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Abstract

Topic modeling has been a widely used tool
for unsupervised text analysis. However,
comprehensive evaluations of a topic model
remain challenging. Existing evaluation
methods are either less comparable across
different models (e.g., perplexity) or focus on
only one specific aspect of a model (e.g., topic
quality or document representation quality)
at a time, which is insufficient to reflect the
overall model performance. In this paper,
we propose WALM (Word Agreement with
Language Model), a new evaluation method
for topic modeling that considers the semantic
quality of document representations and
topics in a joint manner, leveraging the power
of Large Language Models (LLMs). With
extensive experiments involving different
types of topic models, WALM is shown to
align with human judgment and can serve as a
complementary evaluation method to the ex-
isting ones, bringing a new perspective to topic
modeling. Our software package is available
at https://github.com/Xiaohao-Yang
/Topic Model Evaluation.

1 Introduction

Topic modeling (Blei et al., 2003), a popular
unsupervised text analysis technique, has been ap-
plied to various domains, including information
retrieval (Yi and Allan, 2009), marketing analysis
(Reisenbichler and Reutterer, 2019), social media
analysis (Laureate et al., 2023), bioinformatics
(Liu et al., 2016), and more. A topic model typi-
cally learns a set of global topics to interpret a text
corpus and the topic proportion of a document as
its semantic representation.

Although topic models have been time-tested
for two decades, as an unsupervised technique,
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comprehensive evaluations of a topic model re-
main challenging (Zhao et al., 2021a). Originally,
topic models are implemented as probabilistic
graphical models such as Latent Dirichlet Alloca-
tion (Blei et al., 2003) and many of its Bayesian
extensions (e.g., Blei et al., 2010; Paisley et al.,
2015; Gan et al., 2015; Zhou et al., 2016; Zhao
et al., 2018a, b). For these models, it has been
common practice to measure the log-likelihood or
perplexity of a model on held-out test documents.
While log-likelihood or perplexity provides a
straightforward quantitative comparison between
models, several issues still persist. Since topic
models are not primarily designed to predict words
in documents but rather to learn semantically
meaningful topics and interpretable document rep-
resentations, these metrics fail to capture these
aspects. Furthermore, estimating the predictive
probability is often intractable for Bayesian mod-
els, and different papers may employ different
sampling or approximation techniques (Wallach
et al., 2009; Buntine, 2009). For recently pro-
posed Neural Topic Models (NTMs) (Zhao et al.,
2021a), the computation of log-likelihood is even
more inconsistent.

In addition to log-likelihood or perplexity, doc-
ument representation quality and topic quality are
evaluated separately. For document representation
quality, downstream task performance is typically
used as a metric, such as document classification
(Yang et al., 2023), clustering (Zhao et al., 2021a),
and retrieval (Larochelle and Lauly, 2012). For
topic quality, the ultimate evaluation method is
human evaluation, which is time-consuming and
expensive. Thus, various automatic metrics have
been proposed, such as topic coherence (Lau et al.,
2014), which measures how semantically coherent
the representative words in a topic are, and topic
diversity (Dieng et al., 2020), which measures
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how diverse discovered topics are. To compre-
hensively evaluate the performance of a topic
model, one needs to report multiple metrics on
both document representation and topic qualities.
However, these metrics can be contradictory, e.g.,
a topic model with good topic quality may not
preserve good quality on document representa-
tion, and vice versa. This discrepancy complicates
the model selection process for topic models
in practice.

In this paper, we aim to develop a new evalu-
ation approach for topic modeling that considers
both the semantic quality of document represen-
tations and topics in a joint manner, leveraging
the power of Large Language Models (LLMs).
Our key idea is as follows: After being trained,
a topic model can infer a document’s distribution
over topics and each topic is a distribution over
vocabulary words. With these two distributions,
a model can generate a set of ‘‘topical’’ words
given a document, such as by looking at its rep-
resentative topics and the representative words of
each topic. The generation of the topical words
takes both the topic distribution of a document
and the word distributions of the topics into ac-
count, which captures the semantic summary of
the document and is expected to align with the
keywords identified by humans. Given the high
cost of human evaluation, we propose using LLMs
as a proxy by employing appropriate prompts to
generate keywords for the document, which are
then compared with the topical words produced by
a topic model. Finally, to quantify the agreement
between the words from the topic model and the
LLM, a series of WALM (Word Agreement with
Language Model) metrics are proposed. WALM
has the following appealing properties:

• It is a joint metric that evaluates the quality
of both document representations and topics.

• It assesses how effectively a topic model
captures the semantics of a document, which
is a core objective of topic modeling.

• It allows for comparisons across various
types of topic models.

