NAACL 2025

The 22nd SIGMORPHON workshop on Computational
Morphology, Phonology, and Phonetics

Proceedings of the Workshop

May 3, 2025



©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S

Suite 400 - 134

Kerrville, TX 78028

USA

Tel: +1-855-225-1962

acl@aclweb.org

ISBN 979-8-89176-231-2



Organizing Committee

Co-Chair

Garrett Nicolai, University of British Columbia
Eleanor Chodroff, University of Ziirich

Cagri Coltekin, University of Tiibingen

Fred Mailhot, Dialpad, Inc.

SIGMORPHON Officers

President: Garrett Nicolai, University of British Columbia
At Large: Eleanor Chodroff, University of Ziirich

At Large: Cagr1 Coltekin, University of Tiibingen

At Large: Fred Mailhot, Dialpad, Inc.

ii



Program Committee

Michael Ginn, University of Colorado
Kenneth Steimel, Cisco Systems Incorporated
Sandra Kiibler, Indiana University
Changbing Yang, University of British Columbia
Sarah Moeller, University of Florida
Rob Malouf, San Diego State University
Gregory Kobele, Leipzig University

iii



Keynote Talk
Invited Talk

Kyle Gorman
City University of New York
2025-05-03 09:30:00 —

Abstract: The past and future of grapheme-to-phoneme conversion

I will describe three strands of recent work on grapheme-to-phoneme conversion (G2P). After introdu-
cing this task, I will briefly review some lessons learned from the SIGMORPHON 2020 and 2021 shared
tasks on G2P. Then, I will focus on low-resource scenarios, describing in-progress work on unsupervi-
sed G2P using a decipherment framework and novel algorithms. Finally, I will turn to high-resource
scenarios, describing in-progress work on what I am calling “grapheme-and-phoneme-to-phoneme con-
version”, in which “side pronunciations” from other dialects and/or transcription systems are provided as
additional inputs to the G2P system to improve robustness and generalization.

Bio: Kyle Gorman is an associate professor at the Graduate Center, City University of New York, where
he directs the master’s program in computational linguistics. He is also a software engineer at Google
Research. He is president and cofounder of the ACL Special Interest Group on Writing Systems and
Written Language (SIGWrit). He is the coauthor of Finite-State Text Processing (Morgan & Claypool,
2021) and papers in computational linguistics and phonological theory.
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Keynote Talk
Panel Discussion

Gasper Begus, Kyle Gorman, Connor Mayer, Kristine Yu
University of California Berkeley, City University of New York, University of Massachusetts Amherst,
University of California Irvine
2025-05-03 13:30:00 —

Bio: Gasper Begus is an Associate Professor at the University of California, Berkeley, where he bridges
the fields of linguistics, artificial intelligence, and cognitive science. As the Principal Investigator of
the Berkeley Speech and Computation lab, Dr. Begus leads efforts to develop the most realistic models
of human language learningd€”’creating an artificial baby language learner. Serving as the Linguistics
Lead at Project CETI, a non-profit dedicated to listening to sperm whales, he researches one of the most
intriguing communication systems in the animal kingdom.

Kyle Gorman is an associate professor at the Graduate Center, City University of New York, where he
directs the master’s program in computational linguistics. He is also a software engineer at Google
Research. He is president and cofounder of the ACL Special Interest Group on Writing Systems and
Written Language (SIGWrit). He is the coauthor of Finite-State Text Processing (Morgan & Claypool,
2021) and papers in computational linguistics and phonological theory.

Kristine Yu is an Associate Professor in the Department of Linguistics at the University of Massachu-
setts Amherst. Her main area of research falls in phonetics and phonology, particularly in prosody and
its interfaces. She works in these areas by integrating methods and perspectives from linguistic fiel-
dwork, laboratory experimentation, and computational methods from formal language theory to machine
learning.

Connor Mayer is a phonologist and phonetician who studies phonological and phonetic learning, as well
as the structure of the phonological knowledge speakers acquire. His research relies on a combination
of computational and experimental approaches, with phonological theory serving as the nexus between
them. His current research activities fall into three broad categories: phonotactic learning, the phonetics
and phonology of Uyghur (Turkic: China), and the influence of speech motor control and biomechanics
on phonological systems.
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Prompt and circumstance: A word-by-word LLM prompting approach to
interlinear glossing for low-resource languages

Micha Elsner
Department of Linguistics
The Ohio State University

melsner@@gmail.com

Abstract

Partly automated creation of interlinear glossed
text (IGT) has the potential to assist in lin-
guistic documentation. We argue that LLMs
can make this process more accessible to
linguists because of their capacity to follow
natural-language instructions. We investigate
the effectiveness of a retrieval-based LLM
prompting approach to glossing, applied to
the seven languages from the SIGMORPHON
2023 shared task. Our system beats the BERT-
based shared task baseline for every language
in the morpheme-level score category, and we
show that a simple 3-best oracle has higher
word-level scores than the challenge winner (a
tuned sequence model) in five languages. In a
case study on Tsez, we ask the LLM to automat-
ically create and follow linguistic instructions,
reducing errors on a confusing grammatical fea-
ture. Our results thus demonstrate the potential
contributions which LLMs can make in inter-
active systems for glossing, both in making
suggestions to human annotators and following
directions.

1 Introduction

At least half of the world’s languages are under-
documented (Bird, 2011) and at least 2500 are en-
dangered (Moseley, 2012). A multitude of factors
contribute to language endangerment and death: a
lack of available resources; pressure from dominant
languages, and governmental policies that impair
linguistic diversity all contribute to the gradual loss
of a language (Bromham et al., 2022). As speaker
populations dwindle, documentation has become
a priority in order to enable future revitalization
projects. Interlinear glossed text (IGT) is a widely-
used format for documentary projects, utilizing
grammatical labels and morpheme segmentation in
order to construct translations for individual words
and morphemes. While IGT efforts can be benefi-
cial from a revitalization standpoint, the burdens of

Proceedings of the The 22nd SIGMORPHON workshop on Computational Morphology, Phonology, and Phonetics, pages 1-14

David Liu
Sylvania Southview High School
dliuhanwei.8@gmail.com

cost and time create the need for an expedited pro-
cedure that can surpass the rate of language death
(Moeller and Hulden, 2018).

Semi-automated methods using computational
assistance for glossing can potentially help lin-
guists to annotate more data faster (Palmer et al.,
2009; Moeller and Hulden, 2018). The best current
approaches to glossing (e.g. Yang et al., 2024a) use
purpose-built sequence models, but there has been
some recent interest in LLMs as glossing models
(Ginn et al., 2024a). We believe this is an important
direction because LLMs are (in principle) capa-
ble of interacting with linguists and native-speaker
consultants in a more natural way than sequence
models: they can follow instructions. Rather than
finding and annotating examples of a problematic
construction, the user could explain the appropriate
generalization to the system or supply a passage
from a descriptive grammar, changing the terms on
which users can interact with language processing
technology (Meighan, 2021). But recent work on
low-resource translation has cast doubt on LLMs’
ability to understand this kind of instruction in prac-
tice (Court and Elsner, 2024; Aycock et al., 2024).
We explore what types of information, examples
and instructions most benefit LLMs in performing
linguistic analysis, and provide a first demonstra-
tion that linguistic instructions can reduce error
rates for labeling a specific construction in Tsez.
We believe our findings also shed light on previous
results involving LLMs’ failure to follow linguistic
instructions while translating.

We use word-by-word retrieval based prompt-
ing to gloss sentences in the seven languages
of the SIGMORPHON 2023 shared task (Ginn
et al., 2023). This approach differs somewhat from
whole-sentence prompting (Ginn et al., 2024a) and
prompting for post-processing (Yang et al., 2024a).
Word-by-word prompting enables easy elicitation
of k-best options and we show that the LLM is of-
fen nearly right even when its top guess is wrong—
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a feature that could be very helpful for human an-
notators, since machine suggestions can speed up
manual annotation (Palmer et al., 2009).!

Our work thus makes three major contributions.
We replicate earlier results showing that prompt-
based glossing performs acceptably (beating the
2023 baseline in every language) for inter-linear
glossing, but not at SOTA; we show these results
apply to word-by-word as well as sentence-level
retrieval.> We find that a simple 3-best oracle beats
the challenge winner for all but two languages, in-
dicating that LLM prompting has high potential
to assist a human annotator by suggesting high-
quality options. Finally, a case study on Tsez
shows that automatically-generated linguistic in-
structions can reduce errors involving a particular
set of commonly-confused tags by 10%.

2 Related work

2.1 Automated glossing

Models for automated glossing have used both non-
neural (Palmer et al., 2009; Moeller and Hulden,
2018) and neural (Moeller and Hulden, 2018; Zhao
et al., 2020) learning methods. The SIGMOR-
PHON challenge baseline (Ginn, 2023) uses the
RoBERTa architecture, while the challenge winner
(Girrbach, 2023) uses an encoder-decoder model
with hard attention which automatically induces
morphological segmentations from the data. Such
relatively small task-specific and language-specific
models still represent the state of the art for the
glossing task, because they can learn efficiently
from the small datasets available and because they
are cheap to apply in the computational sense.
Neither Ginn (2023) nor Girrbach (2023) use
sentence translations. Although this simplicity is
in some sense an advantage, it is also a limitation
of the approach, since in some cases, the correct
gloss is more evident from the translation, for in-
stance in disambiguating homophones or syncretic
morphemes (Zhao et al., 2020). Yang et al. (2024a)
adds embeddings of the sentence translations on
top of the Girrbach (2023) model and obtain an im-
provement of 4% in the word-level accuracy score.
The utility of translations motivates Ginn et al.
(2024a) to apply LLMs in the glossing task.® Like

'Whether machine suggestions are helpful or not depends
on how examples are selected and how fluent the annotator is
in the object language.

2Code and results at
dfdddfressd/glossing-project.

3Yang et al. (2024a) report preliminary and unsuccessful

https://github.com/

ours, their attempt is retrieval-based. They use one
prompt per sentence, retrieving up to 100 similar
sentences per instance; the most effective similar-
ity metric is chrF (Popovié, 2015). In the four
languages they ran, their results lie between the
challenge baseline and Girrbach (2023) except in
Gitksan, which has the lowest absolute scores due
to its very high OOV rate. Aycock et al. (2024) also
apply LLMs to glossing the Kalamang language us-
ing glossed examples from a grammar book. Their
glossing system improves on the challenge base-
line, and benefits slightly from the addition of gen-
erated text explaining some typological features
of Kalamang (such as the absence of definite ar-
ticles). Unlike this work, they do not attempt to
disambiguate particular constructions.

Yang et al. (2024b) and Shandilya and Palmer
(2025) use LLMs in a different way, to post-correct
glosses proposed by an encoder-decoder model.
Shandilya and Palmer (2025) find that retrieval-
based post-correction can improve the glosses pro-
posed by a competitive encoder-decoder model.
Recent LLMs are capable of producing informative
explanations of their decisions, and surprisingly in
light of the results surveyed in the next subsection,
are able to incorporate information from a linguis-
tic grammar to do so. Like this paper, their results
show some promise for incorporating linguistic in-
structions into the glossing process.

A third approach is taken in Ginn et al. (2024b).
Rather than relying on in-context learning by apply-
ing a retrieval and prompting approach, they pre-
train a T5-based LM on a large corpus of glossed
text. Such a model is effective for glossing, but,
unlike retrieval approaches using generic LLMs, is
not well-suited to processing other kinds of instruc-
tional text.

2.2 LLMs for low-resource NLP

The motivations for using LLMs in glossing (in-
creased sensitivity to translations, and the accessi-
bility of using explicit instructions in place of ex-
amples) also apply to other linguistic tasks, notably
low-resource translation. Retrieval-based transla-
tion systems use a similar framework to LLM-
based glossing in which sentences from parallel
corpora, or entries from dictionaries and other lin-
guistic documentation, are retrieved in an item-
specific way and added to prompts. Several studies
in this area have found that, although dictionary

Attempts to use Llama2 for translation embeddings.



sources can improve translation, explicit grammat-
ical instructions do not (Court and Elsner, 2024;
Zhang et al., 2024; Elsner and Needle, 2023). One
claimed exception, Reid et al. (2024), uses an entire
grammar for the Kalamang language as a source,
but subsequent work (Aycock et al., 2024) shows
that the improvement is due to the example sen-
tences, not the grammatical text. Even when the
retrieved grammar instructions are curated by hand
to assure that the passages are relevant, they still do
not lead to improvements (Court and Elsner, 2024).
Kornilov and Shavrina (2024) ask LLMs to answer
explicit questions about the typological features of
various languages using retrieval of grammar pas-
sages, with good but not perfect results. However,
this task requires the LLM to understand and re-
spond to linguistic terminology at an abstract level,
rather than applying linguistic terminology to the
analysis of individual language examples. We find
below that this task remains challenging even when
the abstract instructions are relevant and correct.
Understanding how linguistic terminology is pro-
cessed in the glossing task might also lead to better
techniques for retrieval-based translation.

3 Task and data

We follow standard interlinear glossed text for-
matting, adhering to the Leipzig glossing format
(Bickel et al., 2015). The datasets we use come
from the 2023 SIGMORPHON glossing shared
task (Ginn et al., 2023). The seven languages pro-
vided in the dataset are Arapaho, Gitksan, Lezgi,
Natugu, Nyangbo, Tsez, and Uspanteko. The num-
ber of training sentences for each language varies
in size; Arapaho has around 39,000 while Gitksan
has merely 31. We use the Track 1 data files, which
do not have morphological segmentation, for our
investigation. Track 1 of the shared task prohibited
the use of outside resources, including pretrained
models like LLMs, but we believe our system is
still most comparable to other Track 1 systems
because the LLM we chose has little ability to com-
plete sentences in the test languages (Appendix
A) and because the greatest advantage available
to Track 2 systems was morphological segmenta-
tion. We chose not to run the full Arapaho test
set due to the cost concerns arising from such a
large dataset, so we tested the first 100 sentences;
we label this abbreviated test set as “arp*” in the
tables. Also for cost reasons, we did not run exper-
iments on multiple languages while developing our

prompts and retrieval strategies. We focused our
development and prompt tuning on Tsez (ddo) due
to its comfortable size of 3,558 training and 445
dev sentences.

4 Prompt-based glossing

We use GPT-40 as our LLM. (Although an open
model would be preferable to increase reproducibil-
ity, Llama and other open models perform poorly
on linguistic tasks (Court and Elsner, 2024; Aycock
et al., 2024) unless fine-tuned.) We run prompts
for glossing with temperature 0 and prompts for
instruction generation (Section 6) with temperature
0.25.

4.1 Prompting

The prompt for our retrieval-based glossing sys-
tem (for a full example, see Appendix D) consists
of a brief introduction informing GPT-4 what tar-
get word it must gloss, what language the word is
in, and the translation of the sentence the word is
drawn from. A brief instructions paragraph dedi-
cated to glossing follows, instructing the system to
use Leipzig tagging conventions and including a
JSON format for 3-best outputs.

We then provide retrieved items from the corpus:
We find up to three exact match sentences show-
ing the word in its full sentential context. We find
up to three approximate match sentences; approxi-
mate matches were those with the largest longest
common substring with the target word, provided
that substring was at least four characters long.
For instance, the approximate matching routine
applied to the Tsez word rodin (true tag ‘IV.PL-
do-PFV.CVB’) retrieves a training example with
rodindy ‘IV-do-CND.CVB’. For words without a
long enough matching substring, no such examples
are retrieved.

