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Abstract
Indonesia’s linguistic landscape is remarkably
diverse, encompassing over 700 languages and
dialects, making it one of the world’s most lin-
guistically rich nations. This diversity, coupled
with the widespread practice of code-mixing
and the presence of low-resource regional lan-
guages, presents unique challenges for mod-
ern pre-trained language models. In response
to these challenges, we developed NusaBERT,
building upon IndoBERT by incorporating vo-
cabulary expansion and leveraging a diverse
multilingual corpus that includes regional lan-
guages. Through rigorous evaluation across a
range of benchmarks, NusaBERT demonstrates
state-of-the-art performance in tasks involving
multiple languages of Indonesia, paving the
way for future natural language understanding
research for under-represented languages. Our
models and code are publicly available.1

1 Introduction

Indonesia’s exceptional linguistic landscape, en-
compassing over 700 languages and dialects (Aji
et al., 2022), presents a significant challenge for
current natural language processing (NLP) tech-
niques, such as pre-trained language models. These
techniques often fall short in handling the nation’s
intricate and multifaceted linguistic tapestry. Fur-
thermore, the bilingual nature of Indonesian col-
loquial conversations (mixing Indonesian and En-
glish) with the majority continuing to also commu-
nicate in regional languages as their daily conver-
sational language poses a complex problem to be
solved by language models.

Nonetheless, pre-trained language models have
shown remarkable progress in recent years show-
ing their ability to solve a wide range of natural
language processing tasks, including the Indone-
sian language. These language models are trained
on a large corpus and are fine-tuned to solve spe-
cific, downstream tasks. Language models such

1https://github.com/LazarusNLP/NusaBERT

as BERT (Devlin et al., 2018) and GPT (Radford
et al., 2018, 2019) are typically trained on a mono-
lingual corpus and were originally trained on an En-
glish corpus. In the studies that followed, language-
specific language models like IndoBERT (Wilie
et al., 2020) and IndoBART (Cahyawijaya et al.,
2021) have been tailored for the Indonesian lan-
guage and regional languages of Indonesia like
Javanese and Sundanese. Despite the large size
discrepancy between the English and Indonesian
corpus, IndoBERT managed to leverage the con-
textualized Indonesian language model to attain
exceptional results on multiple downstream natural
language understanding (NLU) tasks.

Although demonstrating remarkable capabilities
across various tasks, these models often perform
poorly when applied to languages with unique char-
acteristics like those found in the many regions
of Indonesia. For instance, IndoBERT faces lim-
itations when addressing the intricacies of code-
mixing (Adilazuarda et al., 2022) and the spe-
cific needs of low-resource languages (Cahyaw-
ijaya et al., 2023b). Furthermore, while efforts
like XLM-R (Conneau et al., 2020) and mBERT
(Devlin et al., 2018) have aimed to introduce cross-
linguality, their focus on achieving state-of-the-art
performance in cross-lingual language understand-
ing tasks may not fully address the unique issues
faced by language models operating within Indone-
sia’s complex multilingual and multicultural envi-
ronment. Cahyawijaya et al. (2023b) showed that
even these large multilingual models fail to outper-
form classical baselines on extremely low-resource
languages.

In light of this, we propose NusaBERT, a model
that builds upon IndoBERT and targets the linguis-
tic complexities of low-resource regional languages
in Indonesia. NusaBERT leverages the vocabulary
expansion technique proposed by PhayaThaiBERT
(Sriwirote et al., 2023), and aims to achieve state-of-
the-art performance on multilingual benchmarks.

https://github.com/LazarusNLP/NusaBERT
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2 Related Works

Recent years have witnessed significant progress
in Indonesian NLP research. Pre-trained language
models like IndoBERT (Wilie et al., 2020) and
IndoBART (Cahyawijaya et al., 2021) have demon-
strated the effectiveness of this approach for vari-
ous Indonesian language tasks. IndoBERT, based
on BERT (Devlin et al., 2018), was specifically
trained on a large Indonesian text corpus. It
achieved state-of-the-art performance on the In-
doNLU benchmark (Wilie et al., 2020), a collec-
tion of Indonesian-specific NLU tasks like text
classification, question answering, and named en-
tity recognition, demonstrating its competence in
understanding the nuances of the Indonesian lan-
guage. IndoBART, based on the BART architec-
ture (Lewis et al., 2020), focuses on sequence-
to-sequence tasks within the Indonesian language.
This model has found success in language gener-
ation tasks like machine translation and text sum-
marization, highlighting its ability to process and
produce natural Indonesian text.

NusaX (Winata et al., 2023), a benchmark for 10
under-resourced Indonesian local languages, shows
that when IndoBERT and IndoBART are fine-tuned
for these languages, they achieve impressive re-
sults in sentiment analysis and machine translation,
respectively. Afterward, NusaWrites (Cahyawi-
jaya et al., 2023b) was released and complements
NusaX by providing a more lexically diverse and
culturally relevant dataset on 12 underrepresented
local languages. Upon fine-tuning different models
on these new benchmarks, results show that multi-
lingual models like XLM-R (Conneau et al., 2020)
and mBERT (Devlin et al., 2018) and monolingual
models (IndoBERT, IndoBART, IndoGPT) fail to
outperform classical machine learning models on
several extremely low-resource languages.

The success of PhayaThaiBERT (Sriwirote et al.,
2023), a Thai language model specifically designed
to address the challenge of unassimilated loan-
words, offers valuable inspiration for tackling chal-
lenges faced by NLP models in Indonesia. Similar
to Thai, low-resource regional languages in Indone-
sia are frequently influenced by other languages
due to code-mixing. This phenomenon leads to
a significant number of unassimilated loanwords,
which are words from other languages adopted into
the regional language but fully integrated into its
grammar. PhayaThaiBERT addresses this chal-
lenge by incorporating techniques such as vocab-

ulary expansion. This technique involves aug-
menting the model’s vocabulary with these loan-
words and variations, allowing it to better recognize
and understand them within the context of the re-
gional language. Similarly, IndoBERTweet (Koto
et al., 2021), an extension of IndoLEM’s IndoBERT
(Koto et al., 2020), tackles the challenge of infor-
mal language and social media slang by specifically
augmenting its vocabulary with terms commonly
found in Indonesian Twitter data. Their vocabu-
lary expansion and subword embedding averaging
technique (Cahyawijaya et al., 2024) helped the
model better understand and process the nuances
of informal communication, which often deviates
from standard Indonesian grammar and incorpo-
rates slang terms.

3 NusaBERT

This section introduces the vocabulary expansion
method applied to IndoBERT (Wilie et al., 2020),
the corpus dataset used for training, and the contin-
ued pre-training procedure. Subsequently, we will
evaluate our resultant models on downstream tasks
to measure their natural language understanding,
multilinguality, and multicultural capabilities.

3.1 Vocabulary Expansion and Dataset

3.1.1 Pre-training Corpus
Following PhayaThaiBERT (Sriwirote et al., 2023),
we expanded IndoBERT’s vocabulary to introduce
foreign tokens by collecting monolingual texts in
various Indonesian languages from open-source
corpora. We utilized the dataset catalog from
NusaCrowd (Cahyawijaya et al., 2023a), which
streamlined the process of locating Indonesian
datasets. To ensure quality, we focused on clean,
rigorously filtered datasets, particularly CulturaX
(Nguyen et al., 2023), which uses mC4 (Raffel
et al., 2023) and OSCAR (Suárez et al., 2019).
CulturaX, however, only covers Indonesian (ind),
Javanese (jav), and Sundanese (sun). We also in-
cluded Standard Malay (msa) due to its use in parts
of Sumatra and West Kalimantan (Wahyudi et al.;
Corporation, 2007).