To examine WALM series metrics, we conduct
extensive experiments using various popular topic
models on different datasets, comparing them with
other widely used topic model evaluation metrics.
Moreover, human evaluation is also conducted

to demonstrate the alignment of WALM with
human judgment.

2 Related Work

As an unsupervised technique for uncovering
hidden themes in text, evaluating topic mod-
els remains challenging. Early evaluations of
a topic model rely on the log-likelihood or
perplexity of held-out documents (Blei et al.,
2003), which measures how well the model
predicts the words of documents. As the compu-
tation of predictive probability is often intractable
for conventional Bayesian topic models, vari-
ous sampling or approximation techniques have
been proposed (Wallach et al., 2009; Buntine,
2009). Apart from the inconsistent estimation,
held-out likelihood is regarded as not corre-
lated with the interpretability of topics from a
human perspective (Chang et al., 2009), prompt-
ing the direct evaluation of topics and document
representation quality.

As for the evaluation of topics, Chang et al.
(2009) design the word and topic intrusion tasks
for human annotators, where high-quality topics or
document representations are those where anno-
tators can easily identify the intruders. Newman
et al. (2010) and Mimno et al. (2011) evaluate
topic coherence by direct ratings from human ex-
perts. Although human judgment is commonly
regarded as the gold standard, it is expensive and
impractical for large-scale evaluation. Automated
evaluation of topic coherence is more practical,
such as Normalized Pointwise Mutual Informa-
tion (NPMI) (Lau et al., 2014), which relies on
the co-occurrence of the topic’s top words in the
reference corpus to measure topic coherence, with
the underlying assumption that a large reference
corpus such as Wikipedia can capture prevalent
language patterns. Although they automate the
evaluation of topics and strongly correlate with
human judgment (Newman et al., 2010), counting
word co-occurrence in a large reference corpus
is still relatively expensive. Moreover, coherence
metrics can vary depending on the reference cor-
pus, and there is no single ‘‘right’’ reference
corpus that is suitable for all datasets (Doogan and
Buntine, 2021). Recent works propose leveraging
word embeddings (Nikolenko, 2016) or contex-
tualized embeddings (Hoover et al., 2021) for
efficiently evaluating topic coherence, incorporat-
ing semantics from pre-trained embeddings. Due
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to common posterior collapse issues (Lucas et al.,
2019) in the growing field of neural topic models
(Zhao et al., 2021a), recent works also consider
topic diversity (Dieng et al., 2020) during evalua-
tion, which measures how distinct the top words
of each topic are.

As for the evaluation of document represen-
tation, early works focus on how well the topic
proportion of a document represents the document
content, assessed through a topic intrusion task by
human annotators (Chang et al., 2009), which
is further extended as automated metrics (Bhatia
et al., 2017, 2018). Recent topic models often use
the topic proportions as document representations,
the quality of which is commonly investigated
through downstream tasks, including their use as
features for document classification (Nguyen and
Luu, 2021), clustering (Zhao et al., 2021b), and
retrieval (Larochelle and Lauly, 2012). Recently,
the generalization ability of topic models is in-
vestigated by evaluating their quality of document
representations across different unseen corpora
(Yang et al., 2023).

In the era of LLMs (Brown et al., 2020;
Thoppilan et al., 2022; Touvron et al., 2023a,b;
Chowdhery et al., 2024), recent research has be-
gun leveraging LLMs to evaluate topic models,
such as using ChatGPT1 as a proxy for human an-
notators for word intrusion and topic rating tasks
for evaluating topic coherence (Stammbach et al.,
2023; Rahimi et al., 2024). The focus of these
works is still on topic quality only.

In this work, we propose new evaluation met-
rics for topic models, differing from previous
works in the following ways: (1) Unlike evalua-
tions that focus on only sub-components of a topic
model (i.e., topics or document representations),
our evaluation metrics offer a joint approach to
topic model evaluation, considering both topics
and document representations together. (2) Com-
pared with log-likelihood or perplexity, which
also evaluate based on documents, our evaluation
metrics consider semantics from documents and
align with the focus of topic modeling. (3) Differ-
ent from recent LLM-based evaluations that use
LLMs for topic quality evaluation, ours considers
both topic quality and document representation
quality and our use of LLMs is quite different
from previous works.

1https://openai.com/index/chatgpt/.

