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Abstract
This paper is concerned with phonetic recon-
struction of the consonant system of Middle
Chinese. We propose to cast the problem as a
Mixed Integer Programming problem, which is
able to automatically explore homophonic in-
formation from ancient rhyme dictionaries and
phonetic information from modern Chinese di-
alects, the descendants of Middle Chinese.
Numerical evaluation on a wide range of
synthetic and real data demonstrates the ef-
fectiveness and robustness of the new method.
We apply the method to information from
Guǎngyùn and 20 modern Chinese dialects to
obtain a new phonetic reconstruction result.
A linguistically motivated discussion of this
result is also provided.1

1 Introduction

Phonological reconstruction is one main concern
in historical linguistics. There are two fundamental
goals: reconstructing phonological categories and
reconstructing phonetic values of these categories
or individual phonemes. The classic linguistic and
philological approach applies a comparative strat-
egy to solve both problems by connecting cognates
in different languages. Previous research in com-
putational linguistics demonstrates the possibility
to automate the comparative approach to some ex-
tent. See, e.g., Bouchard-Côté et al. (2007a, 2009,
2013), List et al. (2022), and He et al. (2023),
among others.

The comparative approach developed out of
attempts to reconstruct Proto-Indo-European, the
common ancestor of the Indo-European language
family. However, the comparative method itself is
not well equipped to handle the special challenges
of reconstructing Chinese. On the one hand, a

1Code and datasets are available at https://github
.com/LuoXiaoxi-cxq/Reconstruction-of-Middle
-Chinese-via-Mixed-Integer-Optimization.

key step in the comparative method is to identify
as many cognates as possible, which is relatively
straightforward for Chinese but can be extremely
challenging in other languages. On the other hand,
documentary materials predominantly use Chi-
nese characters to annotate other characters (such
as Fǎnqiē , a tradition that has continued for
thousands of years. For example, rhyme dictionar-
ies such as Qiēyùn extensively use this unique
annotation method and systematically represent
the phonological system of Chinese during a spe-
cific period. Such precious materials are relatively
rare in other languages. This information is invalu-
able for the reconstruction of proto-languages, but
the comparative method itself cannot adequately
handle it. In fact, throughout Chinese history, nu-
merous works similar to the Qiēyùn have existed
in different periods, each reflecting the phonolog-
ical system of its time. The purpose of this paper
is to address the question of how to systematically
utilize these phonetic materials.

In the practice of phonological reconstruc-
tion for ancient Chinese, linguists have been
overwhelmingly exploring alternative informa-
tion to spelling and hence alternative methods
to the comparative one (Handel, 2014, pp. 1–2).
Their work heavily relies on philological docu-
ments, especially rhyme dictionaries, which have
a unique way to record homophonic information,
i.e., Fǎnqiē. A basic consensus on the phono-
logical categories of Middle Chinese (MC)2 has
been reached—there were 35–38 initials in MC,
with minor disagreement only on some categories’
merging or splitting (Karlgren, 1926; Li, 1956;
Wang, 1957). Ancient rhyme dictionaries, how-
ever, do not provide phonetic information, and
phonetic reconstruction is still extremely chal-
lenging. The relevant research is limited and there

2There are three basic periods: Old Chinese, Middle
Chinese, and Old Mandarin (Wang, 1957).
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Figure 1: Disagreement among scholars on phonetic
reconstruction. BK: Karlgren (1926), FL: Li (1971),
LW: Wang (1957), RL: Li (1956), RS: Shao (1982),
EP: Pulleyblank (1984), TD: Dong (2004), WP: Pan
(2000), XC: Chen (2005), WB: Baxter (1992).3 The
number in each cell represents the percentage of initials
on which the corresponding two scholars disagree.

is a lot of disagreement among scholars. Figure 1
shows the percentage of initials with which schol-
ars disagree. There is significant inconsistency
between any two scholars, l et alone a consensus
among all of them.

This paper is concerned with developing a
computational model for phonetic reconstruction
of the consonant system of MC. We propose
to cast phonetic reconstruction as a Mixed In-
teger Optimization problem (§4). A particular
goal is to conveniently integrate heterogeneous
information. We consider two major information
sources: (1) philological documents and (2) mod-
ern Chinese dialects,4 the descendants of MC.
Following Generative Phonology (Chomsky and
Halle, 1968), we introduce a novel compact set of
Chinese-specific distinctive features to represent
consonants (§3). Based on the feature-oriented
precise phonetic representation, we formalize the
optimization goal as minimizing the overall dis-
tance between possible homophonic characters
and the overall distance between MC and mod-
ern dialects. Measuring the distance is a key
element to the success of the new architecture.
To this end, we design a new mathematically

3The original data comes from https://zh.wikipedia
.org/wiki/%E4%B8%AD%E5%8F%A4%E9%9F%B3.

4The modern Chinese dialects are more like a family of
languages (Handel, 2014), and many of them are not mutually
intelligible. This paper uses the term ‘dialect’ instead of
‘variety’, because we focus on their common ancestor MC.

sound distance/metric function to suit our feature
representation.

Evaluating the goodness of the reconstruction
result is uniquely challenging because of the
lack of ground-truth. Instead, we evaluate the
reconstruction method. We consider two types
of experiments: experiments on synthetic data
(§5), where the ground-truth is known, and ex-
periments with held-out data (§6), where partial
information transformed from the ground-truth is
known. To create representative synthetic data,
we start from a pre-defined consonant system, de-
rive homophonic information that matches Fǎnqiē,
and derive varieties by introducing stochastic
change as well as random noise. We consider
three types of consonant systems: 1) purely arti-
ficial systems that randomly select elements, e.g.,
from an IPA chart, 2) natural systems of mod-
ern languages, including English, German, and
Mandarin, and 3) the reconstructed system of
Latin. Numerical evaluation demonstrates the ef-
fectiveness and robustness of the new method.
It is able to successfully reconstruct most conso-
nants when natural and reconstructed consonant
systems are considered.

For the experiments with real data, we
consider a wide range of representative
Chinese characters with relevant information
from Guǎngyùn and 20 modern dialects. Given
the absence of ground-truth in phonetic recon-
struction, to validate the effectiveness of the
reconstruction method, we employ the strategy to
hold out some Fǎnqiē information. In particular,
we apply our method to 70% Fǎnqiē annotations
and compare the automatically reconstructed
result with the other 30%. The reconstructed
phonemes predict around 68% Fǎnqiē. Consid-
ering that Fǎnqiē annotations themselves are not
fully consistent, the result is quite promising
and the method has a potential use to detect
inconsistent Fǎnqiē annotations.

Based on the entire real data set, we provide a
new phonetic reconstruction for Middle Chinese.
We present both numerical and linguistic com-
parison to previous philologist work (§7). Our
phonetic reconstruction aligns to the well-studied
phonological category reconstruction to a great
extent—it obtains an Adjusted Mutual Informa-
tion (Vinh et al., 2010) score of over 0.8. A
linguistic analysis of the reconstruction result
suggests some future research venues.
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Figure 2: The syllabic structure of MC and Mandarin.