To add further linguistic diversity, we used an
open-source, deduplicated and filtered Wikipedia
dataset2 for Indonesian languages. This dataset
includes Acehnese (ace), Balinese (ban), Ban-
jarese (bjn), Banyumasan (jav3), Buginese (bug),

2https://hf.co/datasets/sabilmakbar/indo_wiki
3A dialect of Javanese (jav), sometimes given the ISO

https://hf.co/datasets/sabilmakbar/indo_wiki
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Gorontalo (gor), Minangkabau (min), Malay (msa),
Nias (nia), Sundanese (sun), and Tetum (tet).
Tetum (tet) was included as it is still spoken in
parts of West Timor.

Since the Wikipedia dataset is smaller than typi-
cal web-based corpora, we supplemented it with a
filtered Indonesian subset of NLLB corpus (Costa-
jussà et al., 2022), called KoPI-NLLB4. KoPI-
NLLB covers Acehnese (ace), Balinese (ban), Ban-
jarese (bjn), Javanese (jav), Minangkabau (min),
and Sundanese (sun) and we deliberately excluded
Indonesian (ind) from KoPI-NLLB as it was well
represented in CulturaX. Our final pre-training cor-
pus comprises 13 languages, integrating CulturaX,
Wikipedia, and KoPI-NLLB with a focus on quality
via strict filtering and deduplication, summarized
in Appendix B.

3.1.2 Vocabulary Expansion
Unlike PhayaThaiBERT, we did not transfer the
non-overlapping vocabulary of XLM-R (Conneau
et al., 2020). Instead, we decided to train a new
WordPiece tokenizer (Wu et al., 2016) based on the
IndoBERT tokenizer on the newly formed corpus.
There are several design choices considered when
training the new tokenizer, such as the target vo-
cabulary size and the subsets to be included during
tokenizer training. For the latter, we decided not
to include the Indonesian subset of CulturaX due
to its large percentage and that it would diminish
the importance of non-Indonesian tokens, which
contradicts the goal of NusaBERT. However, the
relatively smaller Indonesian Wikipedia is still in-
cluded as there might be new words that might have
not been included in the IndoBERT tokenizer.

On the other hand, for the former, we followed a
close estimate to that of Typhoon language models
(Pipatanakul et al., 2023) whose design choice is
based on another previous study that investigated
the most efficient target vocabulary size (Csaki
et al., 2023). Both studies suggested a vocabu-
lary size of 5,000, but our preliminary experiments
found that a target vocabulary size of 5,000 has very
few new tokens to be added to the current tokenizer.
Due to this, we increased the target vocabulary size
to 10,000 and found 1,511 new, non-overlapping
tokens to be added.

While this increase is not as significant as origi-
nally proposed in PhayaThaiBERT, we considered
the downstream effects of significantly increasing

code map-bms.
4https://hf.co/datasets/acul3/KoPI-NLLB

the number of parameters if we decided to exactly
follow their approach. Moreover, WangchanBERTa
(Lowphansirikul et al., 2021), the base model of
PhayaThaiBERT, has a deeper issue of only sup-
porting mainly Thai tokens and struggles with unas-
similated loanwords in the Latin alphabet. The
IndoBERT tokenizer, on the other hand, has been
trained on an Indonesian corpus that uses the Latin
alphabet and NusaBERT aims to only introduce
regional language tokens. Therefore, we finalized
this set of additional tokens which increased In-
doBERT’s vocabulary size from 30,521 to 32,032.

3.2 Continued Pre-training

3.2.1 Model Configuration and Initialization
Like PhayaThaiBERT, we conducted continued
pre-training with IndoBERT’s initial model check-
points. We experimented with two size vari-
ants of IndoBERT, namely IndoBERTBASE and
IndoBERTLARGE. In both variants, we used phase
one checkpoints of IndoBERT. Therefore, the ini-
tial parameters of our model are identical to that of
IndoBERT with the exception of the new vocabu-
lary’s embeddings, which are initialized from the
mean of the old word embeddings (Hewitt, 2021).
There are no additional architectural changes added
to the original BERT architecture and call our
new extended models NusaBERTBASE (111M) and
NusaBERTLARGE (337M), respectively.

3.2.2 Data Pre-processing
During the continued pre-training, we decided to
keep the same sequence length of 128 as IndoBERT
phase one models. Our data pre-processing proce-
dures follow a typical masked language modeling
pre-processing setup. Firstly, a random 5% sample
of our corpus described in Section §3.1.1 is held
out for evaluation purposes. Secondly, all texts
are tokenized using the newly extended tokenizer
described in §3.1.2. Since our tokenizer follows
exactly from the original IndoBERT tokenizer, spe-
cial [CLS] and [SEP] tokens are added at the start
and end of all texts. Finally, batches of tokenized
texts are then concatenated into one long sequence
and then grouped into sequences of length 128 to-
kens each. Sequences shorter than 128 are thus
discarded. These batches of fixed-length tokenized
sequences are thereby ready for training purposes.

3.2.3 Pre-training Objective and Procedures
Instead of using the original BERT (Devlin et al.,
2018) objective of both next sentence prediction

https://hf.co/datasets/acul3/KoPI-NLLB
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(NSP) and masked language modeling (MLM), we
opted for the more robust RoBERTa (Liu et al.,
2019) objective. With this setup, we conducted con-
tinued pre-training for 500,000 optimization steps
with hyperparameters shown in Appendix C. Un-
like PhayaThaiBERT, our continued pre-training
procedure doesn’t involve sophisticated fine-tuning
techniques. Instead, we simply trained our models
with 24,000 warmup steps to the peak learning rate
and applied a linear learning rate decay to zero,
with a batch size of 256 on a single GPU.

3.3 Evaluation Benchmark

Our benchmark concentrates on three aspects: (1)
natural language understanding (NLU), (2) mul-
tilinguality, and (3) multicultural. Therefore, we
decided to utilize the Indonesian NLU benchmark
IndoNLU (Wilie et al., 2020), and multilingual
NLU benchmarks such as NusaX (Winata et al.,
2023), and NusaWrites (Cahyawijaya et al., 2023b)
which contain a wide range of regional languages
of Indonesia and closely reflect the local cultures.
The tasks in these benchmarks can be divided into
five major categories: (a) single-sentence classifica-
tion, (b) single-sentence multi-label classification,
(c) sequence-pair classification, (d) token classifi-
cation, and (e) sequence-pair token classification.

3.3.1 Datasets
The IndoNLU benchmark consists only of Indone-
sian datasets from various NLU tasks. On the other
hand, NusaX (Winata et al., 2023) and NusaWrites
(Cahyawijaya et al., 2023b) provide NLU bench-
marks for a variety of regional languages of Indone-
sia. A high-level overview of the benchmarks is
shown in Appendix A. The list of all languages and
dialects involved in this study and its details are
found in Appendix B.

IndoNLU IndoNLU (Wilie et al., 2020) is a com-
prehensive benchmark corpus designed to facilitate
research in Indonesian natural language understand-
ing. It comprises multiple datasets covering a va-
riety of NLU tasks, which can be categorized into
two main tasks: text classification and sequence
labeling. The benchmark aims to provide a stan-
dard for evaluating the performance of models on
Indonesian language tasks, addressing the need for
more resources in languages other than English.
The dataset supports text classification tasks like
emotion classification, sentiment analysis, textual
entailment, and aspect-based sentiment analysis

(ABSA) making it versatile for testing different
aspects of language understanding models. Fur-
ther, the sequence labeling datasets include sub-
tasks such as part-of-speech tagging, span extrac-
tion, and named entity recognition.

NusaX NusaX (Winata et al., 2023) is a multilin-
gual benchmark that focuses on assessing the capa-
bilities of NLU performance of language models
across 10 low-resource local Indonesian languages,
with the addition of Indonesian and English. The
dataset was originally the IndoNLU’s SmSA sen-
timent analysis dataset, which was then translated
into 11 other languages. Its main task is therefore
sentiment analysis, although the dataset is likewise
usable for machine translation purposes. For the
evaluation of our model, we utilized the sentiment
analysis dataset only.

