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Abstract

The rapid proliferation of large language mod-
els (LLMs) has stimulated researchers to seek
effective and efficient approaches to deal with
LLM hallucinations and low-quality outputs.
Uncertainty quantification (UQ) is a key el-
ement of machine learning applications in
dealing with such challenges. However, re-
search to date on UQ for LLMs has been
fragmented in terms of techniques and evalu-
ation methodologies. In this work, we address
this issue by introducing a novel benchmark
that implements a collection of state-of-the-art
UQ baselines and offers an environment for
controllable and consistent evaluation of novel
UQ techniques over various text generation
tasks. Our benchmark also supports the assess-
ment of confidence normalization methods in
terms of their ability to provide interpretable
scores. Using our benchmark, we conduct a
large-scale empirical investigation of UQ and
normalization techniques across eleven tasks,
identifying the most effective approaches.

1 Introduction

Uncertainty quantification (UQ) is increasingly
being recognized as a critical safety component
in AI applications. It enables systems to abstain
from uncertain model predictions, allowing the
associated inputs to be handled through alterna-
tive means—for example, by escalating them to
a human operator (El-Yaniv et al., 2010). This

♦ Equal contribution.

safety mechanism is crucial in areas where the
cost of errors is high, such as healthcare. Be-
sides that, uncertainty scores can be used for
out-of-distribution detection (OOD) (Podolskiy
et al., 2021; Vazhentsev et al., 2023b), annotation
with active learning (Gal et al., 2017; Shelmanov
et al., 2021a; Tsvigun et al., 2022; Rubashevskii
et al., 2023), adversarial attack detection (Smith
and Gal, 2018), reducing model response latency
(Xin et al., 2020; Schwartz et al., 2020; Schuster
et al., 2022; Leviathan et al., 2023; Chen et al.,
2023), among many other applications.

A plethora of UQ methods has been devel-
oped for classification and regression models
(Gal, 2016). There has also been a surge of
research devoted to UQ specifically in the con-
text of encoder-only language models (LMs)
such as BERT (Zhang et al., 2019; He et al.,
2020; Shelmanov et al., 2021b; Xin et al., 2021;
Vazhentsev et al., 2022; Kotelevskii et al., 2022;
Wang et al., 2022; Kuzmin et al., 2023). The rapid
proliferation of large language models (LLMs)
has stimulated researchers to seek efficient and
effective approaches to UQ in text generation
tasks, in an attempt to make LLMs safer to use
in downstream applications. As with any machine
language (ML) model, LLMs can make incorrect
predictions, ‘‘hallucinate’’ by fabricating claims
(Xiao and Wang, 2021; Dziri et al., 2022), or sim-
ply generate low-quality outputs. These problems
stem from the peculiarities of the LLM training ob-
jective, the general nature of ML models in being
susceptible to errors due to the limited amount
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of training data, and the inherent ambiguity
of tasks.

Several methods exist for censoring the out-
puts of LLMs: output filtering using stop-word
lists, post-processing using classifiers (Xu et al.,
2023), fact-checking with external tools (Wang
et al., 2023), output rewriting (Logacheva et al.,
2022), and model alignment via preference opti-
mization (Rafailov et al., 2024). However, these
techniques alone are insufficient to entirely elimi-
nate incorrect/inappropriate outputs. For instance,
fact-checkers target a very narrow sub-problem
and usually require external knowledge sources
such as knowledge bases, which are generally in-
complete. Building an efficient external system to
verify the LLM output for every possible task is
infeasible.

UQ offers a more general solution to the prob-
lem by relying on the model’s internal capabilities
without requiring access to external knowledge,
which also enables the potential for greater com-
putational efficiency. Several recent studies have
focused on developing UQ methods for LLMs in
text generation tasks (Malinin and Gales, 2021;
van der Poel et al., 2022; Kuhn et al., 2023; Ren
et al., 2023; Vazhentsev et al., 2023b; Fadeeva
et al., 2023; Lin et al., 2024; Fadeeva et al., 2024).
However, the current UQ research landscape is
quite fragmented, with many non-comparable and
concurrent studies. Researchers have proposed
highly divergent methods for benchmarking UQ
techniques, making it challenging to consolidate
research findings and draw general conclusions.

In this work, we strive to bridge these disparate
research efforts and resolve some issues found in
their evaluation protocols by developing a bench-
mark for UQ techniques in text generation tasks.
The benchmark is based on the LM-Polygraph
framework (Fadeeva et al., 2023), which imple-
ments state-of-the-art UQ baselines in a unified
way, enabling a large-scale, consistent comparison
of methods developed in recent work. It includes
the tasks of selective question-answering (QA),
selective generation (machine translation [MT]
and text summarization [TS]), and claim-level
fact-checking. For the latter, we developed an au-
tomatic fact-checking pipeline for four languages:
English, Chinese, Arabic, and Russian. Besides
common metrics related to UQ performance, we
also introduce a metric related to the calibration
of confidence scores. It enables the evaluation of
confidence normalization methods according to

their ability to produce interpretable scores. We
propose a strong baseline for normalization and
investigate its performance in comparison to sim-
pler approaches. Using the developed benchmark,
we conduct a large-scale empirical investigation
of UQ and normalization methods across eleven
datasets.

This work both lowers the barrier to entry
into UQ research for individual researchers and
developers, and enables more robust, reliable, and
trustworthy LLM deployment for end users.

Our contributions are as follows:

• We propose a new comprehensive bench-
mark for the evaluation of UQ and un-
certainty normalization methods for LLMs.
The benchmark can assess the calibration
of uncertainty scores and their effectiveness
in selective QA/generation and claim-level
fact-checking (hallucination detection).1

• As part of the benchmark, we develop a novel
multilingual automatic evaluation pipeline
for claim-level UQ methods, focusing on
claim-level fact-checking of LLM outputs
in multiple languages, including English,
Mandarin Chinese, Arabic, and Russian.

• We develop methods for producing normal-
ized and bounded confidence scores that
preserve the performance of raw uncertainty
scores while providing better calibration and
improved interpretability for end users.

• Using the developed benchmark, we per-
form a large-scale empirical evaluation of
state-of-the-art UQ techniques.

2 Uncertainty Quantification Methods

2.1 Background

Uncertainty is a fundamental concept in ML and
statistics, indicating that model predictions have a
degree of variability due to the lack of complete
information. Estimating predictive uncertainty is
crucial for various tasks, such as selective classi-
fication, where the model abstains from making a
prediction if its confidence is insufficient.

Despite recent efforts to establish a common
definition of predictive uncertainty (Kotelevskii
and Panov, 2024; Hofman et al., 2024), multiple
approaches to its quantification exist based on

1All code is published under the MIT license and available
at https://github.com/IINemo/lm-polygraph.
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Type Uncertainty Quantification Method Category Compute Memory
Needs

LevelTraining
Data

W
hi

te
-b

ox

Maximum Sequence Probability (MSP)

Information-based

Low Low No Seq./claim
Perplexity (Fomicheva et al., 2020) Low Low No Seq./claim
Mean/Max Token Entropy (TE; Fomicheva et al., 2020) Low Low No Seq./claim
Pointwise Mutual Information (PMI; Takayama and Arase, 2019) Medium Low No Seq./claim
Conditional PMI (van der Poel et al., 2022) Medium Medium No Seq.
Rényi Divergence (Darrin et al., 2023) Low Low No Seq.
Fisher-Rao Distance (Darrin et al., 2023) Low Low No Seq.
TokenSAR (Duan et al., 2024) Low Low No Seq.
CCP (Fadeeva et al., 2024) Low Low No Seq./claim

Monte Carlo Sequence Entropy (MC-SE; Kuhn et al., 2023)

Sample diversity

High Low No Seq.
Monte Carlo Norm. Seq. Entropy (MC-NSE; Malinin and Gales, 2021) High Low No Seq.
Semantic Entropy (Kuhn et al., 2023) High Low No Seq.
SentenceSAR (Duan et al., 2024) High Low No Seq.
SAR (Duan et al., 2024) High Low No Seq.

Mahalanobis Distance (MD; Lee et al., 2018)

Density-based

Low Low Yes Seq.
Robust Density Estimation (RDE; Yoo et al., 2022) Low Low Yes Seq.
Relative Mahalanobis Distance (RMD; Ren et al., 2023) Low Low Yes Seq.
Hybrid Uncertainty Quantification (HUQ; Vazhentsev et al., 2023a) Low Low Yes Seq.
P(True) (Kadavath et al., 2022) Reflexive Medium Low No Seq./claim

B
la

ck
-b

ox

Number of Semantic Sets (NumSet; Lin et al., 2024)

Sample diversity

High Low No Seq.
Sum of Eigenvalues of the Graph Laplacian (EigV; Lin et al., 2024) High Low No Seq.
Degree Matrix (Deg; Lin et al., 2024) High Low No Seq.
Eccentricity (Ecc; Lin et al., 2024) High Low No Seq.
Lexical Similarity (LexSim; Fomicheva et al., 2020) High Low No Seq.
BB Semantic Entropy High Low No Seq.

LabelProb Information-based Low Low No Seq.

BB P(True) Medium Low No Seq./claim
Verbalized 1S (Tian et al., 2023) Reflexive Low Low No Seq.
Verbalized 2S (Tian et al., 2023) Medium Low No Seq.

Table 1: UQ methods implemented in the benchmark.

probabilities, entropies, distances, risks, etc. From
a practical perspective, any of these scores could
serve as a measure of uncertainty as long as they
accurately reflect the relevant properties and help
to solve reliability tasks.

While there are principled ways of expressing
and reasoning about uncertainty, e.g., in terms
of information theory and Bayesian modeling
(Blundell et al., 2015), they are often difficult to
implement and may lead to worse model perfor-
mance. Therefore, UQ practitioners usually rely
on approximations or even heuristics. For exam-
ple, one popular approach to UQ is ensembling
(Ashukha et al., 2019). For classification tasks,
it is considered a very strong baseline, but it in-
troduces large computational overhead due to the
need for repetitive inference and storing multiple
versions of weights. One of the main research
questions related to UQ that has been addressed in
recent work is how to perform it efficiently while
keeping the performance of the uncertainty scores
reliably high (Shelmanov et al., 2021b).

UQ for text generation tasks represents a greater
challenge than classification. In generation, a
model makes multiple predictions: one for each
token. Therefore, the uncertainty scores for each
token should be somehow aggregated into a single
value. At the same time, in many cases, we would

like to have an uncertainty score not for the entire
output but for text fragments such as individual
claims. Another problem is that the raw probabil-
ity distributions of LLMs reflect multiple types of
uncertainty, some of which might be irrelevant to
a given generation task. Usually, we should not
take into account the uncertainty related to the
choice of the surface forms of the answer, as long
as they convey the same meaning (Kuhn et al.,
2023). Similarly, uncertainty related to the type of
conveyed information might be irrelevant, as long
as it is correct, and we care only about its veracity
(Fadeeva et al., 2024). Finally, LLM predictions
are not conditionally independent (Zhang et al.,
2023), and therefore incorrect claims generated
by an LLM at the start of an output can cause
flown-on hallucinations through the subsequent
generation process.

2.2 Overview of Uncertainty Quantification
Methods for LLMs

Here, we provide an overview of the UQ meth-
ods implemented in our benchmark, as outlined
in Table 1. The methods are implemented us-
ing the LM-Polygraph framework (Fadeeva et al.,
2023), which has been extended to incorporate
several recently proposed approaches. A detailed
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description of the methods can be found in
Appendix A.

