error)

Lowered Gold >=(prob of(player, empty(box3)), threshold(believes))
Grammar-Cons. and(>=(prob of(player, empty(box3)), threshold(believes)), empty(box3)) (Semantic Error)
Unconstrained >=(prob of(player, empty(box3)), believes) (Syntax Error)

Table 4: Example translations from English to ELoT and lowered formulas using LLaMa 3.1 8B.

Model Human Correlation r (s.e.)
All Current Initial

LaBToM
Full (ours) 0.76 (0.01) 0.78 (0.01) 0.72 (0.01)
Non-Planning 0.40 (0.01) 0.58 (0.01) 0.07 (0.01)
True Belief 0.10 (0.01) 0.09 (0.01) 0.09 (0.02)
GPT-4o (OpenAI et al., 2023)
I+Na+FS 0.52 (0.01) 0.59 (0.01) 0.41 (0.01)
I+Na 0.48 (0.01) 0.52 (0.01) 0.41 (0.01)
I+Pl 0.28 (0.01) 0.32 (0.01) 0.18 (0.01)
Gemini 1.5 Pro (Gemini Team et al., 2024)
V+Na+FS 0.23 (0.01) 0.28 (0.01) 0.14 (0.02)
I+Na+FS 0.22 (0.01) 0.29 (0.01) 0.11 (0.02)

I - Image, V - Video, Pl - Plans, Na - Narratives, FS - Few-Shot

Table 5: Model correlations with human rat-
ings of epistemic language. LaBToM correlates
strongly with humans, whereas multimodal LLMs
struggle to do so.

quite unlikely, suggesting that LLMs struggle to
account for evidence against a belief claim.

LaBToM captures how human evaluations of
epistemic language change with agent behav-
ior. Our model predicts that human evaluations
of epistemic sentences should change systemat-
ically as they gain more information about an
agent’s percepts and actions. As Figure 3 illus-
trates, this is what we find. When the player sees
that a box is empty, both humans and our model
sharply decrease their ratings for statements claim-
ing that the player believes a key is in that box
(e.g., Figure 3b, S4 Current). When the player ap-
proaches one box instead of another, both humans
and LaBToM gain confidence in statements about
the relative likelihood of key locations (Figure 3a,
S5 Current).

We analyze just one scenario (Figure 3a) in
detail. Here, the player first walks upwards away
from box 3 (Judgment Point 1), leading both
humans and LaBToM to assign scores of greater
than 0.5 to ‘‘The player believes that box 3 is
empty’’ and ‘‘The player initially believed that

Figure 2: Human correlation plots for LaBToM and
GPT-4o. Black dots are from statements not accurately
translated to ELoT. LaBToM provides a much stronger
qualitative fit with human ratings compared to the best
GPT-4o baseline, which fails to use the full scale.

box 3 was empty’’. In contrast, the modal sentence
‘‘The player believes that box 3 may contain a red
key’’ is rated lower. This is because if the player
did believe that box 3 might have the (red) key,
then it is more likely that they would have looked
in box 3. However, this does not occur.

After the player opens box 2 and finds it empty,
then walks back down towards box 3 (Judgment
Point 3), both humans and our model decrease
their confidence in the statement ‘‘The player be-
lieves that box 3 is empty’’. They also decrease
confidence in ‘‘The player initially believed that
box 3 was empty’’, but less sharply. This is be-
cause there are at least two possibilities consistent
with the player’s actions: They could have firmly
believed that box 3 was empty, or they could have
just believed that box 3 was less likely to contain
the relevant key than box 2, without all-out believ-
ing that it was empty. This ability to understand
beliefs about relative likelihood is made explicit
by how ratings change over time for ‘‘The player
believes that box 3 is more likely to contain a red
key than box 1.’’ Consistent with the principle of
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Figure 3: Step-by-step ratings by humans and models across three scenarios. Judgment points are annotated on
each map, and show the player’s location before opening the nearest box. Keys picked up along the way are shown
in light colors. Our model largely matches human responses qualitatively and quantitatively, unlike GPT-4o.

rational action, both humans and LaBToM assign
a high score to this sentence once the player goes
back to box 3, forgoing box 1.

Across a range of other settings (Figure 3b–c),
our model largely captures fine-grained changes
in how people evaluate a variety of epistemic ex-
pressions, including modal sentences, ignorance
claims, and expressions of uncertainty. Unlike
prior BToM models that lack language-like be-
lief representations (Baker et al., 2017), LaBToM
also distinguishes observer and agent uncertainty,
assigning high ratings to claims that the agent
is uncertain (Figure 3c, S5 Current), and vice
versa. In contrast, the best LLM baseline (GPT-4o,
I+Na+FS) often fails to adjust its ratings in the
same direction as humans, while rating implau-
sible statements highly. We discuss these results
more in the Appendix, alongside cases where our
model comes apart from humans.