NusaWrites NusaWrites (Cahyawijaya et al.,
2023b) is a multilingual benchmark that serves
as an extension of NusaX (Winata et al., 2023)
and encompasses 12 underrepresented and low-
resource languages in Indonesia. By its design, Nu-
saWrites is more locally nuanced than generic cor-
pora like Wikipedia and is lexically more diverse.
It contains 2 sub-corpus defined by the way the
data is constructed, topic-focused paragraph writ-
ing from human annotators (NusaParagraph) and
human translation by native speakers (NusaTrans-
lation). NusaParagraph contains three downstream
tasks which include topic classification, emotion
classification, and rhetoric mode classification. On
the other hand, NusaTranslation contains three par-
allel downstream tasks which are sentiment analy-
sis, emotion classification, and machine translation.
Like NusaX, NusaTranslation is a translated ver-
sion of IndoNLU’s EmoT emotion classification
dataset and IndoLEM’s sentiment analysis dataset
(Koto et al., 2020).

3.3.2 Benchmarking Models
We compared the performance of our Nus-
aBERT models against the reported bench-
mark results without any further fine-tuning of
the baseline models. The IndoNLU bench-
mark results include monolingual Indonesian lan-
guage models IndoBERTBASE, IndoBERTLARGE,
IndoBERT-liteBASE, IndoBERT-liteLARGE, as well
as multilingual language models like mBERT
(Devlin et al., 2018), XLM-MLM (Conneau
and Lample, 2019), and both XLM-RBASE and
XLM-RLARGE (Conneau et al., 2020). Addition-
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ally, NusaX (Winata et al., 2023) and NusaWrites
(Cahyawijaya et al., 2023b) report on the same set
of models, with the inclusion of the IndoLEM In-
doBERT (Koto et al., 2020), and classical machine
learning models.

3.3.3 Fine-Tuning Setup
To fairly compare our results with the baselines,
we adhere to similar fine-tuning procedures out-
lined in their respective benchmark codebases. Ap-
pendix C details the hyperparameters employed
for fine-tuning the models across various tasks, re-
flecting the benchmarks’ recommended settings
with minor adjustments to learning rates and batch
sizes for certain tasks. For IndoNLU, NusaX, and
NusaTranslation benchmarks, we used a sequence
length of 128, while for NusaParagraph, we in-
creased the sequence length to 512 due to its much
longer input text length. We applied early stopping
based on the evaluation metrics and chose the best-
scoring model. All fine-tuning processes utilize
the Trainer API from Hugging Face’s transformers
library (Wolf et al., 2020). For other hyperparam-
eters not mentioned in Appendix C, we followed
the default hyperparameter from the Trainer API.

3.3.4 Evaluation Metrics
We evaluated the performance of our fine-tuned
models using the macro-averaged F1 score for
classification tasks, as specified in the IndoNLU,
NusaX, and NusaWrites. Likewise, we followed
the sequence labeling evaluation procedure used for
CoNLL for token classification tasks of IndoNLU.

4 Results and Analysis

4.1 Pre-training Results

Both NusaBERTBASE and NusaBERTLARGE con-
verged smoothly during the continued pre-training
phase (§3.2). After 500,000 steps, NusaBERTBASE
achieved an evaluation loss of 1.488 (4.427 PPL).
Similarly, NusaBERTLARGE achieved a lower eval-
uation loss of 1.327 (3.769 PPL).

4.2 Fine-tuning Results

IndoNLU We report the official baseline results
as well as the results of NusaBERT in Table 1.
As shown, our models’ performance on classifica-
tion tasks of IndoNLU slightly deteriorates from
that of the original IndoBERT models. The av-
erage score of NusaBERT decreases by about 1-
2%, with NusaBERTBASE decreasing from 85.41%

to 84.28% (−1.13%) and NusaBERTLARGE de-
creasing from 88.43% to 86.84% (−1.59%). Our
models struggle particularly with aspect-based
sentiment analysis tasks (CASA and HoASA),
and the NusaBERTLARGE result on SmSA drops
by 5%. In contrast, NusaBERT significantly
improves the sequence labeling results of In-
doBERT, increasing the average score by about 2-
3%. NusaBERTBASE improves the base IndoBERT
model score from 77.47% to 79.86% (+2.39%),
while NusaBERTLARGE improves the score from
81.21% to 84.09% (+2.88%). NusaBERT espe-
cially improves the results on part-of-speech tag-
ging tasks (POSP, BaPOS) and named entity recog-
nition tasks (NERGrit, NERP).

Further, since the results of IndoBERT are
similar to those of multilingual models like
XLM-R, we observed a similar trend when
comparing NusaBERT with the latter. That
is, our models are slightly worse on classifi-
cation tasks (−0.87% NusaBERTBASE, −1.43%
NusaBERTLARGE), yet better on sequence la-
beling tasks (+0.1% NusaBERTBASE, +2.17%
NusaBERTLARGE) than XLM-R. These indicate
that our models remain competitive on Indonesian
NLU tasks, retaining most of its initial knowledge
found in the base IndoBERT model. Further ex-
periments are required to fully retain and improve
the results of IndoBERT across all tasks while still
introducing multilingual capabilities to NusaBERT.

NusaX The official baseline and NusaBERT re-
sults on NusaX are shown in Table 2. From the
baseline result, the monolingual IndoBERT mod-
els outperformed larger multilingual models like
mBERT and are on par against XLM-R models
despite being trained only on Indonesian texts, sug-
gesting strong transferability from Indonesian to
regional languages (Winata et al., 2023). It thus
remains whether NusaBERT’s introduction to re-
gional languages will benefit the model when fine-
tuned on multilingual, regional language tasks. On
average, our models improve the results of both
size-variants of IndoBERT. The NusaBERTBASE
model increases the average score from 78.5% to
79.8% (+1.3%) while NusaBERTLARGE increases
the average score from 80.0% to 82.6% (+2.6%).
In particular, NusaBERT significantly improves the
results on most languages that were included during
the continued pre-training phase such as Acehnese
(ace), Balinese (ban), Banjarese (bjn), Buginese
(bug), Javanese (jav), and Sundanese (sun). How-
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Model Classification Sequence Labeling
EmoT SmSA CASA HoASA WReTE µ POSP BaPOS TermA KEPS NERGrit NERP FacQA µ

mBERT 67.30 84.14 72.23 84.63 84.40 78.54 91.85 83.25 89.51 64.31 75.02 69.27 61.29 76.36
XLM-MLM 65.75 86.33 82.17 88.89 64.35 77.50 95.87 88.40 90.55 65.35 74.75 75.06 62.15 78.88
XLM-RBASE 71.15 91.39 91.71 91.57 79.95 85.15 95.16 84.64 90.99 68.82 79.09 75.03 64.58 79.76
XLM-RLARGE 78.51 92.35 92.40 94.27 83.82 88.27 92.73 87.03 91.45 70.88 78.26 78.52 74.61 81.93
IndoBERT-liteBASE 73.88 90.85 89.68 88.07 82.17 84.93 91.40 75.10 89.29 69.02 66.62 46.58 54.99 70.43

+ phase two 72.27 90.29 87.63 87.62 83.62 84.29 90.05 77.59 89.19 69.13 66.71 50.52 49.18 70.34
IndoBERT-liteLARGE 75.19 88.66 90.99 89.53 78.98 84.67 91.56 83.74 90.23 67.89 71.19 74.37 65.50 77.78

+ phase two 70.80 88.61 88.13 91.05 85.41 84.80 94.53 84.91 90.72 68.55 73.07 74.89 62.87 78.51
IndoBERTBASE 75.48 87.73 93.23 92.07 78.55 85.41 95.26 87.09 90.73 70.36 69.87 75.52 53.45 77.47

+ phase two 76.28 87.66 93.24 92.70 78.68 85.71 95.23 85.72 91.13 69.17 67.42 75.68 57.06 77.34
IndoBERTLARGE 77.08 92.72 95.69 93.75 82.91 88.43 95.71 90.35 91.87 71.18 77.60 79.25 62.48 81.21

+ phase two 79.47 92.03 94.94 93.38 80.30 88.02 95.34 87.36 92.14 71.27 76.63 77.99 68.09 81.26
NusaBERTBASE 76.10 87.46 91.26 89.80 76.77 84.28 95.77 96.02 90.54 66.67 72.93 82.29 54.81 79.86
NusaBERTLARGE 78.90 87.36 92.13 93.18 82.64 86.84 96.89 96.76 91.73 71.53 79.86 85.12 66.77 84.09

Table 1: Evaluation results of baseline models and NusaBERT on the IndoNLU benchmark, measured in macro-F1
(%). Baseline results are obtained from Wilie et al. (2020). The best performance on each task is bolded.

