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Abstract

To accurately transcribe a speech signal, au-
tomatic speech recognition (ASR) systems
must show robustness to a wide range of task-
independent variation, such as speaker factors,
recording quality, or even “adversarial noise”
designed to disrupt performance.We manipu-
lated the dialect composition of fine-tuning data
for ASR to study whether balancing the relative
proportion of dialects had an impact on mod-
els’ robustness to two such sources of variation:
dialect variation and adversarial perturbations.
We fine-tuned XLSR-53 for Catalan ASR us-
ing four different dialect compositions, each
containing the Central Catalan dialect. These
were defined as 100%, 80%, 50%, and 20%
Central Catalan, with the remaining portions
split evenly between four other Catalan dialects.
While increasing the relative proportion of di-
alect variants improved models’ dialect robust-
ness, this did not have a meaningful impact
on adversarial robustness. These findings sug-
gest that while improvements to ASR can be
made by diversifying the training data, such
changes do not sufficiently counteract adver-
sarial attacks, leaving the technology open to
security threats.

O https://github.com/zhopto3/DialAttack

1 Introduction

Effectively handling dialect variation is an im-
portant attribute of a high-performing automatic
speech recognition system. While incorporating di-
alect variation into a model’s training data may ben-
efit this robustness (Jie et al., 2024; Dan et al., 2022;
Lonergan et al., 2023), the relative lack of speech
data with clean accent or dialect labels poses a
challenge for this line of research. Moreover, the
exact approach to incorporating data from other
dialects could have consequences beyond just the
model’s ASR performance. Research on the ro-

has indicated that unbalanced training datasets may
result in models that are more susceptible to ad-
versarial attacks (Wu et al., 2021; Richards et al.,
2023). When evaluating the susceptibility of Open
ATl’s Whisper to adversarial noise, Olivier and Raj
(2023) found that attacks on the model’s language
identification token were more effective when the
attack’s language was less present in the model’s
training data. For models trained on data from mu-
tually intelligible dialects, it is an open question as
to whether an unbalanced dataset would increase
susceptibility to adversarial attacks. Training on
multiple dialects may even confer a robustness to
adversarial noise, analogous to training models on
geometrically transformed or adversarial examples
(Silva and Najafirad, 2020).

Catalan’s well-documented dialect variation
makes it a good candidate for studying questions of
multi-dialect ASR (Veny, 2015, 1982; Calvo and
Segura-Llopes, 2022). A great deal of research
has focused on the compilation of Catalan cor-
pora (Kjartansson et al., 2020; Kulebi et al., 2022;
Boleda et al., 2006; Ljubesi¢ and Toral, 2014).
Catalan also has a substantial presence in the Com-
mon Voice corpus, for which diverse speakers of
the language write, record, and validate data points
on a voluntary basis (Ardila et al., 2020). Catalan’s
presence in Common Voice has grown substantially
in recent releases of the corpus thanks to data man-
agement and campaigning efforts from a number
of bodies (Armentano-Oller et al., 2024). Notable
among these efforts is the encouragement of Cata-
lan speakers with various accents to contribute to
the corpus, and to include their accent in the meta-
data of the recording.

Here we use data from five Catalan dialects to an-
swer two questions about multi-dialect ASR: First,
to what extent is balancing the quantity of data from
different dialects necessary when training models
meant to accurately transcribe multiple varieties of
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model on an unbalanced dataset with multiple di-
alects impact the model’s security at inference?

2 Methods

2.1 Multi-dialect Catalan Speech Recognition

The first step of our experiments consisted of fine-
tuning XLSR-53 for Catalan ASR (Conneau et al.,
2021). We used XL.SR-53 instead of a later ver-
sion of XLSR since Catalan was not part of the
pretraining data for this model, eliminating a po-
tential confound in the manipulation of the dialect
composition in the fine-tuning data’.