We also carry out a reverse retrieval process on
each word in the metalanguage (English/Spanish)
translation: we show words for which glosses most
commonly incorporate the metalanguage word, for
example:

Words for "away" include: boyno
(IT1-take.away-PFV.CVB), royno
(I'V-take.away-PFV.CVB), boxin (III-
run.away-PFV.CVB), oxin (run.away-
PST.UNW), boxin (I.PL-run.away-
PFV.CVB).

Reverse indexing allows us to find morphological
gelatives of words which do not appear in training,



and for which the approximate match criteria are
unable to retrieve appropriate examples.

We use exact-match retrieval to build a retrieval
only system, in which we find the most common
gloss for the word in the training data, and return
“? if the word never occurs. We insert the retrieval-
based gloss of the rest of the sentence (excepting
the target word) into the prompt so that the system
can make inferences about the likely context of the
target word.

Finally, because the retrieved sentences do not al-
ways illustrate the word’s full distribution of usage
in the corpus, we also summarize the word’s empir-
ical distribution of glosses over the entire training
corpus, for example:

The word tiyn often appears with the fol-
lowing tags (but it may also appear with
similar tags that are not shown here):
end-PFV.CVB (60%), end-PST.UNW
(40%).

Although we elicit three candidate glosses per
word, we report our main results based on only the
first gloss in subsection 4.2. We discuss using an
oracle to select among the three in subection 5.

4.2 Results and discussion

The 2023 shared task defines two evaluation met-
rics for comparing glossings: morpheme-based
evaluation counts accuracy at the level of the dot-
separated elements (lexical and morphosyntactic
labels), while word-based evaluation tests correct
labeling at the token level. In practice, morpheme-
based evaluation emphasizes correct analyses for
morphologically complex words (since these have
more elements in their glosses) while word-based
evaluation emphasizes correct disambiguation for
common words, regardless of their complexity.
Since our system does not perform any explicit
morphological analysis, it performs slightly better
under the word-based metric.

Our word-level results (Table 1), place our sys-
tem comfortably ahead of the SIGMORPHON
baseline, but behind the challenge winner (Gir-
rbach, 2023), for every language except Arapaho.
Results at the morpheme level (Table 4 in the Ap-
pendix) are similar, except that our system is better
in Arapaho but not Gitksan. This pattern of results
is qualitatively similar to Ginn et al. (2024a).

A direct comparison to Ginn et al. is possible
only for the four languages they evaluated (and

only under the morpheme-level metric); in these,
our system is slightly worse for Gitksan, Natugu
and Nyangbo, but slightly better for Lezgi. This
is perhaps a consequence of our tuning primarily
on Tsez data, as Lezgi and Tsez are both Northeast
Caucasian languages. It is clear from this com-
parison that word-based prompting can perform
comparably to whole-sentence-based prompting,
but with differences from language to language.
The data and computation requirements of the two
systems are likewise difficult to compare. Ginn
et al. uses 100 sentences per instance, while we use
6 retrieved examples per word— this means that we
retrieve fewer instances for sentences of 16 words
or less. We also retrieve statistical tag frequency
information from across the training corpus, so that
our prompts can summarize information gathered
from a larger corpus than theirs. Overall, we be-
lieve word-based prompting can be more efficient
in minimizing the size of LLM prompts provided
that sentences are short, but do not wish to claim
that we require less training data to be available.

Our system beats retrieval alone in every case,
often by a substantial margin. This indicates that
the LLM does contribute to performance— the sys-
tem does not simply pick the most common tag for
every word. Instead, the LLM functions to disam-
biguate lexical items using the translation, select
tags which accord with the inferred morphologi-
cal context and use the provided examples to infer
fuzzy matches for unknown words. For example,
in the following Tsez phrase, retrieval finds a valid
but unsuitable meaning for the word mec, but the
LLM repairs this, using the same word as the free
translation:

(1) mahor mec boXxik’no
outside fongue II-push.out-PST.UNW
‘she poked her tongue out’
retrieval: outside language 111-push.out-PFV.CVB
LLM: outside fongue 1lI-push.out-PFV.CVB

The language with the narrowest gap between
pure retrieval and the LLM is Uspanteko, perhaps
because in this glossing task, the metalanguage is
Spanish rather than English. Although the exam-
ples and instructions indicate that the system should
gloss in Spanish, it does not always do so; the out-
put contains some English glosses like “woman”

431 times), “grandmother”, “together” and “start”.



Pre-generation

Inference

Confusable tag pair

PST.UNW PFV.CVB

Glossing instance

Ayn yeda siday bfeliz ciqter.

Y

v

Minimal-pair examples

.. xizyogon tixor egirmo ,...

Retrieval-based prompt

Your task is to predict

glosses for the word "Ayn"...

SMB SMW Retr. Ours
arp*  71.14 7879 7159 66.19
git 16.93 21.09 20.05 25.52
lez 49.66 78.78 25.80 76.19
ntu  42.01 81.04 4247 73.33
nyb 596 8534 77.77 78.52
ddo 73.41 80.96 69.39 75.28
usp 5726 7339 69.11 65.32

Table 1: Word-level test set scores: SMB: Shared task
official baseline; SMW: Track 1 challenge winner (ei-
ther Tiibingen-1 or 2); Retr: Our retrieval baseline; Ours:
our system.

SMB SMW Ours Orac.
arp* 71.14 7879 66.19 71.02
git 16.93 21.09 25.52 28.13
lez 49.66 78.78 76.19 82.70
ntu 4201 81.04 73.33 76.12
nyb 596 8534 7852 88.93
ddo 7341 80.96 7528 84.37
usp 57.26 7339 6532 76.34

Table 2: Word-level test oracle scores: SMB: Shared
task official baseline; SMW: Track 1 challenge winner
(either Tiibingen-1 or 2); Ours: our system; Orac: 3-best
oracle

5 Three-best oracle

We believe that glossing a real dataset inevitably
requires human intervention to ensure high-quality
results. Therefore, it is important to measure not
only the system’s 1-best performance but also its
ability to provide good options for a human anno-
tator to select among, since providing suggested
annotations can speed the process (Palmer et al.,
2009; Anastasopoulos et al., 2018). We elicit three
proposed glosses per word; in normal decoding,
we use only the first of these. However, we also
evaluate an ‘oracle’ system in which we pick the
best gloss, evaluated by maximizing the Jaccard
coefficient between the elements of the proposed
and true tag, to measure how often a human anno-
tator could accept one of the top three suggestions.
The Jaccard measure is necessary because a single
gloss may have multiple dot-separated elements
which can be independently correct or incorrect.
Table 2 in the shows word-level scores. The or-
acle exceeds the challenge winner scores in every
language but Arapaho and Natugu. This indicates
that the three-best oracle is useful for disambiguat-
ing some words even in the most morphologically

PFV.CVB
.. hunix ik’iAin egirmo. »| Added instructions
PST.UNW

Autogenerated instructions

Tag a verb as PFV.CVB if
it appears in a subordinate H verb...

clause... .
Final response
PST.UNW

Chain of thought

"Ayn" is likely the main

Figure 1: Outline of Section 6, showing the pipeline of
instruction generation and inference-time disambigua-
tion for a syncretic pair. Purple panels show LLM-
generated text.

complex languages.

Table 5 in the Appendix shows morpheme-level
results. Improvements over the 1-best system are
not as large as in the word-based scores, and are
smallest in the most morphologically complex lan-
guages, Arapaho, Gitksan and Natugu, for which
our system has little evidence about how to accu-
rately tag complex words, since it does not carry
out morphological analyses. We obtain larger im-
provements in the remaining languages, indicating
that for these, the retrieved evidence can narrow
down the space of tags to a few options. (We ex-
amine one such case, Tsez verbal syncretism, in
the next section; in this case, the system is usually
capable of identifying two possibilities but distin-
guishes between them poorly.)

6 Disambiguation of syncretic forms

Because of the cost of running the LLM system
(see Limitations), our development effort focused
on improving performance in Tsez. Tsez exhibits
multiple cases of morphological syncretism (Baer-
man, 2004) in which two distinct morphological
functions are expressed by a single surface form.
The highest error counts in the confusion matrix
for Tsez tags correspond to these syncretic forms,
primarily confusion between PST.UNW, the past
qinwitnessed, and PFV.CVB, the perfective converb.



Polinsky (2014, p.298) confirms that these two
forms are homophonous and both common in past
tense narrative. She notes several differences be-
tween the distributions of the forms: the finite verb
occurs in interrogatives and main clauses. The con-
verb occurs with topic and focus markers, with
adverbial clauses (of any tense) in past tense main
clauses, and with “clause chains” (p.297) which
“include a string of converbal clauses but may have
only one finite clause.” This example from the
dataset shows an adverbial clause with a converb
and sequential clauses, the last of which has a finite
verb; each verb has the same morphological marker

-n(o).

(2) Xizyo heCk’erno  yizin,
after upright-TOP II-get.up-PFV.CVB
yegirno mown Xxecin,
[I-1et-PFV.CVB tear-and leave-PFV.CVB
Musaq lox uban
Musa-POSS.ESS thrice kiss-and
bodin esirno:
[II-do-PFV.CVB ask-PST.UNW
‘After she got up again, she shed a tear, gave

Musa 3 kisses and asked him:’

6.1 Prompting

In an effort to reduce the errors caused by syncretic
forms, we use the LLM to generate instructions for
disambiguating these difficult tag pairs (Figure 1).
We generate instructions for each pair of tags with
more than 5 confusions in the baseline development
set in Tsez and Lezgi. Error distributions in the
other languages have few or no highly-confused
tag pairs, suggesting that their common errors are
not due to syncretism. Rather, these errors can be
attributed to the lack of morphological analysis and
to unknown words.

For each highly confused tag pair, we generate
a dataset of up to 32 contrastive instances from
the training set (see Appendix E). Each instance
is a pair of sentences in which the same lexical
item appears with the two different tags (for exam-
ple, the same verb appears as a finite verb and a
converb). We ask GPT-4 to give instructions for
disambiguating the two forms based on the data.

Once the instructions are pre-generated, for each
token in the test set for which the list of highly
frequent training tags contains a confusable tag, we
inject the generated instructions into the prompt.
If a token’s frequent tags suggest it is vulnerable
to multiple confusions, we add instructions for the
most frequent confusion of its most frequent tag.

Conf. Retr. Ours +Instr.
PFV.CVB / PST.UNW 107 102 74
II-PFV.CVB / II-PST.UNW 21 24 14
III-PFV.CVB / III-PST.UNW 22 24 25
LPL-PFV.CVB /III-PFV.CVB 20 21 17
IV-PFV.CVB / IV-PST.UNW 18 13 12
CVB / any 405 391 346

Table 3: Counts of top 5 test set error categories (lower
is better) from Tsez (ddo): our retrieval baseline, our
system, our system + LLM-written instructions. Last
line shows all confusions involving CVB tag.

6.2 Results and discussion

Our generated instructions reduce the number of
confusions across a variety of highly confused tag
pairs in Tsez (Table 3), though not every pair. (Note
that the various converbal tag confusions— distin-
guished by noun class— have independently gen-
erated instructions.) Overall, errors involving the
CVB tag are reduced by 11%; word level gloss
accuracy increases from 75.28 to 75.86.

A similar phenomenon appears in Lezgi, with
syncretic AOR (aorist) and AOC (aorist converb)
forms (Haspelmath, 1963, p.157), but at much
lower frequency (only 6 instances). Our generated
instructions did not improve this result.

The generated instructions correctly explain
several aspects of the contrastive distribution of
PST.UNW and PFV.CVB (see Appendix E for the
full output).

**Tag a verb as PFV.CVB if it appears in
a subordinate clause that provides back-
ground information or context for the
main action, often preceding the main
verb.** .. **Tag a verb as PST.UNW if
it is the main verb of the sentence, indi-
cating the primary action or event that is
being reported.** . ..

However, the instructions do not explain some
potentially useful information which requires care-
ful attention to the Tsez sentence rather than
the translation, such as the CVB occurring with
topic/focus markers. One generated guideline is
incorrect:

Tag a verb as PFV.CVB if it is used in a

conditional or hypothetical clause, pro-

viding a condition or premise for the
6  main action.



In fact, Tsez has specialized conditional con-
verbs and does not generally use the PFV.CVB for
this purpose (Polinsky, 2014, p.314-315). More-
over, GPT-4 illustrates this guideline with an in-
appropriate example: the example sentence is a
conditional, but the converb within it is not part of
the hypothetical clause.

To understand how the glossing system reacts to
the automatically written disambiguation instruc-
tions, we manually analyze some cases where the
system output changes. An example of an instance
which our original system got wrong, but the gen-
erated instructions corrected, is shown below (true
tags shown; tags for which the baseline gives the
wrong output italicized):

(3) Xizyogon hurZenya eXuk’no
then bag-IN.ESS leather.sack-TOP
egerno, heck’er izin.
put-PFV.CVB upright get.up-PST.UNW
‘Then he put the leather sack into the bag
and got up.

The generated chain-of-thought provides clear
evidence that GPT-4’s inference here is based on a
correct application of the guidelines:

“2. **PST.UNW as the main verb**:
The sentence translation indicates that
‘izin’ is part of the main action (‘got
up’) after putting the leather sack into
the bag. This suggests that ‘izin’ could
be the main verb of the sentence, which
aligns with the PST.UNW tag.”

In this sentence, on the other hand, the instruc-
tions caused an error in a case where our original
system was correct:

(4) Huseni salamno teXno,
Hussein-ERG greeting-TOP give-PFV.CVB
iduyor oqno.

home-IN.ALL become-PST.UNW

‘Hussein gave a greeting and went into the
house.

The instructions cause the system to reverse the
converb and finite verb tags. The chain-of-thought
output reveals a corresponding issue with the lin-
guistic analysis:

“1. **PEV.CVB in subordinate
clauses:** The verb "ogno" (become-
PFV.CVB) appears to be in a subordinate
clause providing context for the main

action. The main action seems to
be "Hussein gave a greeting," which
suggests that "teXno" could be the
main verb. This would lean towards a
PST.UNW gloss for "texno.”

Additional examples of guidelines and chain-of-
thought outputs are shown in Appendix E.

These results are the first convincing demonstra-
tion we know of that GPT-4 is capable of applying
linguistic metaknowledge to a language task, stand-
ing in contrast to its well-documented inability to
benefit from this type of instruction in low-resource
translation (Aycock et al., 2024; Zhang et al., 2024;
Court and Elsner, 2024; Elsner and Needle, 2023).
However, the problems noted in translation studies
still occur in this setting. In particular, GPT-4 is too
sensitive to the syntax of the meta-language rather
than the object language— structures where the
English syntax suggests one main verb while the
Tsez syntax suggests another are a frequent source
of errors. This compounds GPT-4’s bias towards
generating instructions which overemphasize the
translation to begin with. Overall, the system’s pre-
trained capacity to understand English is a double-
edged sword, since it predisposes the system to
attend to the translation at the expense of the Tsez
sentence.

7 Conclusion

Our research demonstrates the potential of a
retrieval-based LLLM prompting system for gloss-
ing, exceeding the shared task baseline for
morpheme-level scores in every language and the
majority of languages for word-level scores. These
scores are achieved without the integration of a
trained sequence model; a hybrid approach (Yang
et al., 2024a,b) would likely do better.