Model ace ban bbc bjn bug eng ind jav mad min nij sun µ

Logistic Regression 77.4 76.3 76.3 75.0 77.2 75.9 74.7 73.7 74.7 74.8 73.4 75.8 75.4
Naive Bayes 72.5 72.6 73.0 71.9 73.7 76.5 73.1 69.4 66.8 73.2 68.8 71.9 72.0
SVM 75.7 75.3 76.7 74.8 77.2 75.0 78.7 71.3 73.8 76.7 75.1 74.3 75.4
mBERT 72.2 70.6 69.3 70.4 68.0 84.1 78.0 73.2 67.4 74.9 70.2 74.5 72.7
XLM-RBASE 73.9 72.8 62.3 76.6 66.6 90.8 88.4 78.9 69.7 79.1 75.0 80.1 76.2
XLM-RLARGE 75.9 77.1 65.5 86.3 70.0 92.6 91.6 84.2 74.9 83.1 73.3 86.0 80.0
IndoLEM IndoBERTBASE 72.6 65.4 61.7 71.2 66.9 71.2 87.6 74.5 71.8 68.9 69.3 71.7 71.1
IndoNLU IndoBERTBASE 75.4 74.8 70.0 83.1 73.9 79.5 90.0 81.7 77.8 82.5 75.8 77.5 78.5
IndoNLU IndoBERTLARGE 76.3 79.5 74.0 83.2 70.9 87.3 90.2 85.6 77.2 82.9 75.8 77.2 80.0
NusaBERTBASE 76.5 78.7 74.0 82.4 71.6 84.1 89.7 84.1 75.6 80.8 74.9 85.2 79.8
NusaBERTLARGE 81.8 82.8 74.7 86.5 73.4 84.6 93.3 87.2 82.5 83.5 77.7 82.7 82.6

Table 2: Evaluation results of baseline models and NusaBERT on NusaX sentiment analysis, measured in macro-F1
(%). Baseline results are obtained from Winata et al. (2023). The best performance on each task is bolded.

ever, this improvement is not consistent across all
cases, particularly noting a slight decline in the per-
formance of NusaBERTBASE, even for languages
included in the continued pre-training phase. More-
over, the results of languages not included in the
continued pre-training phase like Madurese (mad)
and Ngaju (nij) are still improved especially in
NusaBERTLARGE.

Overall, NusaBERTLARGE attained state-of-the-
art results on most languages of NusaX, except
for English (eng) and Sundanese (sun). XLM-
R, which was pre-trained on these two languages
(Conneau et al., 2020), is unsurprisingly still best.
Likewise, classical machine learning algorithms
like SVM and Logistic Regression achieved the
highest scores on Buginese (bug) and Toba Batak
(bbc), two extremely low-resource languages. Our
findings align with the suggestion of Winata et al.
(2023) whereby these languages are highly distinct
from other languages of Indonesia and hence do
not exhibit strong cross-lingual transferability. We
also note that both languages stem from different
language families than most of the other languages,
even though they are all grouped into one Malayo-

Polynesian subgroup (Eberhard et al., 2022). Bugi-
nese (bug) is spoken mostly in the South Sulawesi
region, while Toba Batak (bbc) is spoken primarily
in the Northwestern Sumatra and Barrier Islands
regions. In addition, while Buginese (bug) is in-
cluded in our pre-training corpus, it is the third
smallest subset within our Wikipedia dataset, with
only about 9,000 documents. Therefore, it remains
our interest to find other ways to improve the re-
sults of languages that are not only extremely low-
resource but are also highly distinct from other
languages of Indonesia.

NusaWrites The official baseline result of Nu-
saWrites aggregates the scores across all languages
into a single mean score for each subtask (Cahyaw-
ijaya et al., 2023b). Fortunately, the individual
raw results for each subtask and each language are
available on the official NusaWrites repository5,
enabling us to thoroughly examine and compare
per-language results. The aggregated baseline and
NusaBERT results are shown in Table 3, while
the detailed per-task and per-language results are

5https://github.com/IndoNLP/nusa-writes/

https://github.com/IndoNLP/nusa-writes/
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Model NusaP NusaT
Emot. Rhet. Topic Emot. Senti.

Logistic Regression 78.23 45.21 87.67 56.18 74.89
Naive Bayes 75.51 37.73 85.06 52.70 74.89
SVM 76.36 45.44 85.86 55.08 76.04
mBERT 63.15 50.01 73.82 44.13 68.72
XLM-RBASE 59.15 49.17 71.68 47.02 68.62
XLM-RLARGE 67.42 51.57 83.05 54.84 79.06
IndoLEM IndoBERTBASE 66.94 51.93 84.87 52.59 69.08
IndoNLU IndoBERTBASE 67.12 47.92 85.87 54.50 75.24
IndoNLU IndoBERTLARGE 62.65 31.75 85.41 57.80 77.40
NusaBERTBASE 67.18 51.34 83.32 56.54 77.07
NusaBERTLARGE 71.82 53.06 85.08 61.40 79.54

Table 3: Evaluation results of baseline models and Nus-
aBERT on the NusaWrites benchmark tasks, measured
in macro-F1 (%) and averaged over all of the languages
found in each task. Detailed per-task and per-language
results are shown in Appendix D. Baseline results are
obtained from Cahyawijaya et al. (2023b). The best
performance on each task is bolded for clarity.

shown in Appendix D.
Like our results on NusaX, NusaBERT in-

creases the average score on the two tasks of
NusaTranslation. Specifically, NusaBERTBASE
improves the NusaTranslation emotion classifica-
tion score of IndoBERT from 52.59% to 57.80%
(+5.21%) and NusaBERTLARGE from 54.50% to
61.40% (+6.9%). Further, on the sentiment
analysis task, NusaBERTBASE improves the In-
doBERT score from 75.24% to 77.07% (+1.83%)
and NusaBERTLARGE from 77.40% to 79.54%
(+2.14%). Overall, NusaBERTLARGE is state-of-
the-art on both NusaTranslation tasks.

Notably, unlike NusaX, most languages of
NusaTranslation are not found in the pre-training
corpus of NusaBERT and are extremely low-
resource. Nonetheless, based on the results alone,
it seems that the introduction of additional new re-
gional languages during the continued pre-training
phase benefits the robustness of NusaBERT on
these new languages as well, suggesting cross-
lingual transferability. Similarly, NusaBERT’s re-
sults on languages that were included in the contin-
ued pre-training corpus like Javanese (jav) and Mi-
nangkabau (min) significantly improve that of In-
doBERT. However, as noted by Cahyawijaya et al.
(2023b), NusaTranslation and NusaX share a simi-
lar source domain of social media texts, therefore
it is expected that our findings are parallel.

