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Abstract
Optical Character Recognition (OCR) sys-
tems often introduce errors when transcrib-
ing historical documents, leaving room
for post-correction to improve text qual-
ity. This study evaluates the use of open-
weight LLMs for OCR error correction in
historical English and Finnish datasets. We
explore various strategies, including param-
eter optimization, quantization, segment
length effects, and text continuation meth-
ods. Our results demonstrate that while
modern LLMs show promise in reducing
character error rates (CER) in English, a
practically useful performance for Finnish
was not reached. Our findings highlight
the potential and limitations of LLMs in
scaling OCR post-correction for large his-
torical corpora.

1 Introduction

Digitizing and transcribing historical documents
and literature is vital for preserving our cultural
heritage and making it accessible for modern digi-
tal research methods. The transcription process re-
lies on OCR, which naturally introduces noise into
the output. The noise varies in severity depending
on the quality of the source material and the OCR
technology used, impacting the research usage of
the data (Chiron et al., 2017b). The OCR output at
two noise levels is illustrated in Figure 1. Although
modern OCR systems are becoming increasingly
accurate (Li et al., 2023), reprocessing large collec-
tions of historical literature remains a significant
challenge, as the resources available to the insti-
tutions maintaining these collections are often in-
sufficient for such an undertaking. Consequently,
OCR error post-correction has been suggested as
means of improving the historical collections with-
out the need to repeat the whole transcription pro-
cess (Nguyen et al., 2021).

Mild noise (0.04 CER):

A work of art, (be it what it may, house,
pi&ure, book, or garden,) however
beautiful in it's underparts, loses half
it's value, if the gneralfcope
of it be not obvio',s to conception.

Severe noise (0.19 CER):

bke up at Sx in the Mo.r aig. ll the
eauing Withr he went from Cbaud to Cbhh
every Suday, «d from Play. bote~PIOoaB
cu evi Niuht m the Week, but vd

Figure 1: Example extracts of texts at two different
OCR noise levels from the ECCO dataset of 18th
century literature.

Recent studies (Boros et al., 2024; Bourne, 2024)
have proposed the application of LLMs to the task,
with varying degrees of success. Currently, there is
no clear consensus as to how LLMs can be applied
to the task and how to deal with the various method-
ological challenges it poses. Our objective is to
address some of these challenges as well as to as-
sess several open LLMs to correct OCR-generated
text when prompted to. We study hyperparame-
ter optimization, quantization levels, input lengths,
output post-processing and several novel correction
methods so as to benchmark and improve the LLM
performance on this task.

As our long-term goal is to post-correct two large
historical datasets, one in English and the other in
Finnish, we focus on these two languages as well as
open-weight LLMs, since post-correction of large
datasets with commercial models is infeasible cost-
wise.

2 Related work

Despite decades of active research, post-correction
of historical documents remains a challenge. The
ICDAR 2017 and 2019 shared tasks (Chiron et al.,
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2017a; Rigaud et al., 2019) addressed the lack of
adequate benchmarks for evaluating OCR perfor-
mance across several languages, introducing two
tracks: detecting OCR errors, and correcting pre-
viously detected errors. This setting has naturally
guided the development towards two-stage systems,
and the best performing models in the ICDAR
2019 edition were based on the BERT model fine-
tuned separately for each task (Rigaud et al., 2019).
Such two-step approaches are still actively pursued,
with e.g. Beshirov et al. (2024) applying a BERT
classifier for error detection, and an LSTM-based
seq2seq model for error correction in Bulgarian.

Recently, LLMs have been effectively applied
to text correction problems, for example, Penteado
and Perez (2023) and Östling et al. (2024) demon-
strated that LLMs perform well in grammatical
error correction. Naturally, LLMs have been pro-
posed also to the OCR post-correction task, in
line with the two broad paradigms of LLM use:
fine-tuning for the post-correction task and purely
prompt-based zero-shot generation. Fine-tuning
was applied e.g. by Soper et al. (2021) who fine-
tune the BART model on the English subset of the
ICDAR 2017 data and apply it to English Newspa-
per text. Veninga (2024) fine-tunes the character-
based ByT5 model on the ICDAR 2019 data, with a
prompt-based Llama model as a baseline. Similarly,
Madarász et al. (2024) apply the mT5 model to his-
torical Hungarian scientific literature, and Dereza
et al. (2024) applies the BART model to historical
Irish–English bilingual data.