3 Background

Given a document collection D := {d1, . . . ,dM}
with V vocabulary words, a topic model is typi-
cally trained on their Bag-of-Words (BOWs), e.g.,
x ∈ N

V . The topic model can infer a distribution
over K topics for each document by running its
inference process:

z := fθ(x), (1)

where θ denotes the model parameters of the infer-
ence process; z ∈ ΔK (Δ denotes the probability
simplex) indicates the proportion of each topic
present in the document and is commonly used
as its semantic representation. Additionally, the
topic model also discovers K global topics for the
corpus (i.e., T := {t1, . . . , tK}), where each topic
t ∈ ΔV is a distribution over V vocabularies. Ide-
ally, each topic captures a semantic concept that
can be interpreted by its top-weighted words. To
train a topic model, one often needs to generate or
reconstruct the word distribution of the document
from z by running its generative process:

w := fφ(z, T ), (2)

where φ are the model parameters of the gen-
erative process; w ∈ ΔV is the per-document
word distribution from which x is sampled.
Let Z := {z1, . . . , zN} be the semantic repre-
sentations of N test documents and T be the
K learned topics, current evaluation of a topic
model is commonly conducted based on either
Z or T separately.

4 Method

4.1 Motivation

Both topics and document representations are
important components of a topic model. To com-
prehensively evaluate a topic model, it is common
practice to report the performance of both parts.
This can be done by measuring topic quality using
metrics such as NPMI and assessing document
representation quality through downstream clas-
sification accuracy (ACC) (see section 5.1 for
details of metrics calculation). However, a model
that prioritizes topic quality (e.g., NPMI) may not
perform well in terms of document representa-
tions (e.g., ACC), and vice versa, which creates
difficulty during model selection, as illustrated in
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Figure 1: Performance rankings of topic quality (NPMI) and document representation quality (ACC) during
model selection. The best model state/checkpoint can be determined using either NPMI or ACC as the selection
criterion. However, it can be observed that the rankings for topic quality and document representation quality are
inconsistent under the same selection criteria. Experiments are conducted five times, with the number of topics set
to 50.

Figure 1. This inconsistency in the performance
of the two components is also indicated by Bhatia
et al. (2017). Therefore, evaluating a topic model
based on sub-components only is insufficient to re-
veal the entire model’s performance. Recent topic
models often focus on improving topic quality,
such as clustering-based models (Sia et al., 2020;
Grootendorst, 2022), but they do not evaluate
their effectiveness in representing documents. In
this work, we aim to introduce a novel evaluation
method for topic modeling that jointly assesses
the semantic quality of both topics and document
representations, with the help of large language
models.

4.2 Key Idea

We propose to conduct the evaluation in a joint
manner that considers both document represen-
tations and topics, rather than evaluating them
separately as in previous works. To do so, we ob-
tain the document-word distribution w for a given
document from the topic model by running both
its inference and generative process:

w := fφ(fθ(x)). (3)

The inference process infers the document repre-
sentation z for a given document x, as in Eq. 1;
the generative process2 generates or reconstructs
the word distribution w based on the document
representation z and topics T , as in Eq. 2. There-
fore, the evaluation based on w involves both
document representations and topics.

2We omit topics T in Eq. 3 as they are considered part of
the parameters of the generative process φ.

Next, we take the top-weighted words w from
the word distribution w generated by the topic
model as the ‘‘topical’’ words of the document.
Those topical words can be regarded as a semantic
summary of the document from the target topic
model’s perspective. To generate high-quality top-
ical words for a document, a topic model should
learn good global topics as well as good document
representations. Now, the evaluation of a topic
model can be reframed as assessing the quality of
its topical words. Suppose the true representative
words k of document x are given, then we can
formulate our evaluation task as:

S(w,k), (4)

where S(·, ·) is a score function (Section 4.4)
to quantify the agreement between w and k
(Section 4.3).

4.3 Word Suggestion by LLM
Keyword Suggestion Following our evaluation
task in Eq. 4, the ideal representative words k are
from human summary of the document. However,
this is expensive and impractical for large-scale
evaluation. With the recent advancements in
LLMs, which have demonstrated performance
akin to human capabilities in various natural
language processing tasks, including text summa-
rization (Wang et al., 2023; Tang et al., 2023;
Zhang et al., 2024) and keyphrase extraction
(Song et al., 2023; Maragheh et al., 2023; Bai
et al., 2024), we propose leveraging LLMs through
prompting to generate keyword suggestions for a
given document:

k := LLM(Prompt(d)). (5)
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Figure 2: An example prompt and output of keywords
suggestion by the LLM. In this example, the number
of keywords (i.e., N) is set to 5.

Specifically, we query keywordsk for a given doc-
ument d from an LLM by proposing the prompt
shown in Figure 2. The prompt consists of a task
instruction and the queried document.

Topic-Aware Keywords Suggestion Analo-
gous to the generation of topical words in topic
modeling—where global topics of the document
collections are identified first, followed by asso-
ciated keywords for each given document—we
propose prompting the LLM in a similar man-
ner, ensuring it considers collection-level topics
when providing keywords suggestion for each
document, written as:

k := LLM(Prompt(d, T )), (6)

where T denotes the set of topics of the text cor-
pus. To obtain the collection-level topics T for
the corpus by the LLM, we follow the topic gen-
eration approach by Pham et al. (2024). Briefly, it
leverages an LLM to iteratively identify new top-
ics from each document. A subsequent refinement
process then merges similar topics and removes
those with low frequency. For further details on
the topic generation process, we refer readers to
Pham et al. (2024) (section 3.1).