There are two major types of techniques:
white-box and black-box. White-box methods re-
quire access to logits, internal layer outputs, or the
LLM itself. Black-box methods only need access
to the generated text, and can easily be integrated
with third-party online services such as OpenAI’s
API. Methods also differ in their computational
requirements: Some pose high computational or
memory overheads, e.g., due to repeated inference,
making them less suitable for practical usage. The
application of some methods can also be hindered
by the need to access the model’s training data.
Finally, different methods might be restricted only
to the UQ of the whole text (sequence level), while
others might also be applicable to text fragments,
such as atomic claims (claim level).

2.2.1 White-Box Methods
Let us consider the input sequence x and the
output sequence y ∈ Y of length L, where Y is
the set of all possible output sequences. Then the
probability of an output sequence given an input
sequence for autoregressive language models is
given by

P (y | x) =
∏L

l=1
P (yl | y<l,x), (1)

where the distribution of each yl is condi-
tioned on all previous tokens in a sequence
y<l = {y1, . . . , yl−1}.

We begin the discussion with information-
based methods, which focus on analyzing to-
ken probability distributions P (yl | y<l,x).
The simplest UQ baseline in this group is
Maximum Sequence Probability (MSP) score:
UMSP(x) = 1 − P (y | x). MSP discards a lot
of information from the LLM probability dis-
tribution, which in theory might affect the UQ
performance. This issue is addressed in various en-
tropy-based techniques (Fomicheva et al., 2020).
Claim-Conditioned Probability (CCP; Fadeeva
et al., 2024) is another method in this category that
aims to eliminate the impact of irrelevant sources
of uncertainty reflected in original P (yl | y<l,x).
We will return to the discussion of CCP in detail
in Section 2.2.3. Information-based methods offer
the advantage of being simple to implement and
cost-effective, while still providing performance
that is often on par with more computationally
demanding techniques.

Information-based methods can be improved
by sampling multiple outputs from the LLM and
aggregating their confidence scores or assessing
their diversity. We refer to these techniques as
sample diversity methods. Malinin and Gales
(2021) suggest to sample several sequences
y(k), k = 1, . . . ,K and compute entropy on the
sequence level through approximate Monte Carlo
estimation (Monte Carlo sequence entropy). This
approach does not take into account that many
sampled responses do not diverge in meaning
and only vary in surface form. This problem is
addressed by Semantic Entropy (SE; Kuhn et al.,
2023), which clusters sampled responses by mean-
ing and computes entropy of the distribution over
obtained clusters. This approach is further ex-
tended in Shifting Attention to Relevance (SAR;
Duan et al., 2024). Instead of clustering, SAR
performs a soft aggregation of word or sentence
probabilities using their semantic similarity. Addi-
tionally, SAR mitigates the influence of irrelevant
tokens and sequence samples.

Density-based methods (Lee et al., 2018; Yoo
et al., 2022; Kotelevskii et al., 2022; Ren
et al., 2023) approximate the training data dis-
tribution using embeddings of training instances.
Usually, this distribution is modeled by one
or multiple Gaussians. Uncertainty is quantified
by estimating the likelihood of the input under
the approximated distribution. As such, they are
good at spotting OOD instances (Vazhentsev
et al., 2023b). They are computationally ef-
ficient at inference time, with no additional
inference steps required. However, they require
access to the model’s training data to fit the ap-
proximated distribution. One can also combine
information-based and density-based methods as
suggested by Vazhentsev et al. (2023a) and Ren
et al. (2023). For example, the Hybrid Uncertainty
Quantification (HUQ) method (Vazhentsev et al.,
2023a) performs a ranking-based aggregation and
leverages the strengths of both information-based
and density-based methods.

Directly asking the model to provide confi-
dence for its responses is another approach to UQ
(Kadavath et al., 2022; Tian et al., 2023). We refer
to such techniques as reflexive. In one of the sim-
plest techniques of this kind P(True) (Kadavath
et al., 2022), the authors generate a response from
an LLM and subsequently ask the same LLM
to verify the answer. The uncertainty score is
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calculated using the probability of the option
‘‘True’’ in the output distribution of the LLM
for the second prompt. Kadavath et al. (2022)
showed that this method achieves better perfor-
mance than MSP at the cost of an additional
inference step on a variety of tasks for large
LLMs (≥70b parameters).

2.2.2 Black-Box Methods

LLM providers often expose models in a black-
box fashion, where users have access to generated
text only. Among sample diversity black-box
methods (also known as consistency-based meth-
ods in the black-box setting Zhang et al., 2024),
we consider Lexical Similarity (Fomicheva et al.,
2020), Number of Semantic Sets, Sum of Eigen-
values of the Graph Laplacian, Degree Matrix,
and Eccentricity. These methods are grounded in
a common methodological framework (Lin et al.,
2024):

• Obtain K responses y(1), . . . ,y(K) for a
particular input x.

• Compute K × K similarity matrix S be-
tween responses, where Sij = s

(
y(i),y(j)

)
for some similarity score s (e.g., NLI or
Jaccard score).

• Analyze the similarity matrix S and aggre-
gate the information in this matrix to compute
the resulting uncertainty score.

Number of Semantic Sets is the simplest method,
which clusters semantically similar responses into
non-overlapping groups and counts the resulting
clusters. A larger number of clusters indicates
greater uncertainty. Other methods do a more so-
phisticated analysis of the matrix S. For example,
Sum of Eigenvalues of the Graph Laplacian com-
putes the sum of eigenvalues of the normalized
matrix S, providing a continuous relaxation of the
Number of Semantic Sets score.

Reflexive techniques for the black-box setting
are enabled by the fact that most popular LLMs
deployed as a service are instruction-tuned and are
able to follow a multi-turn conversation. This al-
lows the user to either prompt a model to explicitly
verbalize its confidence level as part of its response
or request a confidence estimate in a follow-up
conversation turn. Tian et al. (2023) propose sev-
eral variations of such Verbalized UQ methods
and conduct an extensive empirical evaluation.

2.2.3 Claim-Level Extensions

While the methods discussed above provide uncer-
tainty scores for entire generated sequences, it is
often desirable to quantify the uncertainty for short
text fragments (claims) within the LLM output.
Assuming that claims have been extracted from
text sentences and there is a mapping between
them and the tokens in the original text, we can
obtain probability distributions for each token in
each claim. Some aforementioned sequence-level
methods can be modified to operate on the claim
level (Fadeeva et al., 2024), but not all of them. For
example, sampling-based methods cannot work on
the claim level because sampled texts may diverge
too much and miss some claims.

Let C denote a set of token indices correspond-
ing to a claim. To adapt MSP to the claim level, we
can compute the joint probability of tokens solely
within the claim instead of the whole sequence:∏

l∈C P (yl | y<l). In a similar way, we can adapt
Mean/Max Token Entropy, Perplexity, and PMI.
P(True) could be adapted to the claim level by
querying an LLM about the correctness of each
claim in the generated response individually.

Claim-Conditioned Probability (CCP; Fadeeva
et al., 2024) is designed specifically for the
claim-level UQ (but can also be applied at the
sequence level). It assesses the semantic sim-
ilarity between the original claim and perturbed
versions where individual tokens are replaced with
alternative generations. This approach provides a
more nuanced understanding of uncertainty by
considering the potential impact of different word
choices on the overall meaning of the claim.

3 Uncertainty Normalization Methods

Raw uncertainty scores are good for ranking out-
puts by their potential quality but can be confusing
to the end user. To address this issue, we consider
several methods for producing confidence scores
bounded within the range [0, 1].

All methods require fitting on a held-out cal-
ibration set Dcalib = {xi,y

∗
i}Ni=1. We assume

that for each input xi in this set, output yi is
generated by LLM, and some uncertainty score
ui = U(xi) as well as the generation quality score
qi = Q(yi,y

∗
i ) are computed.

Among simple normalization approaches, we
consider linear scaling and quantile scaling, as
they provide simple rules to normalize uncertainty

224



scores in [0, 1] based solely on uncertainty values
ui; see Appendix B for more details.

To convey meaningful information about the
model’s confidence to the end user, the confi-
dence score should not only be bounded within
a fixed interval but also directly reflect the ex-
pected quality of the model’s output. We term this
confidence calibration, as opposed to confidence
normalization. To achieve this, we introduce two
methods referred to as Performance-Calibrated
Confidence (PCC).

The first approach, Binned PCC, splits the cali-
bration set into non-intersecting bins based on the
values of uncertainty ui and considers the confi-
dence to be an estimate of the mean quality of the
outputs in the bin, as measured by some quality
measure of choice. The downside of this approach
is that the ordering of the instances based on raw
uncertainty and normalized confidence scores can
be different, and thus the quality of UQ can vary
substantially and unpredictably.

To address this problem, we propose a second
approach: Isotonic PCC. It fits Centered Isotonic
Regression (CIR; Oron and Flournoy, 2017) on
pairs of uncertainty and quality values from the
calibration set. CIR produces a monotonic piece-
wise linear function, which allows the use of the
relationship between uncertainty and quality while
keeping the order of the inputs intact.

Both approaches in the PCC family produce
calibrated confidence scores as a local estimate
of some quality measure in the neighborhood of
the raw uncertainty estimate. This directly ties
the confidence with the estimated quality of the
output, thus making it more interpretable than raw
uncertainty scores. We provide a more detailed
discussion on the specifics of these methods in
Appendix B.

4 Approaches to Evaluating Uncertainty
Quantification Methods

In general, a valid UQ technique should produce
scores that are well correlated with some measure
of output quality. Thus, the most straightforward
way of comparing different UQ methods is to mea-
sure the rank correlation between some generation
quality metric (e.g., ROUGE-L) and uncertainty
scores (Fomicheva et al., 2020; Ren et al., 2023).
However, this way of evaluating UQ is not very in-
formative of the performance gain that a particular
UQ method achieves.

Another popular evaluation approach is based
on designating outputs as either correct or incor-
rect based on a threshold over a quality metric,
and measuring how well uncertainty scores can
predict the output as being one or the other (Kuhn
et al., 2023; Duan et al., 2024). This reduces
the uncertainty score to being a predictor in a
binary classification task, and thus one can use
ROC-AUC or PR-AUC as a measure of how well
a UQ method performs. The problem with this
approach, which makes results across different
works incomparable, is that it requires selecting
the quality threshold, and its choice has been quite
arbitrary in the literature.

A more comprehensive approach is called re-
jection verification (Malinin and Gales, 2021; Lin
et al., 2024). It does not require thresholding the
quality metric to formulate a binary classification
task. Instead, it computes the average quality of
the outputs for which the uncertainty is relatively
low. By continuously lowering the uncertainty
threshold above which data points are discarded,
one obtains a set of average quality values of
outputs with progressively lower maximum un-
certainty. These pairs of uncertainty thresholds
and associated average output quality give a pre-
diction–rejection curve. The area under this curve
quantifies the overall quality of an UQ method
(Malinin et al., 2017).

One problem with the majority of evaluation
approaches in previous work on UQ for LLMs is
the usage of n-gram output quality metrics such as
ROUGE-L, which often do not reflect the actual
quality of the generated output. For example, this
discrepancy occurs when the gold standard answer
and the LLM output differ only by a negation to-
ken. In this case, n-gram metrics would rank such
a model answer higher than it deserves, failing to
capture the substantial semantic difference caused
by the negation. In addition to n-gram metrics,
we suggest using the recently proposed Align-
Score (Zha et al., 2023), where the gold-standard
answer and LLM output are compared by an-
other LLM. This metric has a higher correlation
with human annotators due to its ability to cap-
ture deeper semantic similarities and differences
between texts.

Another issue with evaluation protocols in re-
cent works is their tendency to overlook sim-
ple yet effective baselines. For instance, MSP
often proves difficult to surpass in tasks with
short outputs. Many studies neglect this baseline,
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favoring comparisons with entropy-based metrics
(He et al., 2020; Xiao and Wang, 2021; Kuhn et al.,
2023), which often perform worse. By not consid-
ering this straightforward baseline, the evaluation
protocols may give an incomplete picture of UQ
performance.