Our data source was the validated portion of
Catalan Common Voice 18.0? (Ardila et al., 2020).
Similar to Armentano-Oller et al. (2024), we first
mapped each unique accent label for a given audio
file to one of five Catalan macro-dialects: Balearic,
Central, Nord, Nord-Occidental, and Valencia. Au-
dio files from second language learners were ex-
cluded, as were underspecified accent responses
such as “Catalan” or “normative.”

We then sampled four training and development
datasets with 100%, 80%, 50%, and 20% Central
Catalan; the remaining portion of each set was
split evenly between the other four dialects. This
meant that the 20% Central train and development
datasets were perfectly balanced with respect to the
five macro-dialects studied. We randomly sampled
a single test set from the remaining data with an
equal number of samples from each macro-dialect.
Figure 2 shows the final proportion of each dialect
in the four models’ training data. All four models
were fine-tuned on 152 hours of data with 19 hours
of development data. This training set size is com-
parable to previous work that has used XLSR for
multi-dialect speech processing (Zuluaga-Gomez
et al., 2023; Lonergan et al., 2023). See Appendix
A for fine-tuning details.

2.2 Robustness to Adversarial Noise

After training our ASR models, we randomly se-
lected 50 audio files from each dialect’s evaluation
set to train a total of 250 adversarial attacks on each
of the four models. Put generally, we aimed to add
noise to our input audio files that resulted in the
model outputting an adversarial target—*Porta’m
a un lloc web malvat,” or “Take me to an evil
website”’—despite the perceivable audio input say-

"https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec
2https ://commonvoice.mozilla.org/en/datasets

ing something else. More specifically, we trained
targeted, adversarial noise § for a given audio file
x as in Carlini and Wagner (2018). In such Carlini-
and-Wagner (CW) attacks, the objective is also
to make the noise relatively imperceptible. As in
Olivier and Raj (2023), we judged the perceptibil-
ity of the noise relative to the signal in decibels
using the signal-to-noise ratio (SNR), but using the
L, metric, similar to Carlini and Wagner (2018):

SNR(z,0) = 20(log |z|eo — log |0]s0) (1)

For details on the algorithm and hyperparameters
used to train the adversarial noise d, see Appendix
B.

2.3 Evaluation

Following fine-tuning, we ran inference over the
withheld test set of Catalan data. Each ASR model
was evaluated on the same 19-hour evaluation
dataset with equal representation from each dialect
(2486 audio files per dialect).

To assess variation in WER and CER, a gener-
alized linear model for a gamma-distributed de-
pendent variable was implemented in R, using the
identity link function. The model included main ef-
fects of the model dialect composition (100%, 80%,
50%, or 20% Central Catalan), the speech input di-
alect (Balear, Central, Nord, Nord-Occidental, or
Valencia), and the interaction between the model
dialect composition and speech dialect. A gamma
distribution was chosen given that the WER and
CER distributions have a strong positive skew and
cannot be negative.> Each predictor was sum-coded
with the held-out levels first set to the 100% Central
model and the Catalan test files, and then rotated
to test each main effect and interaction against the
average performance.

To evaluate the effectiveness of the CW attacks
on each fine-tuned model, we primarily use the
percentage of successful attacks. An attack was
considered successful if—at any SNR—the WER
of the model output compared to the adversarial
target (“Porta’m a un lloc web malvat.”) was 0.
To assess the influences on a successful or unsuc-
cessful attack, we implemented a binomial logistic
regression model with fixed effects of dialect, the
fine-tuning data composition of the model, and

3As the gamma prediction can only predict positive values
greater than 0, we transformed any WER or CER of 0 in our
3data to 0.00001.



WER CER
bal cen nor no-oc val bal cen nor no-oc val
100% | 0.280 0.152 0.191 0.244 0.234 | 0.079 0.038 0.049 0.064 0.056
80% | 0.224 0.146 0.160 0.196 0.165 | 0.060 0.037 0.040 0.050 0.039
50% | 0.181 0.140 0.133 0.164 0.126 | 0.047 0.035 0.033 0.041 0.029
20% | 0.189 0.164 0.144 0.161 0.125 | 0.050 0.043 0.036 0.042 0.035

Table 1: Percentages in the far left column represent the percent Central Catalan data used in fine-tuning; bal:
Balearic, cen: Central, nor: Nord, no-oc: Nord-Occidental, val: Valencia; Bold: lowest WER/CER for each dialect.

their interaction. Categorical predictors were sum-
coded.