LaBToM distinguishes in-context and
out-of-context epistemic language. To inves-
tigate how our model generalizes to a larger
set of epistemic expressions, we performed the
in-context vs. out-of-context likelihood compar-

Model Statement Likelihoods Accuracy
In-Ctx / Out-of-Ctx / Diff. In vs. Out

Current Beliefs (241 statements)
LaBToM (ours) 0.78 / 0.48 / +0.30 (0.03) 0.71 (0.03)
Non-Planning 0.70 / 0.54 / +0.16 (0.02) 0.65 (0.03)
True Belief 0.35 / 0.35 / +0.01 (0.01) 0.11 (0.02)
GPT-4o (I+Na) 0.80 / 0.62 / +0.18 (0.03) 0.59 (0.03)

Initial Beliefs (228 statements)
LaBToM (ours) 0.73 / 0.51 / +0.22 (0.03) 0.70 (0.03)
Non-Planning 0.70 / 0.70 / -0.01 (0.01) 0.39 (0.03)
True Belief 0.51 / 0.50 / +0.00 (0.01) 0.16 (0.02)
GPT-4o (I+Na) 0.76 / 0.68 / +0.07 (0.02) 0.38 (0.03)

Table 6: In vs. out-of-context statement eval-
uation. LaBToM most accurately distinguishes
when epistemic language is evaluated in vs.
out-of-context, assigning significantly higher
scores in-context (s.e. in brackets).

ison described in Section 4.5 for our full dataset
of 469 sentences. We tested the full LaBToM
model, ablations and the best applicable LLM
baseline from Table 5 (GPT-4o, I+Na). Results
are shown in Table 6. For both current and initial
belief statements, we find that LaBToM assigns
significantly higher scores when a statement is
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evaluated in-context vs. out-of-context, correctly
classifying the context about 70% of the time
by assigning a strictly higher in-context score.
On closer inspection, many statements that are
incorrectly classified turn out to be plausible in
either context, resulting in equal or close-to-equal
scores. The ablated models and GPT-4o perform
significantly worse than LaBToM, especially for
initial beliefs.

6 Discussion

Our experiments show that, similar to hu-
mans, our LaBToM model is able to coherently
interpret and adjust its evaluations of natural lan-
guage statements about agents’ beliefs, whereas
state-of-the-art multimodal LLMs struggle with
this task. This ability is mediated by our ELoT
representation and semantic parser: Without a
compositional representation of epistemic con-
cepts that is aligned with the structure of natural
epistemic language, we find that translation ac-
curacy drops significantly, even when using
a grammar-constrained LLM parser. We also
find that LaBToM largely distinguishes in- vs.
out-of-context sentence usage on a large and di-
verse set of crowd-sourced epistemic language,
indicating the generalizability of our approach.

That said, our model is not without limita-
tions. As we discuss at greater length in the
Appendix, LaBToM’s outputs depart from human
judgments in several interesting ways, suggesting
the need to account for (i) contextual adaptation
of probability thresholds via pragmatic reason-
ing (Rudin, 2016; Schuster and Degen, 2020),
(ii) the role of justification in human’s intuitive
evaluation of knowledge claims (Alston, 1989),
and (iii) bounded human reasoning about logical
implications (Smets and Solaki, 2018).

LaBToM is also an ideal observer model that
does not scale readily to large belief spaces, leav-
ing open how humans tractably infer and evaluate
claims about others’ beliefs (Van Rooij, 2008),
perhaps by focusing on occurent beliefs (Bartlett,
2018) that are relevant to others’ goals. Finally,
LaBToM is a model of how people interpret
epistemic language, but full understanding also
includes the ability to produce such language.
This could potentially be achieved by inverting
the ELoT module of our model, using it to trans-
late salient or conversationally-relevant inferences
about an agent’s beliefs into natural language. By

extending our model in this way, we stand to
gain an even richer account of what it means to
understand epistemic language.
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ficient guided generation for large language
models. arXiv preprint arXiv:2307.09702.

Lionel Wong, Gabriel Grand, Alexander K. Lew,
Noah D. Goodman, Vikash K. Mansinghka,
Jacob Andreas, and Joshua B. Tenenbaum.
2023. From word models to world models:
Translating from natural language to the prob-
abilistic language of thought. arXiv preprint
arXiv:2306.12672.

Lionel Wong, William P. McCarthy, Gabriel
Grand, Yoni Friedman, Josh Tenenbaum,
Jacob Andreas, Robert Hawkins, and Judith E.
Fan. 2022. Identifying concept libraries from
language about object structure. In Proceed-
ings of the Annual Meeting of the Cognitive
Science Society, volume 44.