In the zero-shot, prompt-based line of work,
Boros et al. (2024) evaluated a variety of mod-
els and prompts on several multilingual historical
datasets. Interestingly, the results of the study were
mostly negative, concluding that LLMs (including
the commercial GPT-4 model) are not effective at
correcting transcriptions of historical documents,
in many cases the LLM actually decreasing the
quality instead of improving it. Bourne (2024) con-
ducted a similar study on three historical English
datasets, arriving at the opposite conclusion. They
achieved over 60% reduction of character error rate
at best, with most of the evaluated models improv-
ing the data quality.

Finally, several studies also pursue approaches
that include the original image as an input, together
with the OCR output to be post-corrected. Here, e.g.
Chen and Ströbel (2024) combine a state-of-the-art
transformer-based OCR system with the character-

based CharBERT model for handwritten text recog-
nition, and Fahandari et al. (2024) propose a model
iterating between OCR and post-correction steps
for Farsi. Such image-text approaches are, never-
theless, beyond the scope of the present study.

3 Data

In our study, we utilize manually corrected samples
of two large historical datasets, one for English and
the other for Finnish.

3.1 English ECCO-TCP

Eighteenth Century Collections Online (ECCO)
(Gale) is a dataset of over 180,000 digitized publi-
cations (books and pamphlets) originally printed in
the 18th century Britain and its overseas colonies,
Ireland, as well as the United States. While mainly
in English, some texts appear in other languages.
The collection was created by the software and ed-
ucation company Gale by scanning and OCRing
the publications. ECCO has significantly impacted
18th-century historical research despite its known
limitations (Gregg, 2021; Tolonen et al., 2021).

While ECCO contains only OCR engine output,
the ECCO-TCP initiative1 provides highly accurate,
human-made text versions for 2,473 publications
from the original collection (Gregg, 2022). In this
study, we use a dataset from the Helsinki Compu-
tational History Group2, where clean ECCO-TCP
texts are paired with their corresponding ECCO
OCR publications, creating an OCR ground truth
dataset (Hill and Hengchen, 2019). The data is
paired on page level, resulting in a dataset of 338K
pages.

To prepare data for post-correction evaluation,
we applied several filtering steps. First, we ex-
cluded 1,436 pages (0.4%) marked as blank in
ECCO-TCP, ECCO OCR, or both. We also re-
moved 5,782 pages (1.7%) containing fewer than
150 non-whitespace characters in either collection.
Further filtering was necessary in cases of substan-
tial mismatch between OCR and GT pages, typ-
ically with large chunks of text missing in either
OCR or GT, or otherwise an obvious lack of cor-
respondence. A brief manual analysis identified
as typical causes (1) very noisy OCR output with
a large amount of non-alphanumerical characters,
likely from OCR engine transcribing an image; (2)

1https://textcreationpartnership.org/tcp-texts/
ecco-tcp-eighteenth-century-collections-online/

2https://github.com/COMHIS
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Dataset Language Pages OCR words GT words OCR w./pg. CER WER
ECCO-TCP English 301,937 67,549,822 64,519,266 223.72 0.07 0.22
NLF GT Finnish 449 449,088 461,305 1000.20 0.09 0.28

Table 1: Dataset statistics after preprocessing in terms of whitespace delimited words. OCR w./pg. denotes
for mean OCR words per page, and CER and WER are average page-level character and word error rates
in the data, weighted by the page length. For details about the metrics, see Section 4.1.

OCR and GT containing approximately the same
text, but in different order due to misidentified read-
ing order or column layout; and (3) significant
length differences between pages, possibly from
errors in automated page alignments, unrecognized
regions left out in the OCR process, or omissions
in the ECCO-TCP data.

To identify such instances, we align each OCR
and GT page pair on their non-whitespace char-
acters3 and slide a 100-character window across
the alignment. If in any window less than 10% of
characters were aligned as a match, the page was
discarded from the dataset. In total, 28,907 (8.6%)
pages were removed by this process.

Our filtering produced a dataset of 301,937 well-
aligned pages (89.3% of the initial ECCO-TCP
pages). While we do not filter by language, nearly
all the data is in English, with other languages
appearing only very rarely.

3.2 Finnish NLF Ground Truth Data

For Finnish, we use the National Library of Fin-
land (NLF) OCR ground truth dataset4 of Kettunen
et al. (2018, 2020), specifically intended for OCR
quality evaluation. The data draws from the Na-
tional Library’s collection of digitized newspapers,
and consists of 479 pages randomly chosen from
188 different Finnish newspapers and journals pub-
lished between 1836–1918, all printed in the Frak-
tur font.