2 Linguistic and Philological Basis

2.1 Syllable Structure

Ancient documents overwhelmingly indicate that
Chinese was, from the beginning of its recorded
history, a monosyllabic language, in which mor-
phemes are by and large represented by single
syllables (Norman, 1988; Shen, 2020). Moreover,
the sound pattern of the syllabic structure remained
unchanged from Middle Chinese to modern Man-
darin. The syllabic structure is composed of an
initial segmental consonant (I), a medial (aka
on-glide, denoted as M hereafter), a main vowel
(V), a coda (or an off-glide), denoted by C here-
after, and a suprasegmental tone (T). The terms
‘rime’ and ‘final’ are also frequently used: Rime is
the combination of the main vowel and the coda,
while final is a combination of the medial, the main
vowel and the coda. There are no consonant clus-
ters, i.e., more than one consecutive consonant.
See Figure 2 for the hierarchical organization of
the above elements.

Below we list three examples:

• /[tian]: I= t, M= i, V= a, C= n, T= 55

• /[ian]: I= ∅, M= i, V= a, C= n, T= 214

• /[an]: I= ∅, M= ∅, V= a, C= n, T= 51

Consonants can only appear as I or C. Con-
sonantal codas are rather simple and have been
relatively clearly recorded in rhyme dictionar-
ies. The reconstruction of the associated phonetic
values is also clear: 6 categories in total, in-
cluding nasals [m, n, N] and stops [p, t, k]).
This paper aims to complete the reconstruction
of the entire consonant system by systematically
studying initials.

Figure 3: An example of the Fǎnqiē spelling.

2.2 Fǎnqiē Spelling

Fǎnqiē is a traditional method to indicate the
pronunciation of a character in question. In the
Fǎnqiē spelling, two characters are selected as
two spellers to represent the pronunciation of the
character (denoted as X) in question: The first
character (Xu) is called the upper speller and
shares the same I with X; the second character
(Xl) is called the lower speller and shares the
same M, V, E, and T with X . Take Figure 3 for
example. To partially record the pronunciation of

, is employed as the upper speller, while
is used as the lower speller.

Zhı́ȳın is another method to partially
annotate pronunciation. It uses a homophonic
character to annotate the character in question.
Both Fǎnqiē and Zhı́ȳın were frequently used.

A rhyme dictionary is a type of ancient Chi-
nese dictionary that collates characters by tone and
rime. In rhyme dictionaries, there are three types of
important phonological information: rhyme cate-
gories, Fǎnqiē spellings, and Zhı́ȳın notations. The
Qiēyùn is a renowned rhyme dictionary that encap-
sulates the phonology of MC. Chinese philologists
have been working on it to derive phonological
analysis for centuries.

2.3 Modern Chinese Dialects

Modern Chinese dialects are classified into seven
groups in three geographic zones: Mandarin
(northern zone); Wu, Min, Xiang (central zone);
Gan, Hakka, and Yue (southern zone) (Norman,
1988; Li and Xiang, 2013). Most scholars believe
that they are all descendants of MC, and there-
fore provide valuable information to reconstruct
phonetic values.

3 Representing Phonemes

Representing phonemes in a formal way plays
an essential role in computational reconstruction.
Following Generative Phonology (Chomsky and
Halle, 1968), we use distinctive features to repre-
sent phonemes. Hayes (2011) proposes a feature

426



set for all human languages. Any specific lan-
guage only uses a subset of it to mark phonemic
contrasts. To compactly represent Chinese and its
modern varieties, we propose a Chinese-specific
set. Reducing the total number of distinctive fea-
tures can also boost the efficiency in solving the
corresponding optimisation problem.

3.1 Distinctive Features
Distinctive features provide a systematic way to
identify and represent phonemes. Each phoneme
is represented as and collectively defined by a
bundle of binary features (Hayes, 2011, p. 71).
The negative (−) and the positive (+) annotations
are used to indicate the absence or presence of a
feature. Below is an example:

Pom:=

⎡
⎢⎢⎢⎢⎢⎣

− syllabic
− sonorant
+ stop
− nasal
+ labial
− voice

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

+ syllabic
+ sonorant
− stop
− nasal
+ low
+ back
− round

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

− syllabic
+ sonorant
+ stop
+ nasal
+ labial
+ voice

⎤
⎥⎥⎥⎥⎥⎦

It is straightforward to formalize the bundle of
features as a vector, which can be used to measure
the distance between phonemes.

3.2 Our Feature Set
We propose the following modification of Hayes
(2011) to obtain a feature set for Chinese.

Remove Some Features Two types of features
are not considered: (1) features that can be rep-
resented by other features, and (2) ‘tap’ and
‘trill’.5

Merge Some Features The features in Genera-
tive Phonology are binary. By combining compa-
rable and orderable features into multi-valued
ones, we can reduce the number of features. For
example, Hayes (2011) uses 4 features (syllabic,
consonantal, approximant, sonorant) to describe
the sonority hierarchy, while we combine them
into one feature, ‘sonority’, with 5 graduable
values.

Our feature set is summarized in Table 1. We
have 14 features in total, reduced from 25 in Hayes

5Taps, flaps, and trills are uncommon in modern Chinese
dialects (Zhu, 2008), and they do not appear in our dataset.
No scholars have used taps, flaps, and trills to reconstruct
MC. Existing research shows their close connection with the
affix ér (Su, 2019), but there is still no consensus on the
timing and process of their formation.

(2011). Accordingly, we use a 14-dimensional
vector to represent a phoneme for computation.

Independent vs Dependent Features In both
the Hayes feature set and ours, some features
are meaningful6 only when some other features
at higher levels take certain values. We refer to
features that decide whether other features are
meaningful as ‘I-features’ (independent feature),
and those determined by I-features as ‘D-features’
(dependent feature).