Seth Yalcin. 2007. Epistemic modals. Mind,
116(464):983–1026.https://doi.org/10
.1093/mind/fzm983

Lance Ying, Katherine M. Collins, Megan Wei,
Cedegao E. Zhang, Tan Zhi-Xuan, Adrian
Weller, Joshua B. Tenenbaum, and Lionel
Wong. 2023a. The Neuro-Symbolic Inverse
Planning Engine (NIPE): Modeling probabilis-
tic social inferences from linguistic inputs.
arXiv preprint arXiv:2306.14325.

Lance Ying, Kunal Jha, Shivam Aarya,
Joshua B. Tenenbaum, Antonio Torralba,
and Tianmin Shu. 2024a. GOMA: Proac-
tive embodied cooperative communication via
goal-oriented mental alignment. arXiv preprint
arXiv:2403.11075. https://doi.org/10
.1109/IROS58592.2024.10802144

Lance Ying, Tan Zhi-Xuan, Vikash Mansinghka,
and Joshua B. Tenenbaum. 2023b. Inferring
the goals of communicating agents from actions
and instructions. In Proceedings of the AAAI
Symposium Series, volume 2, pages 26–33.
https://doi.org/10.1609/aaaiss
.v2i1.27645

Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash
Mansinghka, and Josh Tenenbaum. 2024b.
Grounding language about belief in a Bayesian
theory-of-mind. In Proceedings of the An-
nual Meeting of the Cognitive Science Society,
volume 46.

Cedegao E. Zhang, Lionel Wong, Gabriel Grand,
and Joshua B. Tenenbaum. 2023. Grounded
physical language understanding with prob-
abilistic programs and simulated worlds. In
Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 45.

Tan Zhi-Xuan, Nishad Gothoskar, Falk Pollok,
Dan Gutfreund, Joshua B. Tenenbaum, and
Vikash K. Mansinghka. 2022. Solving the
baby intuitions benchmark with a hierarchi-
cally Bayesian Theory of Mind. In RSS 2022
Workshop on Social Intelligence in Humans
and Robots.

Tan Zhi-Xuan, Gloria Kang, Vikash Mansinghka,
and Joshua B. Tenenbaum. 2024a. Infinite ends
from finite samples: Open-ended goal inference
as top-down Bayesian filtering of bottom-up

628

https://doi.org/10.1007/978-3-662-57669-4_18
https://doi.org/10.1007/978-3-662-57669-4_18
https://doi.org/10.1038/s41562-024-01882-z
https://doi.org/10.1038/s41562-024-01882-z
https://pubmed.ncbi.nlm.nih.gov/38769463
https://doi.org/10.1080/03640210801897856
https://doi.org/10.1080/03640210801897856
https://pubmed.ncbi.nlm.nih.gov/21585437
https://doi.org/10.2466/PR0.105.1.151-160
https://doi.org/10.2466/PR0.105.1.151-160
https://pubmed.ncbi.nlm.nih.gov/19810442
https://doi.org/10.1093/mind/fzm983
https://doi.org/10.1093/mind/fzm983
https://doi.org/10.1109/IROS58592.2024.10802144
https://doi.org/10.1109/IROS58592.2024.10802144
https://doi.org/10.1609/aaaiss.v2i1.27645
https://doi.org/10.1609/aaaiss.v2i1.27645


proposals. Proceedings of the Annual Meeting
of the Cognitive Science Society, 46(46).

Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh
Tenenbaum, and Vikash Mansinghka. 2020.
Online Bayesian goal inference for boundedly
rational planning agents. Advances in Neural
Information Processing Systems, 33.

Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka,
and Joshua B. Tenenbaum. 2024b. Pragmatic
instruction following and goal assistance via
cooperative language guided inverse plan
search. In Proceedings of the 23rd Interna-
tional Conference on Autonomous Agents and
Multiagent Systems.

629



Figure A1: Interfaces used for collecting (top) and evaluating (bottom) epistemic language.

A Dataset Collection

A.1 Experimental Procedure

The interface used for collecting the statements and evaluating statements is shown in Figure A1.
Participants first completed a tutorial that explained the task and experimental interface, then answered
5 comprehension questions before proceeding to the main experiment. In the main experiment, they
were shown 10 out of the 20 stimuli in a randomized order.

To incentivize accurate but calibrated responses, participants were rewarded for accurately guessing
the true goal. Specifically, they earned 1/N bonus points if they selected N goals out of which one was
the true goal, but 0 points if none of their selected goals was the true goal. Participants were paid US$1
for every 40 bonus points they earned, on top of a base pay of US$15/hr.

A.2 Statement Post-processing and Annotation

Once statements were collected, two experimenters independently annotated whether each statement was
valid for inclusion. We excluded invalid sentences based on two criteria: (i) whether the statement had
the right tense (present for current beliefs, past for initial beliefs) and (ii) whether the statement referred
to beliefs about the boxes. We also corrected minor grammatical errors and normalized statements to the
form ‘‘The player + [believes/knows/thinks/expects/is sure/is uncertain, etc.]...‘‘ for current beliefs and
‘‘The player initially + [believed/knew/thought/expected/was sure/uncertain, etc.]...’’ for initial beliefs.

