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Abstract

Dialect classification is essential for pre-
serving linguistic diversity, particularly in
low-resource languages such as Luxem-
bourgish. This study introduces one of
the first systematic approaches to classi-
fying Luxembourgish dialects, addressing
phonetic, prosodic, and lexical variations
across four major regions. We bench-
marked multiple models, including state-
of-the-art pre-trained speech models like
Wav2Vec2, XLSR-Wav2Vec2, and Whis-
per, alongside traditional approaches such
as Random Forest and CNN-LSTM. To
overcome data limitations, we applied tar-
geted data augmentation strategies and
analyzed their impact on model perfor-
mance. Our findings highlight the su-
perior performance of CNN-Spectrogram
and CNN-LSTM models while identify-
ing the strengths and limitations of data
augmentation. This work establishes foun-
dational benchmarks and provides action-
able insights for advancing dialectal NLP
in Luxembourgish and other low-resource
languages.

1 Introduction

Dialectal research plays a critical role in under-
standing linguistic diversity and cultural identity.
Luxembourgish, a West Germanic language spo-
ken by over 600,000 people, presents unique chal-
lenges due to its regional phonetic, prosodic, and
lexical variations. Limited annotated resources
and influences from German and French compli-
cate automated dialect classification (Hovy, 2015;
Adda-Decker et al., 2014).

Luxembourgish dialects are categorized into
four regions: North, East, South, and Center. Each
region exhibits distinct linguistic traits, with the

northern dialect displaying the most divergence
and the central region aligning closely with the
standard variety (Gilles, 2023).

Automatic dialect classification has practical
importance in improving automatic speech recog-
nition (ASR) and machine translation systems and
in enabling more inclusive digital archiving of di-
alectal data. Previous work has underscored the
importance of dialect identification in preserving
linguistic diversity and supporting sociolinguis-
tic research (Kantharuban et al., 2023). How-
ever, Luxembourgish, like other low-resource lan-
guages, lacks substantial annotated datasets for
automated processing, which hinders the develop-
ment of robust models for dialect classification.
Moreover, Luxembourgish’s multilingual setting
presents additional challenges, as shown by exist-
ing research in Luxembourgish ASR and related
linguistic tasks (Gilles et al., 2023; Nguyen et al.,
2023; Song et al., 2023).

1.1 Linguistic Variability Across
Luxembourgish Dialects

Luxembourgish dialects display considerable vari-
ation in lexical, phonetic, and prosodic structures
influenced by geographic factors (Gilles, 1998).
To illustrate, we present a sample sentence ren-
dered in the four main dialects—North, East,
South, and Center—along with phonetic transcrip-
tions. This example highlights the differences
in pronunciation and vocabulary that complicate
automated dialect classification due to regional
speech patterns.

These examples underscore the challenges in
distinguishing Luxembourgish dialects due to lex-
ical differences (e.g., “Fregdig” vs. “Freiden”) and
phonetic variations (e.g., vowel lengthening and
consonant shifts). Automatic dialect classification
models must account for these subtleties to handle
distinct regional forms accurately.

In this study, we address these challenges by
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Region Dialectal Sentence Phonetic Transcription

North Eng Frau hott e Fregdig di schwarz
Kléider gebikst.

[æN föAU hot @ föægdiC di: SwAöts kl3id5
g@bIkst]

East En Fra hott e Freddig di schwarz
Klääder gebéit.

[e:n föa: hot @ föædIC di: SwAts klE:d5 g@b3it]

South Eng Fra huet e Freiden di schwoarz
Kleeder gebitzt.

[æN föa: huet @ föAId@n di: SwO:5ts kle:d@
g@bitst]

Center Eng Fra huet e Freideg déi schwaarz
Kleeder gebitzt.

[æN föa: huet @ föAIdeC d3i Swa:öts kle:d@
g@bitst]

Table 1: Example Sentence in Luxembourgish Dialects with Phonetic Transcriptions

employing data augmentation techniques to in-
crease sample diversity and improve model robust-
ness, particularly for underrepresented dialects.
Our methodology explores phonetic, prosodic,
and lexical features across various classifiers, in-
cluding both traditional machine learning algo-
rithms and neural network models.

This paper contributes to computational linguis-
tics by:

1. Introducing one of the first comprehensive
studies on Luxembourgish dialect classifica-
tion, investigating the impact of data aug-
mentation on model performance in a low-
resource setting.