Using these corpus-level topics, we prompt the
LLM to generate keywords for each document in
a two-stage process, considering the overarching
themes of the collection. In the first stage, the LLM
selects relevant topics for the target document
from the corpus-level topics. In the second stage,
we prompt the LLM to generate indexing words
for the document based on each selected topic.

Figure 3: An illustration of topic-aware keywords
suggestion pipeline. The words highlighted in green
represent collection-level topics generated by the LLM.
Each topic selected in stage 1 is used in the stage 2
prompt to generate topic-aware keywords.

The final set of keywords is obtained by merg-
ing the words generated for each selected topic.
An example prompt and output for topic-aware
keywords suggestion is shown in Figure 3.

4.4 Choices of the Score Function
For the score function S(·, ·) in Eq. 4, we propose
different ways to calculate it: (1) Overlap-based,
which computes the number of overlapping words
between w and k, and (2) Embedding-based,
which calculates the overall semantic similarity
between the two word sets using pre-trained word
embeddings.

Word Overlap A straightforward choice of the
score function is directly counting the overlaps
between w and k. Considering the potential
variant in forms of the same word, we con-
vert each word to its root form before counting,
formulated as:

Soverlap := C(froot(w)∩froot(k))×fn(w,k), (7)
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where C(·) and froot(·) are the counting and root-
ing (e.g., stemming or lemmatization) operation,
respectively; fn(w,k) := 1/(N +M) returns the
normalising factor based on two input word sets,
where N and M are the number of words in w
and k, respectively.

Synset Overlap Considering the case that dif-
ferent words may describe the same or similar
concept (e.g., ‘‘puppy’’ and ‘‘dog’’), we lever-
age WordNet (Miller, 1995) synsets to determine
word overlaps: if the synsets of two words in-
tersect, they are considered to overlap. Then, we
define the synset overlap score as:

Ssynset := (
N∑

i=1

M∑

j=1

1(C(fsynset(wi)∩

fsynset(kj)) > 0))× fn(w,k), (8)

where 1(·) denotes the indicator function; fsynset(·)
is a function that returns the synset for a given
word. Intuitively, the synset-based score builds on
the idea of word overlap, considering two words
as overlapping if their synsets intersect, rather than
requiring an exact match.

Word Optimal Assignment We consider an-
other choice of S, which measures the overall
semantic similarity between two sets of words
with pre-trained word embeddings (Mikolov
et al., 2013; Pennington et al., 2014). Since the
alignments between words from w and k are
unknown, directly measuring similarity between
word embeddings is not feasible. To automat-
ically find the alignment for each word of w
to each word of k, we formulate it as the fol-
lowing Optimal Assignment (OA) problem and
solve it using the Hungarian algorithm (Kuhn,
1955): Given a word set w that has N words:
w := {w1,w2, . . . ,wN} and their embedding
vectors Ew := {ew1 , ew2 , . . . , ewN}; and an-
other word set k that has M words: k :=
{k1, k2, . . . , kM} with related embedding vectors
Ek := {ek1 , ek2 , . . . , ekM}. Define a cost matrix
C ∈ R

N×M
≥0 whose entry Ci,j := CosD(ewi , ekj ),

where CosD(·, ·) denotes the cosine distance func-
tion; and a binary matrix A ∈ {0, 1}N×M whose
entry Ai,j = 1 if word wi is assigned to word kj ,
and 0 otherwise. The goal is to solve the following
optimal assignment problem:

min
A

N∑

i=1

M∑

j=1

Ci,j × Ai,j , (9)

subject to
∑M

j=1Ai,j = 1 and
∑N

i=1 Ai,j = 1. By
finding the optimal binary matrix A∗, we obtain
the distance between w and k by:

Soa := Doa(w,k) :=
N∑

i=1

M∑

j=1

Cij ×A∗
ij . (10)