Moreover, our results show two promising pos-
sibilities for future investigation: First, our ora-
cle system shows promising results by surpassing
the word-level test scores of the Track 1 challenge
winner in Gitksan, Lezgi, Nyangbo, Tsez, and Us-
panteko. We believe more researchers in this area
should report oracle scores, and that it is high time
to revisit Palmer et al. (2009) in evaluating the de-
gree to which machine suggestions might aid a
real annotator in rapid glossing. Second, we show
that machine-generated linguistic instructions can
aid the disambiguation of syncretic forms in Tsez,
demonstrating that current LLMs can apply ab-
stract linguistic instructions to the annotation of



concrete language data when carefully prompted
(see also Shandilya and Palmer (2025)). Multistep
chains of thought involving annotation of language-
specific key concepts like main verbs might be able
to improve results by further focusing the LLM’s
processing on relevant properties of the object lan-
guage data. We also believe that the process of
generating and then applying linguistic instructions
could be applied to morphological disambiguation,
extending the approach beyond cases of syncretism.
It remains an open question what distinguishes suc-
cessful cases of instruction-following from the lack
of success in translation and glossing observed in
Aycock et al. (2024).

Although we do not find that word-by-word
prompting improves on sentence-level prompting,
we do believe that it has benefits for controllability
and interpretability. Far fewer examples need to be
retrieved for a single word than with sentence-level
prompting and the generated chains of thought al-
low us to examine the LLM’s reasoning in detail.
Both of these properties are helpful for error analy-
sis.

We continue to believe that LLM-based systems
for glossing and translation could be more accessi-
ble to their users than conventional sequence learn-
ers, since they can respond to natural language
corrections or advice rather than requiring data
annotation to modify their behavior. Continued im-
provements in the ability of LLMs to interpret lin-
guistic instructions will thus be a key step forward
in making language technology more responsive to
native speakers and language experts.

Ethics

The data used in this research was pulled only from
the 2023 SIGMORPHON shared task, an open-
domain dataset containing corpora for each lan-
guage tested. Since the data was already compiled
and utilized in other papers, including multiple pa-
pers using LLMs, we do not feel that our use of
it here poses any data sovereignty concerns. We
did not use text from other external resources such
as grammars or community-created dictionaries in
prompts for this project; our linguistic instructions
are automatically generated based on the data itself.

We acknowledge that, if this or any LLM-based
glossing system were to be deployed in a real field-
work project, community members would have to
be consulted about the submission of their data
to an LLM, and concerns about using a non-open

third-party model would be much more serious.
Moreover, it would be important to make sure that
machine-generated analyses (either glosses and in-
structions) were not inadvertently published or dis-
played as if they were human-authored. Ensuring
data sovereignty and recognition in endangered lan-
guage communities is of extreme importance, and
our research attempts to use previous, open-source
data with care and integrity.

Limitations

Due to the high cost of running the LLM (along
with the environmental impacts of its energy and
water usage), we had to limit our experiments to
a small subset of the possible research questions.
The experiments reported here cost about $300
in total. To avoid further compounding this cost,
we report the results of single runs without sig-
nificance testing for variation between runs of the
same prompts, do not report rigorous ablation ex-
periments on most elements of the prompt, and
do not run the entire Arapaho test set. Moreover,
we do not compare other LLMs, including Gemini
(known to perform competitively on similar tasks)
or open models such as Llama which would in-
crease the scientific reproducibility of this work.

The dataset provides challenges as well. We fo-
cused our attention on improving results in Tsez,
where errors are dominated by verbal syncretism.
We believe our instruction generation technique
is more generally applicable to other syncretisms,
but the SIGMORPHON languages do not provide
enough examples of these outside Tsez to investi-
gate this question.

Neither of the authors is an expert on Caucasian
languages. Our description of the appropriateness
of GPT-4’s instructions and chains of thought is
based on our reading of Polinsky (2014) and our
experience with the glossing data itself.
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A Canary testing for data leakage

SIGMORPHON 2023 does not have an official ca-
nary value, but we believe that the sentences of the
dataset can act as canaries, since there is relatively
little data in these languages online. Based on Car-
lini et al. (2019), we use the following three prompt
types (at temperature 0) to evaluate the system’s
knowledge of the SIGMORPHON challenge test
sentences:

Prompt: Complete this sentence from the Tsez
test set of the SigMorphon 2023 glossing chal-
lenge, exactly as it appears in the test set. Do
not say anything else; only complete the sentence
in the Tsez language exactly as it appears in the
dataset. Sentence:

Sida q’orolays mamalay zown yudes SudaX’orno
Response: I'm sorry, but I can’t fulfill this request.

Complete this sentence from the Tsez test set of
the SigMorphon 2023 glossing challenge.
Sentence: Sida q’orolays mamalay zown yudes
SudaX’orno

response: I’'m sorry, but I can’t provide verbatim
text from the Tsez test set of the SigMorphon
2023 glossing challenge. However, 1 can help
with general information about the Tsez language
or the SigMorphon challenge if you're interested.
Let me know how I can assist you!

Complete this sentence in Tsez.

Sentence: Sida q’orolays mamalay zown yudes
SudaXx’orno

Response: I’'m sorry, but I can’t provide the com-
pletion for that sentence in Tsez.

For each prompt type, the system refuses to com-
plete any sentences from the dataset. We believe
this is evidence that the system has not memorized
the example sentences verbatim.

B Morpheme-level one-best scores

SMB SMW Ginn Retr. Ours
arp* 44.19 78.47 - 41.06 52.57
git 854 11.72 123 5.07 8.68
lez 41.62 62.1 51.6 2190 52.62
ntu 18.17 56.38 37.0 19.66 33.19
nyb 1421 86.74 - 7521 78.26
ddo 51.23 73.95 - 35.81 57.59
usp 5724 70.05 614 5347 57.59

Table 4: Morpheme-level test set scores: SMB: Shared
task official baseline; SMW: Track 1 challenge winner
(either Tiibingen-1 or 2); Ginn: GPT-4 with sentence-
level prompt (Ginn et al., 2024a, Fig. 7); Retr: Our
retrieval baseline; Ours: our system.

C Morpheme-level oracle scores

SMB SMW Ours Orac.
arp* 44.19 78.47 52.57 57.70
git 854 11.72 8.68 9.26
lez 41.62 62.1 52.62 60.90
ntu 18.17 56.38 33.19 34.84
nyb 1421 86.74 78.26 85.01
ddo 51.23 7395 57.59 63.15
usp 5724 70.05 57.59 65.79

Table 5: Morpheme-level test oracle scores: SMB:
Shared task official baseline; SMW: Track 1 challenge
winner (either Tiibingen-1 or 2); Ours: our system; Orac:
3-best oracle.

D Appendix: Full Prompt

Below is an entire example prompt for our sys-
tem. The candidate gloss is assembled by taking
the most frequent tag (or "?") for each word other
than the target word, shown in brackets. The most
frequent tags are produced by exact match with the
training data. Three exact and three approximate
1patches are shown; they are random samples from



the training set. Approximate matches are selected and] hid that honey-selling merchant in the box

to share at least a 4-character substring with the tar- next to the boy. . .

L Sentence: Hemedurtow, dey xediw nexxoXin, reX
get word, and within that set, to share the longest teXxosini bazarganno yizide sadaq yamasya tet
such substring we can find. The reverse lookup uq'no yita.

shows words in the translation which appear within Gloss: so-EMPH me-GEN1 husband come-PRS-

the lexical elements of gloss lines.

We are going to gloss an example in Tsez. Your
task is to predict glosses for the word:

uq?no
In this sentence:

Sentence: Zeda Za siday t'ebozat X’iriyor
hut’-m*alin roxik’no [uqqno]

Candidate  gloss: DEM1.IPL.OBL-ERG
DEM1.SG in.one.place ? above-IN.ALL
front.part.of.the.face-and IV-let.appear-PFV.CVB
(7]

Translation: They hid him somewhere with only
his face out of the leaves.

Use interlinear glossed text (IGT) and follow the
Leipzig glossing conventions.

Glosses should use function tags, not English
morphology, to indicate grammatical information:
for instance, "monkey-PL" is preferable to "mon-
keys". Give the best three glosses for the word
(in order, best to worst) in a JSON list format
outlined below.

"word": ”uqfno.,,
"glosses":

}

The word uq'no often appears with the following
tags (but it may also appear with similar tags that
are not shown here):

hide-PST.UNW (60%), hide-PFV.CVB (40%)

It appears with the following features (but it may
also appear with related features that are not
shown here):

PST.UNW, PFV.CVB

Here are a few example sentences with the word
uq’no. Remember that the full distribution of tags
(shown above) is not necessarily represented here.

Exact Matches Sentence: Dey xediw nexxoXin,
yita yeda sida yeZe yamasya tetxor uq'no.

Gloss: me-GEN1 husband come-PRS-QUOT
DEM2.IISG.OBL-ERG DEM2.ISG one.OBL II-
big box-IN.ESS inside-AD.LAT hide-PST.UNW
Translation: "My husband is coming!", she [said
and] hid him inside a large box.

Sentence: Dey xediw nexxoXin yita yeda nuci
teXxosi bazargan nesi zade puridza yamasya tet
ug'no.

Gloss: me-GEN1 husband come-PRS-QUOT
DEM2.IISG.OBL-ERG DEM2.ISG honey
sell-PRS.PRT merchant DEM1.ISG.OBL boy-
APUD.ESS side-IN.VERS.DIST box-IN.ESS
inside hide-PST.UNW

Translation: "My husband is coming!", she [said

QUOT meat sell-PRS.PRT-DEF merchant-TOP
DEM2.IPL.OBL-APUD.ESS together box-
IN.ESS inside hide-PST.UNW DEM2.1ISG.OBL-
ERG

Translation: Again she said "My husband is
coming!", and also hid the meat-selling merchant
inside the box together with them.

Approximate Matches: Sentence: Hemetla qui
Okur &uq'no, yisi uZi nesiqay ‘ilmu yigéruti.
Gloss: DEMA4.IISG.OBL  day-CONT.ESS
Oku-LAT notice-PST.UNW DEM2.ISG.OBL
boy-ERG DEM1.ISG.OBL-POSS.ABL science
II-take.away-PST.PRT-CND.CVB.IRR
Translation: That day, Oku noticed that the boy
took away the science from him.

Sentence: Zar ¢ug*no nesi be¢edawni maduhales
pisa yedu yatruti.

Gloss: son-LAT notice-PFV.CVB
DEMI1.ISG.OBL  wealthy-DEF  neighbor-
GEN1 deed DEM2.IISG be-MSD

Translation: The son noticed, that it was a deed of
that wealthy neighbor. Sentence: Yeyeni esiwde
sadaq Zan yuq'no, gulun re¢uX bicin, beZet’ani
esnabi bayaniqor idu ezun i¢édsi zown.

Gloss: II-young-DEF  sister-APUD.ESS
together DEMI1.SG-TOP II-hide-PFV.CVB
horse-TOP cattleshed-SUB.ESS IlI-tie-PFV.CVB
I.PL-0ld-DISTR-DEF brother-PL I.PL-come-
MSD-POSS.LAT home look-PFV.CVB
wait-RES.PRT be.NPRS-PST.UNW

Translation: He hid her together with her younger
sister, tied the horse to the shed, and waited at
home for his older brothers to come.

Words for "of" include: meca (instead.of),
met’rin (piece.of.meat-TOP), me¢"a (instead.of),
sabawtun (for.the.sake.of), bitor (because.of)
Words for "hid" include: yuq®no (II-hide-
PFV.CVB), uq'no (hide-PST.UNW), uq'etno
(hide-PFV.CVB), buqH no (III-hide-PST.UNW),
ruq’si (IV-hide-PST.WIT)

Words for "out" include: bet’urno (III-pull.out-
PFV.CVB), bizix (I.PL-take.out-IPFV.CVB),
ret'urno  (IV-pull.out-PFV.CVB), roXik’no
(IV-pull.out-PFV.CVB), kurno (spread.out-
PFV.CVB)

E Appendix: Prompt and Output for
Instruction Generation

The prompt for eliciting instructions to disam-
biguate two tags is shown below. The examples of
‘bad rules’ and their improvements (in Latin and
Welsh) are hardcoded by the authors of the paper
and do not come from any language in the glossing
challenge. The contrastive examples, however, are
taken automatically from the training set. We use
14p to 32 per tag pair, but only one is shown below.



Here are some examples which highlight the dif-
ferences between two tags, which are represented
here as PFV.CVB and PST.UNW, in Tsez. We are
writing guidelines for distinguishing these two
similar tags.

0: Examples of ihun with both tags:
Sentence: HowZi yisi Hasanes ecrilno lagis tatun

bexun, halt’i boda biyné’us oq¥a ihun.
Gloss: now DEM2.ISG.OBL Hassan-GENI

get.old-PFV.CVB  body-GEN1 power-TOP
II-die-PFV.CVB  work  III-do-INF  III-
know-NEG.PST.WIT-ATTR become-INF

begin-PFV.CVB

Translation: Now Hassan’s old body ran out of
power, and he started getting unable to do the
work.

Sentence: OXoya YUmar iduyorno iZin, sihrus
filmu mota ihun.

Gloss: Ohoyo-ERG Umar home-IN.ALL-TOP
lead-PFV.CVB slyness-GEN1 science teach-INF
begin-PST.UNW

Translation: Ohoyo lead Umar to his home and
began to teach him the science of slyness.

... 31 more examples follow ...

State some rules for distinguishing PFV.CVB
from PST.UNW in Tsez. Be concise, but make
sure your rules are specific and include examples
where necessary. Do not appeal only to semantics
when making the distinction. For example, here
is a bad rule:

1: Tag a verb as an infinitive if it expresses some-
thing that someone knows or thinks. For example,
"he knows that he is going".

This rule is bad because it does not indicate which
verb (know or go) should be tagged as infinitive,
it does not explain how the other verb should be
tagged, and it does not sufficiently describe the
syntactic context in the tagged sentence in which
it applies.

Here is an improved version of this rule:

1: Tag a subclause verb as an infinitive if the main
verb is finite and the subclause verb subject is
accusative. For example:

scit illum ire
know-3SG DEM-3SG-ACC go-INF
"he knows that he is going"

Here is another bad rule:

2: Tag a noun as a genitive if it appears in a
possessive noun phrase. For instance, "the man’s
book".

This rule is bad because it does not indicate which
noun (man or book) should be tagged as genitive,
it does not explain how the other noun should be
tagged, and it refers only to English word order,
not to the order in the tagged sentence.

Here is an improved version of this rule which
shows the word order in the object language as
well as in English.

2: Tag anoun as a genitive if it appears to the right
of the head noun in a noun phrase, indicating the
possessor of the previous noun. For example:

llyfr y dyn
book.NOM the man.GEN
"the man’s book"

Here is another bad rule:

3: Tag a verb as subjunctive if it reflects a desire
or belief. For example, "he wants them to leave".

This rule is bad because it does not indicate which
verb (want or go) should be tagged as subjunctive,
it does not explain how the other verb should be
tagged, and it does not refer to the syntax of the
clause, only the meaning.

Here is an improved version of this rule which
describes the syntax in the object language.