We also note that research on UQ for text frag-
ments, such as sentences and claims, has been
limited. Furthermore, the evaluation protocols for
this setting exhibit significant limitations. For ex-
ample, Manakul et al. (2023) manually annotated
texts generated by one LLM, then evaluated the
UQ performance for a proxy model by inferring
the probability distributions of the tokens for the
fixed output. We argue that such an approach in-
troduces a big discrepancy between the generated
text and what a proxy LLM actually wants to gen-
erate, which results in biased UQ performance.
In this work, we mitigate this problem by build-
ing an automatic evaluation pipeline for UQ in
claim-level fact-checking for various languages.
It allows unrestricted generation from LLMs and
leverages LLM-as-a-judge (Zheng et al., 2023) in-
stead of manual annotation to support experiments
with various LLMs.

5 Evaluation Benchmark

Our benchmark features three sections: (1)
evaluation of UQ performance in selective
QA/generation; (2) evaluation of UQ perfor-
mance in fact-checking; (3) evaluation of confi-
dence calibration.

5.1 Selective QA / Generation
In this section of the benchmark, we evaluate
how well the uncertainty scores of the considered
methods detect low-quality LLM generations.

Datasets. For selective QA, we use four
datasets: CoQA (Reddy et al., 2019) with
free-form answers about conversations; Trivia-
QA (Joshi et al., 2017) with complex and com-
positional questions without context; MMLU
(Hendrycks et al., 2021), a multitask dataset struc-
tured as multiple-choice QA; and GSM8k (Cobbe
et al., 2021), consisting of grade school math word
problems. The first two datasets have been used
widely in UQ research, while the last two are pop-
ular datasets for evaluating the English-language
generation quality of LLMs. For selective genera-
tion, we use two MT datasets: WMT-14 French to
English (Bojar et al., 2014) and WMT-19 German

Dataset Type
Num. Instances

Avg. Avg.
Language

train/test
Document Target

Len.
CoQA QA 7,199 / 500 405.9 4 English
TriviaQA QA 138,384 / 17,210 18.8 4.3 English
MMLU QA 99,842 / 14,042 64.9 3 English
GSM8k QA 7,473 / 1,319 64.2 128.6 English
XSum ATS 204,045 / 11,334 544.2 30.4 English
WMT’14 NMT 40.8M / 3,003 49.3 32.9 Fr.-to-Eng.
WMT’19 NMT 34.8M / 2,998 52.5 33.5 Ger.-to-Eng.

Table 2: The statistics of the benchmark datasets.
The lengths in tokens are provided according to
the Mistral 7B v0.2 tokenizer.

to English (Barrault et al., 2019), and one text
summarization dataset: XSum (Narayan et al.,
2018).

For each dataset, we limit the evaluation set
to 2,000 instances, except for MMLU, where
we restrict the number of questions to 100 per
subject. We also reserve 1,000 instances from
the training set for UQ techniques that require
‘‘pre-training’’, such as density-based methods.
The detailed statistics about the datasets are given
in Table 2.

We primarily use prompt formats from the
lm-evaluation-harness framework (Gao et al.,
2023). For TriviaQA, MMLU, and GSM8k, we
use a 5-shot prompt. For XSum, WMT-14 Fr-En,
and WMT-19 De-En, we use a zero-shot prompt.
For CoQA, we use a few-shot prompt with all
preceding questions in the conversation before the
target question. The maximum length of the gen-
erated sequence in selective QA and generation
tasks was set to the 99th percentile of the target
sequence length in the respective training set.

The datasets of the benchmark could be found
in the HuggingFace repository.2

Metrics. Following previous work on UQ in text
generation (Malinin and Gales, 2021; Vazhentsev
et al., 2022), we compare the methods using
the Prediction Rejection Ratio (PRR) metric
(Malinin et al., 2017). Consider a test dataset
D = {(xj ,y

∗
j)}. Let yj be the output generated

by an LLM for an input xj and uj = U(xj) be
the uncertainty score of a prediction. The rejection
curve indicates how the average quality Q(yj ,y

∗
j)

of the instances with uncertainty uj < a depends
on the value of the rejection parameter a. PRR
computes the ratio of the area between the re-
jection curves for a considered uncertainty score
and a random score and the area between the

2https://huggingface.co/LM-Polygraph.
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oracle (the best possible uncertainty that sorts in-
stances according to their text quality metric) and
a random score:

PRR =
AUCunc − AUCrnd

AUCoracle − AUCrnd
. (2)

A higher PRR indicates a better uncertainty score.
The choice of the generation quality measure

Q(yj ,y
∗
j) depends on the dataset. In contrast

to previous work that employs n-gram-based
measures, our benchmark primarily relies on
LLM-based metrics, such as AlignScore (Zha
et al., 2023) and COMET (Rei et al., 2020), while
retaining n-gram measures for comparability with
prior research. For MT datasets, we use COMET
and AlignScore. For GSM8K and MMLU, we
use accuracy. For CoQA and TriviaQA, we use
AlignScore. For XSum, we use ROUGE-L and
AlignScore.

When calculating AlignScore for QA outputs,
we treat the model’s generations as context and a
ground truth response as the claim. This approach
is designed to accurately score instances where the
model mentions the correct entity in its response
but includes an additional explanation or rephrases
the correct answer differently from the ground
truth, which would otherwise lead to failure in
exact match scoring. This is especially important
in evaluation on the CoQA dataset.

5.2 Claim-Level Fact-Checking

In this part of the benchmark, we evaluate
claim-level UQ techniques and their ability to spot
hallucinations on the task of generating biogra-
phies, as proposed by Fadeeva et al. (2024). The
difference over previous work such as Manakul
et al. (2023) is that in our benchmark, we perform
unrestricted generation using the LLM, which is
much closer to the practical use case. However,
this raises the problem that each generation is
unique and needs to be reannotated, posing a
significant challenge for human annotation.

Evaluation Pipeline. We implement an au-
tomatic benchmarking pipeline to enable the
evaluation of UQ methods on unrestricted LLM
outputs. The pipeline supports English, Mandarin
Chinese, Arabic, and Russian. It is intended to
work with any modern LLM that has function-
ality over these languages. The main feature of
our pipeline is its full automation without needing
human labeling at any step. The automation is

Language Acc.
F1

# claims
% of Fleiss

score false Kappa
claims

English, Mistral-7B-v0.1 0.98 0.93 97 16.5% 0.90
Arabic, Jais 13B 0.89 0.80 132 28.3% 0.86
Russian, Vikhr 7B-0.2 0.89 0.80 275 15.6% 0.85
Chinese, Yi 7B 0.89 0.89 100 35.0% 0.87

Table 3: Classification metrics of GPT-4 anno-
tation against manual annotation in claim-level
fact-checking (unsupported claims represent a
positive class) and annotation agreement (Fleiss
Kappa) using True/False labels from 3 annotators.

achieved via extensive use of GPT-4. Note that
GPT-4 is used only as a tool for benchmark-
ing, while UQ is performed solely based on the
particular LLM in question.

Using a LLM, e.g., Mistral 7b, we first gener-
ate responses to biography prompts such as Give
me a biography of <person name>. The set of
people was generated by asking GPT-4 to list the
most famous people since 1900. The maximum
output length is 256 tokens. The generated texts
are then decomposed into atomic claims, with
each claim mapped to a corresponding subset of
tokens from the original LLM output. The de-
composition and mapping are done using GPT-4
with a language-specific prompt. Usually, about
5% of claims cannot be mapped to tokens be-
cause GPT-4 abstains from responding or outputs
words not present in the original text. The further
evaluation considers only successfully matched
claims.

The annotation of the extracted claims is
also done automatically using GPT-4. We use
language-specific prompts that facilitate chain-
of-thought reasoning to ask whether the presented
claims are supported, unsupported, or unknown.
Usually, the percentage of claims classified as
unknown is negligible; these claims are discarded
from the evaluation. To assess the quality of au-
tomatic annotation, we manually annotated a ran-
dom subset of claims for each language.3 Table 3
summarizes the binary performance metrics of
GPT-4 against human labels and presents anno-
tation agreement scores. The results indicate that
GPT-4 is a reliable evaluator, capable of serving
as a ‘‘ground truth’’ for assessing UQ techniques.

3Human annotations are available at https://
huggingface.co/datasets/LM-Polygraph/bio-claim
-human-anno.
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Metrics. The performance of the claim-level UQ
methods is evaluated using ROC-AUC and PR-
AUC with unsupported claims as a positive class.

5.3 Effect of Uncertainty Normalization

This section of the benchmark is designed to
analyze how uncertainty normalization procedures
(as presented in Section 3) affect the performance
of the scores and their correlation with the qual-
ity of the generated text.

Datasets. The reserved training partitions of the
datasets from the selective QA and generation sec-
tion are used as calibration sets for normalization
methods. Evaluation can be performed either on
the concatenated test partitions or on each of them
individually.

Metrics. The benchmark offers two metrics:
PRR before and after normalization to ensure
that performance does not degrade; and a met-
ric similar to ECE that measures ‘‘calibration’’,
i.e., the ability of normalized uncertainty scores
to represent the expected quality of the out-
put in a bounded range—Mean Squared Error
(MSE) between a normalized quality metric and
a confidence score. Lower MSE indicates better
confidence ‘‘calibration’’.

5.4 Models

For selective QA / generation, we conducted ex-
periments with white-box models that provide
access to logits and their internal states. For se-
lective QA, we also conducted experiments with
black-box models that provide only the generated
text. Black-box models represent the scenario
where LLMs are deployed as services and are
available only via an API (e.g., ChatGPT and
models deployed on platforms like HuggingFace).
For selective QA/generation in the white-box
setting, we use Mistral 7B v0.2 (Jiang et al.,
2023) and Stable LM 2 12B (Bellagente et al.,
2024) base models without instruction tuning. For
black-box evaluation on selective QA, we use
the corresponding instruction-tuned versions of
these models and also GPT-4o-mini. The experi-
ments on claim-level fact-checking are conducted
using the instruction-tuned versions of Mistral
7B-v0.1 (Jiang et al., 2023) (for English), Jais
13B (Sengupta et al., 2023) (for English and
Arabic), Vikhr 7B-0.2 (Nikolich et al., 2024) (for
Russian), and Yi 7B (for Chinese). The detailed

generation hyperparameters can be found in the
code base. The text generation quality of the mod-
els is presented in Table 14 in Appendix E.

For white-box models, we use continuation-
style prompts. For black-box models with ver-
balized UQ techniques, we use prompts specified
by Tian et al. (2023), and for other black-box
UQ methods, we use general instruction-oriented
prompts. For both model types, we compute the
same metrics. However, for black-box models
with verbalized UQ methods, we perform more
extensive output post-processing to extract the
model’s predictions and disentangle them from
reported confidence.

6 Experiments

Using our benchmark, we evaluated the imple-
mented UQ and normalization methods.

6.1 Selective QA and Generation
Selective QA. Tables 6 and 7 in Appendix C
present detailed results on the selective QA task
for white-box models. Figures 2 and 1 present the
aggregated results.

Despite being a simplistic baseline, MSP
demonstrates strong performance. On MMLU, it is
the best method for Stable LM and the second best
for Mistral. It achieves the second-best result on
CoQA for Mistral and outperforms entropy-based
methods in most cases. For GSM8k, MSP sub-
stantially lags behind the best techniques, but still
outperforms entropy-based methods for Mistral.

Among information-based methods, it is also
worth noting CCP as it demonstrates the best
performance on MMLU and GSM8k for Mistral
and has the second best result on TriviaQA and
MMLU for Stable LM.