2. Establishing performance benchmarks
across multiple model architectures, includ-
ing Random Forest, CNN-Spectrogram,
CNN-LSTM, Wav2Vec2, Whisper, and
XLSR-Wav2Vec2 to create a foundation for
future research in Luxembourgish and other
low-resource languages.

These contributions establish Luxembourgish
as a compelling case study in low-resource lan-
guage processing and illustrate the broader appli-
cations of dialectal NLP research. Our results un-
derscore the importance of linguistic equity and
highlight directions for future research in multi-
lingual and dialectal NLP.

2 Related Work

Automatic dialect classification has advanced sig-
nificantly in high-resource languages, where anno-
tated datasets and sophisticated processing tools
facilitate robust model performance. For in-
stance, substantial work has been conducted in

Arabic (Harfash and Abdul-kareem, 2017), Chi-
nese (Ng and Lee, 2008), German (Dobbriner and
Jokisch, 2019), and English (Etman and Louis,
2015). In these languages, the availability of ex-
tensive data resources enables classification ap-
proaches to take advantage of phonetic, prosodic,
and lexical features, supporting higher accuracy
and model robustness. For example, Harfash and
Abdul-kareem (2017) improved dialect classifi-
cation in Arabic by incorporating phonetic and
prosodic cues, while Ng and Lee (2008) applied
entropy-based measures to enhance Chinese di-
alect classification, highlighting the versatility of
feature-based methods in these contexts. In high-
resource settings, models often use a combination
of rule-based linguistic knowledge (Biadsy and
Hirschberg, 2009) and data-driven machine learn-
ing techniques that benefit from large training cor-
pora, allowing them to learn complex patterns ef-
fectively (Ali et al., 2016).

In contrast, low-resource languages like Lux-
embourgish lack the annotated datasets and pro-
cessing infrastructure needed for accurate dialect
classification, presenting unique challenges for
computational linguistics. For low-resource lan-
guages, researchers have explored strategies such
as synthetic data generation and unsupervised
learning to mitigate data scarcity. Transfer learn-
ing, for example, can leverage pre-trained mod-
els in related languages, using phonetic similar-
ities to improve dialect classification in under-
resourced contexts (Shah et al., 2023; Khosravani
et al., 2021). Data augmentation has also emerged
as a critical strategy for low-resource languages,
allowing researchers to expand datasets and intro-
duce variability, as demonstrated in tasks involv-
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ing accent and dialect variation (Ullah et al., 2023;
Xu et al., 2021).

For Luxembourgish, however, computational
research remains relatively limited. Existing stud-
ies have focused mainly on its phonetic and
syntactic characteristics (Gilles and Trouvain,
2013), as well as distinctive phonological fea-
tures (Gilles, 2014), with limited exploration of
automated dialect classification. Research on re-
gional phonetic variation in Luxembourgish in-
dicates that its dialects are influenced by neigh-
boring German and French, with generational
shifts contributing further to its linguistic diver-
sity (Conrad, 2023). This complexity requires
tailor-made classifiers and careful feature engi-
neering to capture subtle distinctions in phonet-
ics and prosody that are integral to Luxembour-
gish dialectal variation (Snoeren et al., 2011).
Computational studies have suggested that cross-
lingual models that utilize resources from German
and French could improve Luxembourgish speech
recognition (Nguyen et al., 2023), highlighting
both the potential and the computational chal-
lenges that the classification of the Luxembourgish
dialect entails (Adda-Decker et al., 2014).

Future progress in Luxembourgish dialect clas-
sification may benefit from techniques like data
augmentation, which has proven successful in
other low-resource contexts. For instance, Xu
et al. (2021) demonstrated that targeted data aug-
mentation techniques, such as pitch and speed
modifications, significantly improved the accuracy
of dialect classification for Chinese dialects, un-
derscoring the value of these methods to improve
model performance in low-resource settings. Such
approaches could potentially be adapted for Lux-
embourgish, where similar variability in phonetic
and prosodic features across dialects could benefit
from targeted augmentation.

Building on this foundation, our study intro-
duces a model for the classification of Luxembour-
gish dialects that integrates linguistic insights with
computational techniques specifically designed
for low-resource settings. By applying data aug-
mentation strategies, we address the constraints
imposed by limited annotated data, contributing to
the broader field of dialect classification for under-
represented languages. This work aims to lay the
groundwork for Luxembourgish NLP, underscor-
ing the importance of dialectal research in mul-
tilingual NLP and advancing methodologies for

low-resource language processing.