The ground truth was created by manually cor-
recting the OCR system output with reference
to the original scans. The dataset contains texts
produced by three different OCR software (AB-
BYY FineReader 7/8, ABBYY FineReader 11, and
Tesseract) along with the ground truth. In this work,
we use output produced by ABBYY FineReader
7/8, which is the OCR engine that has been used
to digitize the majority of the NLF collection and
therefore gives most useful information for a possi-

3Using global string alignment as implemented in the Pair-
wiseAligner module in biopython.

4http://digi.nationallibrary.fi

ble future post-correction effort targeting it.
We applied the same filtering procedure as for

the ECCO-TCP data, resulting in the removal of 29
pages (6%), and we further removed one page writ-
ten in Swedish. The final dataset consists of 449
pages, with 449,088 OCR words, and 461,305 GT
words of text. The key statistics for both datasets
are shown in Table 1.

4 Experiments

First, we set out to evaluate the basic performance
of different LLMs on the OCR error correction task
and establish how the generation and model hyper-
parameters (e.g. sampling parameters and quanti-
zation) affect the results.

The page lengths in our data vary, with the
ECCO-TCP pages on average at 200 words, and the
Finnish newspaper pages at about 1,000 words. To
improve comparability of the results, we split the
pages to segments of 200 OCR words for English
and 100 OCR words for Finnish, both correspond-
ing to roughly 300 sub-words in OpenAI’s GPT-
4 tokenization for the language in question. The
length of roughly 300 sub-words was established
as suitable in our initial experiments, however, we
will carry out a more detailed evaluation of segment
lengths as a separate experiment in Section 6.

Since the Finnish data is originally word-aligned,
obtaining these shorter-than-page segments is triv-
ial. For the English data, which is only page-
aligned, we utilize the character-level OCR-GT
alignments produced during data filtering (de-
scribed in Section 3.1), allowing us to find cor-
responding points. In cases where the segment
boundary falls within a region of poor alignment,
we shift the boundary to the next reliable word (the
word starting the next aligned region). Therefore,
the exact segment length may vary depending on
how well the OCR and GT strings could be aligned.

Given the substantial volume of our data, and
the number of LLM runs necessary in our exper-
iments, we randomly sample for each language a
development and a test set, each containing 200
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examples (i.e. segments of about 300 sub-words in
length). These constitute 244K+243K GT charac-
ters for English, and 162K+165K GT characters
for Finnish. The development set is used to set the
generation parameters and the test set is used to
report all results, unless otherwise stated.

4.1 Evaluation Metric

As a primary evaluation metric, we use Charac-
ter Error Rate (CER) defined as the sum of char-
acter substitutions, deletions and insertions, di-
vided by the length of the ground truth string.
In line with the common practice in OCR post-
correction literature, we mainly report relative CER
reduction defined for one examples as CER% =
(CERorig − CERpost)/CERorig × 100 where orig
and post refer to before and after correction, re-
spectively. The overall CER% is calculated as an
average of example-wise CER% weighted by exam-
ple lengths in terms of OCR character count. The
example-wise CER% values are further clipped
not to go below -100% to prevent extremely large
negative scores in cases where most of the text is
omitted. The CER% therefore works on a range
between -100% and 100%.

Many downstream applications utilizing histor-
ical corpora, such as various literature search in-
terfaces, operate at the level of words rather than
characters. Therefore, the main results are reported
also in terms of Word Error Rate (WER) and its rel-
ative improvement (WER%). This metric is much
like CER, but on the level of words.5

Finally, we apply few normalization steps before
the evaluation. First, all unicode whitespace char-
acters (\s+) are normalized into a single whites-
pace. Secondly, in line with similar works (Duong
et al., 2021; Kettunen and Pääkkönen, 2016), we
apply two normalization steps to address system-
atic differences between historical and modern
spellings. In the English ECCO-TCP ground truth
data, the long-s character ſ appears in places
where modern English would use s . Similarly,
in older Finnish historical texts w is often used
where modern Finnish uses v . These spelling
variations do not alter meaning, and we choose to
disregard them by applying Unicode NFKC nor-
malization, which handles both canonically equiv-
alent and compatible transformations (including
converting ſ to s ) for both languages. Addition-

5We use the HuggingFace evaluate package implementa-
tion of both CER and WER.

ally, for Finnish, we replace all occurrences of w
with v before evaluation, as modern Finnish does
not use w except in loanwords or proper names,
which occur only very rarely, making the difference
negligible.