NusaParagraph, on the contrary, presents a more
challenging task by consisting of not only lan-
guages that are not found in our pre-training cor-
pus but is also lexically more diverse and con-
tains a remarkably higher ratio of local/colloquial

Dataset Prop. Relative Improvement
(%) IndoBERTBASE IndoBERTLARGE

NusaX 8.46 +1.3 +2.6
NusaT Emotion 8.21 +2.04 +3.61
NusaT Sentiment 6.83 +1.83 +2.14
NusaP Topic 11.26 −2.55 −0.33
NusaP Rhetoric 11.63 +3.42 +21.30
NusaP Emotion 11.41 +0.06 +9.18

Table 4: Proportion of new tokens found only in the
extended NusaBERT tokenizer compared with the per-
formance gain of NusaBERT over IndoBERT for each
dataset.

words (Cahyawijaya et al., 2023b). Indeed, the
gains of NusaBERT over IndoBERT are lacklus-
ter when evaluated on the NusaParagraph topic
classification task. For instance, NusaBERT
failed to improve the results of IndoBERT, drop-
ping the result of IndoBERTBASE from 85.87% to
83.32% (−2.55%), and for NusaBERTLARGE, the
result dropped from 85.41% to 85.08% (−0.33%).
Nevertheless, it still improved the IndoBERT
results on both the rhetorical mode (+3.42%
NusaBERTBASE, +21.3% NusaBERTLARGE) and
emotion classification (+0.06% NusaBERTBASE,
+9.18% NusaBERTLARGE) tasks. It is only
on NusaParagraph rhetorical mode classification
where NusaBERTLARGE is state-of-the-art.

Like the findings of Cahyawijaya et al. (2023b),
NusaBERT fails to outperform classical machine
learning baselines on languages that are highly dis-
tinct from Indonesian (ind). We also note that
NusaBERT was pre-trained on Wikipedia and com-
mon crawl corpora, which explains its effective-
ness on and closeness to NusaX and NusaTransla-
tion source domains, but not so for NusaParagraph.
Due to the high linguistic and lexical discrepan-
cies found in NusaParagraph (Cahyawijaya et al.,
2023b), NusaBERT’s capabilities to exploit knowl-
edge and cross-lingual transfer to these extremely
low-resource languages remain largely ineffective.

4.3 Impact of New Tokens

We investigated the impact of the new tokens on
downstream tasks, especially noting that our ex-
tended tokenizer was additionally trained on the
regional languages of Indonesia and that the In-
doBERT tokenizer might not be suitable for this
purpose. We modified the approach conducted by
Sriwirote et al. (2023), where they calculated the
proportion of unassimilated English words with
respect to the number of total words in the down-
stream task. However, since we are unable to dis-
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tinguish the regional languages’ words from the
Indonesian words programmatically, we defined a
new metric as follows:

Proportion of New Tokens =
#new tokens
#total tokens

(1)

We re-tokenized all downstream tasks’ texts us-
ing the extended NusaBERT tokenizer and calcu-
lated the percentage of new tokens with respect
to the total number of tokens. This way, we can
closely inspect and compare the relation between
the newly introduced tokens and the gains of Nus-
aBERT over IndoBERT. Table 4 shows the afore-
mentioned results. While the trend of the propor-
tion of new tokens with the gains of NusaBERT
over IndoBERT isn’t always linear, there is gener-
ally a correlation between the two – parallel with
the findings of Sriwirote et al. (2023). This, how-
ever, doesn’t apply to NusaParagraph topic classi-
fication where NusaBERT performed worse than
IndoBERT. Despite these findings, the new tokens
might not definitively be the only factor behind
the improved results of NusaBERT (e.g. contin-
ued pre-training), and further investigation is re-
quired. We analyzed tokenizer fertility, comparing
NusaBERT’s extended tokenizer to IndoBERT’s
original tokenizer in Appendix E.

4.4 Code-mixing Robustness
Although NusaBERT doesn’t directly address the
issue of code-mixing, we examined its code-
mixing robustness by evaluating our models on
IndoRobusta-Blend (Adilazuarda et al., 2022). Fol-
lowing its procedure, we took NusaBERT mod-
els which have been fine-tuned on the original In-
donesian EmoT and SmSA datasets, and conducted
zero-shot inference on code-mixed versions of their
respective test sets. To have a fair comparison with
the official reported results, we similarly applied
a perturbation ratio R = 0.4 and mixed English
(eng), Javanese (jav), Malay (msa), and Sundanese
(sun) as target L2 languages. We report the evalu-
ation results in Table 5. We also provided the full
results in Appendix F.

Interestingly, the robustness of NusaBERT de-
pends highly on the downstream task being tested,
similar to the findings of Adilazuarda et al. (2022).
On sentiment analysis (SmSA), NusaBERTBASE
is the most robust, significantly improving the
robustness of IndoBERTBASE. However, this
doesn’t apply to emotion classification (EmoT)
where NusaBERTLARGE is more robust than its

Model ind eng jav msa sun µ

EmoT
mBERT 61.14 12.50 14.02 12.73 12.50 12.94
XLM-RBASE 72.88 10.98 13.94 13.18 12.50 12.65
XLM-RLARGE 78.26 12.27 13.03 12.42 11.74 12.37
IndoBERTBASE 72.42 9.55 12.35 9.47 9.39 10.19
IndoBERTLARGE 75.53 9.24 12.12 10.23 9.32 10.23
NusaBERTBASE 75.23 14.09 14.77 13.64 13.64 14.03
NusaBERTLARGE 78.18 10.45 10.45 10.45 12.05 10.85

SmSA
mBERT 83.00 2.20 3.00 2.93 2.47 2.65
XLM-RBASE 91.53 3.40 3.80 4.27 4.27 3.94
XLM-RLARGE 94.07 2.13 3.20 2.60 2.73 2.67
IndoBERTBASE 91.00 1.33 5.07 3.20 2.40 3.00
IndoBERTLARGE 94.20 2.47 4.13 4.00 2.20 3.20
NusaBERTBASE 91.00 0.60 2.80 2.40 1.80 1.90
NusaBERTLARGE 91.00 1.80 3.80 2.20 2.20 2.50

Table 5: Evaluation results on code-mixed downstream
tasks, measured in delta accuracy with R = 0.4. Base-
line results are obtained from Adilazuarda et al. (2022).
The lowest delta accuracy on each task is bolded for clar-
ity. The best-performing model on the originally Indone-
sian (ind) fine-tuning task has also been underlined.

NusaBERTBASE. Further, both NusaBERT models
are more prone to code-mixing on emotion classi-
fication compared to IndoBERT, but the opposite
is true for sentiment analysis. Additionally, paral-
lel to what was conjectured by Adilazuarda et al.
(2022), NusaBERT is generally more robust against
Indonesian-English code-mixing. We agree with
their suggestion that this stems from the source
bias found in most online pre-training corpora that
often mix these two languages. In the same light,
Wikipedia texts that we pre-trained on also contain
a high ratio of English loan words (Cahyawijaya
et al., 2023b), thereby explaining these findings.

5 Conclusion

In this study, we introduced NusaBERT, a mul-
tilingual language model specifically tailored to
the linguistic diversity of Indonesia. Basing our
model on IndoBERT, we applied vocabulary ex-
pansion and continued pre-training on a multilin-
gual corpus that introduces the regional languages
of Indonesia. NusaBERT achieves state-of-the-art
results when evaluated on Indonesian and multilin-
gual NLU benchmarks such as IndoNLU, NusaX,
and NusaWrites. These findings highlight the ef-
fectiveness of our proposed approach in enhancing
the multilingual and multicultural capabilities of
IndoBERT to address Indonesia’s unique linguistic
framework. We also discussed several limitations
of NusaBERT and how to potentially resolve them.
We hope NusaBERT will enable further research
in the under-represented languages of Indonesia.
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Limitations

Code-mixing NusaBERT demonstrates profi-
ciency in handling low-resource languages while
surpassing or remaining competitive with mono-
lingual models on downstream tasks. Despite this
efficacy, it has yet to address the intricate chal-
lenge of intra-sentential code-mixing. While the
issue of code-mixing is not explicitly tackled in
the context of NusaBERT, results in Table 5 in-
dicate potential room for improvements that can
be done to enhance NusaBERT’s performance in
handling code-mixing scenarios. Moreover, it is
important to mention that the language model’s per-
formance on IndoRobusta-Blend does not defini-
tively represent its robustness against code-mixing
as it uses synthetically generated code-mixed ex-
amples instead of human-curated code-mixed data,
and is limited to only four L2 languages. Having
an expert-curated code-mixing benchmark would
be valuable for future evaluations.