3 Methodology

3.1 Dataset and Preprocessing

The dataset used in this study was crowd-sourced
through a smartphone application developed as
part of a prior project [redacted]. Participants were
asked to translate sentences spontaneously from
German or French into their Luxembourgish di-
alect.

Attribute Category Count

Total Audio Files 1720
Unique Entries 1720

Gender Female 1210
Male 510

Age Group

25–34 567
35–44 377
45–54 352
55–64 277
65+ 132

Dialect Region
Center 762
South 482
East 293
North 168

Table 2: Demographic Distribution of the Luxem-
bourgish Dialect Dataset.

The dataset (Table 2) includes 1720 unique au-
dio samples annotated with gender, age group, and
dialect region. The samples reflect Luxembour-
gish’s four main dialect regions: Center, South,
East, and North, with the Center being the most
represented. To evaluate whether age groups were
evenly distributed across dialect regions, we con-
ducted a chi-square test. The results indicated that
age distribution did not differ significantly by di-
alect region (χ2(6) = 5.73, p = 0.45), suggesting
the four regions are relatively balanced with re-
spect to participants’ ages.

For feature extraction, Mel-Frequency Cepstral
Coefficients (MFCCs) were computed using the
torchaudio and librosa libraries, capturing pho-
netic features essential for dialectal differentia-
tion. Additionally, the mean and standard devi-
ation of each waveform were calculated to pro-
vide statistical descriptors of each audio signal.
Together, these features allow the model to learn
from both phonetic characteristics and statistical
patterns across dialects, supporting accurate di-
alect classification.
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3.2 Model Architecture and Training
In this study, we explore multiple approaches to
dialect classification, leveraging both traditional
machine learning techniques and advanced deep
learning models. Our methodology includes six
key approaches, each with unique strengths in han-
dling different aspects of speech data. All clas-
sifiers were implemented in Python 3.9. For the
Random Forest classifier, we used scikit-learn to
handle training and evaluation, and Optuna for hy-
perparameter tuning. For the DL models (CNN-
Spectrogram, CNN-LSTM, Wav2Vec2, XLSR-
Wav2Vec2, and Whisper), we used PyTorch along
with the torchaudio library for audio processing;
hyperparameter tuning was also managed via Op-
tuna. This integrated setup allowed us to maintain
a consistent development pipeline across both tra-
ditional and DL methods.

1. Random Forest with AutoML Tuning: We
use Random Forest as a baseline classi-
fier and employ AutoML (Optuna (Akiba
et al., 2019)) for hyperparameter optimiza-
tion. Random Forest is a robust ensemble
model noted for its interpretability and effec-
tiveness in handling tabular, low-dimensional
features. AutoML tuning identifies optimal
configurations, establishing a strong bench-
mark for comparison with deeper architec-
tures (Ramadhan et al., 2017).

2. Wav2Vec Model: Wav2Vec 2.0 is a pre-
trained model for speech representation
learning, capturing nuanced phonetic and
acoustic features. By fine-tuning Wav2Vec2
on our dialectal data, we leverage its abil-
ity to detect subtle variations in pronuncia-
tion, tone, and rhythm—key elements in di-
alect classification. Its extensive pre-training
makes it highly effective, even with limited
labeled data (Das et al., 2023).

3. Whisper Model: Whisper (Radford et al.,
2023) is a sequence-to-sequence model de-
signed for automatic speech recognition
(ASR) and robust transcription across vari-
ous languages. In our approach, we lever-
age Whisper for dialect classification by fine-
tuning it on Luxembourgish dialect data.
Specifically, we modify its final classifica-
tion layer to predict dialect labels rather than
transcriptions. We extract Whisper’s inter-
mediate acoustic embeddings from its final

transformer layers and pass them through a
fully connected classifier, which outputs soft-
max probabilities over the dialect classes.
This method enables Whisper to capture
subtle phonetic and prosodic differences
among Luxembourgish dialects while bene-
fiting from its inherent robustness to noise
and diverse acoustic conditions. Compared
to other models such as Wav2Vec2 and CNN-
based approaches, Whisper’s sequence-to-
sequence architecture allows it to use broader
context across speech segments, making it
particularly effective in capturing dialectal
shifts that span longer temporal patterns.