The majority of density-based methods demon-
strate poor results across all tasks. One exception
is HUQ-MD, which is a hybrid method that
leverages strengths from both information- and
density-based approaches. HUQ-MD delivers
strong performance across all tasks and LLMs,
achieving the best results on GSM8k for Sta-
ble LM with a substantial improvement over the
nearest competitor.

State-of-the-art methods based on sample di-
versity typically perform well on CoQA and
TriviaQA. The black-box method based on the de-
gree matrix, DegMat with NLI similarity metric,
achieves the best results for both LLMs. However,
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Figure 1: Mean PRR ↑ aggregated over all selective QA tasks for each black-box LLM separately (the lower the
better). Column Mean corresponds to the mean PRR across all LLMs.

Figure 2: Mean PRR ↑ aggregated over all selective QA tasks for each white-box LLM separately (the lower the
better). Column Mean corresponds to the mean PRR across all LLMs.

for MMLU, these methods fall significantly be-
hind information-based techniques. This can be
attributed to the nature of the multiple-choice QA
task in MMLU, where LLMs are constrained to
choose from a limited set of options and generate
very short responses, limiting their capacity to ex-
ploit sample diversity. For GSM8k, the results are
mixed: Methods based on sample diversity per-
form similarly to information-based approaches.
In the sample diversity group, it is worth also high-

lighting SAR, which demonstrates strong over-
all performance, achieving the second-best result
on GSM8k and the best result on TriviaQA for
Mistral.

The reflexive method P(True) in most cases
is not better than random. This could be due
to the used LLMs being too small to develop
an awareness of their own knowledge gaps, a
capability observed in larger LLMs (Kadavath
et al., 2022).
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Figure 3: The mean PRR ↑ aggregated over all selective generation tasks for each LLM separately (the lower the
better). Column Mean corresponds to the mean PRR across all LLMs.

Figure 1 presents the mean PRRs for each
white-box model individually, as well as the mean
PRR across both models. The best methods overall
in selective QA for white-box models are CCP,
MSP, HUQ-MD, SAR, and Lexical Similarity.

Tables 8 to 10 in Appendix C present evalua-
tion results for the instruction-tuned LLMs treated
as black-box models. For all LLMs, the pattern
is similar. On the CoQA and TriviaQA datasets,
empirical information-based and sample diversity
methods confidently outperform reflexive tech-
niques: P(True) and verbalized uncertainty. On
MMLU, this pattern is reversed: Verbalized UQ
methods notably outperform other techniques. For
GPT-4o-mini, improvements are consistent across
the majority of verbalized uncertainty methods.
For Stable LM and Mistral, they are still the
best, though many of them perform comparably
to sample diversity techniques.

Averaging results across all datasets and mod-
els (see Figure 2) still places sample diversity-
based methods at the top. Three best techniques
in this experiment—EigValLaplacian, DegMat,
and Eccentricity—use the NLI-based similarity
measure for capturing the semantic diversity of
responses.

Selective Generation. Tables 11 and 12 in
Appendix C present detailed results on the selec-
tive generation task for white-box LLMs: Stable
LM 2 12B and Mistral 7B v0.2, respectively.
For both models, on the text summarization task,
the best results are achieved by sample-diversity
techniques in terms of both metrics. The majority

UQ Method Output length in symbols
1–2 3–6 7–24 25–85 86–138 139–210 211–1k

MSP 0.71 0.62 0.67 0.57 0.54 0.38 0.26
Perplexity 0.71 0.59 0.71 0.56 0.41 0.27 0.26
Mean Token Entropy 0.68 0.30 0.54 0.47 0.39 0.22 0.17
PMI 0.44 0.19 0.11 −0.24 −0.28 −0.17 0.0
Conditional PMI 0.26 0.04 −0.21 −0.12 −0.12 −0.11 −0.12
Rényi Divergence 0.05 0.05 −0.54 0.18 0.21 −0.06 −0.15
Fisher-Rao Distance 0.08 0.06 −0.31 −0.07 0.09 0.21 0.23
TokenSAR 0.70 0.59 0.70 0.56 0.40 0.26 0.26
CCP 0.59 0.63 0.62 0.54 0.56 0.50 0.36
MC−SE 0.62 0.39 0.57 0.54 0.68 0.60 0.33
MC−NSE 0.62 0.45 0.67 0.54 0.57 0.52 0.36
Semantic Entropy 0.64 0.45 0.66 0.63 0.72 0.68 0.44
SentenceSAR 0.68 0.57 0.71 0.53 0.28 0.22 0.23
SAR 0.67 0.55 0.73 0.64 0.68 0.67 0.52
MD − Decoder 0.12 −0.11 −0.48 −0.14 −0.23 −0.18 −0.14
RDE − Decoder −0.06 0.14 0.16 −0.11 −0.22 0.05 0.09
RMD − Decoder −0.10 0.02 −0.05 0.14 0.12 −0.03 −0.14
HUQ-MD − Decoder 0.63 0.51 0.40 0.02 −0.03 0.01 0.10
P(True) −0.05 −0.22 −0.51 −0.23 −0.37 −0.16 −0.03
NumSet 0.60 0.49 0.62 0.41 0.48 0.47 0.17
EigValLaplacian NLI Entail. 0.63 0.54 0.71 0.71 0.77 0.77 0.62
EigValLaplacian NLI Contra. 0.55 0.52 0.65 0.58 0.58 0.49 0.22
EigValLaplacian Jaccard 0.60 0.49 0.68 0.61 0.69 0.66 0.51
DegMat NLI Entail. 0.64 0.56 0.74 0.71 0.77 0.78 0.63
DegMat NLI Contra. 0.48 0.54 0.62 0.58 0.58 0.47 0.20
DegMat Jaccard 0.64 0.53 0.7 0.62 0.7 0.68 0.55
Eccentricity NLI Entail. 0.60 0.50 0.71 0.7 0.77 0.77 0.64
Eccentricity NLI Contra. 0.55 0.52 0.67 0.58 0.57 0.47 0.21
Eccentricity Jaccard 0.60 0.46 0.66 0.59 0.68 0.64 0.49
Lexical Similarity Rouge-L 0.64 0.55 0.71 0.64 0.72 0.71 0.57
Lexical Similarity BLEU 0.64 0.52 0.65 0.59 0.69 0.68 0.56

Table 4: PRR↑ with AlignScore aggregated
over all selective QA/generation tasks and both
white-box LLMs. The results are grouped by
output length, with each interval representing
approximately the same number of instances.

of information-based techniques have negative or
near-zero PRR in most of the cases, which in-
dicates that they perform similarly or worse than
random. One exception is the performance of Con-
ditional PMI in terms of ROUGE-L-based PRR,
which is drastically better than the performance
of all other methods. This discrepancy might be
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UQ Method English, Mistral 7b English, Jais 13b Arabic, Jais 13b Russian, Vikhr 7b Chinese, Yi 6b
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

MSP 0.65 ± 0.03 0.33 ± 0.01 0.65 ± 0.03 0.41 ± 0.01 0.6 ± 0.02 0.2 ± 0.01 0.59 ± 0.02 0.74 ± 0.04 0.51 ± 0.01 0.17 ± 0.01
Perplexity 0.62 ± 0.02 0.29 ± 0.01 0.62 ± 0.02 0.35 ± 0.01 0.62 ± 0.02 0.23 ± 0.01 0.48 ± 0.01 0.63 ± 0.02 0.5 ± 0.01 0.16 ± 0.01
Max Token Entropy 0.64 ± 0.03 0.33 ± 0.01 0.61 ± 0.02 0.38 ± 0.01 0.58 ± 0.02 0.24 ± 0.01 0.49 ± 0.01 0.67 ± 0.03 0.52 ± 0.01 0.19 ± 0.01
PMI 0.44 ± 0.01 0.19 ± 0.01 0.45 ± 0.01 0.23 ± 0.01 0.47 ± 0.01 0.14 ± 0.01 0.39 ± 0.01 0.61 ± 0.02 0.5 ± 0.01 0.17 ± 0.01
CCP 0.74 ± 0.04 0.46 ± 0.01 0.68 ± 0.03 0.47 ± 0.01 0.73 ± 0.04 0.3 ± 0.01 0.67 ± 0.03 0.8 ± 0.04 0.61 ± 0.02 0.25 ± 0.01
P(True) 0.62 ± 0.02 0.3 ± 0.01 0.55 ± 0.02 0.3 ± 0.01 0.53 ± 0.01 0.16 ± 0.01 0.64 ± 0.03 0.75 ± 0.04 0.61 ± 0.02 0.25 ± 0.01

Table 5: ROC-AUC↑ and PR-AUC↑ (with unsupported claims as the the positive class) on the
claim-level fact-checking benchmark. Warmer colors indicate better results.

due to limitations of the ROUGE-L metric for
measuring the quality of text summarization.

On MT, in terms of PRR-COMET, there is no
clear winner. For Stable LM, on both datasets SAR
achieves the best results, while for Mistral, basic
information-based techniques are the best. How-
ever, in terms of PRR-AlignScore, the black-box
techniques based on the NLI similarity are clear
winners. It is worth highlighting DegMat, as in
terms of PRR-AlignScore, it outperforms all tech-
niques for all considered datasets for Stable LM
and achieves the second best results for Mistral.

Figure 3 presents the mean PRR values for each
white-box model individually, as well as the mean
PRR across both models. The best methods are
sample diversity techniques: SAR, DegMat, and
Semantic Entropy. The best white-box techniques,
SAR and Semantic Entropy, are closely competing
with black-box methods. The MSP baseline trails
behind in this task but still achieves reasonable
performance.

Output Length Impact. Table 4 presents the
aggregated PRR scores for the two white-box
LLMs across all datasets, categorized by the
length of their outputs. For short generations (<7
symbols), information-based methods (Maximum
Probability, Perplexity, Mean Token Entropy,
CCP, and TokenSAR) perform the best. Con-
versely, for longer outputs, sample diversity
methods, especially black-box techniques based
on NLI similarity, achieve superior performance.
SAR, despite being inferior to black-box tech-
niques for long outputs and slightly inferior to
information-based techniques for short outputs,
demonstrates the most robust results across all
output lengths.

6.2 Fact-Checking

In the fact-checking evaluation, we generated bio-
graphies for 100 individuals across five languages:
English (using Mistral 7B-v0.1 and Jais 13B),
Arabic (using Jais 13B), Russian (using Vikhr

Figure 4: MSE↓ between AlignScore and confidence
scores obtained by various normalization methods.
Scorers are fitted on combined train partitions of all
datasets, and MSE is averaged over their combined test
partitions.

7B-0.2), and Chinese (using Yi 6B). From biogra-
phies in English generated using Mistral 7B, we
have extracted 2,499 claims; from biographies in
English generated by Jais 13B – 1,100 claims; in
Arabic – 1,031 claims; in Russian – 3,104 claims,
and in Chinese – 2,703 claims. The percentage of
claims annotated as unsupported by the automatic
pipeline was 20.5% for Mistral 7B-v0.1 and 16.7%
for Jais 13B in English, 17.4% in Arabic, 58.6% in
Russian, and 20.0% in Chinese. No more than 8%
of claims were classified as unknown across all
models and languages and were discarded from
the evaluation. Table 5 shows the performance
of UQ techniques in fact-checking obtained using
the automatic evaluation pipeline. For all tested
models and languages, except Chinese, CCP con-
sistently achieves the best performance, surpass-
ing other methods. For Chinese, CCP and P(True)
yield comparable results across both evaluated
metrics. This may be attributed to peculiarities of
the Yi model resulting from specific fine-tuning,
which enhances the model’s ability to assess its
own confidence.
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6.3 Effect of Uncertainty Normalization

The calibration (MSE) of confidence scores
obtained by various normalization methods is pre-
sented in Figure 4. Binned and isotonic PCC
confidently outperform the linear and quantile
normalization for almost all of the considered
UQ techniques. To verify that the quality of the
normalized scores does not degrade after nor-
malization, we also evaluate their performance
in selective QA/generation tasks (see Table 13
in Appendix D). We compute PRR for raw
and normalized uncertainty scores and analyze
the difference. Our observations indicate that
scores normalized using linear, quantile, and iso-
tonic PCC methods perform similarly to the raw
scores, which is anticipated due to their monotonic
properties.