3 Results

3.1 ASR

In terms of WER and CER, ASR for all dialects
improved with more dialect-balanced data (Table
1). The WER model revealed significant influences
of model composition and dialect input: relative
to average, the 20% and 50% Central models had
significantly lower WERs, while the 100% Central
model had significantly higher WERs across all
dialects. The average performance across models
was significantly better on Central, Nord and Va-
lencia, but worse on Balear and Nord-Occidental.
The main effects were significantly tempered in
several interactions; a significant interaction can
be interpreted as a significant modulation from the
expected WER performance based on the main
effects alone. Beyond the main effects, the 20%
Central model performed significantly better on
Balear, Nord-Occidental, and Valencia, but worse
on Central and Nord. The 50% Central model also
performed significantly better on Balear and Valen-
cia, but the main effect of the 50% Central model
was significantly tempered for the Central test files:
While the Central WER of the 50% Central model
was numerically lowest across model types, the im-
provement was not as great as expected based on
the main effects alone. The 100% Central model
had significantly improved performance on Central
and Nord, but significantly worse performance on
Balear, Nord-Occidental, and Valencia. For the full
model results, see Table 5 in Appendix C).

For the CER model, the same pattern of signif-
icance emerged for the main effects, but the inter-
actions differed slightly. While the 20% Central
model still had significantly higher performance on
Balear and Nord-Occidental, its performance was
significantly worse on Central test files. In addition,
while the 50% model still had higher performance
on Balear and Valencia, it performed significantly
worse on Central and Nord. The full results can be

found in Table 6 in Appendix D.

Measured with WER and CER, the 50% Cen-
tral model had a consistently strong performance
across dialects, followed closely by the 20% Cen-
tral model. Performance was generally higher for
Central, Nord and Valencian dialects, but lower for
the Balearic and Nord-Occidental dialects.

3.2 CW Attacks

We obtained a high percentage of successful at-
tacks in all conditions (see Figure 1). The attacks’
high average SNR implies that successful attacks
were relatively imperceptible (see Tables 3 and 4).
Given that our models had relatively low WER and
CER on the non-adversarial test set, these results
are in line with the common finding in the adver-
sarial attack literature that even high-performing
models are susceptible to adversarial perturbations.
The logistic regression yielded no significant main
effects and only one significant interaction, indicat-
ing that adversarial attacks using Central Catalan
audio were significantly less successful in the 80%
Central model relative to main effects alone. For
the full model results, see Table 7 in Appendix E).

4 Discussion

In the present study, we manipulated the balance of
five different dialects of Catalan in a dataset that we
used to fine-tune XLSR-53 for automatic speech
recognition. We tested how biasing a dataset to-
ward one variety (Central Catalan) would affect the
robustness of the model to both dialect variation
and targeted adversarial noise at inference.

With respect to ASR performance on multiple
dialects, we found that including larger portions
of different dialects in fine-tuning data does make
for a model that is more robust to dialect varia-
tion at test time. However, it is not necessary for
a model to be perfectly balanced with respect to
dialect composition to obtain maximal gains in per-
formance. Other researchers have studied how to
make models that are more robust to dialect varia-

3@on at test time, for instance focusing on the config-
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Figure 1: Attack success rate broken down by the dialect of the attack’s audio (bar color) and the proportion of
Central Catalan in the models’ fine-tuning data (bar group).