4. XLSR-Wav2Vec2 Model: The Cross-Lingual
Speech Representation (XLSR) variant of
Wav2Vec2 extends the model’s capabilities
to multiple languages by learning universal
speech representations. Fine-tuning XLSR-
Wav2Vec2 (Conneau et al., 2021) on our
dialectal data leverages these cross-lingual
features, facilitating more accurate detection
of subtle acoustic patterns that may overlap
across dialects or language families. This ap-
proach is especially useful when the available
labeled data for each dialect is limited.

5. CNN on Spectrograms: We apply Convolu-
tional Neural Networks (CNNs) to Mel spec-
trograms, treating them as 2D images. CNNs
excel in identifying spatial patterns—such as
phonetic markers, intonation shifts, and ac-
cent variations—by leveraging their proven
effectiveness in image processing. This ap-
proach highlights visual representations of
acoustic features for clearer insight into di-
alect differences (Alrehaili et al., 2023).

6. CNN-LSTM Hybrid Model: To capture both
spatial and temporal patterns, we integrate
CNN and Long Short-Term Memory (LSTM)
layers. The CNN layers learn spatial fea-
tures from each spectrogram frame, while the
LSTM layers model temporal dependencies
such as rhythm and sequential patterns across
frames. This combined architecture offers a
more holistic understanding of dialectal char-
acteristics (China et al., 2018).

Through these six approaches, we explore how
different models capture dialectal differences in
speech, analyzing which features—ranging from
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the phonetic details learned by Wav2Vec2, XLSR-
Wav2Vec2, and Whisper to the spatial and tem-
poral patterns identified by CNN-Spectrogram and
CNN-LSTM—are most effective for dialect clas-
sification.

The CNN model for dialect classification was
designed to process spectrogram data as a 2D
image-like input, beginning with a 2D convolu-
tional layer with 32 filters (kernel size of 3 × 3),
followed by additional convolutional and max-
pooling layers to capture spatial features from the
spectrograms. For the CNN-LSTM model, this
convolutional stack was followed by an LSTM
layer to capture temporal dependencies across
spectrogram frames. Both models used padding
to ensure consistent input dimensions. The ar-
chitecture was optimized using categorical cross-
entropy loss and an Adam optimizer with a learn-
ing rate of 0.001. Each model was trained over
15 epochs with five cross-validation folds to eval-
uate robustness. To handle class imbalance, we in-
corporated a weighted sampler in the DataLoader,
using class weights calculated per fold to empha-
size learning on underrepresented dialect classes,
improving model generalizability across dialects.

3.3 Data Augmentation

To address data imbalance within the Luxembour-
gish dialect dataset, we implemented data aug-
mentation techniques using controlled variations
in speed and pitch to enhance sample diversity and
model robustness. Specifically, we targeted under-
represented dialect classes (Northern and Eastern)
to generate additional samples. In total, we created
820 new audio samples, increasing the dataset size
from 1720 to 2540 recordings.

We applied time stretching with a 1.2x speed
factor to generate faster-paced versions of each
sample, creating tempo variations that reflect nat-
ural speaking speed differences without altering
phonetic content. Pitch shifting was also used to
create tonal variations by adjusting playback at a
50ms chunk level with crossfade transitions. This
replicates natural differences in vocal tone, help-
ing to distinguish differences between dialects and
individual speakers.

We implemented these augmentations using
the pydub library (Robertson, 2010), which en-
abled systematic file augmentation while preserv-
ing originals. Augmented files were prioritized for
dialects below the median frequency (i.e., North-

ern and Eastern), addressing class imbalance ef-
fectively. Furthermore, to maintain demographic
consistency, we mirrored the gender and age dis-
tributions for each new sample, ensuring that
both male and female speakers across various age
ranges were also augmented when needed. The
final dataset became more balanced, reducing the
disparity between the best- and worst-represented
dialects from 594 recordings to 147 recordings
difference. Parallel processing was employed to
manage the computational load, ensuring efficient
augmentation of underrepresented dialects.

After augmentation, the dataset included 2540
audio clips, with each dialect represented by at
least 500 samples. The mean clip length was 3.2
seconds (SD = 0.8), with a similar distribution of
lengths across dialects, genders, and age groups.
On average, each audio sample contained approx-
imately 6.3 tokens of spoken text (SD = 1.1), with
a total vocabulary of 1,550 unique Luxembour-
gish tokens (up from 1,100 prior to augmentation).
This increase in unique tokens reflects the added
lexical variability introduced by augmentation and
ensures that minority dialects are not underrepre-
sented in the linguistic feature space.