Zero Value Hayes (2011) uses the digit 0
(zero feature) to represent meaningless D-features.
Some syllables in Chinese lack initial consonants,
and Chao (1968, pp. 18–23) suggests calling them
‘zero initials’. Accordingly, we use digit 0 to
represent zero initials. 0-valued I-features occur
when and only when the corresponding character
is initialless, while 0-valued D-variables occur
when and only when they are meaningless. stop

4 The Optimization Model

Mixed Integer Programming (MIP) is an optimiza-
tion problem in which some but not necessarily
all variables are constrained to be integers. MIP
has been widely applied in many NLP tasks, e.g.,
dependency parsing (Riedel and Clarke, 2006),
semantic role labeling (Riedel and Clarke, 2005),
coreference resolution (De Belder and Moens,
2012), as well as some more recent applications,
e.g., exemplar selection for in-context learning
(Tonglet et al., 2023)

We introduce our MIP model for phonetic re-
construction as follows. The objective function
and constraints are detailed in §4.1 and §4.3
separately. An essential component of the objec-
tive function is measuring the distance between
two phonetic feature vectors, for which we pro-
pose a mathematically sound distance function in

6The words ‘meaningful’ and ‘meaningless’ used here
correspond to the description ‘not to care’ in Hayes (2011,
p. 91): ‘in most languages with plain /p/, the position of
the tongue body during the production of this sound is
simply whatever is most articulatorily convenient, given the
neighboring sounds. · · · the tongue body does not adopt
any particular position during the /p/; · · · In this sense, the
/p/ could be said truly ‘not to care’ about values for dorsal
features.’
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Name Value

Manner
Feature

sonority 5: vowel, 4: glide, 3: liquid, 2: nasal, 1: obstruent

continuant 1: fricatives, liquids, glides, laterals
−1: stops, affricates, nasals

delayed release1 1: fricatives, affricates, −1: stops

Place
Feature

labial 1: articulated with the lips

labiodental2 1: articulated by touching the lower lip to the upper teeth

coronal 1: articulated with the tongue blade and/or tip

anterior3 1: (front) dental, alveolar, −1: (post) palato-alveolar, retroflex

distributed3 1: (blade, laminal) dental, palato-alveolar
−1: (tip, apical) alveolar, retroflex

lateral 1: distinguishes [l] from other coronal liquids and [ì, lZ]
from other coronal fricatives.

dorsal 1: articulated with the tongue body

high4 3: velar, 2: uvular, 1: pharyngeal

front4 3: fronted velar, 2: central velar, 1: back velar, uvular, pharyngeal
Laryngeal
Feature

voice 1: voiced, −1: voiceless

spread glottis 1: [h], breathy vowels, and aspirated consonants.

Table 1: Our feature set. In the ‘Value’ column, the number before the colon is the possible value of the
feature, while the right of the colon is the condition for taking this value. If there is only value ‘1’, it
means that the feature is ‘−1’ under all other circumstances. 1Only meaningful for obstruents (i.e., when
sonority is 1). 2Only meaningful when [+labial]. 3Only meaningful when [+coronal]. 4Only meaningful
when [+dorsal].

X character of which the initial is to be reconstructed
Xu upper speller of character X , with its initial to be reconstructed
Sfq set of all character–speller pairs (X,Xu)
L/l set of modern dialects/a modern dialect
F 14-dimensional phonetic feature vector
F j j-th dimension of phonetic feature vector F
Fl(X) phonetic feature vector that encodes X’s initial in dialect l (known)
FMC(X) phonetic feature vector that encodes X’s initial in MC (to be solved)
SI /SD set of independent/dependent features
τ function that maps D-feature j to the corresponding I-feature τ(j)
d(F1, F2) distance between feature vectors F1 and F2

f general distance function, e.g., p-norm
gj,τ(j)(F1, F2) distance function between F1 and F2 according to D-feature j and I-feature τ(j)

Table 2: A summary of mathematical notations used to illustrate our model.

§4.2. Mathematical notations used in §4.1–§4.3
are summarized in Table 2.

4.1 The Objective Function

To phonetically reconstruct MC, we consider two
information sources: Fǎnqiē/Zhı́ȳın and varieties.
Fǎnqiē/Zhı́ȳın reveals homophonic relationships
between characters of MC, and each descendent
dialect partially reflects MC’s phonetic structure.

Formally, assume we have a set of characters under
consideration, denoted as S. The construction of S
is discussed in §6.1. Each character X ∈ S has at
least one upper Fǎnqiē or Zhı́ȳın speller, denoted
as Xu ∈ S. We collect all character–speller pairs
and define the set Sfq = {(X,Xu) : X ∈ S}.
Let L denote the set of modern dialects. The
pronunciation of any character X ∈ S in any
dialect l ∈ L is known. Accordingly, the phonetic
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feature vector ofX’s initial in l, denoted asFl(X),
is known. The goal is to infer its phonetic feature
vector of MC, denoted as FMC(X), based on Sfq

and all known Fl(X) where l ∈ L.
We cast the goal as minimizing the over-

all distance between FMC(X) and FMC(Xu),
and minimising the overall distance between
FMC(X) and Fl(X), for all X ∈ S. Assume d
is a mathematically sound distance/metric func-
tion and λfq ∈ (0, 1) is a coefficient then the
objective is

λfq

∑
(X,Xu)∈Sfq

d(FMC(X), FMC(Xu))

+ (1− λfq)
∑

l∈L,X∈S
d(FMC(X), Fl(X))

(1)

Although the speller Xu is supposed to share
the same initial with X in general, we should
not model such homophonic relation with con-
straint FMC(X) = FMC(Xu) due to the existence
of a considerable number of counterexamples.
Such inconsistency exists probably because the
Fǎnqiē/Zhı́ȳın spellings were not devised by
one individual but rather collected from vari-
ous preexisting phonological works, and therefore
encoded phonological information of a mixture
of diachronically connected languages (Shen,
2020). Instead, we relax the identity restriction
by employing a more general distance notion.

4.2 The Distance Function
For each X ∈ S, we set 14 continuous variables
F j(0 � j � 13) to encode the phonetic value
of its initial, each dimension corresponding to a
feature. The range of F j is [min{0, lj}, uj ], where
lj and uj are the upper and lower bounds of its
corresponding feature in Table 1. Usually, we
can use p-norm to measure the distance between
two real vectors. However, in our problem, some
features are not independent from each other—it
is meaningless to discuss a D-feature if its corre-
sponding I-feature does not take a particular value.
To solve this problem, we design a new distance
function. The mathematical proof of its soundness
is provided in Appendix A.

In our solution, the distance w.r.t. I-features is
characterized by a general distance function f ,
e.g., p-norm. We only consider the special case of
D-features. We define τ as a function that maps
each D-feature to its corresponding I-feature, e.g.,
maps ‘labiodental’ to ‘labial’. Consider F1 and

F2, two feature vectors to be compared. Assume
j ∈ SD is a D-feature, and τ(j) ∈ SI is the
corresponding I-feature.

sj
def
=== sup

F1,F2∈Ω
f(F j

1 , F
j
2 ) (2)

Denote the set of all valid feature vectors as Ω,
which is a subset of R

14. We define a function
gj,τ (j) : Ω �→ R as follows:

gj,τ (j)(F1, F2) = c · sj + (1− c)f(F j
1 , F

j
2 ) (3)

where c = min{f(F τ (j)
1 , F

τ (j)
2 ), 1}. The intuition

of the design of gj,τ (j) is as follows. It is reasonable
to compare F j

1 and F j
2 with a normal distance f ,

when the corresponding I-features F τ (j)
1 and F

τ (j)
2

are equal (or very near, since they are continuous).
Otherwise, the distance betweenF j

1 andF j
2 should

correspond to the maximum possible distance they
can reach.