4.2 Models and Generation Parameters

We evaluate several top-tier open-weight models
as well as OpenAI’s GPT-4o (v. 2024-08-06). The
latter is included mostly for comparison, since
it would not be cost-wise feasible to apply it to
post-correction at a large scale, unlike open-weight
models which can be applied on academic super-
computing infrastructure. The evaluated open
models are: Llama-3-8B-Instruct, Llama-3.1-8B-
Instruct, and Llama-3.1-70B-Instruct from Meta
(AI@Meta, 2024a,b), Mixtral-8x7B-Instruct-v0.1
from MistralAI (Jiang et al., 2024), and Gemma-2-
9B-it and Gemma-2-27B-it from Google (Mesnard
et al., 2024). It is noteworthy that while several of
the open models are multilingual, none officially
report supporting Finnish.

All models are run on the Ollama framework6

(v. 0.3.8) for fast inference, using the default 4-bit
quantization unless otherwise stated. Other quanti-
zation levels are experimented separately, and re-
ported in Section 5.2. All parameters of the frame-
work and models are set to default except for the
ones explored in Section 4.4. Note that we will not
repeat the "Instruct" in model names in tables and
figures for space considerations.

4.3 LLM Overgeneration Removal

LLM outputs often include undesired content in
addition to the requested output. In most cases, the
undesired text appears either before the corrected
text (e.g. "Here is your corrected text:"), or after
the corrected text has been provided (e.g. halluci-
nated continuation, or an additional commentary).
This was noted also by Boros et al. (2024), who ap-
plied simple heuristics for removing any unwanted
text, such as removal of whitespace, parts of the
prompt, and specific phrases commonly appearing
in the model’s output, together with trimming the
predicted text if it exceeded 1.5 times the original.

Therefore, we base our overgeneration removal
on automatically aligning the generated output
against the original input on character level, and
filtering out leading and trailing texts which do not
align well to the input. For this purpose, we utilize

6https://ollama.com/
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English Finnish
CER WER CER WER

Model % % % %
Llama-3-8B 7.3 31.4 -68.8 -28.2
Llama-3.1-8B 19.5 37.7 -65.7 -30.1
Llama-3.1-70B 38.7 46.3 -47.0 -8.9
Mixtral-8x7B -14.9 19.1 -76.5 -40.5
Gemma-2-9B 28.2 38.4 -24.0 -4.1
Gemma-2-27B 35.6 37.8 -19.1 0.0
GPT-4o 58.1 59.1 11.9 33.5

Table 2: Overall CER and WER relative improve-
ment.

character-level local sequence alignment7 of the
model’s output and the OCR text, and recover the
region between the first and the last aligned charac-
ters. The alignment is configured to ignore whites-
pace and the ’-’ character, to avoid text formatting
discrepancies having an impact on the outcome of
the alignment.

4.4 Parameter Optimization
The model generation parameters naturally affect
the quality of the output and we therefore optimize
the most critical parameters of the open-weight
model generation on a held-out development set.
As discussed earlier, this set is not used in any
subsequent experiments.

Using the Optuna hyperparameter optimization
library (Akiba et al., 2019), we set the tempera-
ture, top_k and top_p parameters. For each model
and each language, we test 100 runs with differ-
ent parameter combinations. Subsequently, the 10
best runs in terms of CER were selected, creating
a range of possible best parameters. These ranges
generally overlap across models but not across lan-
guages, therefore we pick a set of parameters for
each language. The final parameters are chosen
as the median value of the 10 best runs of every
model. For English, the parameters are temperature
0.26, top_k 65, and top_p 0.66. For Finnish, the
final parameters are temperature 0.14, top_k 30,
and top_p 0.60.

5 Results

The main results are shown in Table 2. For English,
six out of seven models achieve positive improve-

7Unlike global sequence alignment, its local counterpart
does not penalize leading and trailing misalignments. We use
the implementation in the biopython package, with open-gap-
score -1 and extend-gap-score -0.5

Figure 2: CER before and after correction on En-
glish test data (Llama-3.1-70B).

ment, ranging from 7.3% (Llama-3-8B) to 58.1%
(GPT-4o) in terms of CER%. GPT-4o outperforms
all open models by a large margin, the next best
model (Llama-3.1-70B) being almost 20pp worse.
However, the Llama-3.1-70B still shows a notable
improvement of 38.7%. In Figure 2 we illustrate
the CER values for English test examples before
and after the Llama-3.1-70B correction. Most ex-
amples demonstrate improved CER scores, regard-
less of whether they initially had mild or severe
noise levels.