Word Optimal Transport Optimal Transport
(OT) has recently been used as a powerful geo-
metric tool to measure the distance between
distributions, with rich applications in machine
learning and related areas (Ge et al., 2021; Zhao
et al., 2021c; Nguyen et al., 2021; Wang et al.,
2022; Guo et al., 2022; Bui et al., 2022; Vuong
et al., 2023; Zhao et al., 2023; Ye et al., 2024;
Vo et al., 2024; Gao et al., 2024). Considering
that both w and k are top words of probability
distributions, where each word essentially retains
a portion of probability mass. Our previous calcu-
lations ignore the probability mass of words and
treat each word in the set as equal. Now we include
the probability mass and formulate the similarity
calculation between w and k as an OT prob-
lem: Given two discrete distributions μ(w,w)
and μ(k,k), where w := {w1,w2, . . . ,wN} and
k := {k1, k2, . . . , kM} are the supports of those
two distributions; w ∈ ΔN and k ∈ ΔM are their
related probability vectors3; following the same
construction of cost matrix C in the previous OA
problem, the OT problem between μ(w,w) and
μ(k,k) is defined as:

min
P

N∑

i=1

M∑

j=1

Ci,j × Pi,j , (11)

subject to
∑M

j=1 Pi,j = wi and
∑N

i=1 Pi,j = kj ;
P ∈ R

N×M
≥0 is the transport plan, whose entry Pi,j

indicates the amount of probability mass moving
from wi to kj . Similarly, by finding the optimal
transport plan P ∗ using solvers such as those in
Flamary et al. (2021), the OT distance between
μ(w,w) and μ(k,k) is obtained by:

Sot := Dot(μ(w,w), μ(k,k))

:=

N∑

i=1

M∑

j=1

Cij × P ∗
ij . (12)

Compared with our OA and OT formulations
for WALM, they are similar in that they both

3We assume μ(k,k) is a uniform distribution over the
keywords k from the LLM. Thus, k is a uniform probability
vector.
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construct the cost matrix C using cosine distance
between pre-trained word embeddings. However,
they differ in the following ways: (1) OA treats
words in the set as equal, while OT considers
probability mass of each word. (2) OA can be
viewed as a ‘‘hard’’ assignment problem between
two word sets because the entries of A are binary.
In contrast, OT can be regarded as a ‘‘soft’’
assignment because of the spread of probability
mass in P .

5 Experiments

5.1 Experimental Setup

Datasets Two widely used datasets, 20News-
group (Lang, 1995) (20News), which contains
long documents, and DBpedia (Auer et al., 2007),
which includes short documents, are used for
our experiments. Our pre-processed datasets are
available in the Github repository.

Evaluated Models We conduct experiments on
7 popular topic models from traditional proba-
bilistic to recent neural topic models. (1) Latent
Dirichlet Allocation (LDA) (Blei et al., 2003),
the most popular probabilistic topic model that
assumes a document is generated by a mixture of
topics. (2) LDA with Products of Experts (PLDA)
(Srivastava and Sutton, 2017), an early NTM
that applies the product of experts instead of the
mixture of multinomials in LDA. (3) Neural Vari-
ational Document Model (NVDM) (Miao et al.,
2017), a pioneer NTM that uses a Gaussian as
the prior distribution of topic proportions of docu-
ments. (4) Embedded Topic Model (ETM) (Dieng
et al., 2020), an NTM that involves word and topic
embeddings in the generative process. (5) Neu-
ral Topic Model with Covariates, Supervision,
and Sparsity (SCHOLAR) (Card et al., 2018),
an NTM that applies a logistic normal prior on
topic proportions and leverages extra information
from metadata. (6) Neural Sinkhorn Topic Model
(NSTM) (Zhao et al., 2021b), a recent NTM
based on an optimal transport framework. (7) Con-
trastive Learning Neural Topic Model (CLNTM)
(Nguyen and Luu, 2021), a recent NTM that uses
contrastive learning to regularize document rep-
resentations. We keep all these models’ default
settings as suggested in their implementations. All
experiments are conducted 5 times with different
model random seeds; mean and standard deviation
values are reported.

Settings of WALM For the WALM settings,
we use GloVe word embeddings pre-trained on
Wikipedia (Pennington et al., 2014)4 in our
embedding-based metrics. For the LLM gener-
ation settings, we use LLAMA3-8B-Instruct5 for
our main experiments. We employ greedy decod-
ing during LLM generation to ensure deterministic
outputs, setting the maximum number of gener-
ated tokens to 300. When prompting the LLM, we
limit the number of generated keywords to 5. For
topical words from the topic model, we select the
top 10 weighted words from the document-word
distribution for each given document.

Settings of Existing Metrics We also evaluate
topic models with existing commonly used met-
rics to compare with ours. (1) Topic Coherence
and Diversity: We apply NPMI to evaluate topic
coherence using Wikipedia as the reference cor-
pus, done by the Palmetto package6 (Röder et al.,
2015). Following standard protocol, we consider
the top 10 words of each topic and obtain the
average NPMI score of topics by selecting the
top 50% coherent topics. As for Topic Diversity
(TD), we compute the percentage of unique words
in the top 25 words of all topics, as defined in
Dieng et al. (2020). (2) Document Representation
Quality: We conduct document classification and
clustering to evaluate the representation capability
of topic models. As for classification, we train a
Random Forest classifier based on the training
documents’ representation and test the accuracy
(ACC) in the testing documents, as in previous
works such as Nguyen and Luu (2021). As for
clustering, we conduct K-Means clustering based
on test documents’ representation and report the
Purity (KM-Purity) and Normalized Mutual In-
formation (KM-NMI), as in previous works such
as Zhao et al. (2021b). (3) Perplexity: We use
document completion perplexity (Wallach et al.,
2009) to evaluate the predictive ability of topic
models. We split each test document into two
equal-length folds randomly. Then we compute
the Document Completion Perplexity (DC-PPL)
on the second fold of documents based on the
topic proportion inferred from the first fold, as in
previous works such as Dieng et al. (2020).