Now we are ready to define

d(F1, F2) =
∑
k∈SI

f(F k
1 , F

k
2 )+

∑
j∈SD

gj,τ (j)(F1, F2)

(4)

4.3 The Restrictions
To obtain a proper phonetic feature vector, we
need to ensure the values of its D-features to be
consistent with its corresponding I-features. When
a D-feature is meaningless w.r.t. its I-feature, we
force the D-feature’s value to be near 0 by some
mathematical tricks. Three cases are consider
separately.

Case I: Delayed Release Unless the corre-
sponding I-feature sonority is around 1, the value
of the delayed release feature is meaningless and
thus should be around 0. Therefore, the following
constraint is considered:

F j � max(0,min(F τ (j), 2− F τ (j))) (5)

Case II: High or Front Unless the correspond-
ing I-feature dorsal is around 1, the value of a
high or front feature should be around 0. Ideally,
the following constraints are satisfied:

F j � 1 (if F τ (j) > 0.5) (6)

F j = 0 (if F τ (j) � 0.5) (7)
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Figure 4: Overview of synthesis data.

To linearize, we define auxiliary variables
b (binary, indicator of whether F τ (j) is larger
than 0.5), M (large enough), ε (small enough).
We have:

F τ (j) � 0.5 + ε−M · (1− b) (8)

F τ (j) � 0.5 +M · b (9)

max(0, 1− F j) = 1− b (10)

Case III: Other D-features When the value
of the corresponding I-feature is around 1, the
absolute value of a D-feature F j should be around
1. Otherwise the absolute value should be close to
0. We apply the same linearizing trick, with only
(10) changed into:

|F j | = b (11)

To sum up, our model is to minimize Eq. (1)
subjecttoconstraintscharacterizedbyEq. (5)–Eq. (11).

5 Validation Experiments on
Synthetic Data

Since language reconstruction lacks a definitive
ground-truth, it is challenging to discuss the
‘correctness’ of any reconstruction result. We val-
idate our method on a wide range of synthetic
datasets, which hopefully mirror diachronic pho-
netic change. Starting from a predefined consonant
system, we create varieties of it by introducing sys-
tematic change and random noise. We then extract
character–speller pairs to mimic the Fǎnqiē infor-
mation. In order to evaluate the effectiveness in
reconstructing the predefined consonant system,
we apply our model to the varieties as well as
character–speller data. The idea of experimen-
tation with synthetic data has been utilized to

simulate lexical semantic change (Rosenfeld and
Erk, 2018; Shoemark et al., 2019).

5.1 Generating Synthetic Data

Data synthesis is demonstrated in Figure 4. It
consists of three steps, as explained as follows.

Step 1: Selecting/Simulating a Consonant
System To generate the old stage initial sys-
tem, we randomly sample an initial set SI =
{I1, I2, . . . , Im} from an IPA chart of consonants,7

namely, SIPA, with m ∈ [35, 40]. For each initial
Ii(1 ≤ i ≤ m), we generate a set of characters
SCi = {Ci1 , Ci2 , . . . , Cini

}, with the number of
characters ni falling within [20, 80].

In addition to purely artificial consonant sys-
tem, we also utilize modern English, German,
Mandarin, and reconstructed Latin.8

Step 2: Deriving Character–Speller Pairs Fol-
lowing the model of rhyme dictionaries, we assign
an artificial Fǎnqiē spelling to each character.
Given that not all characters and their spellers
share the same initial (§4.1), we introduce vari-
ability by randomly assigning a portion pfq of
characters to have their upper spellers randomly
selected from SI .

Step 3: Generating variations We generate 20
varieties based on SI and SCis to simulate sound

7The IPA chart is based on Hayes’s feature spreadsheet
(https://brucehayes.org/120a/index.htm#features).
Diacritics [h w j] are additionally considered.

8See https://en.wikipedia.org/wiki/English
phonology,https://en.wikipedia.org/wiki/Standard
Germanphonology, https://en.wikipedia.org/wiki
/StandardChinesephonology, and https://en
.wikipedia.org/wiki/Latinphonologyand
orthography, respectively.
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Example I-feature τ(j) D-feature j Valid Combinations Shortest Distance

(1.048, 0.905) sonority delayed release (1, 1), (1, −1), (2/3/4/5, 0), (0, 0) 0.143
(0.946, −0.919) labial labiodental (1, 1), (1, −1), (−1, 0), (0, 0) 0.135
(0.499, 0.988) coronal anterior (1, 1), (1, −1), (−1, 0), (0, 0) 0.503
(0.499, 0.499) coronal distributed (1, 1), (1, −1), (−1, 0), (0, 0) 0.998
(0.992, 1.952) dorsal high (−1, 0), (1, 1/2/3), (0, 0) 0.056
(0.992, 2.889) dorsal front (−1, 0), (1, 1/2/3), (0, 0) 0.119

Total Distance: 1.954

Table 3: Demonstration of how to calculate the ‘total distance’ from a reconstructed vector. The
‘Example’ column contains all the (τ(j), j) value pairs in a reconstructed vector. For each pair, we
highlight the shortest L1 distance between it and all valid combinations with bold font. ‘Total Distance’
is the sum of all shortest distances over j.

change, denoted as Sv
I = {Iv1 , Iv2 , . . . , Ivm} and

Sv
Ci

= {Cv
i1
, Cv

i2
, . . . , Cv

ini
}(1 ≤ i ≤ m, 1 ≤ v ≤

20). We assume that most sound changes are
regular, where the phonetic value of an initial
influences all characters with that initial in a given
variety. To simulate regular sound change, initial
Ii can change to any Ivi ∈ SIPA in variety v with
probability pdia.
Exceptions to regular change can occur due to
various causes, e.g., Wexical borrowing and gram-
matical analogy, and we model such irregular
change by allowing the initial of character Cv

ij
to

change from Ivi to any consonant in SIPA with
probability pchar.
Denote the L1 distance between Ia and Ib (both in
SIPA) as dIa,Ib .

5.2 Experimental Setup

We use the Gurobi9 MIP solver for our empirical
investigation. We set MIPGap to 1e-4, and the
TimeLimit to 8 hours as the maximal time
for calculation. Notably, the obtained solutions
usually are not optimal. Nevertheless, they are of
relatively good quality to verify the reliability of
our model.

We consider the following three metrics to eval-
uate the goodness of a reconstruction result, when
ground-truth is available. The ground-truth con-
sonant system of the experiments in this section is
either stochastically sampled from IPA, the recon-
structed Latin, or modern English, German, and
Mandarin.

Average L1 Since we represent phonemes by
vectors, a straightforward way to evaluate the
goodness of reconstruction is to calculate the

9https://www.gurobi.com.

overall distance between reconstructed vectors
and their corresponding ground-truth vectors. To
this end, we report the average L1 distance.