3: Tag a subclause a verb as subjunctive if it re-
flects a desire or belief in a subclause introduced
with "ut" or a relative pronoun. Tag verbs in sub-
clauses with no introductory particle as infinitives.

vult eos abesse
want-3SG 3PL be.absent-INF

vult ut abessent
want-3SG COMP be.absent-3PL.SBJV

State three to five rules, using this format.

One output from this prompt, as produced by

ChatGPT, is given below.
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Certainly! Here are some rules for distinguish-
ing between the PFV.CVB and PST.UNW tags in
Tsez:

1. **Tag a verb as PFV.CVB if it appears in a
subordinate clause that provides background in-
formation or context for the main action, often
preceding the main verb.** The PFV.CVB verb
typically describes an action that is completed
before the action of the main verb. For example:

- Sentence: *Babiya uZi Okude sadaq egirno
xecin.*

- Gloss: dad-ERG son Oku-APUD.ESS together
send-PFV.CVB leave-PST.UNW

- Translation: "The father sent his son together
with Oku."

In this sentence, "egirno" (send-PFV.CVB) pro-
vides context for the main action "xecin" (leave-
PST.UNW).

2. **Tag a verb as PST.UNW if it is the main verb
of the sentence, indicating the primary action or
event that is being reported.** The PST.UNW
verb typically follows the PEV.CVB verb if both
are present in the sentence. For example:

- Sentence: *Zedu tet iduyor bognosi, ceyi betiqus
uZi 7eduz y utkoxor egirno.*

- Gloss: DEMI.IPL inside home-IN.ALL III-
become-ANT.CVB eagle-ERG hunter-GEN1
son DEM1.IPL.OBL-GEN2 house-AD.LAT let-
PST.UNW

- Translation: "When they had gone into their
house, the eagle let the hunter’s son down to their
house."

In this sentence, "egirno” (let-PST.UNW) is the
main action reported.

3. **Tag a verb as PFV.CVB if it appears in a se-
quence of actions where it indicates a completed



action that leads to or results in the subsequent ac-
tion.** The PFV.CVB verb often precedes another
verb that is tagged as PST.UNW. For example:

- Sentence: *K"“axatow sida igozo Takay nesi Zax
fet’in sis bercinaw kidno yown.*

- Gloss: soon-EMPH one.OBL near-ATTR.OBL
village-IN.ABL DEM1.ISG.OBL boy-AD.ESS
pick-PFV.CVB one beautiful girl-TOP II-marry-
PST.UNW

- Translation: "Soon, that boy picked a beauti-
ful girl from the neighboring village and married

4. PST.UNW used to report a past event relevant

to the discourse: True but vague. Polinsky
agrees that PST.UNW generally has past ref-
erence (p.298) but also states that it should
be used for a 2nd/3rd person subject due to
its evidential status. Tense cannot be used to
identify the PST.UNW because the converb
also often has past tense reference, although
it is not required to do so.

her."

In this sentence, "tet’in" (pick-PFV.CVB) is a 5. Converbs in hypothetical: Mostly incorrect.
completed action that leads to "yown" (marry- Tsez uses specialized converbs for hypotheti-
PST.UNW).

cal constructions (p.314-315) rather than us-
ing the PFV.CVB. However, PFV.CVB can
appear in hypotheticals due to “linking of con-
verbs, where only one converb is marked as
conditional but takes adjoined converbs under
its scope, [the] preferred option of expressing
that several events are viewed as hypothetical
or counterfactual.” (p.315) GPT’s example
does not seem to clearly fit this criterion, since
although it states that "wait a little" is part of
the hypothetical clause, it is actually part of
the consequent (“If that’s the case, [then] I'll
wait...”).

F Chain of thought outputs

4. **Tag a verb as PST.UNW if it is used to report
a past event or action that has relevance to the nar-
rative or discourse context.** The PST.UNW verb
often concludes a sequence of actions or provides
the main point of the sentence. For example:

- Sentence: *Xaner iyn anu yeda nesis uZi yatruti.*
- Gloss: khan-LAT know-PST.UNW be.NEG
DEM2.1SG DEM1.ISG.OBL-GEN1 son be-MSD
- Translation: "The king didn’t know that he was
his own son."

In this sentence, "iyn" (know-PST.UNW) reports
the main event of the narrative.

5. **Tag a verb as PFV.CVB if it is used in a
conditional or hypothetical clause, providing a
condition or premise for the main action.** The
PFV.CVB verb often appears before a PST.UNW
verb that describes the outcome or result. For

le: ..
exampie We show here some additional examples of how

GPT-4 applies the guidelines for distinguishing fi-
nite verbs and converbs. In the following case, our
basic system mislabels ‘come’ as a converb but the
instruction-augmented system correctly labels it as
a finite verb.

- Sentence: *Nedur resundyXin, eXin uZi
dahawcen i¢in, mazgityayorno ik’a¢’in, idun
keca¢’in.*
- Gloss:  so IV-exist-CND.CVB-QUOT say-
PSTUNW  boy-ERG  alittle-EQU1-TOP
wait-PFV.CVB  mosque-IN.VERS-and  go-
NEG.FUT.DEF home-and sleep-NEG.FUT.DEF

- Translation: "’If that’s the case,” said the boy,

"T'll wait a little, and will neither go to the (5) Ayn yeda §iday
mosque, nor sleep here at home." come-PST.UNW DEM2.1ISG in.one.place
beliz cigler.

In this sentence, "eXin" (say-PST.UNW) is the
main action, while "dahawcen" (wait-PFV.CVB)
provides a condition for the subsequent actions.

poplar-GEN2 forest-CONT.LAT
‘He came to a poplar forest.’

An excerpt from the chain of thought shows that
the ‘main verb’ criterion is correctly applied:

2. **PST.UNW as the main verb**: "Ayn" is
likely the main verb of the sentence, as it describes

These criteria may be compared with the gram-
mar as follows:

1. Subordinate clause verbs are converbs: Cor-

rect. “The majority of Tsez adverbial clauses
have a converb as their predicate” (Polinsky,
2014, p.296).

. Main verb is PST.UNW: Correct.

. Converbs in sequence of actions indicating
actions that lead to the main action: Correct.
Polinsky describes these as “clause chains”
(p-297).

the primary action of coming to a poplar forest.
There is no other verb in the sentence that would
serve as the main verb, which supports the use of
PST.UNW.

In the following case, our basic system mislabels

‘hear’ as a finite verb, but the instruction-augmented
system correctly labels it as a converb.
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(6) Zedus xabarno
DEMI1.IPL.OBL-GENI1 story-TOP
teqno Zedut

hear-PFV.CVB DEM1.IPL.OBL-CONT.ESS



xizay iletow  c’odorawni esiwn

behind as-EMPH clever-DEF brother-TOP
ik’in.

2o-PST.UNW

‘Having heard their talking, the clever
brother went behind them likewise.’

Below, an excerpt from the chain of thought
correctly indicates that ‘hear’ is not the main verb
and appears earlier in the string, both indicating the
CVB tag.

Now, let’s apply the guidelines:

1. **PFV.CVB in subordinate clauses**: The
word "teqno" appears before the main verb "ik’in"
(go-PST.UNW). This suggests that "teqno" could
be providing background information or context
for the main action, which aligns with the use of
PFV.CVB.

2. **PST.UNW as the main verb**: The main
action of the sentence is "ik’in" (go-PST.UNW),
which indicates the primary event. "Teqno" is not
the main verb here, which makes it less likely to
be PST.UNW.

3. **PFV.CVB in sequences of actions**: The
sentence describes a sequence where the clever
brother hears something and then goes behind
them. "Teqno" could represent a completed action
that leads to the subsequent action "ik’in" (go-
PST.UNW), supporting the use of PFV.CVB.

In the following case, the instruction-augmented
system makes a mistake due to misrecognition of
the main verb and labels ‘do’ as a converb rather
than a main verb.

(7) BoxXo  zaman bik’inosi
[[I-middle time III-go-ANT.CVB
bara xediw  bet’erbaqi boda
wife-ERG husband life IT-do-INF
ik’ anix muk’ur oyn
20-MSD-AD.ESS confess do-PST. UNW
‘After some time has passed, the wife con-
fessed that she went to live with her hus-

band.’

The chain of thought produced by ChatGPT la-
bels ‘persuade’, which is not inflected, as the main
verb, and oyn as a subordinate verb— in fact, it acts
as the head (auxiliary) verb. The issue, as discussed
in the main text, is that ChatGPT tends to prioritize
the English translation over the Tsez sentence— the
instructions state that "the PST.UNW verb typically
follows the PFV.CVB verb if both are present",
but also that the "main verb" should be tagged
as PST.UNW. Here, the information about order-
ing (which would have given the right answer) is
deemphasized in favor of the "main verb" criterion,

which is incorrect due to the auxiliary. (The in-
ferred tag sequence is shown in the excerpt. The
retrieval system retrieves the primary meaning ‘per-
suade’ rather than ‘confess’ for muk’ur, but this is
corrected in the final gloss.)

Translation: 1. **BoXXo** - noun (III-middle)
2. *¥*zaman** - noun (time)

3. **bik’inosi** - verb (I.PL-go-ANT.CVB)
4. **bara** - noun (wife-ERG)

5. *¥*xediw** - noun (husband)

6. **bet’erbaqi** - noun (life)

7. **poda** - verb (III-do-INF)

8. **ik’anix** - verb (go-MSD-AD.ESS)

9. **muk’ur** - verb (persuade)

10. **oyn** - verb (?)

1. **PFV.CVB in subordinate clauses**: The
candidate gloss suggests that "bik’inosi" (I.PL-
g0-ANT.CVB) is a subordinate clause providing
background information. The main action seems
to be the wife’s confession about going to live
with her husband. "Oyn" could potentially be a
PFV.CVB if it provides context or background to
the main action.
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Abstract

This paper examines the linguistic distinction
between syntax and morphology, focusing on
noun-noun compounds in three West Germanic
languages (English, Dutch, and German). Pre-
vious studies using the Parallel Bible Corpus
have found a trade-off between word order (syn-
tax) and word structure (morphology), with
languages optimizing information conveyance
through these systems. Our research question is
whether manipulating English noun-noun com-
pounds to resemble Dutch and German con-
structions can reproduce the observed distance
between these languages in the order-structure
plane. We extend a word-pasting procedure to
merge increasingly common noun-noun pairs
in English Bible translations. After each merge,
we estimate the information contained in word
order and word structure using entropy calcula-
tions. Our results show that pasting noun-noun
pairs reduces the difference between English
and the other languages, suggesting that ortho-
graphic conventions defining word boundaries
play a role in this distinction. However, the
effect is not pronounced, and results are statis-
tically inconclusive.

1 Introduction

The linguistic distinction between syntax and mor-
phology is well-known and contentious (Tallman
and Auderset, 2023; Crystal, 2010). Syntax is often
understood as the study of word combinations into
phrases and sentences, while morphology focuses
on internal word processes. However, the bound-
ary between these domains is blurred, and attempts
to distinguish them often hinge on the complex
notion of wordhood (Haspelmath, 2023). Some
patterns in language, nonetheless, seem to support
a morphology-syntax divide, with languages rely-
ing more on one or the other system.

Previous research using the Parallel Bible Cor-
pus (PBC) (Mayer and Cysouw, 2014) found
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Utrecht University
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that languages optimize information conveyance
through these systems (Koplenig et al., 2017).
More recently, Mosteiro and Blasi (2025) postu-
lated that the statistical order-structure trade-off ob-
served could be ascribed to the conventional word
boundaries used in the curation of the dataset.

We focus on a phenomenon straddling the bor-
der between morphology and syntax: noun-noun
compounds in West Germanic languages. While
Dutch and German form noun-noun compounds by
creating a single orthographic word, English con-
ventionally writes noun-noun compounds as sep-
arate words. For example, the expression winter
garden is two words in English, but its equivalents
wintertuin and Wintergarten in Dutch and German,
respectively, are composed of one word. At the sur-
face level, the English construction seems syntactic,
while the Dutch and German constructions seems
morphological. Noun-noun compounds have been
the subject of extensive linguistic study (Sun and
Harald Baayen, 2021; Gast, 2008; Berg, 2006).

Our research question is: can we reproduce the
distance between English on the one hand and
Dutch and German on the other in the study
by Koplenig et al. (2017) by manipulating En-
glish noun-noun compounds, so that they stick
together as in Dutch and German?

To answer this question, we reproduce the word-
pasting experiment of Mosteiro and Blasi (2025),
but this time we only allow word pairs to be merged
if both of the words involved are nouns. Thus, we
investigate whether the observed distance between
English and Dutch/German in the order-structure
plane is merely an artifact of orthographic conven-
tions defining word boundaries.

2 Materials and Methods

We use a multilingual parallel corpus, on which
we apply a word-pasting methodology (Mosteiro

this trade-off across many languages, suggesting jand Blasi, 2025) to paste common word-pairs to-
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gether, and then we compute the amount of infor-
mation contained in word-order and word-structure
using an entropy estimator based on Shannon’s en-
tropy (Shannon, 1948; Koplenig et al., 2017). 1

2.1 Data

We use the Parallel Bible Corpus (Mayer and
Cysouw, 2014), which comprises 2000 translations
of the Bible in 1460 languages, covering over 40
language families worldwide?. Each translation is
preprocessed with tokenization, Unicode normal-
ization, and insertion of spaces between words and
punctuation. As in Koplenig et al. (2017), we split
translations into individual books, and focus on
six New Testament books (Matthew, Mark, Luke,
John, Acts, and Revelation). We do not lowercase
the texts in the preprocessing step, and instead do
this after part-of-speech tagging. We only con-
sider bibles in Dutch, German, or English, as in-
dicated by file names starting in nld, deu, or eng,
respectively. Because contemporary German only
became fully standardized in the 19" century, we
exclude bibles translated before 1800. We only in-
cluded bibles that contained at least 90% of all the
indexed verses in each of the six books considered.
Our final dataset consists of 23 bible translations
in German, 29 in English, and 4 in Dutch. The list
of bible translations can be found in Appendix A.

2.2 Part-of-speech tagging

We employ part-of-speech (POS) tagging to iden-
tify nouns in our datasets, utilizing SpaCy’s
en_core_web_lg model, version 3.8.0, for its large
size and CPU-optimization. POS tagging is applied
to English data only, while German and Dutch data
are excluded due to the subsequent omission of the
word-pasting algorithm on those languages. For
each token, we extract the Universal POS (UPOS)
tag to classify words as nouns (NOUN) or otherwise.
After POS tagging, we lowercase all tokens as
in Koplenig et al. (2017).

2.3 Entropy calculator

Following the work of Koplenig et al. (2017), we
aim to estimate the amount of information carried
by word order and word structure, which are prox-
ies for syntax and morphology. To do this, we
create three versions of each bible translation. One

'All our code can be found at https://github.com/
PabloMosUU/WordOrderBibles.