uration of language models used during decoding
(Yadavalli et al., 2022), the usefulness of normal-
izing dialects’ scripts in the training data (Nigmat-
ulina et al., 2020), or the utility of jointly learning
to identify the variety and perform ASR for it (Wa-
heed et al., 2023). While our experiments required
relatively large amounts of data for which we knew
the dialect of origin, we were encouraged about
the implications of the results for low-resource di-
alect settings, as we see that even if half of the
fine-tuning data used is from a single dialect, we
can still observe substantial ASR improvements
in performance for various dialects. Similar to a
related study on the impact of balanced corpora on
multi-dialect Irish ASR, we found that a perfectly
balanced fine-tuning corpus does not lead to equiv-
alent performance across dialects (Lonergan et al.,
2023). Indeed, in our perfectly balanced model, the
Balearic dialect stands out as having a relatively
high WER (though the CER scores indicate closer
performance across dialects). As suggested by Lon-
ergan et al. (2023), this implies that the Balearic
dialect may need to be up-sampled in future corpus
compilation efforts.

As for adversarial noise, our results indicate
that systematically adding dialect variation to fine-
tuning data for ASR is neither helpful nor hurt-
ful in the case of XLSR-53. Though CW attacks
have previously been shown to be powerful against
ASR systems, it is still interesting to consider if
there were any parts of our experiments that made
the models particularly vulnerable to the attacks.
One potential susceptibility may be the presence of
noisy labels in the training data. Paleka and Sanyal

(2023) demonstrate that mislabeled images in train-
ing data can result in a loss of adversarial robust-
ness for image classification models. We restricted
our datasets to the validated text-audio pairs of
Catalan data in Common Voice 18.0, and sentences
contributed to the dataset for Catalan have under-
gone substantial validation (Armentano-Oller et al.,
2024). Still, there is no guarantee that the dialect
of the sentence matches the accent with which the
reader speaks Catalan in the dataset. For instance,
in our test set, we see a reader who speaks Valencia
was assigned a sentence containing the feminine,
third-person possessive pronoun from Central Cata-
lan, “la seva.” In Valencia, however, it is written
and spoken as “la seua” (Calvo and Segura-Llopes,
2022), which is what our 100% Central Catalan
model transcribes for this data point. Thus, it is
feasible that there is inconsistency in our data’s
labels (the text) and what is actually spoken in the
audio. A study of how languages’ orthographic
transparency impacts adversarial vulnerability in
ASR models would be an interesting means of ex-
ploring the impact of such noisy labels.

5 Conclusion

Taking Catalan as the language of study given the
large amounts of available annotated data, this
study demonstrated that a more balanced dialect
composition indeed confers robustness to dialect
variation in test data. However, dialect composition
of the training data had little influence on adver-
sarial robustness. We hope that these findings will
motivate the consideration of datasets’ dialect com-
3position in the development of ASR systems in the



future. Indeed, our findings suggest that even if
the dialects present in training are not perfectly bal-
anced, including such variation to some degree is
beneficial for all dialects represented in the training
data (even for Central Catalan, in this case). As for
adversarial robustness, we encourage further work
on multilingual and multi-dialect speech processing
models to assess specific vulnerabilities that might
come from unbalanced datasets or mismatched la-
bels and audio that spur from orthographic depth
or dialect variation.

Limitations

Given that languages’ dialects can differ in their
mutual intelligibility, an important limitation arises
in the use of only Catalan’s varieties. It may be the
case that for a language with less mutually intelli-
gible dialects, less cross-dialect transfer is possible.
Though we predict this would make for worse per-
formance on lower resource dialects in the biased
dataset conditions, more work on a larger sample
of languages is needed. Collecting such multilin-
gual, transcribed speech datasets with accent an-
notations presents a limitation in itself to this line
of work. However, this paper and Zuluaga-Gomez
et al. (2023)—who use Common Voice to create
such a multiilingual dataset with accent labels—
demonstrate that in some cases, existing datasets
can be repurposed to study multi-dialect speech
processing.

As we worked with limited computational re-
sources, we were only able to fine-tune one time
per data composition. Ideally, we would repeat
the fine-tuning with several random samples and
report the average results, but this was not feasible
here. We encourage repetition of our experiments
using other ASR architectures, including larger ver-
sions of XLSR, and with other languages and their
dialects.