Equal rate A more strict evaluation metric is
to reward only when the reconstructed vector
is extremely close to its ground-truth. Here, we
consider a phoneme as successfully reconstructed
only when the L1 distance between the recon-
structed vector and its predefined value is smaller
than 10−4, Accordingly, we report the proportion
of successfully constructed initials as equal rate.

Soundness of Phonetic Feature Vector The re-
constructed results should be valid phonemes that
satisfy the constraints on D-features listed in §4.3.
Our features are continuous, and we thus propose
to measure their deviation from the constraints
rather than classifying them as strictly ‘valid’ or
‘invalid’. For each D-feature j and its correspond-
ing I-feature τ(j), we consider the shortest L1

distance between our result and all the valid val-
ues of (j, τ(j)). Table 3 serves as an example,
listing all (j, τ(j)) pairs and their valid combina-
tions. We report sound rate—the proportion of
characters with a total distance less than 10−4.

5.3 Results and Analysis
Our main results are shown in Figure 5, where we
compare our results with two baselines. Since the
phenomenon of characters having different initials
from their upper spellers is not common in real
data, we set pfq = 0.1.

We report two versions of majority vote results
as baseline: IPA-level and feature-level. Consid-
ering the randomness in generating consonant
systems and their variations, we conduct the ex-
periment three times and report the average for
each setting. In the IPA-level majority vote, for
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Figure 5: Comparison between our results and baselines with synthetic data that starts from Latin consonant
system, with respect to equal rate (ER) and average L1 distance (avg L1).

each character, we select the most frequent IPA
phoneme from all 20 dialects to reconstruct its ini-
tial. For feature-level voting, we choose the most
frequent value for each feature of each character.

The IPA-level majority vote achieves the high-
est equal rate when pfq and pchar are small, but
its equal rate declines rapidly as randomness in-
creases. In contrast, the feature-level majority vote
performs better under high pfq and pchar settings.
Compared with the baselines, our model signifi-
cantly outperforms both in terms of equal rate and
average L1 distance across most settings, particu-
larly when pfq and pchar are large, which highlights
the robustness of our model.

To estimate a proper value of the change rate
pdia is challenging. We use the following geomet-
ric method to estimate a lower bound of pdia from
the ancestral form (MC) to modern dialects based
on the differences among all modern dialects.
First, we measure how different any two dialects
are by calculating the percentage of characters
with different initial pronunciation. For example,

this proportion between Beijing and Guangzhou
is 65.70%. Intuitively, halving such a difference
degree gives a lower bound though the estimation
based on any single pair of dialects should be far
from being tight. We then leverage the concept of
high-dimensional sphere to integrate all possible
pairs of dialects. The key idea is as follows. Each
dialect is viewed as a point in a high-dimensional
space and the percentage of characters with dif-
ferent pronunciation of initials is viewed as the
distance between the corresponding pair of di-
alects. It is easy to see that such a distance
measurement satisfies the triangle inequality. The
radius of the minimal high-dimensional sphere
that covers all dialects serves as a (loose) lower
bound. Based on the data from Zihui, we first con-
vert the distance matrix into coordinates using the
algorithm proposed by Crippen (1978), then apply
the algorithm proposed by Fischer et al. (2003)
to determine the radius of the minimal sphere,
obtaining an empirical value of 0.4180. The max-
imum of such lower bound is 0.8844, when any
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Setting SR1 n1 SR2 n2 stat z

(.3, .3) 1.0000 1078 0.9733 3138 5.4191
(.3, .5) 0.9847 1110 0.9515 3290 4.8737
(.3, .7) 0.9991 1107 0.9338 3436 8.6460
(.3, .9) 0.9950 1001 0.9586 3160 5.6477
(.5, .3) 0.9872 1173 0.9579 3228 4.7228
(.5, .5) 0.9943 1047 0.9558 3109 5.9036
(.5, .7) 0.9895 954 0.9422 3216 6.0635
(.5, .9) 0.9826 1037 0.9731 3158 1.7152
(.7, .3) 0.9829 994 0.9671 3108 2.5809
(.7, .5) 0.9804 1172 0.9245 3174 6.8637
(.7, .7) 0.9942 1030 0.9389 3165 7.2458
(.7, .9) 0.9889 1169 0.9247 2985 8.0104
(.9, .3) 0.9865 1040 0.9678 3190 3.1966
(.9, .5) 0.9952 1048 0.9424 3179 7.1880
(.9, .7) 0.9904 1038 0.9315 3272 7.2954
(.9, .9) 0.9873 1004 0.9141 3339 8.0252

Table 4: Two-proportion z-test between our result
and feature-level majority vote with respect to
sound rate (SR). SR1 and SR2 represent the sound
rates of our model and the baseline, respectively,
while n1 and n2 indicate the sample sizes (number
of characters) of our model and the baseline.

two dialects have totally different pronunciation
(in other words, the distance is 1). The empirical
result suggests to utilize a high ratio of sound change.

Since the vectors derived from feature-level
voting do not necessarily correspond to valid
phonemes, we compare its sound rate with that
of our model. Although our model maintains a
high sound rate across all settings, we perform a
two-proportion z-test to determine whether the dif-
ference between our model and the feature-level
majority vote in terms of SR is statistically sig-
nificant. The null hypothesis is that the SR of
our method is equal to that of the baseline. The
results are reported in Table 4. If we test this
hypothesis at a significance level of 95%, for all
settings except (0.5, 0.9), the statistic z exceeds
z0.975 = 1.96, and we can reject the null hypoth-
esis. For the (0.5, 0.9) setting, z = 1.7152 is still
larger than z0.95 = 1.65. Therefore, we conclude
that our model performs better than the baselines
in terms of sound rate.

Though remarkable, we should exercise caution
when interpreting the results. Naturally occuring
sound changes display greater regularity in some
cases but are much less regular in others.

Base Distance Function f The general distance
function f (defined in §4.1) is also a hyperparam-
eter. In Figure 5, it is set as f(x1, x2) = |x1 − x2|.

We did a number of auxiliary experiments with
different p-norm distance functions. Even the
quadratic function significantly increases the diffi-
culty to the corresponding optimisation problems,
without substantial improvement in performance.
It seems that the only practical option for f is
L1. All following experiments are based on this
choice.

Weight of Fǎnqiē (λfq) We adjust the weight of
terms related to Fǎnqiē in the objective function,
i.e., λfq in Eq. (1). By default, λfq is set to 0.5,
and we explore its effect with respect to equal
rate in Table 5. Setting λfq to 0 (i.e., not using
Fǎnqiē information) results in a decrease in the
equal rate, while increasing it to 0.75 improves the
equal rate. However, further increasing it to 0.95
leads to a decline. These experiments suggest that
the choice of λfq is empirical, and we will adjust it
accordingly when working with real data (§7.1).