>We use commit 9e66cf47f. Newer versions contain even
more translations.

is the original text, named orig. The second ver-
sion, named shuffled, is obtained by shuffling all to-
kens within each verse in the text. This effectively
destroys word order. The third version, named
masked, is obtained by replacing each word type
in a book by a unique randomly generated charac-
ter sequence of the same length. This effectively
destroys word structure. An example is shown on
Table 1. After applying these operations at the
verse level, all verses in a book are concatenated in
a shuffled manner, thus creating an original, a shuf-
fled, and a masked version of each book. Each of
these versions is fed into an entropy calculator (Ko-
plenig et al., 2017), which returns the amount of
information contained in each of these versions, in
bits per unit character. This results in the quantities
Hclzriginal’ Hcl:rder’ and H&ructure? Corresponding to
the orig, shuffled, and masked versions of book
b, respectively. We then compute the information
contained in word order and word structure as:

b _ ggb b
Dorder - Horder - Horig (1)
b _ ggb b
Dstructure - Hstructure - Horig (2)

2.4 Word pasting

We replicate and extend the word-pasting experi-
ment from Mosteiro and Blasi (2025) on English
Bible translations. For each book in each transla-
tion, we iteratively generate new versions by merg-
ing the most frequent noun-noun word pair into a
compound. Following each merge, we create orig-
inal, shuffled, and masked versions of each book
and compute estimates of Dgr der and Db eture
ing the entropy calculator introduced in Section 2.3.
We do not paste proper nouns, as exploratory anal-
ysis showed limited pasting of proper nouns in
German and Dutch?. This splitting methodology is
applied solely to English translations.

us-

2.5 Final pipeline

We take the 56 bible translations described in Sec-
tion 2.1. Following previous work (Koplenig et al.,
2017), we consider only six books of the New Tes-
tament. We thus arrive at 342 book-translation
pairs. We split each of these into verses and create
an original, a masked, and a shuffled version of it.
We then paste the verses back together to obtain an
original, a masked, and a shuffled version of each
book-translation. We feed each of these into an
entropy calculator to obtain the information in bits

*For example, English Jesus Christ is Jezus Christus in
1Butch and Jesus Christus in German.



Version

Text

orig

masked

immediately they left the boat and their father and followed him .
shuffled followed boat him and the and father their they left .
aihuraovaha phun fafa luh avnn wso octaa otstsh wso tehreaed fed e

immediately

Table 1: Three versions of each verse of the bible are created before computing the entropy in bits per unit character
of each book. The boldface merely highlights the effect, by showing that two words that are related in both their
form and their meaning in the original text are mapped to completely different words in the masked text.

per character, then we compute two differences to
obtain the information contained in word order and
word structure for each book-translation. In the
case of English, we expand this analysis by pasting
noun-noun pairs iteratively from the most common
to the least common and recomputing the word-
order and word-structure information at each step.
For each language, book, and number of merges?,
we average the values of Dgrder and D% ..., as
in Koplenig et al. (2017).

3 Results

Figure 1 shows our main result. The red squares
and green stars are the word-order and word-
structure information for Dutch (nl1d) and German
(deu), respectively. The blue dot labeled “eng-orig’
corresponds to the average of the original English
bible translations. The blue dot labeled “eng-nn-
pasted” is the average value of word-order and
word-structure information across English trans-
lations after all noun-noun pairs have been pasted
together. For comparison, the cyan triangles are re-
productions of Mosteiro and Blasi (2025), in which
the first 100 and 200 most common word pairs have
been pasted together, regardless of POS tag. The
fit line shown is the one found by Koplenig et al.
(2017) by fitting an inverse proportionality line on
word-order and word-structure information across
all languages in the PBC. The number of noun-
noun merges required for each book to reach the
point when no more noun-noun pairs can be pasted,
averaged over translations, is shown on Table 2. In
Appendix B we report the results of repeating the
study using SpaCy’s en_core_web_trf, a trans-
former model. Qualitatively we observed similar
results.

’

*For German and Dutch, we do not do any merging, so
we average values of Dgrder and Dé’tmcmrc for each language
and book.

Book Max verses Max NN merges
Acts 1007 34.5
John 879 23.7
Luke 1151 48.9
Mark 678 28.8
Matthew 1071 43.5
Revelation 404 28.4

Table 2: For each book considered, the maximum num-
ber of verses found across the available English transla-
tions, and the maximum number of noun-noun merges,
averaged over translations.

4 Discussion

Figure 1 indicates that pasting noun-noun pairs
together either leaves the English data point un-
changed brings it closer to the Dutch and German
data points. The effect is much smaller than when
we paste all words regardless of POS tag. For Acts
and John, no effect is observable altogether. Ta-
ble 2 shows the maximum number of verses for
each book in English. Note that Acts and John are
neither the longest nor the shortest books, so there
a priori no reason to believe that the effect should
be smaller or negligible for those books.

Let A(Dorder) and A(Dgtructure) be the dif-
ferences between Dg;dqer and Dggryctures T€SpeEC-
tively, before and after the noun-pasting proce-
dure. Table 3 shows the values of A(Dgyqger) and
A(Dstructure) across the various translations in En-
glish, together with the p-value for a paired per-
mutation test to discard a null hypothesis in which
both A is 0. From this table, we can conclude that
only A(Dsgtructure) in Revelation is significantly
different from 0.

It would be desirable to study longer corpora,
not only because it would allow more noun-noun
pairs to be pasted, but also because the entropy
estimator we used converges to the entropy for
long texts (Kontoyiannis et al., 1998). Convergence
was checked in a previous study (Koplenig et al.,

12017). Still, in future work we plan to evaluate
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Figure 1: Word-structure versus word-order information for English, Dutch, and German. The green stars and red
squares are German (deu) and Dutch (nld), respectively. The blue dots are English data, before (eng-orig) and
after (eng-nn-pasted) pasting all noun-noun pairs in the book together. The cyan triangles are obtained by pasting
the 100 and 200 most common word pairs regardless of POS tag. The dashed line is the best fit found by Koplenig
et al. (2017) using all languages in the Parallel Bible Corpus.

these quantities over multiple books combined.
Although the evidence is not conclusive, there
seems to be an indication that pasting noun-noun
pairs together, which implicitly turns English noun-
noun compounds from two words into one, brings
the English word-order and word-structure infor-
mation closer to the values for Dutch and German.
Future work will use word splitting (Mosteiro
and Blasi, 2025) to split Dutch and German noun-

noun compounds and evaluate whether the data
points move closer to the English data points.

5 Conclusions

In conclusion, our study aimed to investigate
whether the observed distance between English
and Dutch/German in the order-structure plane, as
1seported by Koplenig et al. (2017), is merely an
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Table 3: A(Doyrder) and A(Dgtrycture) for each book as
estimated by a paired permutation test in which each
paired sample consists of Doyger and Dgtyycture fOr a
single English translation, before and after merging
noun-noun pairs, for a total of 29 paired datapoints. We
used 100000 resamples. Only the p-value for Dggyucture
for Revelation is less than 0.05, meaning that noun-
noun merges caused a statistically significant increase
in Dgtructure for Revelation.

artifact of orthographic conventions defining word
boundaries. By replicating and extending the word-
pasting experiment from Mosteiro and Blasi (2025)
on English Bible translations, we found that pasting
increasingly common noun-noun pairs together re-
duces the difference between English and the other
languages, suggesting that the distinction is at least
partially due to this factor.

However, the effect was not as pronounced as
observed in the original study due to a small num-
ber of noun-noun pairs present in the corpus (see
Table 2), and the shift was not statistically signifi-
cant. This small effect could also be caused by the
fact that the words we pasted are less frequent than
those pasted by Mosteiro and Blasi (2025), because
we selected a subset of their words. Future work
will check this effect on a bigger corpus with more
noun-noun pairs.

Limitations

In this study we applied POS tagging at the individ-
ual verse level. Future work could check whether
tagging entire books of the bible would increase
POS-tagging performance.

We used commit 9e66cf47f of the PBC for con-
sistency with prior work. There might be additional
bible translations in our languages of interest in
more recent versions of the PBC.

Not all noun-noun clusters in English are com-
pounded in their German or Dutch translations. But
in our study we pasted all occurring pairs of nouns.
A refinement of this work would check that all
noun-noun pairs pasted are linguistically accurate,
in the sense that their counterparts in German or
Dutch would be compounds.

As for the linguistic question, we only con-
sidered one phenomenon in one language family,
namely noun-noun compounds in West Germanic
languages. It would be interesting to find another
phenomenon occurring in another language family,
to validate our methodology.
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Book Max verses Max NN merges

Acts 1007 40.1
John 879 28.0
Luke 1151 54.8
Mark 678 35.0
Matthew 1071 50.3
Revelation 404 28.4

Table 4: Maximum number of noun-noun merges for
each book, averaged across English translations. Com-
pared to Table 2, this one was generated using SpaCy’s
transformer model en_core_web_trf as a POS tagger
instead of en_core_web_1g. The Max verses column
is unchanged because that is a property of the input
texts.

Adam JR Tallman and Sandra Auderset. 2023. Measur-
ing and assessing indeterminacy and variation in the
morphology-syntax distinction. Linguistic Typology,
27(1):113-156.

A List of bibles used

Table 5 shows the file names of the bible transla-
tions used for this study.

B Transformer-based POS tagger

We repeated the entire analysis of this paper
using SpaCy’s en_core_web_trf, a transformer
model, instead of en_core_web_lg. The results
are shown on Figure 2 and Table 4. We note
that the average number of noun-noun pairs is
higher than with en_core_web_1g. This means
that either the en_core_web_lg model incorrectly
classifies nouns as other parts of speech, or that
en_core_web_trf incorrectly selects non-nouns
as nouns. However, the figure shows that the down-
stream results are slightly less significant than those
found with en_core_web_lg (Figure 1).
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Translation name

deu-x-bible-albrecht. txt deu-x-bible-elberfelder1871.txt
deu-x-bible-elberfelder1905.txt deu-x-bible-freebible.txt
deu-x-bible-genfer2011.txt deu-x-bible-greber.txt
deu-x-bible-gruenewalder.txt deu-x-bible-interlinear. txt
deu-x-bible-konkordant. txt deu-x-bible-lebendig. txt
deu-x-bible-luther1912. txt deu-x-bible-1uther2017.txt
deu-x-bible-meister.txt deu-x-bible-menge. txt
deu-x-bible-neue. txt deu-x-bible-newworld. txt
deu-x-bible-pattloch. txt deu-x-bible-schlachter. txt
deu-x-bible-schlachter2000. txt deu-x-bible-tafelbibel. txt
deu-x-bible-textbibel. txt deu-x-bible-volxbibel. txt
deu-x-bible-zuercher. txt eng-x-bible-amplified. txt
eng-x-bible-basic.txt eng-x-bible-catholic. txt
eng-x-bible-clontz. txt eng-x-bible-common. txt
eng-x-bible-darby. txt eng-x-bible-diaglot. txt
eng-x-bible-easytoread. txt eng-x-bible-etheridge. txt
eng-x-bible-godsword. txt eng-x-bible-goodnews. txt
eng-x-bible-lexham. txt eng-x-bible-literal.txt
eng-x-bible-majority.txt eng-x-bible-modern.txt
eng-x-bible-montgomery. txt eng-x-bible-new2007. txt
eng-x-bible-newcentury.txt eng-x-bible-newinternational. txt
eng-x-bible-newliving. txt eng-x-bible-newreaders. txt
eng-x-bible-newsimplified. txt eng-x-bible-newwor1ld1984. txt
eng-x-bible-newworld2013. txt eng-x-bible-passion. txt
eng-x-bible-riverside. txt eng-x-bible-treeoflife. txt
eng-x-bible-world. txt eng-x-bible-worldwide. txt
nld-x-bible-1951. txt nld-x-bible-2004. txt
nld-x-bible-2007.txt nld-x-bible-newworld. txt

Table 5: Bible translations from the PBC that were used in the present study.
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Figure 2: The same analysis as presented in Figure 1, this time using SpaCy’s transformer model en_core_web_trf
instead of en_core_web_1g.
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Abstract

To accurately transcribe a speech signal, au-
tomatic speech recognition (ASR) systems
must show robustness to a wide range of task-
independent variation, such as speaker factors,
recording quality, or even “adversarial noise”
designed to disrupt performance.We manipu-
lated the dialect composition of fine-tuning data
for ASR to study whether balancing the relative
proportion of dialects had an impact on mod-
els’ robustness to two such sources of variation:
dialect variation and adversarial perturbations.
We fine-tuned XLSR-53 for Catalan ASR us-
ing four different dialect compositions, each
containing the Central Catalan dialect. These
were defined as 100%, 80%, 50%, and 20%
Central Catalan, with the remaining portions
split evenly between four other Catalan dialects.
While increasing the relative proportion of di-
alect variants improved models’ dialect robust-
ness, this did not have a meaningful impact
on adversarial robustness. These findings sug-
gest that while improvements to ASR can be
made by diversifying the training data, such
changes do not sufficiently counteract adver-
sarial attacks, leaving the technology open to
security threats.

O https://github.com/zhopto3/DialAttack

1 Introduction

Effectively handling dialect variation is an im-
portant attribute of a high-performing automatic
speech recognition system. While incorporating di-
alect variation into a model’s training data may ben-
efit this robustness (Jie et al., 2024; Dan et al., 2022;
Lonergan et al., 2023), the relative lack of speech
data with clean accent or dialect labels poses a
challenge for this line of research. Moreover, the
exact approach to incorporating data from other
dialects could have consequences beyond just the
model’s ASR performance. Research on the ro-

has indicated that unbalanced training datasets may
result in models that are more susceptible to ad-
versarial attacks (Wu et al., 2021; Richards et al.,
2023). When evaluating the susceptibility of Open
ATl’s Whisper to adversarial noise, Olivier and Raj
(2023) found that attacks on the model’s language
identification token were more effective when the
attack’s language was less present in the model’s
training data. For models trained on data from mu-
tually intelligible dialects, it is an open question as
to whether an unbalanced dataset would increase
susceptibility to adversarial attacks. Training on
multiple dialects may even confer a robustness to
adversarial noise, analogous to training models on
geometrically transformed or adversarial examples
(Silva and Najafirad, 2020).

Catalan’s well-documented dialect variation
makes it a good candidate for studying questions of
multi-dialect ASR (Veny, 2015, 1982; Calvo and
Segura-Llopes, 2022). A great deal of research
has focused on the compilation of Catalan cor-
pora (Kjartansson et al., 2020; Kulebi et al., 2022;
Boleda et al., 2006; Ljubesi¢ and Toral, 2014).
Catalan also has a substantial presence in the Com-
mon Voice corpus, for which diverse speakers of
the language write, record, and validate data points
on a voluntary basis (Ardila et al., 2020). Catalan’s
presence in Common Voice has grown substantially
in recent releases of the corpus thanks to data man-
agement and campaigning efforts from a number
of bodies (Armentano-Oller et al., 2024). Notable
among these efforts is the encouragement of Cata-
lan speakers with various accents to contribute to
the corpus, and to include their accent in the meta-
data of the recording.

Here we use data from five Catalan dialects to an-
swer two questions about multi-dialect ASR: First,
to what extent is balancing the quantity of data from
different dialects necessary when training models
meant to accurately transcribe multiple varieties of

bustness of neural networks to adversarial attacks 73 language? And second, does training an ASR
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model on an unbalanced dataset with multiple di-
alects impact the model’s security at inference?

2 Methods

2.1 Multi-dialect Catalan Speech Recognition

The first step of our experiments consisted of fine-
tuning XLSR-53 for Catalan ASR (Conneau et al.,
2021). We used XL.SR-53 instead of a later ver-
sion of XLSR since Catalan was not part of the
pretraining data for this model, eliminating a po-
tential confound in the manipulation of the dialect
composition in the fine-tuning data’.