Ethical Considerations

This work studies adversarial attacks on automatic
speech recognition, which could potentially be
used to alter the behavior of ASR models with
malicious intentions. We do not introduce any new
algorithms for attacking models, and conducted the
study with the intent of studying if multi-dialect
speech processing models are more or less suscep-
tible to existing attacks. In doing so, we hoped to
assess not just the quality, but also the trustwor-

potentially be used by speakers of lower-resource
language varieties.

Acknowledgements

This research was supported by SNSF Grant
PROOP1_208460 to EC.

References

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common Voice: A massively-
multilingual speech corpus. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4218-4222, Marseille, France. European
Language Resources Association.

Carme Armentano-Oller, Montserrat Marimon, and
Marta Villegas. 2024. Becoming a high-resource
language in speech: The Catalan case in the Com-
mon Voice corpus. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 2142-2148.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick Platen, Yatharth Saraf, Juan Pino, Alexei
Baevski, Alexis Conneau, and Michael Auli. 2022.
XLS-R: Self-supervised cross-lingual speech repre-
sentation learning at scale. In Interspeech, 2022,
pages 2278-2282.

Gemma Boleda, Stefan Bott, Rodrigo Meza, Car-
los Castillo, Toni Badia, and Vicente Lépez. 2006.
CUCWeb: A Catalan corpus built from the web. In
Proceedings of the 2nd International Workshop on
Web as Corpus.

Vicent Beltran Calvo and Carles Segura-Llopes. 2022.
Els parlars valencians (actualitzada), volume 34.
Universitat de Valencia.

Nicholas Carlini and David Wagner. 2018. Audio ad-
versarial examples: Targeted attacks on speech-to-
text. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 1-7. IEEE.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised cross-lingual representation learning for
speech recognition. In Interspeech, 2021.

Zhengjia Dan, Yue Zhao, Xiaojun Bi, Licheng Wu, and
Qiang Ji. 2022. Multi-task transformer with adaptive
cross-entropy loss for multi-dialect speech recogni-
tion. Entropy, 24(10):1429.

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data

thiness of speech recognition models that could 3g with recurrent neural networks. In Proceedings of the



23rd international conference on Machine learning,
pages 369-376.

Zhou Jie, Gao Shengxiang, Yu Zhengtao, Dong Ling,
and Wang Wenjun. 2024. DialectMoE: An end-
to-end multi-dialect speech recognition model with
mixture-of-experts. In Proceedings of the 23rd Chi-
nese National Conference on Computational Linguis-
tics (Volume 1: Main Conference), pages 1148-1159.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Oddur Kjartansson, Alexander Gutkin, Alena Butryna,
Isin Demirsahin, and Clara Rivera. 2020. Open-
source high quality speech datasets for Basque, Cata-
lan and Galician. In Proceedings of the Ist Joint
Workshop on Spoken Language Technologies for
Under-resourced languages (SLTU) and Collabora-
tion and Computing for Under-Resourced Languages
(CCURL), pages 21-27.

Baybars Kulebi, Carme Armentano-Oller, Carlos
Rodriguez-Penagos, and Marta Villegas. 2022. Par-
lamentParla: A speech corpus of Catalan parliamen-
tary sessions. In Proceedings of the Workshop Par-
laCLARIN III within the 13th Language Resources
and Evaluation Conference, pages 125-130, Mar-
seille, France. European Language Resources Asso-
ciation.

Nikola Ljubesi¢ and Antonio Toral. 2014. caWaC —a
web corpus of Catalan and its application to language
modeling and machine translation. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 1728—
1732, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Liam Lonergan, Mengjie Qian, Neasa Ni Chiardin,
Christer Gobl, and Ailbhe Ni Chasaide. 2023. To-
wards dialect-inclusive recognition in a low-resource
language: Are balanced corpora the answer? In
Interspeech 2023, pages 5082-5086.