Baseline (Without Augmentation)

Model Northern Central Southern Eastern

Random Forest 63/61/62 58/60/60 56/57/57 55/55/55

Wav2Vec2 70/72/72 69/70/70 70/71/71 69/69/70

Whisper 67/69/68 66/67/66 68/69/69 64/65/65

XLSR-Wav2Vec2 68/70/69 66/68/67 69/70/69 63/64/64

CNN-Spectrogram 72/71/73 71/71/71 72/74/73 70/69/71

CNN-LSTM 72/70/72 73/72/71 69/72/70 68/71/72

Optimized (With Augmentation)

Model Northern Central Southern Eastern

Random Forest 71/69/71 65/63/65 63/61/63 59/58/59

Wav2Vec2 75/74/75 72/71/72 73/72/73 70/71/71

Whisper 72/72/73 70/70/70 72/72/72 67/69/68

XLSR-Wav2Vec2 72/73/72 69/70/70 71/72/71 66/66/66

CNN-Spectrogram 76/74/76 74/73/74 79/76/78 78/75/76

CNN-LSTM 76/73/74 75/74/73 77/75/77 72/70/71

Table 3: Performance Comparison Between
Baseline (Without Augmentation) and Optimized
(With Augmentation) Results for Luxembourgish
Dialect Classification. Each cell shows Accu-
racy/Precision/Recall (%). Bold indicates the
highest performance metric.
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3.4 Evaluation and Metrics

To evaluate model performance in dialect classifi-
cation, we used four key metrics: accuracy (over-
all correctness), precision (minimizing false posi-
tives), and recall (capturing true instances) to eval-
uate each model. Each table reports per-class ac-
curacy, precision, and recall, giving insight into
how models handle each dialect.

We applied stratified sampling during training
to ensure balanced dialect representation in the
dataset, helping to address class imbalance and
maintain model performance across all dialects.
Early stopping was implemented to halt training
when the validation loss did not improve over
five consecutive epochs, thereby preventing over-
fitting. A batch size of 16 was chosen to balance
computational efficiency and convergence speed,
while the Adam optimizer was used to adjust the
learning rate adaptively, ensuring stable and effec-
tive convergence during training.

4 Results

Table 3 presents a comparison of model per-
formance on Luxembourgish dialect classifica-
tion under two conditions: baseline (without data
augmentation) and optimized (with data augmen-
tation). Six primary models were evaluated:
Random Forest, Wav2Vec2, Whisper, XLSR-
Wav2Vec2, CNN-Spectrogram, and CNN-LSTM.
Performance, evaluated through accuracy, preci-
sion, and recall metrics, was measured across
Northern, Central, Southern, and Eastern dialects
for each model.

4.1 Baseline Performance (Without
Augmentation)

In the baseline setting (see Table 3), all models
exhibit moderate accuracy (55%–73%), reflecting
the challenges posed by a relatively small and im-
balanced dataset:

CNN-Spectrogram attains the highest accuracy
in the Northern (72%) and Southern (72%) di-
alects, underscoring CNNs’ effectiveness in ex-
tracting spatial patterns (e.g., phonetic cues) from
spectrograms. CNN-LSTM excels in classifying
the Central dialect (73% accuracy), possibly due
to its capacity to capture temporal dependencies
along with spatial cues. Wav2Vec2 also performs
strongly, particularly for Northern and Southern
dialects (70% accuracy), benefiting from its robust
self-supervised speech representations. Random

Forest consistently lags behind the neural models,
particularly for the Southern and Eastern dialects,
reflecting its limited ability to model complex
acoustic cues. Whisper and XLSR-Wav2Vec2
provide competitive results but do not surpass the
CNN-based or standard Wav2Vec2 models in most
dialects. Eastern dialect classification remains the
most challenging for all approaches. This is con-
sistent with its underrepresentation in the dataset
and with prior observations that Eastern exhibits
phonetic overlaps with adjacent dialects, com-
pounding classification difficulties.