Results with English, German, and Mandarin
To evaluate the robustness, we experiment with
synthetic data that starts from a consonant sys-
tem in natural phonology. We choose modern
standard English, German, and Mandarin as repre-
sentatives. We also present results from a random
consonant system for comparison. The results are
in Table 6, under the setting of (0.1, 0.5, 0.3), with
λfq set to 0.5. The remarkable results reaffirm the
reliability of our model.

It is worth noting that reconstructing natural
consonant systems is much easier than artificial
ones.

5.4 Modeling the Influence of Context

The phonetic value of phonemes can be influenced
by its context. For initials in Chinese syllables, the
major influential context is the medial that fol-
lows. To integrate medial information in MC10

into our model, we adjust the weight of terms re-
lated to Fǎnqiē in the objective function. For each
character and speller pair, i.e., (X,Xu) ∈ Sfq,
we assign a weight of k to d(FMC(X), FMC(Xu))
if they share the same medial, otherwise 1. In
the basic setting, k = 1, and increasing it aims
to improve the likelihood of pairs with matching
medials sharing the same initial.

Setting k to 3, we present representative re-
sults in Table 5. Changing k from 1 to 3 has

10The data is provided by Peking University.
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k = 1 k = 3

Setting λfq = 0 λfq = 0.5 λfq = 0.75 λfq = 0.95 λfq = 0.5

(0.1, 0.3, 0.3) 96.85% 98.61% 98.89% 90.35% 98.70%
(0.1, 0.5, 0.5) 75.45% 78.80% 79.94% 68.77% 79.27%
(0.1, 0.7, 0.7) 54.37% 57.48% 59.13% 53.69% 57.67%

Table 5: Results on Latin consonant system with parameters adjusted. The numbers in the ‘Setting’
column correspond to (pfq, pdia, pchar) respectively. k represents the weight assigned to character and
speller pairs with matching medials, as defined in §5.4.

Ger Man Eng RND

ER(%) 96.10 94.48 93.02 84.73
Avg. L1 .1894 .0884 .1519 .2549

Table 6: Results with synthetic data that starts
from German, Mandarin, English, and the random
system.

little influence on equal rate, indicating that me-
dial information has already been well captured.
Notably, our model is inherently conditional, as
we always consider an initial in a particular char-
acter, where the medial, main vowel, and coda
are all fixed. When human scholars encounter
overlapping heterogeneous information sources,
decision-making becomes challenging, while our
model provides a possible technique for such
challenging issues.

The results demonstrate the flexibility of our
model—heterogeneous information can be seam-
lessly integrated as constraints or terms in the
objective function, and be integrated into our
model conveniently. Furthermore, the flexibil-
ity to adjust weights of different terms allows
fine-tuning according to specific requirements.

6 Validation Experiments on Real Data

6.1 Collecting Real Data

We examine our model with the spelling infor-
mation in Qiēyùn and the phonetic information
of 20 dialects in Zihui (1989). Polyphonic char-
acters (characters with multiple pronunciations)
are common in both MC and dialects. We treat
different pronunciations of the same character as
different entries and correlate different vectors to
them. The final dataset consists of 1960 different
characters and 2661 entries in total.11

11We will release the dataset for research.

The Qiēyùn Information Only fragments of
the original Qiēyùn survived, and most commonly
used documents are its revisions. The most accu-
rate revision is Guǎngyùn . Though published
in the Song Dynasty, Guǎngyùn is commonly
believed to record the Qiēyùn system and re-
flect the status of MC. Guǎngyùn was heavily
used in traditional philological research, includ-
ing Karlgren (1926) and Wang (1957). We collect
and integrate information from two electronic ver-
sions of Guǎngyùn, separately provided by Peking
University and Beijing Normal University.

The Dialect Information Zihui (1989) is a
workbook for fieldwork on Chinese dialects.
There is information for 20 modern Chinese di-
alects: Beijing, Jinan, Xi’an, Taiyuan, Wuhan,
Chengdu, Hefei, Yangzhou (Mandarin), Suzhou,
Wenzhou (Wu), Changsha, Shuangfeng (Xiang),
Nanchang (Gan), Meixian (Hakka), Guangzhou,
Yangjiang (Yue), Xiamen, Chaozhou, Fuzhou,
and Jianou (Min). For each of these dialects, it
documents both the phonological system and the
phonetic values of representative characters.

Selecting Representative Characters The
original Qiēyùn dataset has 25333 entries, but
a large proportion of them are rarely used.
In contrast, Zihui (1989) contains less than
3000 frequently used characters. We denote
the characters included in Guǎngyùn and Zihui
(1989) as Sgy and Szh, respectively, and denote all
characters used as Fǎnqiē spellers of characters in
Guǎngyùn as Sfq (|Sfq| =1462). Instead of using
all available characters, we aim to select a set of
representative characters that comprehensively
reflect the entire phonological systems. Our
selection process involves the following steps:

1. Subtract a smaller set S∗ from Sgy for sub-
sequent selection. Since Fǎnqiē spellings
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λfq 0.5 0.75 0.95

Matching Rate 66.38% 65.33% 67.96%
Avg. L2 1.1062 1.1046 1.2432

Table 7: Evaluation with held-out Fǎnqiē.

connect different characters and encapsu-
late valuable relationships between them,
they are essential for deriving phonolog-
ical categories. Therefore, We define S∩
to include common characters as well as
Fǎnqiē spellers. Specifically, S∩ = Sgy ∩
(Sfq ∪ Szh) with 3990 entries.

2. For each character in S∩, if both its upper and
lower spellers are also in S∩, this character is
considered of particular interest. This set is
denoted as S∗, which contains 2461 entries.

3. Among S∗, if several characters share the
same Fǎnqiē, indicating that they are homo-
phones, we select the first character only,
which is often the most frequent character.
We denote this set as S∗

1 .

4. Finally, we include Fǎnqiē spellers them-
selves into the selected set to link different
entries. Our final representative character set
is S∗

1 ∪ (Sfq ∩ S∩), with 2661 entries.

6.2 Results and Analysis
Matching to Held-out Fǎnqiē Data Ideally,
each character should share the same initial with
its Fǎnqiē/Zhı́ȳın speller. We randomly take 70%
of Fǎnqiē/Zhı́ȳın material for MC reconstruction,
and use the remaining 30% for evaluation. We
consider a character–speller pair as having match-
ing initials if the L2 distance between a character’s
reconstructed initial vector and that of its upper
speller’s is smaller than 10−4. We report the aver-
age L2 distance between the reconstructed initials
in character–speller pairs and the rate of pairs with
matching initials as the matching rate.

The results are shown in Table 7. A large portion
of held-out character–speller pairs have matching
reconstruction, affirming the self-consistency of
our results.