Tuliia Nigmatulina, Tannon Kew, and Tanja Samardzic.
2020. ASR for non-standardised languages with
dialectal variation: the case of Swiss German. In
Proceedings of the 7th Workshop on NLP for Simi-
lar Languages, Varieties and Dialects, pages 15-24,
Barcelona, Spain (Online). International Committee
on Computational Linguistics (ICCL).

Raphaél Olivier and Bhiksha Raj. 2023. There is more
than one kind of robustness: Fooling Whisper with
adversarial examples. In 24th Annual Conference
of the International Speech Communication Asso-
ciation, Interspeech 2023, Dublin, Ireland, August
20-24, 2023, pages 4394—4398.

Daniel Paleka and Amartya Sanyal. 2023. A law of
adversarial risk, interpolation, and label noise. In
The Eleventh International Conference on Learning

Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023.

Luke E Richards, Edward Raff, and Cynthia Matuszek.
2023. Measuring equality in machine learning secu-
rity defenses: A case study in speech recognition. In
Proceedings of the 16th ACM Workshop on Artificial
Intelligence and Security, pages 161-171.

Samuel Henrique Silva and Peyman Najafirad. 2020.
Opportunities and challenges in deep learning adver-
sarial robustness: A survey. CoRR.

Joan Veny. 1982. Els parlars catalans: sintesi de di-
alectologia. Biblioteca ’Raixa’. Moll.

Joan Veny. 2015. Catala occidental/catala oriental, en-
cara. Estudis Romanics, 37:31-65.

Abdul Waheed, Bashar Talafha, Peter Sullivan, Abdel-
Rahim Elmadany, and Muhammad Abdul-Mageed.
2023. VoxArabica: A robust dialect-aware arabic
speech recognition system. In Proceedings of Arabic-
NLP 2023, Singapore (Hybrid), December 7, 2023,
pages 441-449. Association for Computational Lin-
guistics.

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and
Dahua Lin. 2021. Adversarial robustness under long-
tailed distribution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8659-8668.

Aditya Yadavalli, Ganesh Sai Mirishkar, and Anil
Vuppala. 2022. Exploring the effect of dialect
mismatched language models in Telugu automatic
speech recognition. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Student Research Workshop,
pages 292-301, Hybrid: Seattle, Washington + On-
line. Association for Computational Linguistics.

Juan Zuluaga-Gomez, Sara Ahmed, Danielius Visockas,
and Cem Subakan. 2023. Commonaccent: Exploring
large acoustic pretrained models for accent classifica-
tion based on common voice. Interspeech 2023.

39



A Fine-Tuning Details
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Figure 2: The proportion of five Catalan macro-dialects present in the training split of fine-tuning data for all four
conditions.

To fine-tune XLSR-53 for Catalan ASR, we added a fully connected linear layer to the model that
output logits over the vocabulary for each time step of the input audio. Similar to Conneau et al. (2021)
and Babu et al. (2022), we used the connectionist temporal classification (CTC) loss function during
training (Graves et al., 2006) and froze the weights in the model’s CNN feature extractors. The audio files
were resampled to the model sample rate and the text targets were tokenized into characters after decasing
and removing punctuation. We retained any diacritics that are phonetically meaningful in Catalan and
performed Unicode normalization so diacritics were represented consistently.

We trained with batch sizes of 16 but accumulated gradients for 16 batches before updating weights.
Weight updates were made with the Adam optimizer (Kingma and Ba, 2015) and training continued until
improvements to the development set loss were less than 0.05 for three epochs in a row. We found a
stable learning rate of 9e ~* worked well across models. During inference, we used greedy decoding to
transcribe input audio.
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B CW Adversarial Attacks
B.1 Attack Training Algorithm

While training the adversarial noise, we set some upper limit € to the value |d|. We then sought the
perturbation § for a given audio file x that minimized the CTC loss with respect to an adversarial target
y while also keeping the noise’s Lo norm small. Thus, we aimed to minimize the following objective
function:

Uz +6,y) + |03 )