After filtering and normalization, two experimenters independently annotated the statements based on
four factors: possibility, probability, compositionality, and knowledge. These factors are not mutually
exclusive, so a statement could be annotated with any combination of factors. The codes for possibility
were [may, might, can, could, should, must, none] and the codes for probability were [certain, uncertain,
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likely, unlikely, none]. The codes for compositionality and knowledge were binary [0, 1]. The annotators
agreed on 95% of the codes and discussed to resolve their differences.

A.3 Selecting Diverse Statements for Human Evaluation
After annotation, we selected a set of 3 plausible and 2 implausible statements per scenario for evaluation
by human raters. Implausible statements were manually selected from other scenarios to be implausible
in their scenario of evaluation. To select the 3 plausible statements, we sampled 100 subsets of 3
statements out of all statements written for that scenario, then computed a diversity score for each
set S:

Score(S) =
1

4
|Spossibility|+

1

4
|Sprobability|+

1

4
|Scompositionality|+

1

4
|Sknowledge| (13)

where |Spossibility| indicates the number of unique possibility codes in set S and vice versa. We then
chose the set with the highest diversity score among the 100 sampled sets.

B Model Configuration

B.1 Belief-Space Sequential Inverse Plan Search (BSIPS)
Our BToM inference algorithm is a belief-space policy variant of Sequential Inverse Plan Search (SIPS,
Zhi-Xuan et al. [2020]), which uses policies to evaluate action likelihoods as in recent extensions of SIPS
(Zhi-Xuan et al., 2024b,a). Perhaps surprisingly, Belief-Space SIPS (BSIPS) is able to exactly compute
the posterior over beliefs, goals, and states (Equation 11) without any Monte Carlo approximation: For
the scenarios we considered, there were between 120 and 5940 possible combinations of goals, initial
states, and beliefs. Enumerative inference over these hypotheses could run as fast as 0.1s/action (120
hypotheses), going up to 20s/action (5490 hypotheses). Experiments were conducted with a i7-1370P
1.90 GHz CPU and 64 GB RAM. Code can be found at https://osf.io/xq9c4/.

Algorithm 1 provides the pseudocode for BSIPS. At each step t, we simulate how the environment
changes, and how the agent updates their beliefs based on what they see (L6-7). Next, we efficiently
compute belief-space Q-values by leveraging the QMDP approximation described in Section 3.2.1. This
involves averaging over Q-values for each state hypothesis s̃ in the agent’s belief bit, which can be done
cheaply by memoizing and reusing shortest-path computations across all belief hypotheses (L9-13). The
Q-values allow us to compute the likelihood of the observed action at, allowing us to reweight each
hypothesis by how well it explains the observations (L14-16)

Algorithm 1 Belief-Space Sequential Inverse Plan Search (BSIPS)
1: procedure BSIPS(G,S0,B0, a1:T , o0:T )
2: H ← G × S0 × B0 � Enumerate all hypotheses (goal, belief & state combinations).
3: W ← {wi := P (o0|si0)}

|H|
i=1 � Initialize (unnormalized) weights for all hypotheses.

4: for t ∈ [1, T ] do
5: for hi := (gi, si0:t−1, b

i
0:t−1) ∈ H do

6: sit ← STATE-TRANSITION(sit−1, at−1) � Simulate next environment state.
7: bit ← BELIEF-UPDATE(bit−1, s

i
t, at−1) � Simulate agent’s belief update.

8: hi ← (gi, si0:t, b
i
0:t)

9: QBel(g
i, bit, ã) ← 0 for ã ∈ VALID-ACTIONS(bit) � Initialize belief-space Q-values.

10: for (s̃, w̃) ∈ bit and ã ∈ VALID-ACTIONS(s̃) do � Iterate over environment states in agent’s belief.
11: Q∗(gi, s̃, ã) ← MEMOIZED(PATH-COST(s̃, ã, gi)) � Compute shortest path cost to goal (memoized).
12: QBel(g

i, bit, ã) ← Q∗(gi, bit, ã) + w̃ ·Q(gi, s̃, ã) � Update belief-space Q-values.
13: end for
14: P (at|bit, gi) ← exp(−βQBel(g

i, bit, at))/
∑

a exp(−βQBel(g
i, bit, a)) � Compute likelihood of action at.

15: wi ← wi · P (at|bit, gi) � Update weight with action likelihood.
16: wi ← wi · P (ot|sit) � Update weight with observation likelihood.
17: end for
18: end for
19: return (H,W) � Return all hypotheses and their (unnormalized) weights.
20: end procedure
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Thresholds θ
believes certain uncertain likely unlikely could might may should must

Initial 0.75 0.95 0.50 0.60 0.40 0.20 0.20 0.30 0.80 0.95
Fitted 0.75 0.95 0.70 0.70 0.40 0.20 0.20 0.30 0.80 0.95

Table B1: ELoT probability thresholds before and after fitting.