Our data source was the validated portion of
Catalan Common Voice 18.0? (Ardila et al., 2020).
Similar to Armentano-Oller et al. (2024), we first
mapped each unique accent label for a given audio
file to one of five Catalan macro-dialects: Balearic,
Central, Nord, Nord-Occidental, and Valencia. Au-
dio files from second language learners were ex-
cluded, as were underspecified accent responses
such as “Catalan” or “normative.”

We then sampled four training and development
datasets with 100%, 80%, 50%, and 20% Central
Catalan; the remaining portion of each set was
split evenly between the other four dialects. This
meant that the 20% Central train and development
datasets were perfectly balanced with respect to the
five macro-dialects studied. We randomly sampled
a single test set from the remaining data with an
equal number of samples from each macro-dialect.
Figure 2 shows the final proportion of each dialect
in the four models’ training data. All four models
were fine-tuned on 152 hours of data with 19 hours
of development data. This training set size is com-
parable to previous work that has used XLSR for
multi-dialect speech processing (Zuluaga-Gomez
et al., 2023; Lonergan et al., 2023). See Appendix
A for fine-tuning details.

2.2 Robustness to Adversarial Noise

After training our ASR models, we randomly se-
lected 50 audio files from each dialect’s evaluation
set to train a total of 250 adversarial attacks on each
of the four models. Put generally, we aimed to add
noise to our input audio files that resulted in the
model outputting an adversarial target—*Porta’m
a un lloc web malvat,” or “Take me to an evil
website”’—despite the perceivable audio input say-

"https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec
2https ://commonvoice.mozilla.org/en/datasets

ing something else. More specifically, we trained
targeted, adversarial noise § for a given audio file
x as in Carlini and Wagner (2018). In such Carlini-
and-Wagner (CW) attacks, the objective is also
to make the noise relatively imperceptible. As in
Olivier and Raj (2023), we judged the perceptibil-
ity of the noise relative to the signal in decibels
using the signal-to-noise ratio (SNR), but using the
L, metric, similar to Carlini and Wagner (2018):

SNR(z,0) = 20(log |z|eo — log |0]s0) (1)

For details on the algorithm and hyperparameters
used to train the adversarial noise d, see Appendix
B.

2.3 Evaluation

Following fine-tuning, we ran inference over the
withheld test set of Catalan data. Each ASR model
was evaluated on the same 19-hour evaluation
dataset with equal representation from each dialect
(2486 audio files per dialect).

To assess variation in WER and CER, a gener-
alized linear model for a gamma-distributed de-
pendent variable was implemented in R, using the
identity link function. The model included main ef-
fects of the model dialect composition (100%, 80%,
50%, or 20% Central Catalan), the speech input di-
alect (Balear, Central, Nord, Nord-Occidental, or
Valencia), and the interaction between the model
dialect composition and speech dialect. A gamma
distribution was chosen given that the WER and
CER distributions have a strong positive skew and
cannot be negative.> Each predictor was sum-coded
with the held-out levels first set to the 100% Central
model and the Catalan test files, and then rotated
to test each main effect and interaction against the
average performance.

To evaluate the effectiveness of the CW attacks
on each fine-tuned model, we primarily use the
percentage of successful attacks. An attack was
considered successful if—at any SNR—the WER
of the model output compared to the adversarial
target (“Porta’m a un lloc web malvat.”) was 0.
To assess the influences on a successful or unsuc-
cessful attack, we implemented a binomial logistic
regression model with fixed effects of dialect, the
fine-tuning data composition of the model, and

3As the gamma prediction can only predict positive values
greater than 0, we transformed any WER or CER of 0 in our
2data to 0.00001.



WER CER
bal cen nor no-oc val bal cen nor no-oc val
100% | 0.280 0.152 0.191 0.244 0.234 | 0.079 0.038 0.049 0.064 0.056
80% | 0.224 0.146 0.160 0.196 0.165 | 0.060 0.037 0.040 0.050 0.039
50% | 0.181 0.140 0.133 0.164 0.126 | 0.047 0.035 0.033 0.041 0.029
20% | 0.189 0.164 0.144 0.161 0.125 | 0.050 0.043 0.036 0.042 0.035

Table 1: Percentages in the far left column represent the percent Central Catalan data used in fine-tuning; bal:
Balearic, cen: Central, nor: Nord, no-oc: Nord-Occidental, val: Valencia; Bold: lowest WER/CER for each dialect.

their interaction. Categorical predictors were sum-
coded.

3 Results

3.1 ASR

In terms of WER and CER, ASR for all dialects
improved with more dialect-balanced data (Table
1). The WER model revealed significant influences
of model composition and dialect input: relative
to average, the 20% and 50% Central models had
significantly lower WERs, while the 100% Central
model had significantly higher WERs across all
dialects. The average performance across models
was significantly better on Central, Nord and Va-
lencia, but worse on Balear and Nord-Occidental.
The main effects were significantly tempered in
several interactions; a significant interaction can
be interpreted as a significant modulation from the
expected WER performance based on the main
effects alone. Beyond the main effects, the 20%
Central model performed significantly better on
Balear, Nord-Occidental, and Valencia, but worse
on Central and Nord. The 50% Central model also
performed significantly better on Balear and Valen-
cia, but the main effect of the 50% Central model
was significantly tempered for the Central test files:
While the Central WER of the 50% Central model
was numerically lowest across model types, the im-
provement was not as great as expected based on
the main effects alone. The 100% Central model
had significantly improved performance on Central
and Nord, but significantly worse performance on
Balear, Nord-Occidental, and Valencia. For the full
model results, see Table 5 in Appendix C).

For the CER model, the same pattern of signif-
icance emerged for the main effects, but the inter-
actions differed slightly. While the 20% Central
model still had significantly higher performance on
Balear and Nord-Occidental, its performance was
significantly worse on Central test files. In addition,
while the 50% model still had higher performance
on Balear and Valencia, it performed significantly
worse on Central and Nord. The full results can be

found in Table 6 in Appendix D.

Measured with WER and CER, the 50% Cen-
tral model had a consistently strong performance
across dialects, followed closely by the 20% Cen-
tral model. Performance was generally higher for
Central, Nord and Valencian dialects, but lower for
the Balearic and Nord-Occidental dialects.

3.2 CW Attacks

We obtained a high percentage of successful at-
tacks in all conditions (see Figure 1). The attacks’
high average SNR implies that successful attacks
were relatively imperceptible (see Tables 3 and 4).
Given that our models had relatively low WER and
CER on the non-adversarial test set, these results
are in line with the common finding in the adver-
sarial attack literature that even high-performing
models are susceptible to adversarial perturbations.
The logistic regression yielded no significant main
effects and only one significant interaction, indicat-
ing that adversarial attacks using Central Catalan
audio were significantly less successful in the 80%
Central model relative to main effects alone. For
the full model results, see Table 7 in Appendix E).

4 Discussion

In the present study, we manipulated the balance of
five different dialects of Catalan in a dataset that we
used to fine-tune XLSR-53 for automatic speech
recognition. We tested how biasing a dataset to-
ward one variety (Central Catalan) would affect the
robustness of the model to both dialect variation
and targeted adversarial noise at inference.

With respect to ASR performance on multiple
dialects, we found that including larger portions
of different dialects in fine-tuning data does make
for a model that is more robust to dialect varia-
tion at test time. However, it is not necessary for
a model to be perfectly balanced with respect to
dialect composition to obtain maximal gains in per-
formance. Other researchers have studied how to
make models that are more robust to dialect varia-

ogon at test time, for instance focusing on the config-
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Figure 1: Attack success rate broken down by the dialect of the attack’s audio (bar color) and the proportion of
Central Catalan in the models’ fine-tuning data (bar group).

uration of language models used during decoding
(Yadavalli et al., 2022), the usefulness of normal-
izing dialects’ scripts in the training data (Nigmat-
ulina et al., 2020), or the utility of jointly learning
to identify the variety and perform ASR for it (Wa-
heed et al., 2023). While our experiments required
relatively large amounts of data for which we knew
the dialect of origin, we were encouraged about
the implications of the results for low-resource di-
alect settings, as we see that even if half of the
fine-tuning data used is from a single dialect, we
can still observe substantial ASR improvements
in performance for various dialects. Similar to a
related study on the impact of balanced corpora on
multi-dialect Irish ASR, we found that a perfectly
balanced fine-tuning corpus does not lead to equiv-
alent performance across dialects (Lonergan et al.,
2023). Indeed, in our perfectly balanced model, the
Balearic dialect stands out as having a relatively
high WER (though the CER scores indicate closer
performance across dialects). As suggested by Lon-
ergan et al. (2023), this implies that the Balearic
dialect may need to be up-sampled in future corpus
compilation efforts.

As for adversarial noise, our results indicate
that systematically adding dialect variation to fine-
tuning data for ASR is neither helpful nor hurt-
ful in the case of XLSR-53. Though CW attacks
have previously been shown to be powerful against
ASR systems, it is still interesting to consider if
there were any parts of our experiments that made
the models particularly vulnerable to the attacks.
One potential susceptibility may be the presence of
noisy labels in the training data. Paleka and Sanyal

(2023) demonstrate that mislabeled images in train-
ing data can result in a loss of adversarial robust-
ness for image classification models. We restricted
our datasets to the validated text-audio pairs of
Catalan data in Common Voice 18.0, and sentences
contributed to the dataset for Catalan have under-
gone substantial validation (Armentano-Oller et al.,
2024). Still, there is no guarantee that the dialect
of the sentence matches the accent with which the
reader speaks Catalan in the dataset. For instance,
in our test set, we see a reader who speaks Valencia
was assigned a sentence containing the feminine,
third-person possessive pronoun from Central Cata-
lan, “la seva.” In Valencia, however, it is written
and spoken as “la seua” (Calvo and Segura-Llopes,
2022), which is what our 100% Central Catalan
model transcribes for this data point. Thus, it is
feasible that there is inconsistency in our data’s
labels (the text) and what is actually spoken in the
audio. A study of how languages’ orthographic
transparency impacts adversarial vulnerability in
ASR models would be an interesting means of ex-
ploring the impact of such noisy labels.

5 Conclusion

Taking Catalan as the language of study given the
large amounts of available annotated data, this
study demonstrated that a more balanced dialect
composition indeed confers robustness to dialect
variation in test data. However, dialect composition
of the training data had little influence on adver-
sarial robustness. We hope that these findings will
motivate the consideration of datasets’ dialect com-
oposition in the development of ASR systems in the



future. Indeed, our findings suggest that even if
the dialects present in training are not perfectly bal-
anced, including such variation to some degree is
beneficial for all dialects represented in the training
data (even for Central Catalan, in this case). As for
adversarial robustness, we encourage further work
on multilingual and multi-dialect speech processing
models to assess specific vulnerabilities that might
come from unbalanced datasets or mismatched la-
bels and audio that spur from orthographic depth
or dialect variation.

Limitations

Given that languages’ dialects can differ in their
mutual intelligibility, an important limitation arises
in the use of only Catalan’s varieties. It may be the
case that for a language with less mutually intelli-
gible dialects, less cross-dialect transfer is possible.
Though we predict this would make for worse per-
formance on lower resource dialects in the biased
dataset conditions, more work on a larger sample
of languages is needed. Collecting such multilin-
gual, transcribed speech datasets with accent an-
notations presents a limitation in itself to this line
of work. However, this paper and Zuluaga-Gomez
et al. (2023)—who use Common Voice to create
such a multiilingual dataset with accent labels—
demonstrate that in some cases, existing datasets
can be repurposed to study multi-dialect speech
processing.

As we worked with limited computational re-
sources, we were only able to fine-tune one time
per data composition. Ideally, we would repeat
the fine-tuning with several random samples and
report the average results, but this was not feasible
here. We encourage repetition of our experiments
using other ASR architectures, including larger ver-
sions of XLSR, and with other languages and their
dialects.

Ethical Considerations

This work studies adversarial attacks on automatic
speech recognition, which could potentially be
used to alter the behavior of ASR models with
malicious intentions. We do not introduce any new
algorithms for attacking models, and conducted the
study with the intent of studying if multi-dialect
speech processing models are more or less suscep-
tible to existing attacks. In doing so, we hoped to
assess not just the quality, but also the trustwor-

potentially be used by speakers of lower-resource
language varieties.
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A Fine-Tuning Details
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Figure 2: The proportion of five Catalan macro-dialects present in the training split of fine-tuning data for all four
conditions.

To fine-tune XLSR-53 for Catalan ASR, we added a fully connected linear layer to the model that
output logits over the vocabulary for each time step of the input audio. Similar to Conneau et al. (2021)
and Babu et al. (2022), we used the connectionist temporal classification (CTC) loss function during
training (Graves et al., 2006) and froze the weights in the model’s CNN feature extractors. The audio files
were resampled to the model sample rate and the text targets were tokenized into characters after decasing
and removing punctuation. We retained any diacritics that are phonetically meaningful in Catalan and
performed Unicode normalization so diacritics were represented consistently.

We trained with batch sizes of 16 but accumulated gradients for 16 batches before updating weights.
Weight updates were made with the Adam optimizer (Kingma and Ba, 2015) and training continued until
improvements to the development set loss were less than 0.05 for three epochs in a row. We found a
stable learning rate of 9e ~* worked well across models. During inference, we used greedy decoding to
transcribe input audio.
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B CW Adversarial Attacks
B.1 Attack Training Algorithm

While training the adversarial noise, we set some upper limit € to the value |d|. We then sought the
perturbation § for a given audio file x that minimized the CTC loss with respect to an adversarial target
y while also keeping the noise’s Lo norm small. Thus, we aimed to minimize the following objective
function:

Uz +6,y) + |03 )

The constant ¢ controls the relative importance of the regularizing term and therefore the noise’s
perceptibility. We iteratively calculated the objective in Equation 2 and updated the adversarial perturbation
using the Adam optimizer. After every update to the noise, it was clamped such that ||, < €. Once
a 0 was found that successfully outputs the adversarial target y (as measured by a word error rate of 0
between y and the model output), e was multiplied by a term a which is smaller than one to reduce the
search radius and look for a quieter perturbation that successfully attacked the model. This continued until
the search space was reduced £ times or until a maximum number of updates n was carried out. See Table
2 for a summary of the hyperparameters we used while fitting attacks. We largely based our values off of
those by Olivier and Raj (2023), though we found a higher learning rate worked better for our models.

Initial € 0.10

c 0.25

Q@ 0.70

learning rate | 0.10
k 8

n 2000

Table 2: Hyperparameters for training CW attacks.

B.2 Detailed CW Attack Results

Success Rate  Average SNR

100% Central 0.852 35.62
80% Central 0.820 35.44
50% Central 0.820 34.21
20% Central 0.864 35.80

Table 3: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by the
proportion of Central Catalan in each model’s fine-tuning data. A higher average SNR of the attack indicates that
among the successful attacks, quieter perturbations could be used to attain a successful attack.