The constant ¢ controls the relative importance of the regularizing term and therefore the noise’s
perceptibility. We iteratively calculated the objective in Equation 2 and updated the adversarial perturbation
using the Adam optimizer. After every update to the noise, it was clamped such that ||, < €. Once
a 0 was found that successfully outputs the adversarial target y (as measured by a word error rate of 0
between y and the model output), e was multiplied by a term a which is smaller than one to reduce the
search radius and look for a quieter perturbation that successfully attacked the model. This continued until
the search space was reduced £ times or until a maximum number of updates n was carried out. See Table
2 for a summary of the hyperparameters we used while fitting attacks. We largely based our values off of
those by Olivier and Raj (2023), though we found a higher learning rate worked better for our models.

Initial € 0.10

c 0.25

Q@ 0.70

learning rate | 0.10
k 8

n 2000

Table 2: Hyperparameters for training CW attacks.

B.2 Detailed CW Attack Results

Success Rate  Average SNR

100% Central 0.852 35.62
80% Central 0.820 35.44
50% Central 0.820 34.21
20% Central 0.864 35.80

Table 3: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by the
proportion of Central Catalan in each model’s fine-tuning data. A higher average SNR of the attack indicates that
among the successful attacks, quieter perturbations could be used to attain a successful attack.

Success Rate  Average SNR
bal 0.830 36.73
cen 0.855 35.03
nor 0.855 34.27
no-oc 0.830 35.97
val 0.825 34.85

Table 4: Attack success rate and average signal-to-noise ratio among successful CW attacks, broken down by
dialect of the attack’s audio. A higher average SNR of the attack indicates that among the successful attacks,
quieter perturbations could be used to attain a successful attack; bal: Balearic, cen: Central, nor: Nord, no-oc:
Nord-Occidental, val: Valencia.
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C Gamma Regression Qutput for WER

Estimate  Standard Error p-value
Intercept 0.176 8.84e-04 <2e-16%**
20% Central -0.019 0.001 <De-16%**
50% Central -0.027 0.001 <2e-16%**
80% Central 0.002 0.002 0.121
100% Central 0.044 0.002 <2e-16%**
Balearic 0.042 0.002 <2e-16%**
Central -0.025 0.002 <2e-16%**
Nord -0.019 0.002 <2e-16%**
Nord-Occidental 0.015 0.002 3.00e-16%***
Valencia -0.013 0.002 1.18e-15%**
20% Central x Balearic -0.010 0.003 0.002**
50% Central x Balearic -0.010 0.003 0.001**
80% Central x Balearic 0.003 0.004 0.339
100% Central x Balearic 0.017 0.004 4.44e-05%**
20% Central x Central 0.033 0.003 <2e-16%**
50% Central x Central 0.017 0.003 1.70e-11%%**
80% Central x Central -0.006 0.003 0.016*
100% Central x Central -0.043 0.003 <2e-16%**
20% Central x Nord 0.007 0.003 0.009%**
50% Central x Nord 0.004 0.002 0.158
80% Central x Nord | 1.66e-04 0.003 0.953
100% Central x Nord -0.010 0.003 0.001**
20% Central x Nord-Occidental -0.011 0.003 1.38e-04%**
50% Central x Nord-Occidental | -2.82e-04 0.003 0.923
80% Central x Nord-Occidental 0.002 0.003 0.468
100% Central x Nord-Occidental 0.009 0.003 0.018%*
20% Central x Valencia -0.018 0.002 4.39e-13%**
50% Central x Valencia -0.010 0.002 1.20e-04***
80% Central x Valencia | 4.23e-04 0.003 0.883
100% Central x Valencia 0.027 0.004 5.27e-14%**

Table 5: 3 estimates, standard errors, and p-values of the gamma regression predicting WER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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D Gamma Regression Output for CER