4https://nlp.stanford.edu/projects/glove/.
5https://huggingface.co/meta-llamaMeta

-/Llama-3-8B-Instruct.
6https://github.com/dice-group/Palmetto.
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Figure 4: Topic models’ performance in terms of WALM with keywords suggestion by the LLM on 20News (top
row) and DBpedia (bottom row). Error bars represent the standard deviation (omitted for values smaller than the
symbol size).

5.2 Results and Analysis

Topic Model Evaluation with WALM We as-
sess topic models’ performance based on our
evaluation metrics on both 20News and DBpe-
dia. We have the following observations based on
our results illustrated in Figure 4: (1) The WALM
values of most models on DBpedia show better
performance than 20News, which indicates that
it is easier for topic models to generate infor-
mative topical words for short documents than
long documents. (2) The performance ranking
indicated by overlap-based metrics (e.g., Soverlap

and Ssynset) and embedding-based metrics (e.g.,
Soa and Sot) is slightly different. The reason is
that embedding-based metrics consider the se-
mantic distance among words, which can be more
flexible than the exact match in overlap-based
metrics. (3) It can be observed that there is little
improvement from recent NTMs over LDA and
NVDM in terms of our joint metrics. The po-
tential reason is that most contemporary NTMs
primarily focus on enhancing topic coherence
while neglecting the generation of documents, thus
showing weak performance in generating topical
words of documents as indicated by WALM. (4)
When topic-aware keyword suggestion is applied
in WALM (Figure 5), the performance ranking

of LDA surpasses that of NVDM as the number
of topics increases in the long-document dataset
(i.e., 20News). This suggests that LDA benefits
more from an increased number of topics when
generating topic-aware keywords for documents
compared to NVDM.

Learning Curves of WALM In Figure 6, we
illustrate the learning curves of topic models in
terms of WALM, clearly showing how each met-
ric changes throughout the training process. We
observe that most topic models improve with
training and eventually converge to a stable state.
However, NVDM exhibits overfitting in the later
stages of training, as indicated by its WALM
scores. Additionally, WALM approaches based
on keyword suggestions and topic-aware key-
word suggestions exhibit slightly different trends
in their learning curves. For instance, LDA sur-
passes NVDM in the later training stages when
topic-aware keywords are used. This suggests
that NVDM prioritizes document-level genera-
tion while LDA shows stronger awareness of
collection-level topics.

Qualitative Analysis on Topical Words for Doc-
uments We qualitatively investigate the topical
words of documents by topic models at different
stages in Table 1, where we randomly sample
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Figure 5: Topic models’ performance in terms of WALM with topic-aware keywords suggestion by the LLM
on 20News (top row) and DBpedia (bottom row). Error bars represent the standard deviation (omitted for values
smaller than the symbol size).

Figure 6: Learning curves of topic models in terms of WALM with keyword suggestions (top row) and
topic-aware keyword suggestions (bottom row) from the LLM on the 20News test set, with the number of topics
set to 50. The area within the error bands represents the standard deviation.

one document for 20News and DBpedia, respec-
tively. We have the following observations based
on our results: (1) The topical words at the be-
ginning phase contain less semantically related
words about the documents than those at conver-
gence, which aligns with the learning status (as

in Figure 6) indicated by WALM. (2) The top-
ical words of NVDM include more words that
reveal the documents’ main messages than LDA,
which aligns with the ranking (as in Figure 5)
suggested by WALM. (3) The keywords gener-
ated by the LLM are similar to those provided
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Document Model Topical Words

It’s my understanding that, when you format a magneto-optical disc,
(1) the formatting software installs a driver on the disc, (2) if you
insert the disc in a different drive, then this driver is loaded into the
computer’s memory and then controls the drive, and (3) if this driver is
incompatible with the drive, then the disc can not be mounted and/or
properly read/written. Is that correct?