Success Rate  Average SNR
bal 0.830 36.73
cen 0.855 35.03
nor 0.855 34.27
no-oc 0.830 35.97
val 0.825 34.85

Table 4: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by
dialect of the attack’s audio. A higher average SNR of the attack indicates that among the successful attacks,
quieter perturbations could be used to attain a successful attack; bal: Balearic, cen: Central, nor: Nord, no-oc:
Nord-Occidental, val: Valencia.
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C Gamma Regression Qutput for WER

Estimate  Standard Error p-value
Intercept 0.176 8.84e-04 <2e-16%**
20% Central -0.019 0.001 <De-16%**
50% Central -0.027 0.001 <2e-16%**
80% Central 0.002 0.002 0.121
100% Central 0.044 0.002 <2e-16%**
Balearic 0.042 0.002 <2e-16%**
Central -0.025 0.002 <2e-16%**
Nord -0.019 0.002 <2e-16%**
Nord-Occidental 0.015 0.002 3.00e-16%***
Valencia -0.013 0.002 1.18e-15%**
20% Central x Balearic -0.010 0.003 0.002**
50% Central x Balearic -0.010 0.003 0.001**
80% Central x Balearic 0.003 0.004 0.339
100% Central x Balearic 0.017 0.004 4.44e-05%**
20% Central x Central 0.033 0.003 <2e-16%**
50% Central x Central 0.017 0.003 1.70e-11%%**
80% Central x Central -0.006 0.003 0.016*
100% Central x Central -0.043 0.003 <2e-16%**
20% Central x Nord 0.007 0.003 0.009%**
50% Central x Nord 0.004 0.002 0.158
80% Central x Nord | 1.66e-04 0.003 0.953
100% Central x Nord -0.010 0.003 0.001**
20% Central x Nord-Occidental -0.011 0.003 1.38e-04%**
50% Central x Nord-Occidental | -2.82e-04 0.003 0.923
80% Central x Nord-Occidental 0.002 0.003 0.468
100% Central x Nord-Occidental 0.009 0.003 0.018%*
20% Central x Valencia -0.018 0.002 4.39e-13%**
50% Central x Valencia -0.010 0.002 1.20e-04***
80% Central x Valencia | 4.23e-04 0.003 0.883
100% Central x Valencia 0.027 0.004 5.27e-14%**

Table 5: 3 estimates, standard errors, and p-values of the gamma regression predicting WER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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D Gamma Regression Output for CER

Estimate  Standard Error p-value
Intercept 0.045 2.81e-04 <2e-16%**
20% Central -0.004 4.51e-04 <De-16%**
50% Central -0.008 4.26e-04 <2e-16%**
80% Central | -1.14e-05 4.81e-04 0.981
100% Central 0.012 5.74e-04 <2e-16%**
Balearic 0.014 6.87e-04 <2e-16%**
Central -0.007 4.86e-04 <2e-16%**
Nord -0.005 5.04¢e-04 <2e-16%**
Nord-Occidental 0.004 5.94¢-04 3.18e-13***
Valencia -0.006 5.10e-04 <2e-16%**
20% Central x Balearic -0.005 0.001 4.775e-07%**
50% Central x Balearic -0.004 0.001 1.17e-04%**
80% Central x Balearic 0.001 0.001 0.215
100% Central x Balearic 0.008 0.001 5.40e-08***
20% Central x Central 0.009 8.69¢-04 <2e-16%**
50% Central x Central 0.005 7.79¢-04 8.61e-12%%*
80% Central x Central -0.001 8.24¢-04 0.090
100% Central x Central -0.013 8.90e-04 <2e-16%**
20% Central x Nord | 6.69¢-04 8.16e-04 0.413
50% Central x Nord 0.002 7.73e-04 0.040*
80% Central x Nord | 5.00e-04 8.71e-04 0.566
100% Central x Nord -0.003 0.001 0.007%*
20% Central x Nord-Occidental -0.003 9.31e-04 9.82e-04%**
50% Central x Nord-Occidental | -9.45e-05 9.08e-04 0917
80% Central x Nord-Occidental | 3.55e-04 0.001 0.728
100% Central x Nord-Occidental 0.003 0.001 0.022*
20% Central x Valencia | -9.33e-04 8.02e-04 0.244
50% Central x Valencia -0.003 7.34e-04 9.39e-05%***
80% Central x Valencia | -9.45e-04 8.57e-04 0.270
100% Central x Valencia 0.005 0.001 1.47e-05%**

Table 6: 3 estimates, standard errors, and p-values of the gamma regression predicting CER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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E Logistic Regression Output for CW Attacks

Estimate Standard Error ~ p-value
Intercept 1.689 0.089 <2e-16%**

20% Central 0.229 0.166 0.168

50% Central | -0.149 0.149 0.316

80% Central | -0.148 0.149 0.321

100% Central 0.067 0.155 0.663

Balearic -0.09 0.172 0.603

Central 0.200 0.195 0.306

Nord 0.101 0.181 0.578

Nord-Occidental | -0.086 0.173 0.620

Valencia | -0.125 0.171 0.465

20% Central x Balearic | -0.013 0.315 0.966

50% Central x Balearic 0.208 0.298 0.484

80% Central x Balearic | -0.186 0.281 0.508

100% Central x Balearic | -0.008 0.301 0.977

20% Central x Central 0.633 0.405 0.118

50% Central x Central 0.253 0.330 0.444

80% Central x Central | -0.588 0.292 0.044*

100% Central x Central | -0.298 0.314 0.343

20% Central x Nord | -0.027 0.331 0.935

50% Central x Nord | -0.124 0.296 0.675

80% Central x Nord 0.016 0.303 0.958

100% Central x Nord 0.135 0.325 0.678

20% Central x Nord-Occidental | -0.316 0.300 0.292
50% Central x Nord-Occidental | -0.188 0.281 0.503
80% Central x Nord-Occidental 0.360 0.306 0.240
100% Central x Nord-Occidental 0.145 0.309 0.640
20% Central x Valencia | -0.277 0.299 0.355

50% Central x Valencia | -0.149 0.280 0.595

80% Central x Valencia 0.399 0.305 0.191

100% Central x Valencia 0.027 0.300 0.929

Table 7: ( estimates, standard errors, p-values of a logistic regression predicting adversarial attack success. Factors
are sum-coded. *: significant at threshold 0.05; ***: significant at threshold 0.001.
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Abstract

To accurately transcribe a speech signal, au-
tomatic speech recognition (ASR) systems
must show robustness to a wide range of task-
independent variation, such as speaker factors,
recording quality, or even “adversarial noise”
designed to disrupt performance.We manipu-
lated the dialect composition of fine-tuning data
for ASR to study whether balancing the relative
proportion of dialects had an impact on mod-
els’ robustness to two such sources of variation:
dialect variation and adversarial perturbations.
We fine-tuned XLSR-53 for Catalan ASR us-
ing four different dialect compositions, each
containing the Central Catalan dialect. These
were defined as 100%, 80%, 50%, and 20%
Central Catalan, with the remaining portions
split evenly between four other Catalan dialects.
While increasing the relative proportion of di-
alect variants improved models’ dialect robust-
ness, this did not have a meaningful impact
on adversarial robustness. These findings sug-
gest that while improvements to ASR can be
made by diversifying the training data, such
changes do not sufficiently counteract adver-
sarial attacks, leaving the technology open to
security threats.

O https://github.com/zhopto3/DialAttack

1 Introduction

Effectively handling dialect variation is an im-
portant attribute of a high-performing automatic
speech recognition system. While incorporating di-
alect variation into a model’s training data may ben-
efit this robustness (Jie et al., 2024; Dan et al., 2022;
Lonergan et al., 2023), the relative lack of speech
data with clean accent or dialect labels poses a
challenge for this line of research. Moreover, the
exact approach to incorporating data from other
dialects could have consequences beyond just the
model’s ASR performance. Research on the ro-

has indicated that unbalanced training datasets may
result in models that are more susceptible to ad-
versarial attacks (Wu et al., 2021; Richards et al.,
2023). When evaluating the susceptibility of Open
ATl’s Whisper to adversarial noise, Olivier and Raj
(2023) found that attacks on the model’s language
identification token were more effective when the
attack’s language was less present in the model’s
training data. For models trained on data from mu-
tually intelligible dialects, it is an open question as
to whether an unbalanced dataset would increase
susceptibility to adversarial attacks. Training on
multiple dialects may even confer a robustness to
adversarial noise, analogous to training models on
geometrically transformed or adversarial examples
(Silva and Najafirad, 2020).

Catalan’s well-documented dialect variation
makes it a good candidate for studying questions of
multi-dialect ASR (Veny, 2015, 1982; Calvo and
Segura-Llopes, 2022). A great deal of research
has focused on the compilation of Catalan cor-
pora (Kjartansson et al., 2020; Kulebi et al., 2022;
Boleda et al., 2006; Ljubesi¢ and Toral, 2014).
Catalan also has a substantial presence in the Com-
mon Voice corpus, for which diverse speakers of
the language write, record, and validate data points
on a voluntary basis (Ardila et al., 2020). Catalan’s
presence in Common Voice has grown substantially
in recent releases of the corpus thanks to data man-
agement and campaigning efforts from a number
of bodies (Armentano-Oller et al., 2024). Notable
among these efforts is the encouragement of Cata-
lan speakers with various accents to contribute to
the corpus, and to include their accent in the meta-
data of the recording.

Here we use data from five Catalan dialects to an-
swer two questions about multi-dialect ASR: First,
to what extent is balancing the quantity of data from
different dialects necessary when training models
meant to accurately transcribe multiple varieties of

bustness of neural networks to adversarial attacks 33 language? And second, does training an ASR

Proceedings of the The 22nd SIGMORPHON workshop on Computational Morphology, Phonology, and Phonetics, pages 34—44
May 3, 2025 ©2025 Association for Computational Linguistics



model on an unbalanced dataset with multiple di-
alects impact the model’s security at inference?

2 Methods

2.1 Multi-dialect Catalan Speech Recognition

The first step of our experiments consisted of fine-
tuning XLSR-53 for Catalan ASR (Conneau et al.,
2021). We used XL.SR-53 instead of a later ver-
sion of XLSR since Catalan was not part of the
pretraining data for this model, eliminating a po-
tential confound in the manipulation of the dialect
composition in the fine-tuning data’.

Our data source was the validated portion of
Catalan Common Voice 18.0? (Ardila et al., 2020).
Similar to Armentano-Oller et al. (2024), we first
mapped each unique accent label for a given audio
file to one of five Catalan macro-dialects: Balearic,
Central, Nord, Nord-Occidental, and Valencia. Au-
dio files from second language learners were ex-
cluded, as were underspecified accent responses
such as “Catalan” or “normative.”

We then sampled four training and development
datasets with 100%, 80%, 50%, and 20% Central
Catalan; the remaining portion of each set was
split evenly between the other four dialects. This
meant that the 20% Central train and development
datasets were perfectly balanced with respect to the
five macro-dialects studied. We randomly sampled
a single test set from the remaining data with an
equal number of samples from each macro-dialect.
Figure 2 shows the final proportion of each dialect
in the four models’ training data. All four models
were fine-tuned on 152 hours of data with 19 hours
of development data. This training set size is com-
parable to previous work that has used XLSR for
multi-dialect speech processing (Zuluaga-Gomez
et al., 2023; Lonergan et al., 2023). See Appendix
A for fine-tuning details.

2.2 Robustness to Adversarial Noise

After training our ASR models, we randomly se-
lected 50 audio files from each dialect’s evaluation
set to train a total of 250 adversarial attacks on each
of the four models. Put generally, we aimed to add
noise to our input audio files that resulted in the
model outputting an adversarial target—*Porta’m
a un lloc web malvat,” or “Take me to an evil
website”’—despite the perceivable audio input say-

"https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec
2https ://commonvoice.mozilla.org/en/datasets

ing something else. More specifically, we trained
targeted, adversarial noise § for a given audio file
x as in Carlini and Wagner (2018). In such Carlini-
and-Wagner (CW) attacks, the objective is also
to make the noise relatively imperceptible. As in
Olivier and Raj (2023), we judged the perceptibil-
ity of the noise relative to the signal in decibels
using the signal-to-noise ratio (SNR), but using the
L, metric, similar to Carlini and Wagner (2018):

SNR(z,0) = 20(log |z|eo — log |0]s0) (1)

For details on the algorithm and hyperparameters
used to train the adversarial noise d, see Appendix
B.

2.3 Evaluation

Following fine-tuning, we ran inference over the
withheld test set of Catalan data. Each ASR model
was evaluated on the same 19-hour evaluation
dataset with equal representation from each dialect
(2486 audio files per dialect).

To assess variation in WER and CER, a gener-
alized linear model for a gamma-distributed de-
pendent variable was implemented in R, using the
identity link function. The model included main ef-
fects of the model dialect composition (100%, 80%,
50%, or 20% Central Catalan), the speech input di-
alect (Balear, Central, Nord, Nord-Occidental, or
Valencia), and the interaction between the model
dialect composition and speech dialect. A gamma
distribution was chosen given that the WER and
CER distributions have a strong positive skew and
cannot be negative.> Each predictor was sum-coded
with the held-out levels first set to the 100% Central
model and the Catalan test files, and then rotated
to test each main effect and interaction against the
average performance.

To evaluate the effectiveness of the CW attacks
on each fine-tuned model, we primarily use the
percentage of successful attacks. An attack was
considered successful if—at any SNR—the WER
of the model output compared to the adversarial
target (“Porta’m a un lloc web malvat.”) was 0.
To assess the influences on a successful or unsuc-
cessful attack, we implemented a binomial logistic
regression model with fixed effects of dialect, the
fine-tuning data composition of the model, and

3As the gamma prediction can only predict positive values
greater than 0, we transformed any WER or CER of 0 in our
3data to 0.00001.



WER CER
bal cen nor no-oc val bal cen nor no-oc val
100% | 0.280 0.152 0.191 0.244 0.234 | 0.079 0.038 0.049 0.064 0.056
80% | 0.224 0.146 0.160 0.196 0.165 | 0.060 0.037 0.040 0.050 0.039
50% | 0.181 0.140 0.133 0.164 0.126 | 0.047 0.035 0.033 0.041 0.029
20% | 0.189 0.164 0.144 0.161 0.125 | 0.050 0.043 0.036 0.042 0.035

Table 1: Percentages in the far left column represent the percent Central Catalan data used in fine-tuning; bal:
Balearic, cen: Central, nor: Nord, no-oc: Nord-Occidental, val: Valencia; Bold: lowest WER/CER for each dialect.

their interaction. Categorical predictors were sum-
coded.

3 Results

3.1 ASR

In terms of WER and CER, ASR for all dialects
improved with more dialect-balanced data (Table
1). The WER model revealed significant influences
of model composition and dialect input: relative
to average, the 20% and 50% Central models had
significantly lower WERs, while the 100% Central
model had significantly higher WERs across all
dialects. The average performance across models
was significantly better on Central, Nord and Va-
lencia, but worse on Balear and Nord-Occidental.
The main effects were significantly tempered in
several interactions; a significant interaction can
be interpreted as a significant modulation from the
expected WER performance based on the main
effects alone. Beyond the main effects, the 20%
Central model performed significantly better on
Balear, Nord-Occidental, and Valencia, but worse
on Central and Nord. The 50% Central model also
performed significantly better on Balear and Valen-
cia, but the main effect of the 50% Central model
was significantly tempered for the Central test files:
While the Central WER of the 50% Central model
was numerically lowest across model types, the im-
provement was not as great as expected based on
the main effects alone. The 100% Central model
had significantly improved performance on Central
and Nord, but significantly worse performance on
Balear, Nord-Occidental, and Valencia. For the full
model results, see Table 5 in Appendix C).

For the CER model, the same pattern of signif-
icance emerged for the main effects, but the inter-
actions differed slightly. While the 20% Central
model still had significantly higher performance on
Balear and Nord-Occidental, its performance was
significantly worse on Central test files. In addition,
while the 50% model still had higher performance
on Balear and Valencia, it performed significantly
worse on Central and Nord. The full results can be

found in Table 6 in Appendix D.