For epistemic language evaluation at this scale, the technical challenges are mostly representational,
not algorithmic. However, scaling to larger spaces of goals (Zhi-Xuan et al., 2024a) and (belief)
states will require additional layers of Monte Carlo approximation. Our implementation in Gen
(Cusumano-Towner et al., 2019) can naturally be extended to these cases, e.g., by leveraging Sequential
Monte Carlo for approximate inference of initial states (Del Moral et al., 2006; Lew et al., 2023a).

B.2 Parameter Fitting and Robustness Analyses

We performed a grid search over parameters for the LaBToM model. The range of inverse temperatures
β for the Boltzmann policy went from 0.5 to 4 in multiplicative increments of

√
2. This produced human

correlations between r = 0.75 (at β = 0.5) and r = 0.81 (at β = 4) for current beliefs, and between
r = 0.64 (at β = 0.5) and r = 0.80 (at β = 23/2), with β = 23/2 producing the best fit overall. Across
all values of β, we found that the full model outperformed the ablated baselines.

We also fitted the threshold parameters Θ used in our ELoT representation. We performed grid-based
coordinate ascent with a step size of 0.05, starting from values derived from the literature mapping
modal words to probabilities (Wesson and Pulford, 2009; Hahn and Engelmann, 2014; Meder et al.,
2022), and limiting the search to a range of 0.2 above and below this starting point. Our initial and
final threshold parameters are shown in Table B1. To evaluate threshold sensitivity, we also ran the
same procedure to minimize correlation with humans. This produced a value of r = 0.71, which
was still much higher than the next best model (GPT-4o I+Na+FS, r = 0.52). Optimizing these
thresholds for the True Belief and Non-Planning ablations led to maximal correlations of r = 0.12 and
r = 0.47, respectively.

B.3 ELoT Translation Prompt

For both grammar-constrained SMC and unconstrained sampling, we prompted the LLM with 36
examples to translate natural language statements into ELoT formulas. ELoT formulas were represented
in a Prolog-like syntax analogous to the mathematical syntax we show in Table 1. The prompt used is
shown below. We only show 10 out of 36 examples due to space constraints, and provide the full set in
our code release. For translation of initial belief statements, we use a separate prompt to first translate
the sentence from past tense to present tense, then translate the present tense sentence to ELoT.

Please translate the statement below into logical form. Here are some examples of statements
and their translations:

Input: The player knows that box 2 and box 3 are empty.
Output: knows_that(player, formula(and(empty(box2), empty(box3))))
Input: The player knows the color of the keys in all of the boxes.
Output: forall(box(B), knows_about(player, color(C), exists(and(key(K), inside(K, B)), iscolor
(K, C))))
Input: The player doesn’t know that there is a blue key in box 2.
Output: not_knows_that(player, formula(exists(and(key(K), iscolor(K, red)), inside(K, box2))))
Input: The player is sure of the color of the key in box 4.
Output: certain_about(player, color(C), exists(and(key(K), inside(K, box4)), iscolor(K, C)))
Input: The player is uncertain about what’s in box 2.
Output: uncertain_about(player, color(C), exists(and(key(K), inside(K, box2)), iscolor(K, C)))
Input: The player believes that there is a key in box 4.
Output: believes(player, formula(exists(key(K), inside(K, box4))))
Input: The player thinks that there is a red key in either box 1 or box 3.
Output: believes(player, formula(exists(and(key(K), iscolor(K, red)), or(inside(K, box1),
inside(K, box3)))))
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Input: The player thinks there might be a key in box 1 or box 2.
Output: believes(player, might(exists(key(K), or(inside(K, box1), inside(K, box2)))))
Input: The player thinks there is likely a key in box 2.
Output: believes(player, likely(exists(key(K), inside(K, box2))))

B.4 LLM Baseline Prompts
Below we show the prompts we used for our multimodal LLM baselines (GPT-4o and Gemini 1.5 Pro).
Associated images and videos can be found in our code and dataset release.

[IMAGE OR VIDEO]

You’re watching someone play the treasure game shown above.

The player controls a character, and their goal is collect one of the four gems (triangle,
square, hexagon, or circle).

The rules of the game are as follows:
- The player can move on the white squares.
- The player has a full view of the map at all time.
- The player’s goal is to collect exactly one target gem.
- Keys unlock doors of the same color (e.g. red keys unlock red doors).
- Each key can only be used once. Keys disappear after use.
- Each box may be empty or contain exactly one key.
- The player may or may not know what’s in each box.
- Neither you nor the player can see what’s hidden in each box. But both of you can see all

other objects in the scene.
- There are at most two keys hidden among the boxes.
- The player knows that the puzzle is solvable, which means there are just enough keys to

reach any of the target gems.
- The keys and doors are labeled. The labels are shown on the top right corner of each cell.
- Your task is to figure out what the player’s goal is, and also what the player initially

believed about the contents of the boxes.