To tackle code-mixing adversarial attacks, Adi-
lazuarda et al. (2022) proposed a code-mixing ad-
versarial training technique called IndoRobusta-
Shot that suggests three different fine-tuning tech-
niques: code-mixed-only tuning, two-step tuning,
and joint training. Among the three examined meth-
ods, joint training shows the best results which
implies that training code-mixed data with mono-
lingual data increases the robustness of language
models while maintaining its monolingual down-
stream capabilities.

Adapting NusaBERT to New Languages In our
study, we introduced a multilingual language model
designed for Indonesian and its 12 regional lan-
guages. Although 12 languages is considerably a
large number, it is considered comparatively mod-
est compared to Indonesia’s boasting rich linguistic
landscape with over 700 languages and dialects.
This arises from the significant difference in the
amount of available text corpus of regional lan-
guages and the lack of quality data.

Several endeavors have successfully extended
new languages to a base language model. For ex-
ample, the BLOOM language model (BigScience
Workshop et al., 2023), a comprehensive multi-
lingual language model trained on 46 languages,
effectively extended its applicability to 8 previ-
ously unseen languages (Yong et al., 2023) through
continued pretraining, implementation of language
adapters (Pfeiffer et al., 2020), and parameter-

efficient finetuning techniques (Liu et al., 2022).
These strategies facilitated the inclusion of new
languages while preserving existing capabilities
and mitigating catastrophic forgetting. Despite
the demonstrated feasibility of extending language
models to existing language models, the data on
these new languages are abundant in comparison
to Indonesian regional languages.

A recent approach proposed by Wang et al.
(2022) seeks to leverage bilingual lexicons which
are widely available even for extremely low-
resource languages. We can thereby potentially
generate synthetic low-resource language texts by
translating from Indonesian texts using these lexi-
cons. This approach, coupled with gold few-texts
of the target language, if available, is one way
to possibly extend NusaBERT to extremely low-
resource languages where resources are scarce.

Corpus Domain Diversity One significant limi-
tation in our study is the lack of corpus domain di-
versity, particularly evident in the performance dis-
crepancies between NusaParagraph and the other
tasks (NusaX and NusaTranslation). The under-
pinning challenge with NusaParagraph, which di-
verges from the social media domain to include
paragraph writing by human annotators, is its richer
cultural and lexical diversity, indicative of the nu-
anced and colloquial language use in very low-
resource and linguistically distinct local languages
(Cahyawijaya et al., 2023b). This complexity is
inherently difficult for models like NusaBERT,
which, despite their robustness, are pre-trained pre-
dominantly on social media texts and online docu-
ments similar to the datasets used for NusaX and
NusaTranslation.

Despite the apparent scarcity of directly applica-
ble, culturally rich, and linguistically aligned cor-
pora for very low-resource local languages, there
exists an opportunity to leverage alternative texts
during model pre-training. For instance, texts such
as the Bible, which are often translated into numer-
ous languages, including many under-represented
ones, could provide a valuable resource (Wongso
et al., 2023). These texts offer a range of linguis-
tic structures and vocabularies that, while not en-
tirely reflective of colloquial use, could serve as a
foundational step towards bridging the gap in lan-
guage representation. This approach underscores
the necessity for creative solutions in the absence
of conventional data sources, aiming to enhance
the model’s performance across a wider array of
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linguistic contexts.
This strategy invites further research to not only

incorporate existing texts from under-represented
languages into pre-training processes but also to
innovate methods such as leveraging and exploring
the use of non-text data. Specifically, transcrib-
ing conversation audio through speech recognition,
especially for local Indonesian languages that are
rarely ever written (Aji et al., 2022), presents a
novel avenue to enrich the language’s resources.
This approach can capture the authentic linguistic
nuances and cultural richness of spoken language,
offering a more comprehensive representation of
these languages (Besacier et al., 2014).

This direction not only underscores the ongoing
effort to fully leverage the linguistic diversity of
Indonesia and similar regions but also aims to ex-
pand the applicability and inclusivity of language
models by incorporating the rich, oral traditions
of under-represented communities into the digital
linguistic landscape.
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A Evaluation Benchmarks

The list of downstream benchmarks/datasets used
to evaluate NusaBERT is shown in Table 6.

Dataset Task
Single-sentence Classification

EmoT Emotion Classification
SmSA Sentiment Analysis
NusaX Sentiment Analysis
NusaT Sentiment Sentiment Analysis
NusaT Emotion Emotion Classification
NusaP Emotion Emotion Classification
NusaP Rhetorical Rhetorical Mode Classification
NusaP Topic Topic Modeling

Single-sentence Multi-label Classification
CASA Aspect-based Sentiment Analysis
HoASA Aspect-based Sentiment Analysis

Sequence-pair Classification
WReTE Textual Entailment

Token Classification
POSP Part-of-Speech Tagging
BaPOS Part-of-Speech Tagging
TermA Span Extraction
KEPS Span Extraction
NERGrit Named Entity Recognition
NERP Named Entity Recognition

Sequence-Pair Token Classification
FacQA Span Extraction

Table 6: List of downstream evaluation benchmarks for
NusaBERT fine-tuning.

B Statistics

A statistical summary of the number of documents
per language included in the pre-training corpus is
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shown in Table 7, while the list of languages and
dialects included in this study and their statistics
are shown in Table 8.

Language (ISO 639-3) #documents
Indonesian (ind) 23,905,655
Javanese (jav) 1,229,867
Sundanese (sun) 957,674
Acehnese (ace) 805,498
Malay (msa) 584,186
Minangkabau (min) 339,181
Banjarese (bjn) 306,751
Balinese (ban) 264,382
Gorontalo (gor) 14,514
Banyumasan (jav) 11,832
Buginese (bug) 9,793
Nias (nia) 1,650
Tetum (tet) 1,465
Total 28,432,448

Table 7: A summary of the number of documents per
language in the pre-training corpus of NusaBERT.

C Hyperparameters

We provide the hyperparameters used for continued
pre-training and downstream tasks in Table 9 and
Table 10, respectively.

D NusaWrites Evaluation Results

We included the non-aggregated, per-task, and
per-language evaluation results of NusaWrites.
NusaTranslation results are shown in Table 12 and
Table 13. NusaParagraph results are shown in Table
14, Table 15, and Table 16.

E Tokenizer Fertility

Fertility is a widely used metric for assessing tok-
enizer performance and is defined as the average
number of tokens per word (Ali et al., 2023; Csaki
et al., 2023; Cahyawijaya et al., 2024). A higher fer-
tility score indicates lower compression efficiency,
as more tokens are needed per word. To evaluate
and compare the fertility of NusaBERT’s extended
tokenizer and IndoBERT’s original tokenizer, we
applied both to texts from downstream tasks. Fer-
tility was calculated as the ratio of the total number
of tokens to the total number of words, with words
identified using whitespace splitting, following Ali
et al. (2023). The results are summarized in Ta-
ble 11, showing that NusaBERT’s tokenizer has a
lower tokenizer fertility and is thus more efficient
than that of IndoBERT.