In terms of WER%, all models show positive im-
provement on English, the two best models achiev-
ing an improvement of 59.1% (GPT-4o) and 46.3%
(Llama-3.1-70B). The relative order of the models
seems to mostly follow the number of model param-
eters, bigger models generally performing better,
expect for Mixtral which is clearly worse than the
others, and the two Gemma models performing
almost equally in terms of WER%, although the
Gemma-2-27B version clearly outperforms the 8B
model in terms of CER%.

For Finnish, on the other hand, GPT-4o is the
only model achieving a positive improvement in
either metric, albeit considerably smaller in abso-
lute terms than for English with 11.9 CER% and
33.5 WER%. Seeing these entirely negative re-
sults for Finnish, we are forced to conclude that
prompt-based OCR post-correction is presently in-
feasible for this language using any of the tested
open-weight models. This is disappointing, but
not surprising since none of the models officially
support Finnish.8

8We made also preliminary experiments with the well-
known Finnish Poro model of Luukkonen et al. (2024), but
the results were considerably worse than the models in our
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Figure 3: An example in both languages illustrating historical language artifacts alongside the correspond-
ing GPT-4o generated output.

Overg. removal
Model w/o with
Llama-3-8B -74.1 7.3
Llama-3.1-8B -57.4 19.5
Llama-3.1-70B -53.6 38.7
Gemma-2-9B 28.1 28.2
Gemma-2-27B 35.3 35.6
GPT-4o 53.7 58.1

Table 3: The CER improvement on English test
data with and w/o the overgeneration removal step.

The striking effect of a common but meaning-
preserving difference between historical and mod-
ern language becomes apparent when measuring
the effect of modern spelling produced by the
LLMs such as the ſ vs. s and w vs. v varia-
tion discussed in Section 4.1. A typical example for
both languages is illustrated in Figure 3. Without
the applied normalization, the results of GPT-4o
would have been 34.9 CER% and 35.5 WER%
(compared to 58.1% and 59.1% with normaliza-
tion) for English, and -10.1 CER% and -4.8 WER%
(compared to 11.9% and 33.5%) for Finnish. This
demonstrates a substantial impact on the reported
scores, and while the relative model ranking is un-
likely to change, we can see that the conclusion
w.r.t. this model’s performance on Finnish would
have been the opposite, and the improvements seen
in English would have been lot smaller.

Given the entirely negative results for Finnish
with the open-weight models, we carry out all fur-
ther analyses on English only. Furthermore, we
also remove the Mixtral-8x7B from follow-up ex-
periments as it performs notably worse than the
other models.

5.1 LLM Overgeneration Removal

Next we measure the effect of the alignment-based
overgeneration removal method described in Sec-

study, and we did not pursue it any further.

tion 4.3, i.e. we evaluate the raw model-generated
output against the post-processed version of the
generated output. The results are shown in Ta-
ble 3. For the Llama family models, the results
without this post-processing step are highly nega-
tive, whereas all Llama models achieve positive
improvements when this step is applied. This
highlights the necessity of post-processing for the
Llama models, which very systematically gener-
ate an additional explanation together with the re-
quested output. An example of a typical Llama
generation is:
Here is the corrected text: {{answer}}
I corrected the following errors:
* "pi\&ure" -> "picture"
* "it's" -> "its" (multiple instances)
* "gneralfcope" -> "general scope"
...

On the other hand, Gemma models seem to be
largely unaffected, as they generally tend to not
produce any additional text. For the GPT-4o model,
we also notice a small gain when applying the post-
processing, as it occasionally generates explanatory
phrases like "Here is the corrected text:".

5.2 Quantization and Performance
Since the historical text collections to which post-
correction would potentially be applied comprise
millions of pages of text, it is necessary to strike
balance between accuracy and computational re-
sources. Among the most important factors here
is model quantization, i.e. real number representa-
tion with fewer bits. High degrees of quantization
substantially reduce model memory footprint and
increase inference speed, but can be assumed to po-
tentially degrade model performance. We therefore
evaluate the models at the 4 bit Q4_0 quantization
(default setting in Ollama), and at the standard 16
bit fp16 floating point representation.