Now you observe the following:

[INSERT PLAN OR NARRATIVE]

Given this information, which gem(s) are most likely to be the human agent’s goal? And how
would you rate the following statement about the player’s current belief from 1 (definitely
false) to 7 (definitely true)? Rate 4 if you think there is an equal chance of the statement
being true and false.

Please rate the following statement:

[INSERT STATEMENT]

Please respond in the following JSON format, indicating all gems that you think are likely to
be the human’s goal, and your rating as a number from 1 to 7.

{
goal: [gems...],
rating: x,
}

The gems should be any of [triangle, square, hexagon, circle] and you can indicate all the
likely goal gems in your response. The rating should be an integer from 1 to 7. Please
provide an explanation to your response.

An example of plan-based prompting:

The player moves right three times, then down twice, and finally left.

An example of narrative-based prompting, which provides more contextual information:

The square gem is locked behind a red door. The triangle, circle and hexagon gems are not
locked behind any doors. There are three boxes. No keys are visible in the scene.
The player moves right three times, then down twice, and finally left towards box 2 and away
from box 3.
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For few-shot prompting, the following text is added before showing the statement to be evaluated.
We provide 4 examples of human ratings:

Here is how other people have rated other statements for this stimulus:

{% for statement in statement %}

statement {{ loop.index }}: {{ statement.text }}
rating: {{ statement.rating }}

{% end for %}

C Additional Results and Experiment Details

C.1 ELoT Parser Evaluation

LLaMa 3.1 8B + Grammar-Constrained SMC
Statement The player initially expected to find a key in box 3.
Gold Trans. believes(player, formula(exists(key(K), inside(K, box3))))

Translation (67%) believes(player, likely(exists(key(K), inside(K, box3))))
(32%) believes(player, formula(exists(key(K), inside(K, box3))))

Error ‘‘Expected’’ is interpreted as ‘‘likely’’ instead of straightforward belief.
LLaMa 3.1 8B Unconstrained + Majority Vote

Statement The player initially thought that box 2 contained a red key.
Gold Trans. believes(player, formula(exists(and(key(K), iscolor(K, red)), inside(K, box2))))

Translation (10%) believes(player, contains(red, box2))
(10%) type about(player, box2, contains)

Error Syntax errors, out of vocabulary term ‘‘contains’’.
Gemini Flash 8B Unconstrained + Majority Vote

Statement The player initially did not know if box 2 had a key.
Gold Trans. not knows if(player, formula(exists(key(K), inside(K, box2))))
Translation (100%) not knows if(player, exists(key(K), inside(K, box2)))
Error Missing ‘‘formula’’ predicate to denote base formula.

Table C1: Erroneous ELoT translations for different parsing methods.

When evaluating translations, we performed both an exact equality check against our gold translations,
and also a manual check for approximate semantic equivalence (i.e. cases where the parser gave a
reasonable alternative translation of the original English statement). For replicability, we include these
manual equivalence annotations in our code release.

Table C1 shows characteristic ELoT translation errors produced by each parsing method. Many of
the the strict errors from grammar-constrained SMC pass the approximate equivalence check, and SMC
often produces a distribution over reasonable alternative translations (Row 1). In contrast, unconstrained
sampling from the same LLaMa 3.18B base model leads to many syntax errors that majority voting
cannot correct for (Row 2). With Gemini Flash 8B, we observe the mode collapse issue that frequently
afflicts finetuned LLMs (O’Mahony et al., 2024), often leading all nσ = 10 samples to produce the
same incorrect translation (Row 3).

C.2 Unimodal LLM Baseline with Symbolic PDDL Inputs

In our experiment, we used raw visual inputs, such as images or videos, for the multimodal LLM
baselines. As the LaBToM model operates over symbolic representations of agent and environment
states encoded in the Planning Domain Definition Language (PDDL), we also experimented with
prompting LLMs with symbolic PDDL inputs. We report the results on the best performing LLM
baseline (GPT4o I+Na+FS) in Table C2, which shows that replacing raw visual input with PDDL (as
text) hinders performance.
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Prompt Format Current Beliefs Initial Beliefs
Image + Narrative + FS 0.52 (0.01) 0.41 (0.01)
PDDL + Narrative + FS 0.32 (0.01) 0.20 (0.01)

Table C2: GPT-4o correlation with human ratings across different input representations.