Language Primary Region #speakers
Acehnese (ace) Aceh 2,840,000
Ambon (abs) Maluku 1,650,900
Balinese (ban) Bali 3,300,000
Banjarese (bjn) Kalimantan 3,650,000
Banyumasan (jav) Banyumasan N/A
Batak (btk) North Sumatra 3,320,000†

Betawi (bew) Banten, Jakarta 5,000,000
Bima (bhp) Sumbawa 500,000
Buginese (bug) South Sulawesi 4,370,000
Gorontalo (gor) Gorontalo 505,000
Indonesian (ind) Indonesia 198,000,000
Javanese (jav) Java 68,200,000
Madurese (mad) Madura 7,790,000
Makassarese (mak) South Sulawesi 2,110,000
Malay (msa) Malaysia 82,285,706
Minangkabau (min) West Sumatra 4,880,000
Musi (mui) South Sumatra 3,105,000
Ngaju (nij) Central Kalimantan 890,000
Nias (nia) Nias 867,000
Rejang (rej) Bengkulu 350,000
Sundanese (sun) West Java 32,400,000
Tetum (tet) East Timor 91,200
Toba Batak (bbc) North Sumatra 1,610,000

Table 8: Statistics of languages included in this study,
with data obtained from Eberhard et al. (2022) and
†Badan Pusat Statistik (2010).

F IndoRobusta Evaluation Results

The evaluation results of baseline models and Nus-
aBERT on IndoRobusta-Blend are shown in Table
17.
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Hyperparameter Value
Sequence length 128
Batch size 256
Peak learning rate 3e-4/3e-5†

#warmup steps 24,000
#optimization steps 500,000
Learning rate scheduler Linear
Optimizer AdamW
Adam (β1, β2) (0.9, 0.999)
Adam ϵ 1e-8
Weight decay 0.01
PyTorch data type bfloat16

Table 9: Continued pre-training hyperparameters.
† indicates the differing values for NusaBERTBASE and
NusaBERTLARGE, respectively.

Classification #epochs Learning Batch Weight
task type rate size decay
Sentence 100 1e-5/2e-5† 32/16† 0.01
Multi-label 100 1e-5 32 0.01
Token 10 2e-5 16 0.01

Table 10: Downstream fine-tuning hyperparameters. †

indicates the differing values for NusaBERTBASE and
NusaBERTLARGE, respectively.

Dataset Tokenizer Fertility
NusaBERT IndoBERT

NusaX 1.770 1.787
NusaTranslation Emotion 1.910 1.924
NusaTranslation Sentiment 2.150 2.150
NusaParagraph Topic 1.743 1.761
NusaParagraph Rhetoric 1.724 1.750
NusaParagraph Emotion 1.747 1.771

Table 11: Tokenizer fertility comparison between Nus-
aBERT’s extended tokenizer and IndoBERT’s original
tokenizer. Higher fertility indicates lower tokenization
efficiency.
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NusaTranslation EmoT
Model abs bew bhp btk jav mad mak min mui rej sun µ

Logistic Regression (Bag of Words) 46.77 62.31 44.62 59.38 60.66 58.05 55.63 61.73 45.33 45.61 62.90
56.18

Logistic Regression (TF-IDF) 51.20 63.59 50.06 61.25 61.47 60.42 56.39 63.94 50.98 50.61 62.99
Naive Bayes (Bag of Words) 48.16 59.76 48.02 57.12 58.39 55.22 54.93 61.41 51.49 47.53 61.32

52.71
Naive Bayes (TF-IDF) 49.95 55.54 40.12 54.64 54.85 52.76 52.03 56.61 48.93 32.87 57.86
SVM (Bag of Words) 44.56 61.30 43.59 58.43 58.97 55.97 52.60 61.02 48.80 41.81 60.58

55.08
SVM (TF-IDF) 48.23 61.74 48.68 61.02 63.34 59.43 58.09 62.34 51.40 48.27 61.58
mBERT 26.05 59.75 12.65 59.28 62.80 57.30 54.92 61.50 16.48 12.24 62.49 44.13
XLM-RBASE 35.79 63.54 12.44 59.95 62.86 59.87 60.54 63.39 13.94 19.75 65.14 47.02
XLM-RLARGE 49.58 70.43 8.53 65.83 68.70 61.27 58.85 70.84 55.83 23.12 70.24 54.84
IndoLEM IndoBERTBASE 35.03 67.86 25.40 59.86 64.47 59.40 58.23 61.48 45.00 39.20 62.56 52.59
IndoNLU IndoBERTBASE 41.04 66.61 32.13 62.81 66.91 61.52 61.81 67.95 42.78 33.54 62.38 54.50
IndoNLU IndoBERTLARGE 48.54 72.55 28.43 63.09 69.34 61.84 60.48 67.55 53.22 40.19 70.53 57.80
NusaBERTBASE 45.21 66.09 39.03 61.72 67.41 61.10 60.54 67.11 50.98 37.36 65.34 56.54
NusaBERTLARGE 47.75 73.68 36.31 62.87 73.63 65.48 60.58 70.27 60.06 54.47 70.34 61.40

Table 12: Evaluation results of baseline models and NusaBERT on the NusaTranslation emotion classification task,
measured in macro-F1 (%). Baseline results are obtained from Cahyawijaya et al. (2023b). The best performance
on each task is bolded for clarity.

NusaTranslation Senti
Model abs bew bhp btk jav mad mak min mui rej sun µ

Logistic Regression (Bag of Words) 69.23 81.88 41.86 79.13 81.87 81.48 78.39 82.53 70.35 60.79 84.43
74.96

Logistic Regression (TF-IDF) 69.50 81.04 70.10 79.67 77.85 74.50 78.27 82.18 72.31 68.00 83.73
Naive Bayes (Bag of Words) 69.67 79.12 69.36 78.05 79.88 78.38 76.77 80.10 72.20 69.05 80.51

74.89
Naive Bayes (TF-IDF) 67.71 77.03 64.51 76.56 75.71 77.70 76.41 80.11 71.41 66.90 80.34
SVM (Bag of Words) 69.87 81.94 69.89 79.77 78.18 80.44 79.25 82.68 68.02 66.45 84.21

76.04
SVM (TF-IDF) 70.28 82.26 68.94 76.20 78.16 75.28 77.67 81.66 72.20 66.36 83.10
mBERT 67.47 79.56 41.86 72.81 80.55 76.44 69.08 79.43 64.07 46.03 78.56 68.71
XLM-RBASE 67.28 85.11 41.86 77.22 79.73 78.40 75.90 83.39 40.90 40.97 84.08 68.62
XLM-RLARGE 72.55 86.54 65.52 80.62 86.13 78.58 81.86 86.04 78.80 65.18 87.87 79.06
IndoLEM IndoBERTBASE 59.39 81.57 44.66 74.50 81.89 72.28 66.12 80.95 65.52 51.25 81.74 69.08
IndoNLU IndoBERTBASE 70.45 86.09 62.80 72.64 84.34 75.16 76.80 82.62 71.32 66.59 78.82 75.24
IndoNLU IndoBERTLARGE 72.16 87.92 59.91 78.39 81.61 79.84 78.96 81.99 75.98 68.79 85.83 77.40
NusaBERTBASE 70.71 86.02 63.72 80.63 84.04 80.47 80.73 84.75 66.14 64.80 85.74 77.07
NusaBERTLARGE 68.94 90.11 66.46 83.09 86.71 83.66 81.35 86.42 70.66 69.74 87.83 79.54

Table 13: Evaluation results of baseline models and NusaBERT on the NusaTranslation sentiment analysis task,
measured in macro-F1 (%). Baseline results are obtained from Cahyawijaya et al. (2023b). The best performance
on each task is bolded for clarity.
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NusaParagraph Topic
Model bew btk bug jav mad mak min mui rej sun µ

Logistic Regression (Bag of Words) 90.20 88.95 68.87 90.65 88.87 87.50 90.70 85.71 82.22 89.67 87.67
Logistic Regression (TF-IDF) 92.63 91.09 73.92 91.49 92.32 91.21 92.10 88.02 86.39 90.87
Naive Bayes (Bag of Words) 87.72 84.55 62.88 87.32 82.40 89.27 90.64 86.21 88.09 89.45