Estimate  Standard Error p-value
Intercept 0.045 2.81e-04 <2e-16%**
20% Central -0.004 4.51e-04 <De-16%**
50% Central -0.008 4.26e-04 <2e-16%**
80% Central | -1.14e-05 4.81e-04 0.981
100% Central 0.012 5.74e-04 <2e-16%**
Balearic 0.014 6.87e-04 <2e-16%**
Central -0.007 4.86e-04 <2e-16%**
Nord -0.005 5.04¢e-04 <2e-16%**
Nord-Occidental 0.004 5.94¢-04 3.18e-13***
Valencia -0.006 5.10e-04 <2e-16%**
20% Central x Balearic -0.005 0.001 4.775e-07%**
50% Central x Balearic -0.004 0.001 1.17e-04%**
80% Central x Balearic 0.001 0.001 0.215
100% Central x Balearic 0.008 0.001 5.40e-08***
20% Central x Central 0.009 8.69¢-04 <2e-16%**
50% Central x Central 0.005 7.79¢-04 8.61e-12%%*
80% Central x Central -0.001 8.24¢-04 0.090
100% Central x Central -0.013 8.90e-04 <2e-16%**
20% Central x Nord | 6.69¢-04 8.16e-04 0.413
50% Central x Nord 0.002 7.73e-04 0.040*
80% Central x Nord | 5.00e-04 8.71e-04 0.566
100% Central x Nord -0.003 0.001 0.007%*
20% Central x Nord-Occidental -0.003 9.31e-04 9.82e-04%**
50% Central x Nord-Occidental | -9.45e-05 9.08e-04 0917
80% Central x Nord-Occidental | 3.55e-04 0.001 0.728
100% Central x Nord-Occidental 0.003 0.001 0.022*
20% Central x Valencia | -9.33e-04 8.02e-04 0.244
50% Central x Valencia -0.003 7.34e-04 9.39e-05%***
80% Central x Valencia | -9.45e-04 8.57e-04 0.270
100% Central x Valencia 0.005 0.001 1.47e-05%**

Table 6: 3 estimates, standard errors, and p-values of the gamma regression predicting CER. Factors are sum-coded.
*: significant at threshold 0.05; **: significant at threshold 0.01; ***: significant at threshold 0.001.
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E Logistic Regression Output for CW Attacks

Estimate Standard Error ~ p-value
Intercept 1.689 0.089 <2e-16%**

20% Central 0.229 0.166 0.168

50% Central | -0.149 0.149 0.316

80% Central | -0.148 0.149 0.321

100% Central 0.067 0.155 0.663

Balearic -0.09 0.172 0.603

Central 0.200 0.195 0.306

Nord 0.101 0.181 0.578

Nord-Occidental | -0.086 0.173 0.620

Valencia | -0.125 0.171 0.465

20% Central x Balearic | -0.013 0.315 0.966

50% Central x Balearic 0.208 0.298 0.484

80% Central x Balearic | -0.186 0.281 0.508

100% Central x Balearic | -0.008 0.301 0.977

20% Central x Central 0.633 0.405 0.118

50% Central x Central 0.253 0.330 0.444

80% Central x Central | -0.588 0.292 0.044*

100% Central x Central | -0.298 0.314 0.343

20% Central x Nord | -0.027 0.331 0.935

50% Central x Nord | -0.124 0.296 0.675

80% Central x Nord 0.016 0.303 0.958

100% Central x Nord 0.135 0.325 0.678

20% Central x Nord-Occidental | -0.316 0.300 0.292
50% Central x Nord-Occidental | -0.188 0.281 0.503
80% Central x Nord-Occidental 0.360 0.306 0.240
100% Central x Nord-Occidental 0.145 0.309 0.640
20% Central x Valencia | -0.277 0.299 0.355

50% Central x Valencia | -0.149 0.280 0.595

80% Central x Valencia 0.399 0.305 0.191

100% Central x Valencia 0.027 0.300 0.929

Table 7: ( estimates, standard errors, p-values of a logistic regression predicting adversarial attack success. Factors
are sum-coded. *: significant at threshold 0.05; ***: significant at threshold 0.001.
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