Model Prior Overall Current Initial
PCC r ↑ MAE ↓ PCC r ↑ MAE ↓ PCC r ↑ MAE ↓

LaBToM (ours) Uϕ 0.81 (0.01) 0.195 (0.004) 0.81 (0.01) 0.193 (0.006) 0.80 (0.01) 0.196 (0.006)
US0×B0

0.78 (0.01) 0.226 (0.004) 0.82 (0.01) 0.211 (0.006) 0.71 (0.01) 0.244 (0.005)
Non-Planning Uϕ 0.47 (0.01) 0.200 (0.003) 0.60 (0.02) 0.185 (0.004) 0.20 (0.01) 0.219 (0.006)

US0×B0
0.55 (0.01) 0.252 (0.003) 0.70 (0.01) 0.215 (0.005) 0.34 (0.02) 0.300 (0.005)

True Belief Uϕ 0.12 (0.01) 0.475 (0.003) 0.09 (0.01) 0.482 (0.004) 0.13 (0.02) 0.466 (0.004)
US0×B0

0.12 (0.01) 0.475 (0.003) 0.09 (0.01) 0.482 (0.004) 0.13 (0.02) 0.467 (0.004)

Table C3: Similarity of human and model ratings for a normalized (Uϕ) vs. unnormalized (US0×B0
)

prior.

C.3 Impact of a Normalized Statement Prior
In the main text, we report results under the assumption that human observers respond as if they have a
normalized 50-50 prior Uϕ over whether each statement ϕ is true. Under this assumption, the posterior
truth-value of a statement P (�ϕ�(st,bt)|a1:T , o0:T ) can be interpreted as a normalized likelihood:

L̄(�ϕ�(st,bt)|a1:T , o0:T ) =
P (a1:T , o0:T |�ϕ�(st,bt))

P (a1:T , o0:T |�ϕ�(st,bt)) + P (a1:T , o0:T |�¬ϕ�(st,bt))
(14)

An alternative assumption is to use a uniform prior US0×B0
over all possible initial states S0 and belief

distributions B0. This has the effect of up-weighting statements which are true in more possible worlds,
e.g., ‘‘The player believes that a red key might be in box 1, 2, or 3.’’.

Table C3 shows the impact of making either assumption, in terms of the Pearson’s correlation
coefficient (PCC) r and mean absolute error (MAE) with human judgments, assuming the model has
the gold translations. Consistent with Ying et al. (2024b), using a normalized statement prior largely
improves the correlation while reducing the mean absolute error for the full LaBToM model. In other
words, people appear more willing to say that a statement ϕ is true only if they have evidence for ϕ,
and otherwise default to a 50-50 rating. We see sharper differences for initial belief statements, which
is likely because priors have a stronger effect on initial beliefs, whereas an agent’s current beliefs are
more strongly determined by their percepts: If an agent sees that a box is empty, an observer’s judgment
about whether the agent believes that the box is empty should not depend on the observer’s prior.

C.4 Per-Factor Model Performance using Gold Translations
Table C4 shows the correlation between human judgments and model outputs when using the gold
ELoT translations. Performance is broken down by the annotated factors described in Table 2. Using
gold ELoT translations improves LaBToM’s correlation with human judgments from r = 0.76 (Table 5)
to r = 0.81.

Additionally, LaBToM robustly outperforms the baselines on almost all of these data splits, achieving
a correlation around r = 0.8 in each case. The one exception is the set of statements about what the
agent initially knows (Init. Know., r = 0.31), such as ‘‘The player initially knew that the red key was in
box 3’’. As we discuss in the next section, this is likely because human participants assume that direct
perception or justification is necessary for other agents to know some proposition φ. In contrast, our
model treats knowledge claims as equivalent to claims of true belief.

C.5 Differences in Human Ratings vs. Model Inferences
While LaBToM largely matches human evaluations of epistemic language both in aggregate and at the
individual scenario level, there a number of interesting ways in which they differ.
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Model Human Correlation r (s.e.)
Current Curr. Poss. Curr. Prob. Curr. Comp. Curr. Know.

LaBToM Full (ours) 0.81 (0.01) 0.80 (0.02) 0.76 (0.03) 0.76 (0.03) 0.89 (0.01)
Non-Planning 0.60 (0.02) 0.65 (0.02) 0.48 (0.04) 0.34 (0.04) 0.75 (0.02)
True Belief 0.09 (0.01) 0.14 (0.03) 0.17 (0.03) 0.02 (0.03) 0.43 (0.02)

GPT-4o I, Na, FS 0.59 (0.01) 0.62 (0.03) 0.63 (0.03) 0.64 (0.02) 0.67 (0.02)
I, Na 0.52 (0.01) 0.50 (0.03) 0.54 (0.04) 0.61 (0.03) 0.58 (0.02)
I, Pl 0.32 (0.01) 0.50 (0.03) 0.30 (0.03) 0.42 (0.02) 0.21 (0.02)