7 Conclusion

In this work, we proposed a comprehensive
benchmark for evaluating UQ techniques in text
generation tasks. The empirical investigation con-
ducted on the developed benchmark provides
several useful insights. Overall, methods based
on sample diversity perform well across selec-
tive QA/generation tasks. However, for shorter
answers, we recommend using information-based
methods because they often perform on par with
diversity-based techniques, while introducing
much less computational overhead. Specifi-
cally, for multiple-choice QA, information-based
methods MSP, Perplexity, and CCP would be
substantially superior. For the tasks that assume
longer outputs, methods based on sample diver-
sity such as Semantic Entropy, DegMat, or Lexical
Similarity are preferable. It is worth highlighting
that SAR consistently stands out as one of the
most effective methods for short and long outputs.
Reflexive methods in general do not demonstrate
good performance. Only for big LLMs, such as
GPT-4o-mini, it might be reasonable to use ver-
balized techniques. For the fact-checking task, the
best method is CCP: It demonstrates the best re-
sults and is computationally efficient. We should
also note that MSP appears to be a very strong and
robust baseline across all tasks and should not be
discarded from the evaluation protocols. For gen-
erating human-interpretable confidence scores, we
suggest normalization based on isotonic PCC as

it improves confidence calibration and does not
degrade performance in terms of PRR.
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A Detailed Description of Uncertainty
Quantification Methods

Here, we provide details of UQ methods imple-
mented in LM-Polygraph that were omitted from
the main part of the paper; see also Table 1. For
ease of notation, we will write all the uncertainty
measures as functions U(x) of an input x, though
they might depend on various other instances like
a generated output y.

A.1 White-Box Methods

A.1.1 Information-Based Methods

Length-normalized log probability computes the
average negative log probability of generated
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tokens. If the score is exponentiated, it corre-
sponds to perplexity:

UPerp(x) = exp

{
− 1

L
logP (y | x)

}
,

while it is convenient also to denote
length-normalized sequence probability by
P̄ (y | x) = exp

{
1
L logP (y | x)

}
.

Mean token entropy simply averages entropy of
each token in the generated sequence:

UHT
(x) =

1

L

∑L

l=1
H(yl | y<l,x),

where H(yl | y<l,x) is an entropy of the token
distribution P (yl | y<l,x).

Generalizing length-normalized log probabil-
ity, TokenSAR (Duan et al., 2024) computes the
weighted average of the negative log probability
of generated tokens based on their relevance for
the entire generated text. For a given sentence
similarity function g(·, ·) and token relevance
function RT (yk,y,x) = 1− g(x∪y,x∪y \ yk),
the resulting estimate is given by the following
formula:

UTokenSAR(x) = TokenSAR(y,x) =

−
∑L

l=1
R̃T (yl,y,x) logP (yl | y<l,x),

where R̃T (yk,y,x) =
RT (yk,y,x)∑L
l=1 RT (yl,y,x)

.

Takayama and Arase (2019) proposed an
uncertainty score based on Pointwise Mutual In-
formation (PMI) between generation conditioned
on the prompt and unconditional generation:

UPMI(x) =
1

L

∑L

l=1
log

P (yl | y<l)

P (yl | y<l,x)
.

van der Poel et al. (2022) suggested a modifica-
tion of this approach called Conditional Pointwise
Mutual Information (CPMI) that considers only
the probabilities of those tokens, for which the
entropy of the conditional distribution is above a
certain threshold τ :

UCPMI(x) = − 1

L

L∑
l=1

logP (yl | y<l,x)

+
λ

L

∑
l : H(yl|y<l,x)≥τ

logP (yl | y<l),

where λ > 0 is another tunable parameter.

Rényi divergence (Darrin et al., 2023) com-
putes the divergence between the probability
distribution for each token and the uniform
distribution:

URD(x) =

1

L

∑L

l=1

1

α− 1
log

∑N

i=1

P (yi | y<l,x)
α

qα−1
i

,

where α > 0 is a tunable parameter, N is the
number of tokens in the vocabulary, and q =[
1
N , . . . , 1

N

]
is a probability vector with a uniform

distribution over the vocabulary.
The other way to compute the distance be-

tween probability distributions is the Fisher-Rao
distance (Darrin et al., 2023):

UFR(x) =

1

L

∑L

l=1

2

π
arccos

∑N

i=1

√
P (yi | y<l,x) · qi.

A.1.2 Methods Based on Sample Diversity

We can compute the entropy on the sequence
level E

[
− logP (y | x)

]
, where the expectation is

taken over the sequences y randomly generated
from the distribution P (y | x). Unfortunately,
while for token level, we have an exact way of
computing the entropy, for the sequence level,
we need to adhere to some approximations. In
practice, we can use Monte-Carlo integration, i.e.
generate several sequences y(k), k = 1, . . . , K
via random sampling and compute Monte Carlo
Sequence Entropy:

UHS
(x) = − 1

K

∑K

k=1
logP (y(k) | x). (3)

We can replace P (y(k) | x) with its length-
normalized version P̄ (y(k) | x) leading to a more
reliable uncertainty measure in some cases.

Semantic Entropy (Kuhn et al., 2023) aims to
deal with the generated sequences that have sim-
ilar meanings while having different probabilities
according to the model, which can significantly af-
fect the resulting entropy value (3). The idea is to
cluster generated sequences y(k), k = 1, . . . , K
into several semantically homogeneous clus-
ters Cm,m = 1, . . . ,M with M ≤ K with
bi-directional entailment algorithm and average
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the sequence probabilities within the clusters. The
resulting estimate of entropy is given by:

USE(x) = −
∑M

m=1

|Cm|
K

log P̂m(x),

where P̂m(x) =
∑

y∈Cm P (y | x).
SentenceSAR (Duan et al., 2024) enlarges the

probability of those sentences that are more rele-
vant and convincing than others. Given sentence
relevance measure g

(
y(j),y(k)

)
ofy(j) concerning

to y(k), SentenceSAR is computed as:

RS(y
(j),x)=

∑
k �=j

g
(
y(j),y(k)

)
P
(
y(k) | x

)
.

USentSAR(x) =

− 1

K

K∑
k=1

log
(
P (y(k) | x) + 1

t
RS(y

(k),x)
)
,

(4)
where t is a temperature parameter used to control
the scale of shifting to relevance.

Combining SentenceSAR and TokenSAR re-
sults in a new method SAR (Duan et al.,
2024). In particular, in equation (4), the gen-
erative probability P (y | x) is replaced with
the token-shifted probability P ′(y | x) =
exp{−TokenSAR(y,x)}.

A.1.3 Density-Based Methods
Leth(x) be a latent representation of an instancex.
The Mahalanobis Distance (MD; Lee et al., 2018)
method fits a Gaussian centered at the training data
centroid μ with an empirical covariance matrix Σ.
The uncertainty score is the Mahalanobis distance
between h(x) and μ:

UMD(x) =
(
h(x)− μ

)T
Σ−1

(
h(x)− μ

)
.

We suggest using the last hidden state of the
encoder averaged over non-padding tokens or the
last hidden state of the decoder averaged over all
generated tokens as h(x).

The Robust Density Estimation (RDE; Yoo
et al., 2022) method improves over MD by
reducing the dimensionality of h(x) via the
PCA decomposition. Additionally, the covariance
matrixΣ for each class is computed using the Min-
imum Covariance Determinant estimation method
(Rousseeuw, 1984). The uncertainty score is com-
puted as the Mahalanobis distance but in the space
of reduced dimensionality.

Ren et al. (2023) showed that it might be use-
ful to adjust the Mahalanobis distance score by
subtracting from it the other Mahalanobis distance
MD0(x) computed for some large general-purpose
dataset covering many domains (e.g., C4; Raffel
et al., 2020). The resulting Relative Mahalanobis
Distance score is

URMD(x) = MD(x)− MD0(x).

A.2 Black-Box Methods

A.2.1 Methods Based on Sample Diversity
Sample diversity methods sample multiple predic-
tions from a LLM for the same prompt and analyze
the diversity of the outputs across different sam-
ples. The idea is that if the LLM consistently
outputs similar answers, it is confident, whereas
varying outputs indicate high uncertainty. Since
the LLM might output the same meaning in var-
ious surface forms by rephrasing its answers, the
approaches from this category usually construct a
matrixS = (sij) representing similarities between
responses based on some semantic similarity mea-
sure and then cluster the responses into groups of
answers with the same meanings.

Following Lin et al. (2024), we consider two
similarity measures for responses. The first one is
the Jaccard similarity s(y,y′) = |y∩y′|/|y∪y′|,
where the sequences y and y′ are considered
just as sets of words. Another similarity measure
is based on Natural Language Inference (NLI).
For each pair of input sequences, an NLI model
provides two probabilities: p̂entail(y,y

′)—the de-
gree of entailment between the sequences and
p̂contra(y,y

′)—the degree the contradiction be-
tween them. The similarity between sequences y
and y′ is computed as sentail(y,y

′) = p̂entail(y,y
′)

or scontra(y,y
′) = 1 − p̂contra(y,y

′). Following
Kuhn et al. (2023), we use the DeBERTa-large
NLI model (He et al., 2021).

One of the simplest techniques that leverages
the idea of meaning diversity for UQ is Number of
Semantic Sets. We adopt an iterative approach by
sequentially examining responses from the first
to the last while making pairwise comparisons
between them (each pair has indexes j1 and j2,
j2 > j1). The number of semantic sets initially
equals the total number of generated answers K.
If the condition p̂entail(yj1 ,yj2) > p̂contra(yj1 ,yj2)
and p̂entail(yj2 ,yj1) > p̂contra(yj2 ,yj1) is fulfilled
we put this two sentences into one cluster. The
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computation is done for all the pairs of answers,
and then the resulting number of distinct sets
UNumSemSets is reported. This measure is simple
yet it has many limitations. It can only take integer
values and it assumes that the semantic equiva-
lences derived from the NLI model are always
transitive.

Sum of Eigenvalues of the Graph Laplacian
(Lin et al., 2024) represents a more advanced
approach from this category. Let’s consider a simi-
larity matrix Sj1j2 =

(
s(yj1 ,yj2)+s(yj2 ,yj1)

)
/2.

Averaging is done to obtain better consistency.
The Laplacian for matrix S is given by the
following formula L = I − D− 1

2SD− 1
2 , where

D is a diagonal matrix and Dii =
∑K

j=1 Sij .
Consequently, the following formula is derived:
UEigV =

∑K
k=1 max(0, 1− λk), where λk are the

eigenvalues of matrixL. This value is a continuous
analogue of UNumSemSets.
UEigV and UNumSemSets have a common dis-

advantage: they can not provide uncertainty for
each answer. Lin et al. (2024) demonstrates that
we can extract it from the diagonal Degree Ma-
trix D computed above. The idea is that elements
on the diagonal of D are sums of similarities
between the given answer and all other answers,
and the corrected trace of D provides an average
pairwise distance between answers. The larger
the pairwise distance is the higher is uncertainty:
UDeg = 1− trace(D)/K2.