LDA B drive, disk, card, controller, hard, mb, file, scsi, bios, power
LDA C drive, disk, scsi, hard, card, controller, mb, floppy, ide, sale

NVDM B driver, drive, problem, card, time, file, thanks, need, email, work
NVDM C drive, driver, hard, scsi, window, cd, mb, floppy, disc, work

LLM formatting, magneto-optical, driver, disc, incompatible
LLM (Topic-Aware) troubleshooting, formatting, incompatibility, magneto-optical, driver, disc, mounting

Human driver, disc, computer, hardware, software, memory, formatting, incompatible

Wrong World. Wrong World is a 1985 Australian film
directed by Ian Pringle. It was filmed in Nhill and
Melbourne in Victoria Australia.

LDA B film, american, released, directed, football, album, summer, played, team, hospital
LDA C film, played, directed, baseball, league, australian, major, drama, football, award

NVDM B specie, album, school, known, located, north, film, directed, american, released
NVDM C film, album, released, second, south, new, directed, american, australian, known

LLM world, film, australian, directed, victoria
LLM (Topic-Aware) film, industry, production, cinema, entertainment

Human film, movie, directed, director, australian, melbourne, victoria

Table 1: Documents’ topical words from topic models at the beginning phase (e.g., NVDM B, LDA B)
and convergence phase (e.g., NVDM C, LDA C) according to WALM, where the number of topics is
set to 50.

by human annotators for the example documents.
(4) By using topic-aware keywords suggestion in
WALM, the LLM tends to provide keywords that
convey the high-level concepts of the topics. For
instance, ‘‘troubleshooting’’ is identified for the
first example document, and ‘‘entertainment’’ for
the second, which offers higher-level information
from topics besides individual document.

Correlation to Other Metrics We compute
Pearson’s correlation coefficients among exist-
ing and WALM series metrics, similar to the
correlation analysis in previous works such as
Doogan and Buntine (2021) and Rahimi et al.
(2024). Pearson’s correlation coefficients among
the metrics are plotted in a heatmap in Figure 7.
Based on the results, we observe that: (1) WALM
variants are highly correlated with each other
since they originate from the same mechanism.
(2) Compared with perplexity, which also evalu-
ates the entire model based on documents, WALM
shows weak correlations, suggesting a new family
of evaluation metrics. (3) Compared with other
types of evaluations, WALM has moderate corre-
lations with document representation metrics (e.g.,
KM-Purity, KM-NMI, and ACC), and weak corre-
lations with topic quality metrics (e.g., NPMI and
TD). This indicates that our joint evaluation met-
rics take both components into account without
relying solely on either one. These observations
suggest that WALM can serve as a complementary
evaluation method to existing approaches.

5.3 Contextualized Embeddings for WALM

Obtaining Contextualized Embeddings Re-
call that in Eq. 10 and Eq. 12, the cost matrix

Figure 7: Pearson’s correlation coefficient among
evaluation metrics.

C is constructed using cosine distances between
word embeddings. Here, we change our construc-
tion of C from using static word embeddings from
GloVe (Pennington et al., 2014) to the contextual-
ized word embeddings from the LLM, considering
that the same word may have different semantic
meanings in different contexts. We obtain the
contextualized embeddings of a word given a
document differently in two cases: (1) When the
target word appears in the context document, we
take the average embeddings of each occurrence
as the contextualized embedding. (2) When there
is no occurrence of the target word in the given
document, we add an auxiliary sentence to the
document in the following format:

‘‘<Given Document>. This document
is talking about <Target Word>.’’
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Figure 8: Learning curves of NVDM in terms of
embedding-based metrics and their contextualized vari-
ants on 20News (top row) and DBpedia (bottom row).
The area within the error bands represents the standard
deviation.

Then, we obtain the contextualized embed-
ding of the target word given the document
with the auxiliary sentence. By replacing the
global word embeddings with contextualized
word embeddings, we have new variants of our
embedding-based WALM (i.e., Soa and Sot), i.e.,
Soa c and Sot c.

Observations Since the cost of obtaining con-
textualized embeddings is high for LLMs, we
compute Soa c and Sot c in a case study, where
we test NVDM on 100 documents randomly sam-
pled from the test sets of 20News and DBpedia,
respectively. We plot the learning curves on test
documents in Figure 8. We observe that using
word embeddings or contextualized embeddings
in our embedding-based scores exhibits similar
trends but with different values on both datasets.

5.4 Sensitivity Study
Here, we examine two factors that can influence
the WALM scores: the number of keywords gen-
erated by the LLM and the choice of the LLM.
To investigate the effect of the number of key-
words, we vary the number from 3 to 10 and
plot the performance ranking of topic models in
Figure 9 (top row). We observe that, although

the values of WALM metrics can vary with
different numbers of keywords, the overall perfor-
mance ranking of the topic models remains largely
unaffected by these changes, especially for the
overlap-based metrics. To investigate the effect of
LLMs, we use different latest LLMs for keyword
generation apart from LLAMA3-8B-Instruct, in-
cluding Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023), Phi-3-Mini-128K-Instruct (Abdin et al.,
2024) and Yi-1.5-9B-Chat (Young et al., 2024).
From the results illustrated in Figure 9 (bottom
row), we observe that overlap-based metrics show
minimal variation with different choices of LLMs,
and the performance ranking of the topic models
is unaffected in most cases. These observations
suggest that the overlap-based metrics are less
sensitive to the number of words and the choice
of LLMs.