Gemini 1.5 Pro V, Na, FS 0.28 (0.01) 0.23 (0.03) 0.32 (0.03) 0.10 (0.03) 0.28 (0.02)
I, Na, FS 0.29 (0.01) 0.25 (0.03) 0.39 (0.03) 0.17 (0.03) 0.26 (0.02)

Initial Init. Poss. Init. Prob. Init. Comp. Init. Know.
LaBToM Full (ours) 0.80 (0.01) 0.84 (0.02) 0.81 (0.03) 0.78 (0.02) 0.31 (0.05)

Non-Planning 0.20 (0.01) 0.32 (0.02) −0.05 (0.03) 0.21 (0.03) 0.34 (0.05)
True Belief 0.13 (0.02) −0.09 (0.03) 0.12 (0.05) −0.03 (0.04) 0.31 (0.05)

GPT-4o I, Na, FS 0.41 (0.01) 0.41 (0.03) 0.01 (0.03) 0.26 (0.03) 0.31 (0.05)
I, Na 0.41 (0.01) 0.30 (0.03) 0.48 (0.04) 0.31 (0.02) 0.51 (0.05)
I, Pl 0.18 (0.01) 0.05 (0.03) 0.15 (0.04) 0.23 (0.03) 0.30 (0.05)

Gemini 1.5 Pro V, Na, FS 0.14 (0.02) −0.02 (0.03) −0.04 (0.04) −0.08 (0.03) 0.27 (0.05)
I, Na, FS 0.11 (0.02) 0.02 (0.03) −0.04 (0.04) −0.02 (0.03) 0.29 (0.05)

Table C4: Human vs. model correlations broken down by linguistic factors. LaBToM results use gold
translations.

People are less certain than LaBToM. One difference is simply that our model tends to be more
certain than people, using the extremes of the 0-1 scale in ways that our participants tended to avoid.
This effect did not appear to be driven by the choice of the Boltzmann inverse temperature β, since lower
values of β (which increase model uncertainty) led to poorer fits with human data. Instead, humans
may be evaluating the truth a statement φ less strictly than our model does, perhaps by maintaining
uncertainty over the probability thresholds θ associated with each statement.

People appear to adapt probability thresholds. Threshold uncertainty is closely related to another
potential driver of difference: Unlike our model, participants appear to contextually adapt probability
thresholds associated with modal words, in line with work on the pragmatics of epistemic modals
(Schuster and Degen, 2020; Rudin, 2016; Lassiter, 2017). This is evinced by human responses for
current belief statement S2 in Figure 3b. People rate ‘‘The player is unsure which box has a key’’ highly
despite the apparent confidence that the player exhibits in looking for a key in box 3 (at the expense of
looking in box 1 or box 2). This is consistent with an upwards adjustment of θuncertain from 0.55, such
that the player is judged as uncertain even when they seem to think it is quite likely for a key to be in
box 3. In contrast, our model thinks it is unlikely that the player is uncertain. Similar effects can be seen
for current statement S1 and S5 in the same scenario, except that people appear to adjust their threshold
for may and might downwards from 0.3 and 0.2 to accommodate even highly unlikely possibilities.

People respond as if knowledge requires justification. Unlike our model, which reduces knowledge
statements to true belief claims (Table 1), people appear to assume that some form of justification (e.g.
via direct perception) is necessary for agents to know that some proposition φ is true. This is clearly
illustrated in Figure C1: In this scenario, the player very confidently walks past boxes 1 and 2 towards
box 3, suggesting a strong belief about its contents. Since our model just treats knowledge as true belief
(and it is quite possible that the player is correct), LaBToM assigns less than 50% probability to ‘‘The
player does not know which box contains a red key’’ and ‘‘The player initially did not know the color
of the key in box 3’’ at Judgment Point 1 (which occurs before box 3 is opened). Human judgments
differ significantly, assigning more than 50% to these ignorance claims. This is consistent with people
understanding knowledge to require justification or direct perception: Since the player has not seen
what is in box 3 by Judgment Point 1, they cannot know what is in that box.

People reason boundedly about logical implications. A final difference between humans and our
model is that people appear to exhibit bounded reasoning when evaluating statements with non-obvious
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Figure C1: Scenario illustrating differences in human and model ratings of knowledge claims.

implications. In Figure C1, for example, ‘‘The player initially believed a red key was most likely in box
2’’ is rated lowly by humans initially, then more highly, whereas our model assigns a zero rating to that
statement by Judgment Point 2. This is because by then, it is clear that the player did not need a blue
key, and was instead looking for a red key in box 1. The fact that they looked in box 1 first also implies
that they initially thought box 1 was most likely to contain a red key, not box 2. Our model captures this
reasoning, but people do not seem to independently grasp these multi-step implications, consistent with
studies on the boundedness of human reasoning (Smets and Solaki, 2018; Mercier and Sperber, 2017).
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