A drawback of previously considered methods
is the limited knowledge of the actual embed-
ding space for the different answers since we
only have measures of their similarities. Nev-
ertheless, we can overcome this limitation by
taking advantage of the inferential capabilities
of the graph Laplacian, which makes it easier
to obtain the coordinates of the answers. Let us
introduce u1, . . . ,uk ∈ RK as the eigenvectors
of L that correspond to k smallest eigenvalues.
We can efficiently construct an informative em-
bedding vj = [u1,j , . . . ,uk,j ] for an answer yj .
Lin et al. (2024) suggest Eccentricity as uncer-
tainty score—the average distance from the center
in the space of constructed embeddings: UEcc =∥∥[ṽT

1 , . . . , ṽ
T
K ]

∥∥
2
, where ṽj = vj − 1

K

∑K
�=1 v�.

Lexical Similarity is a measure proposed by
(Fomicheva et al., 2020) that computes how sim-
ilar two words or phrases are in terms of their
meaning. Since the original article is dedicated
to machine translation, this measure calculates
the average similarity score between all pairs of

translation hypotheses in a set, using a similar-
ity measure based on the overlap of their lexical
items. Different metrics can be used, such as
ROUGE-1, ROUGE-2, ROUGE-L, and BLEU.
For our task, this measure iterates over all re-
sponses and calculates the average score with
other answers.

A.2.2 Empirical Approximations of
White-Box Methods

Following Tian et al. (2023), we introduce sev-
eral empirical variations of white-box methods
that can be computed in a black-box setting. La-
belProb is a black-box approximation of MSP.
Given K sampled outputs from the model,
we can estimate the model-assigned probabil-
ity for each of the outputs P̂

(
y(j) | x

)
, based

on its relative frequency among the samples:
P̂(y(j) | x) = 1

K

∑K
i=1 I

(
y(i) = y(j)

)
. Label-

Prob is computed by considering the probability
of the most likely sample:

ULabelProb(x) = 1−max
j

P̂
(
y(j) | x

)
.

Similarly, it is possible to estimate the
black-box equivalent of Semantic Entropy by cal-
culating semantic cluster probabilities based on
the relative frequencies of samples within these
clusters: P̂m(x) =

∑
y∈Cm P̂ (y | x).

We also implement a black-box approximation
of P(True) (Kadavath et al., 2022), where the
model is repeatedly queried for its confidence,
and the relative frequency of the ‘‘True’’ output
is taken as the confidence measure:

P̂(‘‘True’’ | x) = 1

K

K∑
i=1

I(y(i) = ‘‘True’’),

UPTrueBB
(x) = 1− P̂(‘‘True’’ | x).

A.2.3 Reflexive Methods
Instruction-tuned LLMs can also be directly
prompted to output a level of confidence as a part
of their output, as shown by Tian et al. (2023).

Linguistic 1S prompts the model to output
its confidence along with the answer by select-
ing it from the list of predetermined linguistic
expressions of confidence. The selected answer
is mapped to a floating-point confidence level
following (Fagen-Ulmschneider, 2023).

Verbalized 1S Top1/TopK prompts the model
to generate both the answer and its confidence
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in a single output, with the confidence expressed
directly as a floating-point number. Top1/TopK
approaches specify how many guesses (with
corresponding confidences) the model is asked
to output.

Verbalized 2S Top1/TopK differs from the pre-
vious approach by separating the answer and
confidence estimation into two distinct turns of
interaction with a LLM.

Verbalized 2S CoT asks the model to rea-
son about the question and output its answer
in the first response and numerical confidence in
the second.

A.3 Claim-Level Methods

While the aforementioned methods operate with
the entire generated sequence, it is often desir-
able to estimate uncertainty for individual claims
to pinpoint hallucinations within the generated
text. Suppose C denotes a set of token indices
corresponding to a particular claim. Many UQ
methods can be straightforwardly adopted for the
claim level by simply considering only a subset
of tokens corresponding to the set C instead of all
tokens in the sequence. We consider claim-level
generalization for MSP, Mean Token Entropy,
Perplexity, and PMI.

P(True), adapting the approach from (Kadavath
et al., 2022) to the claim level, quantifies claim
uncertainty by prompting the LLM to assess the
truthfulness of each generated claim:

UPTrue(C | x) = 1− P (y1 = ‘‘True’’ | C,x).

Claim-Conditioned Probability (CCP) quan-
tifies uncertainty by evaluating the semantic
similarity between the original claim and per-
turbed versions where each token is replaced with
its alternative generations. CCP utilizes a Natural
Language Inference (NLI) model to compare the
original claim yi∈C,i≤j with variations where to-
ken yj is replaced with top-K alternatives ykj from
the model’s output distribution:

CCP(yj | y<j ,x) =∑
k:NLI(ykj ,yj)=‘e’

P (ykj | y<j ,x)∑
k:NLI(ykj ,yj)∈{‘e’,‘c’}

P (ykj | y<j ,x)
,

The resulting uncertainty measure becomes

UCCP(C | x) = 1−
∏
j∈C

CCP(yj | y<j ,x).

Here, NLI(ykj , yj) = ‘e’ denotes that the NLI
model predicts an entailment relation between the
original claim and the modified claim where yj
is replaced with ykj . CCP effectively measures
the proportion of high-probability token alterna-
tives that preserve the original claim’s semantic
meaning according to the NLI model.

B Detailed Description of Uncertainty
Normalization Methods

Linear scaling first computes confidence scores
by negating uncertainty scores in the calibration
set: ci = −ui. Then, for a new model output with a
corresponding uncertainty score u and confidence
c(u) = −u, the normalized confidence is cs(u) =
(c(u) − mini ci)/(maxi ci − mini ci). To ensure
the uncertainty scores for tested instances remain
within the [0, 1] interval, the confidence scores are
clipped accordingly.

Quantile scaling computes confidence using
the uncertainty cumulative distribution func-
tion estimated using calibration data: c(u) =
1 − 1

N

∑N
i=1 I(ui ≤ u), where N is the number

of data points in Dcalib and ui ∈ Dcalib. This ap-
proach naturally bounds the confidence between
0 and 1 and does this with consideration to the
distribution of uncertainty values in the calibra-
tion set.

Binned PCC splits the calibration set into
non-intersecting bins based on uncertainty values
ui. Thus, a bin is a set of indices Bj = {i : bjmin ≤
ui < bjmax}, where bjmin and bjmax are left and right
boundaries of the j-th bin respectively.

Then, for a new data point with a raw un-
certainty score u, a calibrated confidence score
is c(u) = 1

|B′|
∑

i∈B′ qi, where B′ is the cal-
ibration bin, for which the following holds:
b′min ≤ u < b′max.

To remedy this problem, we propose Isotonic
PCC. In this method the confidence score is ob-
tained as c(u) = CIR(u), where CIR is a fitted
Centered Isotonic Regression that predicts the
quality of the response based on its raw uncertainty
score, maintaining strict monotonicity, i.e. higher
uncertainty always produces lower confidence.
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C Detailed Experimental Results for Uncertainty Quantification Methods

UQ Method
CoQA TriviaQA MMLU GSM8k

Mean Rank Mean PRR
AlignScore AlignScore Accuracy Accuracy

Maximum Sequence Probability 0.28±0.01 0.56±0.01 0.52±0.01 0.35±0.01 8.88 0.43
Perplexity 0.24±0.01 0.55±0.01 0.41±0.01 0.43±0.01 9.25 0.41
Mean Token Entropy 0.26±0.01 0.56±0.01 0.08±0.01 0.45±0.01 12.50 0.34
Pointwise Mutual Information −0.05±0.01 −0.00±0.01 0.40±0.01 0.13±0.01 20.50 0.12
Conditional Pointwise Mutual Information −0.14±0.01 −0.20±0.01 0.30±0.01 −0.38±0.01 25.00 −0.11
Rényi Divergence 0.00±0.01 −0.07±0.01 0.41±0.01 −0.10±0.01 19.75 0.06
Fisher-Rao Distance 0.02±0.01 −0.07±0.01 0.41±0.01 −0.06±0.01 19.12 0.08
TokenSAR 0.24±0.01 0.53±0.01 0.41±0.01 0.43±0.01 10.12 0.40
CCP 0.21±0.01 0.61±0.01 0.47±0.01 0.42±0.01 7.38 0.43
Monte Carlo Sequence Entropy 0.24±0.01 0.46±0.01 0.17±0.01 0.37±0.01 16.88 0.31
Monte Carlo Normalized Sequence Entropy 0.22±0.01 0.46±0.01 0.17±0.01 0.35±0.01 18.50 0.30
Semantic Entropy 0.26±0.01 0.53±0.01 0.22±0.01 0.40±0.01 14.50 0.35
SentenceSAR 0.34±0.01 0.58±0.01 0.39±0.01 0.19±0.01 10.50 0.38
SAR 0.33±0.01 0.59±0.01 0.33±0.01 0.40±0.01 7.88 0.41
Mahalanobis Distance - Decoder −0.03±0.01 −0.14±0.01 −0.02±0.01 0.29±0.01 24.38 0.02
RDE - Decoder −0.02±0.01 −0.04±0.01 0.14±0.01 0.30±0.01 22.25 0.10
Relative Mahalanobis Distance - Decoder 0.00±0.01 −0.14±0.01 −0.13±0.01 0.29±0.01 23.75 0.00
HUQ-MD - Decoder 0.24±0.01 0.55±0.01 0.41±0.01 0.50±0.01 8.62 0.42
P(True) −0.01±0.01 0.13±0.01 −0.29±0.01 0.29±0.01 23.00 0.03
NumSet 0.22±0.01 0.58±0.01 0.26±0.01 0.18±0.01 17.25 0.31
EigValLaplacian NLI Score Entail. 0.35±0.01 0.60±0.01 0.31±0.01 0.21±0.01 10.50 0.37
EigValLaplacian Jaccard Score 0.28±0.01 0.55±0.01 0.27±0.01 0.33±0.01 14.38 0.36
DegMat NLI Score Entail. 0.37±0.01 0.63±0.01 0.35±0.01 0.27±0.01 8.25 0.40
DegMat Jaccard Score 0.30±0.01 0.57±0.01 0.33±0.01 0.36±0.01 10.25 0.39
Eccentricity NLI Score Entail. 0.33±0.01 0.57±0.01 0.28±0.01 0.36±0.01 10.75 0.38
Eccentricity Jaccard Score 0.30±0.01 0.53±0.01 0.28±0.01 0.32±0.01 14.38 0.36
Lexical Similarity Rouge-L 0.34±0.01 0.59±0.01 0.34±0.01 0.42±0.01 6.25 0.42
Lexical Similarity BLEU 0.29±0.01 0.53±0.01 0.34±0.01 0.40±0.01 11.25 0.39

Table 6: PRR↑ 50% with various generation quality metrics for UQ methods in selective QA tasks with
the Stable LM 2 12B model. Warmer color indicates better results.