The results are reported in Table 4. As expected,
the fp16 quantization performs better for all the
evaluated models, with a gain of 2.5-4.7pp, except
for Llama-3.1-8B where we do not experience a
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CER% Memory (Gb)
Model q4 fp16 q4 fp16
Llama-3-8B 7.3 12.0 6.3 16.1
Llama-3.1-8B 19.5 19.4 6.3 16.1
Llama-3.1-70B 38.7 42.6 43.6 132.1*
Gemma-2-9B 28.2 30.7 8.9 20.9
Gemma-2-27B 35.6 38.1 19.2 58.9

Table 4: CER improvement on English test data us-
ing 4bit quantized (q4) and fp16 models, alongside
peak memory usage. * in the memory consumption
indicates the number was obtained using the Hug-
gingFace library, as we were not able to run the
Llama-3.1-70B model with fp16 through Ollama.

significant difference between 4bit and fp16 mod-
els. The relative ranking of the selected models
is preserved regardless the quantization level, and
using fp16 does not help less performing models to
outrank any of the originally best performing 4bit
quantized models. The improvement comes at a
high cost in terms of memory footprint. As seen in
the table, the best improvement is unsurprisingly
achieved by the largest model, where the memory
requirement increases from 43Gb to 132Gb. It is
of consideration that even with 4bit quantization,
using the largest Llama-3.1-70B model would ne-
cessitate 2 GPUs (assuming 32GB GPU memory),
instantly doubling the GPU hours required to com-
plete the task compared to other models which can
fit on one GPU.

6 Segment Length and Continuation

The results in the previous sections were reported
for text segments about 300 sub-words in length.
The actual texts in the historical collections are
naturally substantially longer, necessitating split-
ting the input into segments of appropriate length.
This raises two related questions: (1) how long the
input segments should optimally be for best post-
correction accuracy, and (2) how should the outputs
be combined to minimize degradation on segment
boundaries.

Our English data is on the level of pages, which
we cannot simply naively concatenate, we need
other means to obtain sufficiently long documents.
For this experiment, we sample long pages of
at least 600 whitespace delimited OCR words in
length from the development data, taking at maxi-
mum two pages from any one book. This resulted
in a sample of 53 development set pages.

Figure 4: CER% improvement for English when
using different segment lengths.

These sampled pages are then divided into non-
overlapping segments of 50, 100, 200, and 300
words, using the same alignment-based splitting
strategy as described in Section 4. The segments
are corrected individually and the CER% improve-
ment over the segments is calculated. The results
are shown in Figure 4. Shorter segments (50–100
words) get notably worse CER% score for all mod-
els, with the gains diminishing past about 200–300
words, but our page-level data does not have long-
enough examples to allow us to reach the point
where the performance would start consistently de-
creasing as the segments become too long. In the
future, we plan to develop a book-level version of
the data, and study the correction performance on
even longer segments.

6.1 Post-correction on Segment Boundaries

Presently, post-correction studies either do not ad-
dress segment-wise correction of longer texts as it
is not necessary for the datasets they study, or split
the input into non-overlapping segments, whose
corrections are simply concatenated. This may po-
tentially disrupt text continuity since neither word
nor sentence boundaries can be reliably adhered to
in the noisy OCR input. Furthermore, it also means
that no left context is available for the correction
of the beginning of each segment. This may poten-
tially have a negative effect on the correction in the
region around segment boundary. Here we quan-
tify this effect and explore several straightforward
methods for its mitigation.

For the prompt optimization, we use the same
sample of 53 pages as in the previous section, and
the final results are reported on a similar sample of
50 pages from the test data. In order to maximize
the number of examples of segment boundaries for
evaluation, we generate—from each page—pairs of
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segments 200+200 words long, with stride of 100
words. With this method, each page of at least 600
words produces a minimum of 3 examples of neigh-
boring segment pairs. The final development and
test samples include 194 and 208 such examples,
respectively.

On these examples, we evaluate the following
methods of post-correction on segment bound-
aries: (1) Baseline: Each segment is corrected in-
dependently with the same prompt and the outputs
are concatenated; (2) Left-corrected-concatenate
(LCC): The left segment is corrected first and
given as prior context for the correction of the
right segment, the model is instructed to only cor-
rect the right segment; and (3) Left-uncorrected-
concatenate (LUC): The uncorrected left segment
is provided for context in the correction of the right
segment. The primary advantage of this method
is that correcting the right segment does not need
the left segment to be corrected first, making paral-
lelization of the process much simpler technically.