4.2 Optimized Performance (With
Augmentation)

Applying speed and pitch augmentation yields
performance gains across all models, particularly
for underrepresented Northern and Eastern di-
alects (see Table 3):

Random Forest sees an overall accuracy in-
crease of 4–5%, indicating that extra variabil-
ity in the training set helps even simpler classi-
fiers. Wav2Vec2 improves to 75% accuracy for
Northern and 70% for Eastern, confirming that its
self-supervised features benefit from augmented
data. Whisper and XLSR-Wav2Vec2 also enjoy
small but consistent boosts across all dialects, re-
inforcing the notion that multilingual or sequence-
to-sequence approaches capitalize on the broader
acoustic variability introduced by augmentation.
CNN-Spectrogram emerges as the top performer
in most dialects post-augmentation: 76% accu-
racy in Northern, 79% in Southern, and 78% in
Eastern, highlighting CNNs’ capacity to adapt to
new spectrogram variations (e.g., pitch-shifted or
speed-stretched speech). CNN-LSTM remains
highly competitive, matching CNN-Spectrogram
in Northern dialect classification (76%) and ex-
celling in the Central dialect (75% accuracy). Its
ability to capture both spatial and temporal cues
remains beneficial. These findings confirm that
data augmentation helps mitigate class imbalance,
particularly for Northern and Eastern dialects,
which see some of the largest proportional gains.
However, the overall improvements—while mean-
ingful—remain limited by the modest size of the
dataset. Gathering more recordings and exploring
advanced or multi-parameter augmentation tech-
niques (e.g., multiple speed factors, SpecAug-
ment) could further boost performance.
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5 Discussion

The results demonstrate that data augmentation
can contribute to modest but consistent improve-
ments in dialect classification for Luxembourgish,
a low-resource language. These findings align
with prior studies highlighting the effectiveness
of CNNs and end-to-end ASR models, such as
Wav2Vec, in handling spectrogram data for dialect
and language classification tasks.

CNNs have proven effective in extracting mean-
ingful features from spectrograms, which are
crucial for distinguishing subtle phonetic and
prosodic differences across dialects. For ex-
ample, Alrehaili et al. (2023) reported that
CNNs achieved 83% accuracy in Arabic dialect
classification, capitalizing on their capacity to
process spatial information within spectrograms.
Similarly, Revay and Teschke (2019) demon-
strated CNNs’ suitability for language identifica-
tion across multiple languages, achieving up to
89% accuracy by focusing on acoustic cues en-
coded in spectrograms (Revay and Teschke, 2019).
Prior studies support our findings, showing that
CNN-based models, such as CNN-Spectrogram
and CNN-LSTM, achieved competitive accuracy
(68-73%) on Luxembourgish dialects, with further
improvements post-augmentation.

Research supports the effectiveness of CNN-
LSTM architectures in dialect classification, espe-
cially for capturing both spatial and temporal lin-
guistic patterns. For instance, CNN-LSTM mod-
els have shown high accuracy in dialect classifica-
tion tasks for Arabic, where they effectively cap-
tured dialectal sentiment variations across regional
Arabic texts (Abu Kwaik et al., 2019). Similar
success has been observed in distinguishing tonal
versus non-tonal Indian languages using acoustic
data, where the model’s ability to capture tempo-
ral dependencies significantly improved classifi-
cation outcomes (China et al., 2018). Studies on
dialectal sentiment analysis for Roman Urdu and
English have further highlighted CNN-LSTM’s
adaptability, demonstrating the model’s capacity
to capture linguistic nuances in dialects within so-
cial media contexts (Khan et al., 2022). In gen-
eral, CNN-LSTM hybrids improve dialect classi-
fication accuracy by effectively capturing both lo-
calized phonetic features and sequential temporal
dynamics (She and Zhang, 2018).

Additionally, research on self-supervised mod-
els like Wav2Vec has demonstrated the model’s

ability to capture detailed phonetic and acous-
tic features, enabling it to perform well even in
low-resource dialect classification tasks. Wav2Vec
embeddings have proven effective in detect-
ing dialect-specific nuances and handling out-of-
distribution dialect data (Das et al., 2023). Studies
also show that fine-tuning Wav2Vec on dialectal
datasets enables it to capture phonetic variations in
pronunciation, tone, and rhythm, essential for ef-
fective dialect classification (Baevski et al., 2019).
Furthermore, Wav2Vec has demonstrated robust-
ness across low-resource languages, achieving no-
table improvements in speech recognition for un-
derrepresented dialects (Yi et al., 2020).