243



UQ Method CoQA TriviaQA MMLU GSM8k Mean Rank Mean PRR
AlignScore AlignScore Accuracy Accuracy

Maximum Sequence Probability 0.33±0.01 0.63±0.01 0.47±0.01 0.47±0.01 6.38 0.48
Perplexity 0.29±0.01 0.64±0.01 0.47±0.01 0.31±0.01 10.62 0.43
Mean Token Entropy 0.26±0.01 0.64±0.01 0.45±0.01 0.36±0.01 11.75 0.43
Pointwise Mutual Information −0.08±0.01 0.03±0.01 0.45±0.01 0.14±0.01 19.75 0.14
Conditional Pointwise Mutual Information −0.11±0.01 −0.15±0.01 0.45±0.01 −0.08±0.01 21.75 0.03
Rényi Divergence −0.04±0.01 −0.26±0.01 0.00±0.01 −0.33±0.01 25.75 −0.16
Fisher-Rao Distance −0.03±0.01 −0.29±0.01 −0.00±0.01 −0.34±0.01 25.88 −0.16
TokenSAR 0.29±0.01 0.62±0.01 0.47±0.01 0.31±0.01 12.00 0.42
CCP 0.29±0.01 0.61±0.01 0.48±0.01 0.53±0.01 7.50 0.48
Monte Carlo Sequence Entropy 0.26±0.01 0.52±0.01 0.35±0.01 0.49±0.01 15.00 0.40
Monte Carlo Normalized Sequence Entropy 0.25±0.01 0.57±0.01 0.36±0.01 0.40±0.01 16.50 0.40
Semantic Entropy 0.29±0.01 0.58±0.01 0.39±0.01 0.48±0.01 12.75 0.43
SentenceSAR 0.35±0.01 0.66±0.01 0.43±0.01 0.26±0.01 8.88 0.42
SAR 0.32±0.01 0.67±0.01 0.41±0.01 0.50±0.01 4.88 0.48
Mahalanobis Distance - Decoder −0.04±0.01 −0.14±0.01 −0.04±0.01 0.38±0.01 22.25 0.04
RDE - Decoder 0.03±0.01 −0.04±0.01 0.23±0.01 0.36±0.01 20.38 0.14
Relative Mahalanobis Distance - Decoder −0.05±0.01 −0.14±0.01 −0.11±0.01 0.39±0.01 22.50 0.02
HUQ-MD - Decoder 0.28±0.01 0.64±0.01 0.47±0.01 0.48±0.01 7.88 0.47
P(True) −0.06±0.01 −0.12±0.01 0.07±0.01 0.00±0.01 24.50 −0.03
NumSet 0.21±0.01 0.65±0.01 0.36±0.01 0.24±0.01 16.25 0.36
EigValLaplacian NLI Score Entail. 0.31±0.01 0.65±0.01 0.39±0.01 0.30±0.01 12.00 0.41
EigValLaplacian Jaccard Score 0.25±0.01 0.62±0.01 0.35±0.01 0.39±0.01 16.25 0.40
DegMat NLI Score Entail. 0.35±0.01 0.67±0.01 0.41±0.01 0.34±0.01 7.62 0.44
DegMat Jaccard Score 0.31±0.01 0.63±0.01 0.40±0.01 0.42±0.01 10.62 0.44
Eccentricity NLI Score Entail. 0.32±0.01 0.64±0.01 0.35±0.01 0.45±0.01 10.75 0.44
Eccentricity Jaccard Score 0.30±0.01 0.60±0.01 0.35±0.01 0.28±0.01 17.12 0.38
Lexical Similarity Rouge-L 0.33±0.01 0.64±0.01 0.40±0.01 0.48±0.01 7.38 0.46
Lexical Similarity BLEU 0.31±0.01 0.61±0.01 0.40±0.01 0.46±0.01 11.12 0.44

Table 7: PRR↑ 50% with various generation quality metrics for UQ methods in selective QA tasks with
the Mistral 7B v0.2 model. Warmer color indicates better results.

UQ Method
CoQA TriviaQA MMLU

Mean Rank Mean PRR
AlignScore AlignScore Accuracy

NumSet 0.20±0.01 0.54±0.01 0.29±0.00 13.17 0.34
EigValLaplacian NLI Score Entail. 0.34±0.01 0.60±0.00 0.32±0.00 4.50 0.42
EigValLaplacian Jaccard Score 0.34±0.01 0.58±0.00 0.29±0.00 8.33 0.40
DegMat NLI Score Entail. 0.34±0.01 0.58±0.00 0.30±0.00 6.83 0.41
DegMat Jaccard Score 0.34±0.01 0.59±0.00 0.29±0.00 7.50 0.41
Eccentricity NLI Score Entail. 0.36±0.01 0.60±0.00 0.31±0.00 3.67 0.42
Eccentricity Jaccard Score 0.34±0.01 0.59±0.00 0.29±0.00 7.50 0.41
Lexical Similarity Rouge-L 0.36±0.01 0.58±0.00 0.29±0.00 7.00 0.41
Lexical Similarity BLEU 0.34±0.01 0.56±0.00 0.29±0.00 9.67 0.40
BB Semantic Entropy 0.31±0.01 0.57±0.00 0.29±0.00 10.50 0.39
Label Prob. 0.31±0.01 0.57±0.00 0.29±0.00 10.50 0.39
BB P(True) 0.01±0.01 0.40±0.01 0.32±0.00 13.83 0.24
Linguistic 1S 0.13±0.01 0.26±0.01 0.23±0.00 17.67 0.21
Verbalized 1S top-1 0.18±0.01 0.42±0.01 0.38±0.00 12.00 0.33
Verbalized 1S top-k 0.23±0.01 0.52±0.01 0.37±0.00 10.00 0.37
Verbalized 2S CoT 0.28±0.01 0.51±0.00 0.40±0.00 9.00 0.40
Verbalized 2S top-1 0.22±0.01 0.55±0.00 0.39±0.00 9.00 0.39
Verbalized 2S top-k 0.19±0.01 0.48±0.01 0.44±0.00 10.33 0.37

Table 8: PRR↑ 50% with various generation quality metrics for black-box UQ methods in selective QA
tasks with the GPT-4o-mini model. Warmer color indicates better results.
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UQ Method
CoQA TriviaQA MMLU

Mean Rank Mean PRR
AlignScore AlignScore Accuracy

NumSet 0.23±0.01 0.56±0.01 0.19±0.01 6.33 0.33
EigValLaplacian NLI Score Entail. 0.34±0.01 0.58±0.01 0.23±0.01 1.33 0.38
EigValLaplacian Jaccard Score 0.29±0.01 0.53±0.01 0.05±0.01 10.50 0.29
DegMat NLI Score Entail. 0.33±0.01 0.56±0.01 0.19±0.01 3.67 0.36
DegMat Jaccard Score 0.31±0.01 0.53±0.01 0.04±0.01 10.17 0.29
Eccentricity NLI Score Entail. 0.33±0.01 0.52±0.01 0.14±0.01 7.00 0.33
Eccentricity Jaccard Score 0.33±0.01 0.51±0.01 0.12±0.01 8.17 0.32
Lexical Similarity Rouge-L 0.31±0.01 0.54±0.01 0.15±0.01 6.50 0.33
Lexical Similarity BLEU 0.28±0.01 0.48±0.01 0.07±0.01 12.33 0.28
BB Semantic Entropy 0.32±0.01 0.52±0.01 0.15±0.01 7.00 0.33
Label Prob. 0.31±0.01 0.50±0.01 0.14±0.01 9.17 0.32
BB P(True) −0.00±0.01 0.19±0.01 0.16±0.01 13.33 0.12
Linguistic 1S −0.01±0.01 0.04±0.01 0.10±0.01 16.67 0.04
Verbalized 1S top-1 0.09±0.01 0.42±0.01 0.12±0.01 12.83 0.21
Verbalized 1S top-k 0.15±0.01 0.37±0.01 0.23±0.01 9.00 0.25
Verbalized 2S CoT 0.04±0.01 0.14±0.01 0.22±0.01 12.00 0.13
Verbalized 2S top-1 0.02±0.01 0.24±0.01 0.08±0.01 15.33 0.11
Verbalized 2S top-k 0.11±0.01 0.36±0.01 0.23±0.01 9.67 0.23

Table 9: PRR↑ 50% with various generation quality metrics for black-box UQ methods in selective QA
tasks with the Stable LM 2 12B Chat model. Warmer color indicates better results.

UQ Method
CoQA TriviaQA MMLU

Mean Rank Mean PRR
AlignScore AlignScore Accuracy

NumSet 0.21±0.01 0.51±0.01 0.20±0.01 10.50 0.31
EigValLaplacian NLI Score Entail. 0.26±0.01 0.54±0.01 0.27±0.01 3.50 0.36
EigValLaplacian Jaccard Score 0.19±0.01 0.42±0.01 0.21±0.01 15.00 0.27
DegMat NLI Score Entail. 0.26±0.01 0.52±0.01 0.25±0.01 5.00 0.34
DegMat Jaccard Score 0.23±0.01 0.46±0.01 0.22±0.01 10.83 0.30
Eccentricity NLI Score Entail. 0.28±0.01 0.48±0.01 0.23±0.01 6.33 0.33
Eccentricity Jaccard Score 0.29±0.01 0.48±0.01 0.25±0.01 4.67 0.34
Lexical Similarity Rouge-L 0.25±0.01 0.44±0.01 0.23±0.01 10.50 0.31
Lexical Similarity BLEU 0.26±0.01 0.44±0.01 0.23±0.01 9.67 0.31
BB Semantic Entropy 0.28±0.01 0.48±0.01 0.22±0.01 7.50 0.33
Label Prob. 0.26±0.01 0.45±0.01 0.22±0.01 10.00 0.31
BB P(True) −0.02±0.01 0.35±0.01 0.22±0.01 16.83 0.18
Linguistic 1S 0.13±0.01 0.43±0.01 0.25±0.01 11.83 0.27
Verbalized 1S top-1 0.10±0.01 0.48±0.01 0.29±0.01 8.00 0.29
Verbalized 1S top-k 0.10±0.01 0.44±0.01 0.26±0.01 11.00 0.27
Verbalized 2S CoT 0.21±0.01 0.38±0.01 0.34±0.01 9.50 0.31
Verbalized 2S top-1 0.08±0.01 0.44±0.01 0.33±0.01 10.50 0.28
Verbalized 2S top-k 0.12±0.01 0.47±0.01 0.25±0.01 9.83 0.28