The overall results across these strategies are
shown in Table 5 and suggest that at present only
the two largest models are able to follow the more
complex prompts necessitated when merging neigh-
boring segment corrections. The smaller models
occasionally suffer from omitting part of the text to
correct, which did not seem to occur if only one text
was given at a time. For the two models improving
on performance, we inspect the boundary effect
more closely in Table 6 where we report CER%
calculated on ±10 words around the boundary of
the two segments.9 Here we see that both methods
effectively incorporate the provided additional con-
text, substantially improving the post-correction
of the right segment at the boundary, whereas the
baseline system’s performance on the right side is
notably worse compared to its performance on the
left side.

7 Conclusion

We set out to establish the ability of recent open-
weight models to post-correct OCR errors in a zero-
shot, prompt-based setting. In the first set of ex-
periments, we established that for historical En-
glish these models achieved notable improvements
(Llama-3.1-70B-Instruct reaching a CER improve-
ment of 38.7%), even though still far behind the

9The ±10 word boundaries were human-verified to ensure
that the evaluation occurred at the same boundary, even in
more complex examples where words were omitted and/or
added.

Method
Model Bas. LCC LUC
Llama-3-8B -0.2 -2.9 -2.8
Llama-3.1-8B 13.7 8.4 10.6
Llama-3.1-70B 33.2 36.0 34.6
Gemma-2-9B 29.2 27.9 28.3
Gemma-2-27B 38.1 39.9 39.7

Table 5: CER improvement on English test data
with different correction methods.

Method
Baseline LCC LUC

Model L R R R
Llama-3.1-70B 29.1 9.8 21.4 21.7
gemma-2-27b 34.5 18.7 29.7 33.7

Table 6: CER% around segment boundaries with
different correction methods. L and R stand for left
and right of the boundary.

commercial GPT-4o model (58.1 CER%). We also
demonstrate the necessity of post-processing to re-
move any additional, model generated text, and
present an effective string alignment technique to
address this. We also highlight the effect of seg-
ment length, which may have a substantial negative
impact on the outcome if set too short.

Unlike for English, for Finnish we find poor
performance across the board and need to conclude
that zero-shot post-correction with open-weight
models remains currently out of reach for historical
Finnish.

In a separate set of experiments we examine how
segment-wise correction of long documents should
be approached. We devise and evaluate a number
of methods to incorporate additional context for
the correction of individual segments. We find that
some of these methods have a strong positive effect
in the immediate proximity of segment boundaries,
however, for smaller models the more complicated
prompt may cause unexpected degradation in per-
formance when the whole text is considered. Fur-
ther work will be necessary to resolve these issues.

As future work, we will pursue a large cor-
rection run of the ECCO collection as well as a
fine-tuned model for Finnish post-correction. All
datasets and evaluation scripts used in this study
are available at https://github.com/TurkuNLP/
ocr-postcorrection-lm to support result repli-
cation and comparability.
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Limitations

Our work includes certain limitations, which we
will discuss next. First, during data preprocessing,
we discarded a proportion of documents (~10%
for English, ~6% for Finnish) that our correction
methods may not be able to address. These docu-
ments include cases with severe alignment issues
between OCR output and ground truth. We ac-
knowledge that our post-correction method, which
relies entirely on the OCR system’s output, cannot
recover text where significant portions are missing,
therefore setting an upper-boundary for the method.
Further analysis is needed to investigate the causes
of these gaps and to determine how much, if any,
of this missing information could potentially be
addressed through post-correction.

We also find that OCR post-correction evalua-
tion suffers from various dataset and metric issues,
some of which we have already discussed (e.g. nor-
malization). In related work (including our own
study conducted directly on our long-term target
corpora), results are reported on varying datasets
and evaluations metrics. These challenges make it
difficult to achieve comparable results across stud-
ies and languages, potentially contributing to some
of the contradictory conclusions reported in prior
work. Clearly, more work will be needed to estab-
lish a set of standard benchmarks that resolve most
of the data and evaluation issues.

Finally, reporting pure numeric improvements
does not address all aspects of downstream data
usability. While an improved word error rate has a
direct, positive effect on certain applications (e.g.
lexical search), its impact on others (e.g. close read-
ing) may be less straightforward or proportional.
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