85.06
Naive Bayes (TF-IDF) 89.11 85.38 60.06 89.55 83.44 90.26 89.96 88.20 86.58 90.10
SVM (Bag of Words) 89.48 85.59 61.46 87.79 86.49 84.85 89.55 82.51 78.36 88.28

85.86
SVM (TF-IDF) 91.76 90.25 73.57 90.64 90.61 91.34 92.56 86.06 84.88 91.19
mBERT 89.22 86.66 43.26 87.41 77.40 84.61 88.75 83.30 9.54 88.00 73.82
XLM-RBASE 90.11 86.84 46.11 89.82 83.59 84.22 88.19 3.45 54.23 90.26 71.68
XLM-RLARGE 92.33 85.75 43.18 91.07 85.81 85.60 89.06 85.69 81.04 91.00 83.05
IndoLEM IndoBERTBASE 91.74 87.23 61.53 90.52 86.50 87.96 90.82 85.00 78.77 88.59 84.87
IndoNLU IndoBERTBASE 91.64 87.26 67.72 90.59 85.00 85.30 90.50 86.52 85.74 88.43 85.87
IndoNLU IndoBERTLARGE 92.17 85.95 66.79 90.05 87.11 87.11 91.30 86.16 78.06 89.39 85.41
NusaBERTBASE 91.81 87.27 52.45 91.45 87.48 87.61 91.97 83.05 77.57 91.03 83.32
NusaBERTLARGE 93.18 87.20 60.97 93.44 85.80 88.93 92.25 87.15 77.48 92.48 85.08

Table 14: Evaluation results of baseline models and NusaBERT on the NusaParagraph topic classification task,
measured in macro-F1 (%). Baseline results are obtained from Cahyawijaya et al. (2023b). The best performance
on each task is bolded for clarity.

NusaParagraph Rhetoric
Model bew btk bug jav mad mak min mui rej sun µ

Logistic Regression (Bag of Words) 39.40 33.85 61.77 64.52 47.97 23.87 59.09 53.82 28.46 49.39
45.21

Logistic Regression (TF-IDF) 40.10 33.10 57.11 64.85 48.56 24.08 57.68 44.67 22.70 49.28
Naive Bayes (Bag of Words) 37.78 28.23 51.29 56.94 42.62 22.78 46.92 35.55 20.95 44.79

37.73
Naive Bayes (TF-IDF) 36.79 26.06 44.02 53.68 42.89 22.98 44.67 32.65 20.72 42.22
SVM (Bag of Words) 41.51 32.04 60.55 67.12 48.21 23.25 59.50 50.09 31.76 49.98

45.44
SVM (TF-IDF) 40.76 32.60 57.29 65.07 48.28 22.22 57.79 45.51 26.13 49.18
mBERT 43.21 24.92 70.26 74.29 53.02 17.52 67.37 61.67 32.85 54.94 50.01
XLM-RBASE 48.75 23.08 70.03 78.04 52.09 8.28 68.60 61.80 22.83 58.17 49.17
XLM-RLARGE 50.52 29.07 68.62 78.43 53.78 16.47 72.80 64.81 21.91 59.29 51.57
IndoLEM IndoBERTBASE 48.73 31.48 65.72 74.23 51.80 24.87 68.66 64.07 36.45 53.32 51.93
IndoNLU IndoBERTBASE 47.40 29.14 53.40 69.24 51.59 20.42 64.75 57.11 34.07 52.11 47.92
IndoNLU IndoBERTLARGE 6.64 7.62 6.80 73.59 48.13 11.80 66.32 17.37 25.38 53.91 31.76
NusaBERTBASE 48.76 34.61 60.05 74.74 52.43 24.73 68.02 60.83 31.57 57.65 51.34
NusaBERTLARGE 50.25 33.38 72.52 78.23 54.47 18.38 69.18 64.71 32.55 56.89 53.06

Table 15: Evaluation results of baseline models and NusaBERT on the NusaParagraph rhetoric mode classification
task, measured in macro-F1 (%). Baseline results are obtained from Cahyawijaya et al. (2023b). The best
performance on each task is bolded for clarity.
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NusaParagraph EmoT
Model bew btk bug jav mad mak min mui rej sun µ

Logistic Regression (Bag of Words) 82.03 78.33 55.89 84.77 75.20 72.90 89.52 71.82 72.43 83.09 78.23
Logistic Regression (TF-IDF) 84.52 83.68 64.53 88.04 69.87 79.55 91.01 71.84 80.67 84.93
Naive Bayes (Bag of Words) 78.28 71.84 68.08 81.37 66.53 71.43 87.07 75.39 75.72 79.42

75.51
Naive Bayes (TF-IDF) 77.97 75.06 62.92 83.15 68.27 75.80 85.98 71.34 75.95 78.57
SVM (Bag of Words) 80.45 76.61 53.76 82.26 73.26 71.90 87.05 69.06 69.42 81.36

76.36
SVM (TF-IDF) 84.51 82.50 65.27 86.96 70.64 78.74 89.09 71.85 66.66 85.82
mBERT 80.60 65.35 26.49 78.90 58.84 58.40 82.56 63.66 39.97 76.74 63.15
XLM-RBASE 81.38 64.15 11.17 83.28 53.25 51.98 83.79 61.12 22.38 78.94 59.14
XLM-RLARGE 86.92 70.39 30.84 85.50 57.31 60.45 84.40 78.59 32.11 87.74 67.43
IndoLEM IndoBERTBASE 86.59 66.80 36.81 84.58 54.75 59.39 82.99 63.76 57.31 76.39 66.94
IndoNLU IndoBERTBASE 83.04 67.59 31.83 82.01 59.35 62.00 84.08 74.60 49.40 77.27 67.12
IndoNLU IndoBERTLARGE 85.49 71.92 27.88 84.52 43.55 66.51 81.75 74.87 13.06 76.89 62.64
NusaBERTBASE 84.44 74.19 36.44 84.18 59.16 66.70 85.61 66.37 36.54 78.13 67.18
NusaBERTLARGE 86.57 74.06 44.94 85.86 72.31 73.14 86.83 82.96 30.19 81.36 71.82

Table 16: Evaluation results of baseline models and NusaBERT on the NusaParagraph emotion classification task,
measured in macro-F1 (%). Baseline results are obtained from Cahyawijaya et al. (2023b). The best performance
on each task is bolded for clarity.

Model Original (ind) eng jav msa sun µ

EmoT
IndoBERTBASE 72.42 62.87 60.07 62.95 63.03 64.27
IndoBERTLARGE 75.53 66.29 63.41 65.30 66.21 67.35
mBERT 61.14 48.64 47.12 48.41 48.64 50.79
XLM-RBASE 72.88 61.90 58.94 59.70 60.38 62.76
XLM-RLARGE 78.26 65.99 65.23 65.84 66.52 68.37
NusaBERTBASE 75.23 61.14 60.45 61.59 61.59 64.00
NusaBERTLARGE 78.18 67.73 67.73 67.73 66.14 69.50

SmSA
IndoBERTBASE 91.00 89.67 85.93 87.80 88.60 88.60
IndoBERTLARGE 94.20 91.73 90.07 90.20 92.00 91.64
mBERT 83.00 80.80 80.00 80.07 80.53 80.88
XLM-RBASE 91.53 88.13 87.73 87.26 87.26 88.38
XLM-RLARGE 94.07 91.94 90.87 91.47 91.34 91.94
NusaBERTBASE 91.00 90.40 88.20 88.60 89.20 89.48
NusaBERTLARGE 91.00 89.20 87.20 88.80 88.80 89.00

Table 17: Code-mixing robustness evaluation results of baseline models and NusaBERT on IndoRobusta-Blend,
measured in accuracy (%). Baseline results are inferred from the delta accuracies reported by Adilazuarda et al.
(2022). The best performance on each task is bolded for clarity.