5.5 Comparisons with Human Annotation

Evaluation Gap with Human Annotation
WALM computes the difference between doc-
uments’ topical words generated by topic models
and an LLM, treating the words from the LLM
as the ground truth. Here, we investigate the gap
between using LLM and human judgment as the
true topical words in WALM. To quantify this
gap, we use the following calculation:

G :=
|S(LLM as Truth)− S(Human as Truth)|

S(Human as Truth)
,

(13)
where S is the WLAM scores we propose in
Section 4.4 (and the contextualized variants in
Section 5.3). Intuitively, the gap function mea-
sures the difference between using ground truth
(e.g., keywords) from the LLM and those from
human annotators. We empirically observe that
topical words from topic models consistently
differ from those identified by humans, so the
denominator in Eq. 13 will not be zero.

As human annotation is expensive for
large-scale investigation, we randomly sample
200 test documents from 20News and DBpedia as
a case study. We engaged three English speakers
as annotators, trained with a few examples, to
provide keywords that capture the main points
of each document. Then, given a trained topic
model, we compute the gap between using the
words from the LLM and human in our metrics
using Eq. 13.
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Figure 9: Sensitivity study. Top row: Performance of topic models in terms of WALM with varying numbers of
keywords. Bottom row: Performance of topic models in terms of WALM with different LLMs. Experiments are
conducted on the 20News dataset with the number of topics set to 50. Error bars represent the standard deviation
(omitted for values smaller than the symbol size).

Figure 10: Evaluation gap between using the LLM and
human judgment as the ‘‘true’’ topical words. Error
bars represent the standard deviation.

The results are illustrated in Figure 10, where
the evaluated model is NVDM with K = 50
trained on 20News and DBpedia, respectively.
We have the following observations based on
the results: (1) Comparing the datasets, the gap
between using human judgment and the LLM in
20News is lower than in DBpedia in most cases.
This indicates that for long documents such as

those in 20News, the topical words generated
by the LLM are closer to human judgment than
in short documents in DBpedia. (2) Comparing
the metrics, Soa exhibits the lowest gap among
WALM metrics, with a gap value of 0.03 and
0.15 on 20News and DBpedia, respectively. This
shows the effectiveness of using the LLM as a
proxy for human judgment when applied inSoa. (3)
Comparing the embeddings, using contextualized
embeddings from the LLM can further narrow the
evaluation gap for Soa and Sot on short documents.

Correlation with Human Annotation We use
an existing annotated dataset, 500N-KPCrowd
(Marujo et al., 2012) for the keyphrase extrac-
tion task (Hasan and Ng, 2014), where each test
document is paired with labeled keywords. We
run LDA on the training documents and infer the
topical words for the test documents, then com-
pute the Pearson’s correlation coefficient between
the WALM scores using the LLM-generated key-
words and the test labels as the ground truth.
The results are illustrated in Table 2. We ob-
serve that (1) using keywords from the LLM in
WALM scores correlates with using the labeled
keyphrases, and (2) the correlation can potentially
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Soverlap Ssynset Soa Sot

5-word suggestion 0.55 0.50 0.57 0.63
10-word suggestion 0.52 0.58 0.56 0.68

Table 2: Pearson’s correlation coefficient be-
tween WALM using LLM-generated keywords
and human annotations as the ground truth on the
500N-KPCrowd dataset.

improve when more keywords are included in the
LLM’s suggestions.

6 Conclusion

In this work, we propose WALM for topic
model evaluation, which takes both topic and
document representation quality into account
jointly. WALM measures the agreement between
the topical words generated by topic models
and those from the LLM for given documents.
The topical words from the LLM are obtained
through keyword prompting or topic-aware key-
word prompting, with the latter tending to
capture higher-level information. To quantify
the agreement between word sets, we propose
different calculations, including overlap-based
and embedding-based metrics. Our experiments
demonstrate that the WALM series effectively
reflect the capability of topic models to pro-
vide semantic summaries of documents. We show
that WALM metrics align with human judgment
and can serve as an informative complementary
method for topic model evaluation. We suggest
that overlap-based metrics demonstrate better sen-
sitivity handling, while embedding-based metrics
show a smaller evaluation gap. A potential risk of
using WALM is that models chasing this metric
only may be affected by the bias of LLMs. To
mitigate the risk, we suggest using WALM with
other metrics together.
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