Table 10: PRR↑ 50% with various generation quality metrics for black-box UQ methods in selective
QA tasks with the Mistral 7B v0.2 Instruct model. Warmer color indicates better results.
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UQ Method XSUM WMT14 Fr-En WMT19 De-En Mean Rank Mean PRRROUGE-L AlignScore COMET AlignScore COMET AlignScore
Maximum Sequence Probability −0.24±0.01 −0.09±0.00 0.34±0.01 0.09±0.01 0.50±0.00 0.11±0.01 12.67 0.12
Perplexity 0.20±0.01 0.02±0.00 0.31±0.01 0.06±0.01 0.38±0.00 0.07±0.01 14.58 0.17
Mean Token Entropy 0.00±0.01 −0.41±0.00 0.37±0.01 0.08±0.01 0.42±0.00 0.10±0.01 14.00 0.09
Pointwise Mutual Information 0.25±0.01 0.12±0.00 0.04±0.01 0.00±0.01 0.05±0.00 −0.01±0.01 17.58 0.08
Conditional Pointwise Mutual Information 0.61±0.01 0.04±0.00 −0.18±0.01 −0.03±0.01 −0.20±0.00 −0.05±0.01 20.75 0.03
Rényi Divergence −0.05±0.01 −0.11±0.00 −0.18±0.01 −0.03±0.01 −0.18±0.00 −0.09±0.01 25.33 −0.11
Fisher-Rao Distance −0.06±0.01 −0.15±0.00 −0.17±0.01 −0.03±0.01 −0.18±0.00 −0.09±0.01 25.75 −0.11
TokenSAR −0.01±0.01 −0.45±0.00 0.31±0.01 0.05±0.01 0.40±0.00 0.09±0.01 18.00 0.06
CCP −0.06±0.01 −0.06±0.00 0.33±0.01 0.11±0.01 0.39±0.00 0.12±0.01 13.50 0.14
Monte Carlo Sequence Entropy 0.17±0.01 0.27±0.00 0.34±0.01 0.10±0.01 0.43±0.00 0.08±0.01 9.08 0.23
Monte Carlo Normalized Sequence Entropy 0.16±0.01 0.15±0.00 0.36±0.01 0.03±0.01 0.43±0.00 0.08±0.01 11.42 0.20
Semantic Entropy 0.17±0.01 0.30±0.00 0.35±0.01 0.12±0.01 0.45±0.00 0.13±0.01 5.33 0.25
SentenceSAR 0.05±0.01 0.09±0.00 0.33±0.01 0.11±0.01 0.46±0.00 0.09±0.01 10.08 0.19
SAR 0.18±0.01 0.20±0.00 0.44±0.01 0.09±0.01 0.50±0.00 0.15±0.01 4.75 0.26
Mahalanobis Distance - Decoder 0.00±0.01 0.03±0.00 0.00±0.01 0.09±0.01 0.06±0.00 0.04±0.01 19.25 0.04
RDE - Decoder −0.13±0.01 −0.59±0.00 −0.02±0.01 0.06±0.01 0.04±0.00 0.07±0.01 23.50 −0.09
Relative Mahalanobis Distance - Decoder 0.11±0.01 0.10±0.00 0.03±0.01 0.09±0.01 0.08±0.00 0.10±0.01 14.33 0.08
HUQ-MD - Decoder −0.05±0.01 −0.29±0.00 0.30±0.01 0.09±0.01 0.38±0.00 0.07±0.01 18.75 0.08
P(True) −0.10±0.01 −0.25±0.00 0.14±0.01 0.10±0.01 0.09±0.00 0.03±0.01 20.25 0.00
NumSet 0.04±0.01 0.15±0.00 0.01±0.01 0.01±0.01 0.05±0.00 0.07±0.01 18.75 0.06
EigValLaplacian NLI Score Entail. 0.04±0.01 0.29±0.00 0.28±0.01 0.19±0.01 0.38±0.00 0.28±0.00 9.92 0.24
EigValLaplacian Jaccard Score 0.18±0.01 0.07±0.00 0.33±0.01 0.02±0.01 0.43±0.00 0.09±0.01 12.75 0.19
DegMat NLI Score Entail. 0.04±0.01 0.30±0.00 0.29±0.01 0.21±0.00 0.41±0.00 0.31±0.00 8.25 0.26
DegMat Jaccard Score 0.18±0.01 0.07±0.00 0.36±0.01 0.03±0.01 0.46±0.00 0.10±0.01 10.08 0.20
Eccentricity NLI Score Entail. 0.02±0.01 0.13±0.00 0.31±0.01 0.20±0.01 0.42±0.00 0.28±0.01 9.17 0.23
Eccentricity Jaccard Score 0.01±0.01 −0.04±0.00 0.34±0.01 0.04±0.01 0.47±0.00 0.10±0.01 12.83 0.15
Lexical Similarity Rouge-L 0.20±0.01 0.07±0.00 0.37±0.01 0.05±0.01 0.47±0.00 0.11±0.01 7.92 0.21
Lexical Similarity BLEU 0.11±0.01 −0.12±0.00 0.30±0.01 0.03±0.01 0.36±0.00 0.09±0.01 17.42 0.13

Table 11: PRR↑ 50% with various generation quality metrics for UQ methods in selective generation
tasks with the Stable LM 2 12B model. Warmer color indicates better results.

UQ Method XSUM WMT14 Fr-En WMT19 De-En Mean Rank Mean PRRROUGE-L AlignScore COMET AlignScore COMET AlignScore
Maximum Sequence Probability 0.06±0.00 0.06±0.00 0.31±0.02 0.08±0.01 0.45±0.01 0.12±0.01 12.08 0.18
Perplexity −0.19±0.00 −0.15±0.00 0.37±0.02 0.12±0.01 0.49±0.01 0.14±0.01 12.08 0.13
Mean Token Entropy 0.07±0.00 −0.33±0.00 0.42±0.02 0.14±0.01 0.51±0.01 0.15±0.01 8.42 0.16
Pointwise Mutual Information −0.07±0.00 −0.09±0.00 0.01±0.02 0.00±0.01 0.08±0.01 0.00±0.01 23.17 −0.01
Conditional Pointwise Mutual Information 0.32±0.00 0.28±0.00 −0.12±0.02 −0.05±0.01 −0.11±0.01 −0.03±0.01 17.92 0.05
Rényi Divergence −0.04±0.00 0.12±0.00 −0.14±0.02 −0.05±0.01 −0.19±0.01 −0.07±0.01 24.00 −0.06
Fisher-Rao Distance −0.05±0.00 0.12±0.00 −0.14±0.02 −0.06±0.01 −0.20±0.01 −0.08±0.01 24.92 −0.07
TokenSAR 0.06±0.00 −0.36±0.00 0.35±0.02 0.12±0.01 0.46±0.01 0.14±0.01 11.50 0.13
CCP −0.09±0.00 0.06±0.00 0.30±0.02 0.09±0.01 0.39±0.01 0.13±0.01 14.33 0.15
Monte Carlo Sequence Entropy 0.18±0.00 0.27±0.00 0.27±0.02 0.06±0.01 0.36±0.01 0.11±0.01 11.67 0.21
Monte Carlo Normalized Sequence Entropy 0.12±0.00 0.14±0.00 0.29±0.02 0.07±0.01 0.43±0.01 0.11±0.01 11.50 0.19
Semantic Entropy 0.18±0.00 0.28±0.00 0.27±0.02 0.10±0.01 0.40±0.01 0.15±0.01 7.58 0.23
SentenceSAR 0.03±0.00 −0.07±0.00 0.23±0.02 0.06±0.01 0.34±0.01 0.08±0.01 18.50 0.11
SAR 0.15±0.00 0.28±0.00 0.34±0.02 0.13±0.01 0.48±0.01 0.18±0.01 4.42 0.26
Mahalanobis Distance - Decoder 0.03±0.00 0.10±0.00 −0.05±0.02 0.04±0.01 0.04±0.01 0.05±0.01 20.83 0.04
RDE - Decoder −0.05±0.00 −0.04±0.00 −0.09±0.02 −0.05±0.01 −0.16±0.01 −0.06±0.01 24.58 −0.08
Relative Mahalanobis Distance - Decoder 0.07±0.00 0.05±0.00 −0.02±0.02 0.05±0.01 0.00±0.01 0.06±0.01 19.83 0.04
HUQ-MD - Decoder 0.06±0.00 −0.35±0.00 0.37±0.02 0.12±0.01 0.49±0.01 0.14±0.01 10.67 0.14
P(True) −0.00±0.00 −0.19±0.00 0.12±0.02 0.05±0.01 0.03±0.01 0.01±0.01 22.17 0.00
NumSet 0.07±0.00 0.31±0.00 0.04±0.02 0.04±0.01 0.07±0.01 0.09±0.01 16.25 0.10
EigValLaplacian NLI Score Entail. 0.12±0.00 0.27±0.00 0.17±0.02 0.19±0.01 0.28±0.01 0.24±0.01 9.92 0.21
EigValLaplacian Jaccard Score 0.09±0.00 0.19±0.00 0.20±0.02 0.05±0.01 0.34±0.01 0.10±0.01 15.67 0.16
DegMat NLI Score Entail. 0.13±0.00 0.30±0.00 0.22±0.02 0.22±0.01 0.34±0.01 0.29±0.01 7.67 0.25
DegMat Jaccard Score 0.11±0.00 0.21±0.00 0.28±0.02 0.08±0.01 0.43±0.01 0.12±0.01 10.67 0.20
Eccentricity NLI Score Entail. 0.06±0.00 0.15±0.00 0.28±0.02 0.24±0.01 0.39±0.01 0.30±0.01 8.75 0.24
Eccentricity Jaccard Score 0.02±0.00 −0.08±0.00 0.33±0.02 0.10±0.01 0.45±0.01 0.11±0.01 13.42 0.16
Lexical Similarity Rouge-L 0.12±0.00 0.28±0.00 0.26±0.02 0.08±0.01 0.42±0.01 0.14±0.01 9.83 0.22
Lexical Similarity BLEU 0.14±0.00 0.03±0.00 0.26±0.02 0.08±0.01 0.36±0.01 0.11±0.01 13.67 0.16

Table 12: PRR↑ 50% with various generation quality metrics for UQ methods in selective generation
tasks with the Mistral 7B v0.2 model. Warmer color indicates better results.
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D Additional Experimental Results with Uncertainty Normalization

UQ Method Linear Quantile Binned PCC Isotonic PCC
Maximum Sequence Probability 0.000 0.000 −0.041 0.000
Perplexity 0.000 0.000 0.016 0.001
Mean Token Entropy 0.000 0.000 0.002 0.000
Mean Pointwise Mutual Information 0.000 0.000 −0.398 0.000
Mean Conditional PMI 0.000 0.000 −0.298 0.000
Rényi Divergence 0.000 0.000 −0.121 0.000
Fisher-Rao Distance 0.000 0.000 −0.125 0.000
TokenSAR 0.000 0.000 0.022 0.000
CCP 0.000 0.000 −0.002 −0.001
Monte Carlo Sequence Entropy 0.000 0.000 −0.045 0.000
Monte Carlo Normalized Sequence Entropy 0.000 0.000 0.005 0.000
Semantic Entropy 0.000 0.000 −0.023 0.000
Sentence SAR 0.000 0.000 −0.008 0.000
SAR 0.000 0.000 0.001 0.000
P(True) 0.000 0.000 −0.784 −0.001
NumSet 0.000 0.000 0.375 0.000
EigValLaplacian NLI Score Entail 0.000 0.000 0.009 0.001
EigValLaplacian Jaccard Score 0.000 −0.002 0.000 0.000
DegMat NLI Score Entail 0.000 0.000 0.011 0.001
DegMat Jaccard Score 0.000 0.001 0.060 0.000
Eccentricity NLI Score Entail 0.000 0.000 0.023 0.000
Eccentricity Jaccard Score 0.001 0.002 0.092 0.031
Lexical Similarity Rouge-L 0.000 0.000 0.073 0.000

Table 13: The difference between PRR of raw uncertainty and bounded confidence obtained with
various normalization techniques. The lower is better; negative values represent cases when confidence
performs better than raw uncertainty scores.

E LLM Text Generation Quality

Model
CoQA TriviaQA MMLU GSM8k XSum WMT14 Fr-En WMT19 De-En

AlignScore AlignScore Accuracy Accuracy Rouge-L AlignScore Comet AlignScore Comet AlignScore
Stable LM 2 12B v2 0.77 0.69 0.57 0.55 0.21 0.03 0.87 0.85 0.88 0.84
Mistral 7B v0.2 0.79 0.74 0.64 0.38 0.23 0.07 0.86 0.84 0.86 0.81

Table 14: Generation quality metrics for LLMs without instruction tuning.
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Model Prompt
CoQA TriviaQA MMLU

AlignScore AlignScore Accuracy

GPT-4o-mini

Linguistic1S 0.74 0.81 0.75
Verbalized 1S top-1 0.73 0.81 0.75
Verbalized 1S top-k 0.70 0.80 0.75
Verbalized 2S CoT 0.71 0.84 0.79
Verbalized 2S top-1 0.74 0.81 0.76
Verbalized 2S top-k 0.69 0.80 0.76
Base 0.74 0.81 0.76

Stable LM 2 12B Chat

Linguistic1S 0.68 0.74 0.49
Verbalized 1S top-1 0.69 0.73 0.52
Verbalized 1S top-k 0.56 0.74 0.55
Verbalized 2S CoT 0.66 0.74 0.43
Verbalized 2S top-1 0.69 0.73 0.51
Verbalized 2S top-k 0.69 0.74 0.56
Base 0.69 0.73 0.51

Mistral 7B v0.2 Instruct

Linguistic1S 0.69 0.71 0.58
Verbalized 1S top-1 0.69 0.69 0.58
Verbalized 1S top-k 0.67 0.70 0.56
Verbalized 2S CoT 0.60 0.69 0.54
Verbalized 2S top-1 0.70 0.70 0.57
Verbalized 2S top-k 0.68 0.70 0.56
Base 0.70 0.70 0.57

Table 15: Generation quality for instruction-tuned LLMs.
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