7 Reconstruction Results and Discussion

We obtain our final reconstruction result by ap-
plying the method to all available data introduced
in §6.1. Our reconstruction is based on individ-
ual characters, while existing results are based on

phonological categories. A straightforward way
to obtain category-centric result is averaging pho-
netic feature vectors of all characters belonging to
the same phonological category. The nearest IPA
phonemes to the averaged vectors can be directly
used for comparison to previous manual results by
philologists.12

7.1 Numerical Evaluation

The phonetic vectors resulting from our model
should form clusters that align with phonological
categories in Guǎngyùn to some extent. Based on
this assumption, we develop a clustering-based
method to evaluate the overall quality of a recon-
struction result. We cluster the phonetic vectors
with KMeans with a predefined number of clus-
ters equal to 37.13 We then report the adjusted
mutual information (AMI; Vinh et al., 2010), an
information-theoretic measure, between the au-
tomatic clustering and predefined phonological
categories. Given two clusterings U and V ,

AMI(U, V ) =
MI(U, V )− E[MI(U, V )]

avg(H(U),H(V ))− E[MI(U, V )]

where H is the Shannon entropy, MI is the mu-
tual information, and E is expectation. Perfectly
matched clusters yield an AMI of 1, while ran-
dom cluster assignment yields 0. The numbers of
samples and clusters are not necessarily the same.

Figure 6 shows our results, along with two
baselines (majority vote and single best dialect).
AMI is largely influenced by the value of λfq,
indicating the effectiveness of Fǎnqiē in deriving
categories.

Since we are dealing with 20 dialects but only
a single set of Fǎnqiē spellings, setting λfq to 0.95
is a natural choice. However, since the informa-
tion obtained from the dialects and Fǎnqiē lacks
a common scale, it is difficult to make direct
comparisons. As a result, we cannot theoretically
determine the optimal weighting for each infor-
mation source, and the choice of λ is therefore
largely empirical.

12A comprehensive summary of the result can be
found at https://github.com/LuoXiaoxi-cxq
/Reconstruction-of-Middle-Chinese-via
-Mixed-Integer-Optimization.

13There are 38 categories in the manual categorial recon-
struction of Guǎngyùn. Our dataset excludes characters with
the category.
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Figure 6: AMI values with different λ compared to
baseline results. AMI values for seven individual di-
alects (BJ: Beijing, SZ: Suzhou, CS: Changsha, NC:
Nanchang, MX: Meixian, GZ: Guangzhou, and XM:
Xiamen) are presented, each representing one dialect
group (see §6.1). The single best dialect is Suzhou, with
the highest AMI (0.7782). In feature-level majority
vote, features are aggregated and voted individually.
The KMeans algorithm is then applied to the voted
feature vector, yielding an AMI of 0.6870.

When λfq is set to 0.95, our model achieves
an AMI of 0.8148 and outperforms the baselines,
indicating a high degree of similarity between
the phonetic reconstruction by us and the man-
ual phonological reconstruction by philologists.
When λfq is set to 0.99, the AMI increases to
0.8173, although the change is minimal.

In contrast to Table 5, where setting λfq to 0.95
results in a decrease in equal rate, increasing λfq

actually improves AMI when applied to real data.
This phenomenon reflects the difference in syn-
thetic and real data, emphasizing the importance
of adjusting λfq based on specific situations.

It is worth noting that when λfq is set to 0
(i.e., without using Fǎnqiē), AMI drops to 0.5892.
This further reflects the critical role of Fǎnqiē in-
formation when dealing with real data.

In some auxiliary experiments that are not re-
ported in this paper, we also used hierarchical
clustering to further study the impact of the num-
ber of clusters. Results show that the difference in
AMI between hierarchical clustering and KMeans
is within 0.05, regardless of the specific setting.

7.2 Comparison to Existing Results

Our model successfully reconstructs most cate-
gories with consensus among philologists, such
as bāng pāng mı́ng duān tòu ńı

.14 Similar to the computational operational-
ization of the historical comparative approach to
Indo-European languages (List et al., 2022), our
study confirms the usefulness of computation in
linguistic inquiry. The differences between dif-
ferent reconstruction results may provide new
evidence for philologists and linguists to consider
and therefore are useful too. Such differences are
mainly attributed to two factors.

Different dialects changed in different direc-
tions. For example, it is generally believed that
Wu dialects retained all the voiced stops, while
most other dialects became devoiced (Handel,
2014, pp. 224–225).15 In phonology, devoicing
refers to a sound change where a voiced con-
sonant becomes voiceless due to the influence
of its phonological environment. This process is
common across many languages and is a part of
Grimm’s law. Our current model, however, can-
not differentiate in what aspects a dialect changed
most and in what aspects it stayed constantly.
It treats different dialects with equal weight on
different phenomena. Consequently, a character’s
reconstructed initial tends to be closer with the
phonetic value that is more commonly observed
across various dialect pronunciations. For exam-
ple, our model fails to reconstruct the ‘voiced’
feature for categories that are assumed to be voiced
by philologists, e.g., b̀ıng d̀ıng cóng xié

. Our model also has difficulty distinguishing
the zh̄ı zhuāng zhāng groups, which have
similar pronunciations in most modern Chinese
dialects.

Our current model only contains the most ba-
sic information—Fǎnqiē spellings and modern
Chinese varieties. Other types of information,
including rhyme tables, e.g., Yùnjı̀ng , and
sino-xenic16 pronunciations are not integrated into
our model at present. Rhyme tables provide ad-
ditional information about the voiced/voiceless

14All the Chinese characters used in §7.2 are categorical
labels representing initial categories in traditional Chinese
phonology. For example, characters fāng , fǔ , bó , b̌ı

, and many other characters are assumed to have the same
initial in MC, and philologists use bāng to represent their
common initials.

15For example, the character tóng is believed to had a
voiced initial d̀ıng in MC. In Wu dialect, its initial is [d],
while in most other dialects, it is [th].

16Sino-xenic vocabularies are large-scale and systematic
borrowings of the Chinese lexicon into the Japanese, Korean,
and Vietnamese languages. See https://en.wikipedia
.org/wiki/Sino-Xenicvocabularies for details.
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feature of initials, which is crucial for philolo-
gists’ manual reconstruction. It is another reason
why our model fails to reconstruct voiced initials.

Because of the limitation in information
sources, our model cannot provide definitive
answers to some debatable problems, such as
whether categories nı́ and nı́ang are the
same initial. It is generally believed that there
is no distinction between the two categories in
most modern Chinese varieties (Tseng, 2019,
p. 228, Li, 1956, p. 126). Though Li (1956,
pp. 125–126) and Shao (1982, pp. 98–101) have
opposite opinions about this problem, they both
used Sanskrit-Chinese pronunciations as the main
evidence. However, in our model, with materials
restricted to dialects, the reconstruction of nı́
and nı́ang ; appears similar.

7.3 Extension

In principle, our method can be generalized to
other languages. However, in practice, our model
requires phoneme-level alignment between each
protoform’s reflexes. For Chinese, this alignment
occurs naturally, as each Chinese character typi-
cally corresponds to a morpheme, and morphemes
are largely represented by single syllables that
follow specific patterns, as described in §2.1.