These findings align with our results, where
the CNN-LSTM model showed consistent perfor-
mance gains after augmentation, underscoring the
utility of combining convolutional and sequential
layers to handle the complex linguistic structures
present in Luxembourgish dialects. Our findings
also resonate with prior work in low-resource di-
alect classification. For instance, in the study
by Wang et al. (2021), a multilingual ASR model
improved classification accuracy for Chinese di-
alects, significantly reducing classification errors.
Although we did not directly utilize this approach,
Wav2Vec’s pretraining on multilingual datasets
may have contributed to its relative robustness in
Luxembourgish dialect classification. This abil-
ity to handle a range of dialectal inputs, even with
limited training data, illustrates the model’s value
in low-resource language contexts.

The improvements observed with data augmen-
tation, while modest, highlight its potential to
enhance model robustness, particularly for di-
alects with lower representation. Kethireddy et al.
(2020) explored similar strategies by introduc-
ing augmented spectrogram features, leading to
gains in dialect classification accuracy. In our
study, augmenting the dataset by adjusting pitch
and tempo introduced additional variability, help-
ing the models to generalize better. This approach
was especially beneficial for the Random Forest
model, which lacks the feature extraction capabili-
ties of CNNs and ASR models. Despite the limited
scale of the improvements, these findings under-
score the utility of data augmentation as a practical
approach to mitigate the effects of data scarcity in
dialect classification tasks.

Our CNN-LSTM model, designed to cap-
ture both spatial and temporal dependencies,
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also showed consistent gains with augmenta-
tion. Chemudupati et al. (2023) demonstrated
that Wav2Vec could maintain robust performance
across diverse conditions, including real-world
“in-the-wild” settings with noisy and reverberant
audio. Although the Luxembourgish dataset does
not include such variability, the slight improve-
ments in recall and precision seen in our CNN-
LSTM model after augmentation suggest that tem-
poral architectures may add value in dialectal clas-
sification tasks, especially in capturing sequential
acoustic features.

Overall, the updated performance metrics re-
ported in Table 3 confirm that CNN-Spectrogram
achieved top accuracy in Southern (79%) and
Eastern (78%) dialects following augmentation,
while CNN-LSTM matched or surpassed other ap-
proaches in Central (75%) and Northern (76%).
Wav2Vec2 also registered stable improvements
(e.g., 70% accuracy for Eastern) after incorporat-
ing time-stretch and pitch-shift strategies. No-
tably, the Random Forest benefited substantially
from augmentation, gaining about 4–5% in ac-
curacy—particularly in Northern and Eastern di-
alects—underscoring the value of enriched data
variability even for non-neural classifiers.

5.1 Limitations of the work

One key limitation is the lack of sufficiently di-
verse data, which poses a risk of overfitting and
makes it difficult to capture subtle phonetic or
lexical nuances in border regions. Additionally,
our augmentation experiments are limited to a sin-
gle set of parameters, leaving open the possibil-
ity that other augmentation methods or intensi-
ties might yield higher improvements. Finally,
while Whisper and XLSR-Wav2Vec2 adapt well
to multilingual contexts, further tuning (e.g., mul-
tiple epochs, domain adaptation) could potentially
boost their performance.

6 Conclusions

We introduced a comprehensive methodology for
Luxembourgish dialect classification, pairing data
augmentation (speed/pitch shifts) with a spectrum
of models from Random Forest to CNN-LSTM and
pretrained Whisper / Wav2Vec2 variants. Our re-
sults highlight:

CNN-Spectrogram achieves top accuracies in
Northern, Southern, and Eastern dialects af-
ter augmentation, showcasing its spatial feature-

extraction strengths. CNN-LSTM outperforms
other models in Central Luxembourgish, sug-
gesting the value of modeling temporal depen-
dencies in dialect classification. Wav2Vec2 re-
mains consistently strong across all dialects, af-
firming the resilience of self-supervised speech
representations. Data augmentation partially mit-
igates imbalance, boosting performance the most
in underrepresented dialects (Northern and East-
ern). Though the improvements are modest, they
demonstrate the potential of augmentation in low-
resource dialect classification. Future work should
explore more advanced augmentation pipelines
(e.g., SpecAugment, multiple pitch/speed factors)
and target larger-scale data collection, possibly
leveraging multilingual transfer from related Ger-
manic varieties. These steps will be instrumen-
tal in achieving broader robustness and higher ac-
curacy for Luxembourgish and other low-resource
dialects.
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