Measured with WER and CER, the 50% Cen-
tral model had a consistently strong performance
across dialects, followed closely by the 20% Cen-
tral model. Performance was generally higher for
Central, Nord and Valencian dialects, but lower for
the Balearic and Nord-Occidental dialects.

3.2 CW Attacks

We obtained a high percentage of successful at-
tacks in all conditions (see Figure 1). The attacks’
high average SNR implies that successful attacks
were relatively imperceptible (see Tables 3 and 4).
Given that our models had relatively low WER and
CER on the non-adversarial test set, these results
are in line with the common finding in the adver-
sarial attack literature that even high-performing
models are susceptible to adversarial perturbations.
The logistic regression yielded no significant main
effects and only one significant interaction, indicat-
ing that adversarial attacks using Central Catalan
audio were significantly less successful in the 80%
Central model relative to main effects alone. For
the full model results, see Table 7 in Appendix E).

4 Discussion

In the present study, we manipulated the balance of
five different dialects of Catalan in a dataset that we
used to fine-tune XLSR-53 for automatic speech
recognition. We tested how biasing a dataset to-
ward one variety (Central Catalan) would affect the
robustness of the model to both dialect variation
and targeted adversarial noise at inference.

With respect to ASR performance on multiple
dialects, we found that including larger portions
of different dialects in fine-tuning data does make
for a model that is more robust to dialect varia-
tion at test time. However, it is not necessary for
a model to be perfectly balanced with respect to
dialect composition to obtain maximal gains in per-
formance. Other researchers have studied how to
make models that are more robust to dialect varia-

3@on at test time, for instance focusing on the config-
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Figure 1: Attack success rate broken down by the dialect of the attack’s audio (bar color) and the proportion of
Central Catalan in the models’ fine-tuning data (bar group).

uration of language models used during decoding
(Yadavalli et al., 2022), the usefulness of normal-
izing dialects’ scripts in the training data (Nigmat-
ulina et al., 2020), or the utility of jointly learning
to identify the variety and perform ASR for it (Wa-
heed et al., 2023). While our experiments required
relatively large amounts of data for which we knew
the dialect of origin, we were encouraged about
the implications of the results for low-resource di-
alect settings, as we see that even if half of the
fine-tuning data used is from a single dialect, we
can still observe substantial ASR improvements
in performance for various dialects. Similar to a
related study on the impact of balanced corpora on
multi-dialect Irish ASR, we found that a perfectly
balanced fine-tuning corpus does not lead to equiv-
alent performance across dialects (Lonergan et al.,
2023). Indeed, in our perfectly balanced model, the
Balearic dialect stands out as having a relatively
high WER (though the CER scores indicate closer
performance across dialects). As suggested by Lon-
ergan et al. (2023), this implies that the Balearic
dialect may need to be up-sampled in future corpus
compilation efforts.

As for adversarial noise, our results indicate
that systematically adding dialect variation to fine-
tuning data for ASR is neither helpful nor hurt-
ful in the case of XLSR-53. Though CW attacks
have previously been shown to be powerful against
ASR systems, it is still interesting to consider if
there were any parts of our experiments that made
the models particularly vulnerable to the attacks.
One potential susceptibility may be the presence of
noisy labels in the training data. Paleka and Sanyal

(2023) demonstrate that mislabeled images in train-
ing data can result in a loss of adversarial robust-
ness for image classification models. We restricted
our datasets to the validated text-audio pairs of
Catalan data in Common Voice 18.0, and sentences
contributed to the dataset for Catalan have under-
gone substantial validation (Armentano-Oller et al.,
2024). Still, there is no guarantee that the dialect
of the sentence matches the accent with which the
reader speaks Catalan in the dataset. For instance,
in our test set, we see a reader who speaks Valencia
was assigned a sentence containing the feminine,
third-person possessive pronoun from Central Cata-
lan, “la seva.” In Valencia, however, it is written
and spoken as “la seua” (Calvo and Segura-Llopes,
2022), which is what our 100% Central Catalan
model transcribes for this data point. Thus, it is
feasible that there is inconsistency in our data’s
labels (the text) and what is actually spoken in the
audio. A study of how languages’ orthographic
transparency impacts adversarial vulnerability in
ASR models would be an interesting means of ex-
ploring the impact of such noisy labels.

5 Conclusion

Taking Catalan as the language of study given the
large amounts of available annotated data, this
study demonstrated that a more balanced dialect
composition indeed confers robustness to dialect
variation in test data. However, dialect composition
of the training data had little influence on adver-
sarial robustness. We hope that these findings will
motivate the consideration of datasets’ dialect com-
3position in the development of ASR systems in the



future. Indeed, our findings suggest that even if
the dialects present in training are not perfectly bal-
anced, including such variation to some degree is
beneficial for all dialects represented in the training
data (even for Central Catalan, in this case). As for
adversarial robustness, we encourage further work
on multilingual and multi-dialect speech processing
models to assess specific vulnerabilities that might
come from unbalanced datasets or mismatched la-
bels and audio that spur from orthographic depth
or dialect variation.

Limitations

Given that languages’ dialects can differ in their
mutual intelligibility, an important limitation arises
in the use of only Catalan’s varieties. It may be the
case that for a language with less mutually intelli-
gible dialects, less cross-dialect transfer is possible.
Though we predict this would make for worse per-
formance on lower resource dialects in the biased
dataset conditions, more work on a larger sample
of languages is needed. Collecting such multilin-
gual, transcribed speech datasets with accent an-
notations presents a limitation in itself to this line
of work. However, this paper and Zuluaga-Gomez
et al. (2023)—who use Common Voice to create
such a multiilingual dataset with accent labels—
demonstrate that in some cases, existing datasets
can be repurposed to study multi-dialect speech
processing.

As we worked with limited computational re-
sources, we were only able to fine-tune one time
per data composition. Ideally, we would repeat
the fine-tuning with several random samples and
report the average results, but this was not feasible
here. We encourage repetition of our experiments
using other ASR architectures, including larger ver-
sions of XLSR, and with other languages and their
dialects.

Ethical Considerations

This work studies adversarial attacks on automatic
speech recognition, which could potentially be
used to alter the behavior of ASR models with
malicious intentions. We do not introduce any new
algorithms for attacking models, and conducted the
study with the intent of studying if multi-dialect
speech processing models are more or less suscep-
tible to existing attacks. In doing so, we hoped to
assess not just the quality, but also the trustwor-

potentially be used by speakers of lower-resource
language varieties.
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A Fine-Tuning Details
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Figure 2: The proportion of five Catalan macro-dialects present in the training split of fine-tuning data for all four
conditions.

To fine-tune XLSR-53 for Catalan ASR, we added a fully connected linear layer to the model that
output logits over the vocabulary for each time step of the input audio. Similar to Conneau et al. (2021)
and Babu et al. (2022), we used the connectionist temporal classification (CTC) loss function during
training (Graves et al., 2006) and froze the weights in the model’s CNN feature extractors. The audio files
were resampled to the model sample rate and the text targets were tokenized into characters after decasing
and removing punctuation. We retained any diacritics that are phonetically meaningful in Catalan and
performed Unicode normalization so diacritics were represented consistently.

We trained with batch sizes of 16 but accumulated gradients for 16 batches before updating weights.
Weight updates were made with the Adam optimizer (Kingma and Ba, 2015) and training continued until
improvements to the development set loss were less than 0.05 for three epochs in a row. We found a
stable learning rate of 9e ~* worked well across models. During inference, we used greedy decoding to
transcribe input audio.
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B CW Adversarial Attacks
B.1 Attack Training Algorithm

While training the adversarial noise, we set some upper limit € to the value |d|. We then sought the
perturbation § for a given audio file x that minimized the CTC loss with respect to an adversarial target
y while also keeping the noise’s Lo norm small. Thus, we aimed to minimize the following objective
function:

Uz +6,y) + |03 )

The constant ¢ controls the relative importance of the regularizing term and therefore the noise’s
perceptibility. We iteratively calculated the objective in Equation 2 and updated the adversarial perturbation
using the Adam optimizer. After every update to the noise, it was clamped such that ||, < €. Once
a 0 was found that successfully outputs the adversarial target y (as measured by a word error rate of 0
between y and the model output), e was multiplied by a term a which is smaller than one to reduce the
search radius and look for a quieter perturbation that successfully attacked the model. This continued until
the search space was reduced £ times or until a maximum number of updates n was carried out. See Table
2 for a summary of the hyperparameters we used while fitting attacks. We largely based our values off of
those by Olivier and Raj (2023), though we found a higher learning rate worked better for our models.

Initial € 0.10

c 0.25

Q@ 0.70

learning rate | 0.10
k 8

n 2000

Table 2: Hyperparameters for training CW attacks.

B.2 Detailed CW Attack Results

Success Rate  Average SNR

100% Central 0.852 35.62
80% Central 0.820 35.44
50% Central 0.820 34.21
20% Central 0.864 35.80

Table 3: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by the
proportion of Central Catalan in each model’s fine-tuning data. A higher average SNR of the attack indicates that
among the successful attacks, quieter perturbations could be used to attain a successful attack.

Success Rate  Average SNR
bal 0.830 36.73
cen 0.855 35.03
nor 0.855 34.27
no-oc 0.830 35.97
val 0.825 34.85

Table 4: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by
dialect of the attack’s audio. A higher average SNR of the attack indicates that among the successful attacks,
quieter perturbations could be used to attain a successful attack; bal: Balearic, cen: Central, nor: Nord, no-oc:
Nord-Occidental, val: Valencia.
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C Gamma Regression Qutput for WER

Estimate  Standard Error p-value
Intercept 0.176 8.84e-04 <2e-16%**
20% Central -0.019 0.001 <De-16%**
50% Central -0.027 0.001 <2e-16%**
80% Central 0.002 0.002 0.121
100% Central 0.044 0.002 <2e-16%**
Balearic 0.042 0.002 <2e-16%**
Central -0.025 0.002 <2e-16%**
Nord -0.019 0.002 <2e-16%**
Nord-Occidental 0.015 0.002 3.00e-16%***
Valencia -0.013 0.002 1.18e-15%**
20% Central x Balearic -0.010 0.003 0.002**
50% Central x Balearic -0.010 0.003 0.001**
80% Central x Balearic 0.003 0.004 0.339
100% Central x Balearic 0.017 0.004 4.44e-05%**
20% Central x Central 0.033 0.003 <2e-16%**
50% Central x Central 0.017 0.003 1.70e-11%%**
80% Central x Central -0.006 0.003 0.016*
100% Central x Central -0.043 0.003 <2e-16%**
20% Central x Nord 0.007 0.003 0.009%**
50% Central x Nord 0.004 0.002 0.158
80% Central x Nord | 1.66e-04 0.003 0.953
100% Central x Nord -0.010 0.003 0.001**
20% Central x Nord-Occidental -0.011 0.003 1.38e-04%**
50% Central x Nord-Occidental | -2.82e-04 0.003 0.923
80% Central x Nord-Occidental 0.002 0.003 0.468
100% Central x Nord-Occidental 0.009 0.003 0.018%*
20% Central x Valencia -0.018 0.002 4.39e-13%**
50% Central x Valencia -0.010 0.002 1.20e-04***
80% Central x Valencia | 4.23e-04 0.003 0.883
100% Central x Valencia 0.027 0.004 5.27e-14%**

Table 5: 3 estimates, standard errors, and p-values of the gamma regression predicting WER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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D Gamma Regression Output for CER

Estimate  Standard Error p-value
Intercept 0.045 2.81e-04 <2e-16%**
20% Central -0.004 4.51e-04 <De-16%**
50% Central -0.008 4.26e-04 <2e-16%**
80% Central | -1.14e-05 4.81e-04 0.981
100% Central 0.012 5.74e-04 <2e-16%**
Balearic 0.014 6.87e-04 <2e-16%**
Central -0.007 4.86e-04 <2e-16%**
Nord -0.005 5.04¢e-04 <2e-16%**
Nord-Occidental 0.004 5.94¢-04 3.18e-13***
Valencia -0.006 5.10e-04 <2e-16%**
20% Central x Balearic -0.005 0.001 4.775e-07%**
50% Central x Balearic -0.004 0.001 1.17e-04%**
80% Central x Balearic 0.001 0.001 0.215
100% Central x Balearic 0.008 0.001 5.40e-08***
20% Central x Central 0.009 8.69¢-04 <2e-16%**
50% Central x Central 0.005 7.79¢-04 8.61e-12%%*
80% Central x Central -0.001 8.24¢-04 0.090
100% Central x Central -0.013 8.90e-04 <2e-16%**
20% Central x Nord | 6.69¢-04 8.16e-04 0.413
50% Central x Nord 0.002 7.73e-04 0.040*
80% Central x Nord | 5.00e-04 8.71e-04 0.566
100% Central x Nord -0.003 0.001 0.007%*
20% Central x Nord-Occidental -0.003 9.31e-04 9.82e-04%**
50% Central x Nord-Occidental | -9.45e-05 9.08e-04 0917
80% Central x Nord-Occidental | 3.55e-04 0.001 0.728
100% Central x Nord-Occidental 0.003 0.001 0.022*
20% Central x Valencia | -9.33e-04 8.02e-04 0.244
50% Central x Valencia -0.003 7.34e-04 9.39e-05%***
80% Central x Valencia | -9.45e-04 8.57e-04 0.270
100% Central x Valencia 0.005 0.001 1.47e-05%**

Table 6: 3 estimates, standard errors, and p-values of the gamma regression predicting CER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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E Logistic Regression Output for CW Attacks

Estimate Standard Error ~ p-value
Intercept 1.689 0.089 <2e-16%**

20% Central 0.229 0.166 0.168

50% Central | -0.149 0.149 0.316

80% Central | -0.148 0.149 0.321

100% Central 0.067 0.155 0.663

Balearic -0.09 0.172 0.603

Central 0.200 0.195 0.306

Nord 0.101 0.181 0.578

Nord-Occidental | -0.086 0.173 0.620

Valencia | -0.125 0.171 0.465

20% Central x Balearic | -0.013 0.315 0.966

50% Central x Balearic 0.208 0.298 0.484

80% Central x Balearic | -0.186 0.281 0.508

100% Central x Balearic | -0.008 0.301 0.977

20% Central x Central 0.633 0.405 0.118

50% Central x Central 0.253 0.330 0.444

80% Central x Central | -0.588 0.292 0.044*

100% Central x Central | -0.298 0.314 0.343

20% Central x Nord | -0.027 0.331 0.935

50% Central x Nord | -0.124 0.296 0.675

80% Central x Nord 0.016 0.303 0.958

100% Central x Nord 0.135 0.325 0.678

20% Central x Nord-Occidental | -0.316 0.300 0.292
50% Central x Nord-Occidental | -0.188 0.281 0.503
80% Central x Nord-Occidental 0.360 0.306 0.240
100% Central x Nord-Occidental 0.145 0.309 0.640
20% Central x Valencia | -0.277 0.299 0.355

50% Central x Valencia | -0.149 0.280 0.595

80% Central x Valencia 0.399 0.305 0.191

100% Central x Valencia 0.027 0.300 0.929

Table 7: ( estimates, standard errors, p-values of a logistic regression predicting adversarial attack success. Factors
are sum-coded. *: significant at threshold 0.05; ***: significant at threshold 0.001.
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