Sound change is a central focus in linguistic
research, and our model can engage with it in
two ways. First, incorporating common patterns
of sound change as constraints into our model is
a possible future direction. Second, by analyzing
Fl(X) − FMC(X) in Eq. (1), we may identify
potential sound changes in terms of distinctive
features, such as devoicing.

8 Related Work

8.1 Computational Reconstruction

Bouchard-Côté et al. (2007a; 2007b; 2009; 2013)
offered a series of influential work about unsuper-
vised proto-word reconstruction, which requires
an existing phylogenetic tree to infer the ancient
word forms based on probability estimates for all
the possible phoneme-level edits on each branch
of the tree. The edit model parameters and un-
known ancestral forms are jointly learned with an
EM algorithm.

Following this series of work, He et al. (2023)
also used Monte-Carlo EM algorithm but neural
networks to parameterize the edit models, in order

to express more complex phonological and the
nonadjacent changes, achieving a notable reduc-
tion in edit distance from the target word forms.
However, his highly parameterized edit models
were designed for large cognate datasets with
few languages, and may not be possible to train
them on datasets with more languages but fewer
datapoints per language.

In supervised protolanguage reconstruction, the
models are easier to evaluate. Meloni et al. (2021)
trained a GRU-based encoder-decoder architec-
ture on cognates from five Romance languages
to predict their Latin ancestors, and achieved low
error from the ground-truth. Kim et al. (2023) up-
dated Meloni et al.’s model with the Transformer
and achieved better performance.

List et al. (2022) proposed a new frame-
work for supervised reconstruction that combines
automated sequence comparison with phonetic
alignment analysis, which deals with the losing re-
flexes problem, and sound correspondence pattern
detection, which models phonetic environments of
sound change.

Lu et al. (2024) proposed a multi-model recon-
struction system that improves its reconstructions
via predicting the reflexes given a protoform.
Their system consists of a beam search-enabled
sequence-to-sequence reconstruction model and a
sequence-to-sequence reflex prediction model that
serves as a reranker, surpassing state-of-the-art
protoform reconstruction methods on three of four
Chinese and Romance datasets.

8.2 Middle Chinese Phonology

Phonetic reconstruction of phonological cat-
egories was pioneered by Karlgren (1926).
Following the methodology of Karlgren (1926),
subsequent scholars, including Li (1971), Wang
(1957), Pulleyblank (1984), and Baxter (1992),
made modifications to the methodology and
proposed their reconstructions of MC.

In recent decades, some scholars have ques-
tioned the assumptions, methodology, and con-
clusions of Karlgren’s approach. A critical view
is exemplified by Norman and Coblin (1995).
Norman advocated a data-centered approach
to Chinese historical phonology, predicated on
the collection, analysis, and comparison of
spoken-language data. His controversial recon-
struction of Proto-Min (Norman, 1973, 1974) is
an example.
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9 Conclusion

We propose a novel, MIP-based method for pho-
netic reconstruction for Middle Chinese, and
validate its effectiveness on a wide range of
synthesis and real data. Similar to the automa-
tion of the historical comparative approach to
Indo-European languages, our study confirms
the usefulness of computation in linguistic in-
quiry. The optimization-based architecture is
flexible—different information can be integrated
as either an element in the objective function,
constraints, or both. It is also applicable to the
reconstruction problem of other languages. We
leave both for future work.
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Appendix

Here, we prove that the distance function (3)
defined in §4.2 is mathematically sound.

It is easy to see:

1. gj,k(F1, F2) � 0.

2. gj,k(F1, F2) = gj,k(F2, F1).

Now we consider the triangle inequality.

Proposition 1. ∀F1, F2, F3 ∈ Ω, ∀ indices of
paired D-feature and I-feature j and k,

gj,k(F1, F2) + gj,k(F1, F3) � gj,k(F2, F3). (12)

Proof. Let cst = min{f(Xk
s , X

k
t ), 1}. We have

Δ =gj,k(F1, F2) + gj,k(F1, F3)− gj,k(F2, F3)

=(c12 + c13 − c23) · sj + (1− c12)f(F
j
1 , F

j
2 )

+ (1− c13)f(F
j
1 , F

j
3 )− (1− c23)f(F

j
1 , F

j
2 )

�(c12 + c13 − c23) · sj + (1− c12)f(F
j
1 , F

j
2 )

+ (1− c13)f(F
j
1 , F

j
3 )

− (1− c23)[f(F
j
1 , F

j
2 ) + f(F j

1 , F
j
3 )]

=(c12 + c13 − c23) · sj − (c12 − c23)f(F
j
1 , F

j
2 )

− (c13 − c23)f(F
j
1 , F

j
3 )

(13)
There are three cases: If c23 < c12 and c23 < c13,
then

Δ � (c12 − c23)[sj − f(F j
1 , F

j
2 )]

+ (c13 − c23)[sj − f(F j
1 , F

j
3 )] � 0.

If c23 > c12 and c23 > c13, then

Δ � (c12 + c13 − c23) · sj � 0.
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feature [z] [f] dist. Note

continuant −1 1 2
delayed release 0 1 2♣ ♣ j = delayed release, τ(j) = sonority. c = min{1, f(F τ(j)

1 , F
τ(j)
2 )} = 1,

sonority 2 1 1 sj = 2, gj,τj(F1, F2) = c · 2 + (1− c)f(F j
1 , F

j
2 ) = 2

voice 1 −1 2
spread glottis −1 −1 0
labial 1 1 0 ♦j = labiodental, τ(j) = labial. c = min{1, f(F τ(j)

1 , F
τ(j)
2 )} = 0,

labiodental −1 1 2♦ sj = 2, gj,τj(F1, F2) = c · 2 + (1− c)f(F j
1 , F

j
2 ) = f(F j

1 , F
j
2 ) = 2

coronal −1 −1 0
anterior 0 0 0
distributed 0 0 0
lateral −1 −1 0
dorsal −1 −1 0
high 0 0 0
front 0 0 0

total distance: 9

Table 8: An example of calculating the distance between [z] and [f] with our distance function. The
distance between I-features (in bold) is calculated using general distance function f(x1, x2), while
the distance between D-features (in italic blue) is calculated using gj,k(F1, F2). The ‘total distance’
is the sum of the distances across all dimensions. Details of the calculation are provided in the
‘Note’ column.

If c23 lies between c12 and c13, without loss of
generality, assume c12 � c23 � c13. Then,

Δ � (c13 − c23) · sj − (c13 − c23)f(F
j
1 , F

j
3 )

� (c13 − c23)[sj − f(F j
1 , F

j
3 )] � 0.

Table 8 provides an example of calculating
the distance between [z] and [f] using our distance
function d(F1, F2) defined in Eq. (4). The phonetic
feature vectors of [z] and [f] are denoted F1 and
F2, respectively. The general distance f is set as
f(x1, x2) = |x1 − x2|.
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