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Abstract

Code-switching (CS) involves speakers switch-
ing between two (or potentially more) lan-
guages during conversation and is a common
phenomenon in bilingual communities. The
majority of NLP research has been devoted to
mono-lingual language modelling. Consequen-
tially, most models perform poorly on code-
switched data. This paper investigates the ef-
fectiveness of Cross-Lingual Large Language
Models on the task of POS (Part-of-Speech)
tagging in code-switched contexts, once they
have undergone a fine-tuning process. The
models are trained on code-switched combi-
nations of Indian languages and English. This
paper also seeks to investigate whether fine-
tuned models are able to generalise and POS
tag code-switched combinations that were not
a part of the fine-tuning dataset.

Additionally, this paper presents a new metric,
the S-index (Switching-Index), for measuring
the level of code-switching within an utterance.

1 Introduction

1.1 Background

At present, approximately half of the world’s popu-
lation is bilingual and increased globalisation and
migration is creating more multilingual commu-
nities. (Stavans and Porat, 2019). Consequently,
code-switching is becoming an increasingly com-
mon form of communication, especially in online
media.

Code-switching in digital and face-to-face com-
munication can arise for a multitude of reasons
including quoting someone, excluding a particular
person or group from a conversation and emphasis-
ing group identity (Grosjean, 1997).

1.2 Code Switching

Code Switching is not simply alternating between
two languages. Instead, it involves the fusion of
two different languages which gives rise to unique

grammatical constructs that are not present in ei-
ther of the original languages (Attia and Elkahky,
2019). This means that mono-lingual models can-
not simply be combined to produce models that
are capable of dealing with CS. Additionally, CS
can occur at the level of individual morphemes
within a single word. This can result in frequent
out-of-vocabulary words.

Often in CS, asymmetry arises (Joshi, 1982)
whereby one language is more dominant compared
to the other. The dominant language is referred to
as the Matrix Language (ML) and the other as the
Embedded Language (EL). It has been proposed
(Joshi, 1982) that CS can be modelled with two
grammars representing the ML and EL where a
mechanism can be used to shift control from the
ML to EL but not vice-versa (Martinez, 2020).

Alternatively, CS between two specific lan-
guages can be modelled as its own language
(Çetinoğlu et al., 2016). For inter-sentential CS, the
model can be trained on mono-lingual data from
both languages. For intra-sentential CS, specific
CS datasets must be obtained as the language of
tokens may change within a sentence.

1.3 POS Tagging

POS (Part-of-Speech) Tagging is the task of predict-
ing the part-of-speech of a word given its context.
Complexity arises due to the fact that the same to-
ken can have different meanings and different parts
of speech when used in different contexts.

This paper uses the base version of XLM-
RoBERTa (Conneau et al., 2020), a cross-lingual
language model trained on data from 100 different
languages. The model was fine-tuned to predict
part-of-speech tags. Previous attempts at this idea
(Maksutov et al., 2021) involve modelling the task
as a sequence-to-sequence task to generate a tag
for each word in the input sequence. It is impor-
tant to note here that the output vocabulary for the
transformer is incredibly small compared to the
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input vocabulary. The output vocabulary is the set
of possible part of speech tags, whereas the input
vocabulary is the set of all words that appear in the
training dataset.

The BERT architecture (Devlin et al., 2019) is
highly appropriate for this as the Masked Language
Model objective used during pre-training, allows
the model to learn bi-directional context. This
should enable the model to more easily understand
the sequences passed to it.

2 Measuring Code-Switching

2.1 Current Metrics

As previously mentioned, the Matrix Language is
the dominant language in a code-switched text.

Lmatrix(s) = argmax
Li∈L

{tLi}(s) (1)

(Li ∈ L iterates through each language in the
corpus, {tLi}(s) returns the number of tokens of
language Li in sequence s, Lmatrix is the matrix
language)

The Code-Mixing Index metric (Gambäck and
Das, 2016) can be used to measure the level of code
switching in a sequence s-

CMI(s) =
λ(N(s)− {tLmatrix}(s)) + µP (s)

N(s)
(2)

(N(s) is the number of tokens in the sequence,
{tLmatrix}(s) is the number of tokens in the matrix
language, P (s) is the number of code alteration
points and λ and µ are weights that sum to 1)

If a sequence has a high number of tokens not in
the matrix language, it has a high amount of code-
switching. The sequence also has a high amount
of code-switching if there are a large number of
alteration points. This measurement manages to
capture both of these metrics.

This metric can exaggerate the level of code-
switching in short sequences since it divides by the
length of the sequence. This is particularly promi-
nent in sequences with a single word followed by
punctuation. This arises since punctuation is often
listed as a language of its own (e.g. ‘universal’).
Therefore a sequence such as ‘What?’ is calculated
as having a high-level of code-switching since there
is one alteration point and one token not in the ma-
trix language in a sequence with only two tokens.

2.2 Proposed New Metric

To solve this problem, this paper introduces the
S-index measure (S) using the same two metrics as
the CMI.

S(s) = λ tanh(µP (s))× log

(
N(s)

{tLmatrix}(s)

)

(3)
(λ and µ are arbitrary constants. The values in

this paper use λ = 1 and µ = 0.5)
Since this metric does not divide by the number

of tokens in the sequence and a logarithm is ap-
plied to the ratio of tokens to tokens in the matrix
language, the exaggeration for short sequences is
prevented. The use of the hyperbolic tangent, limits
the influence of P (s) for very long sequences (pre-
venting the opposite form of exaggeration), since it
naturally saturates for large values. The constants
λ and µ can be used to adjust when and to what
value the P (s) term saturates.

Token Language
Matlab Hindi
? Universal
Translation Meaning?
N(s) 2
{tLmax}(s) 1
P (s) 1
CMI(s) 0.5
S(s) 0.32

Table 1: CMI exaggerates the level of code-switching
here.

It is clear that the sequence in Table 2 has a
higher level of code-switching than the sequence in
Table 1. However, the CMI metric fails to capture
this but the S-index does.

3 Training

3.1 Dataset

We utilise a dataset consisting of code-switched so-
cial media posts and messages in three different lan-
guage combinations (Jamatia et al., 2015) that was
used for the ICON 2016 shared NLP task. Table
3 details the make-up of the dataset and the Code-
Mixing Index and S-Index for each language pair.
For the entire dataset, Pearson’s Correlation Co-
efficient (r) (Lee Rodgers and Nicewander, 1988)
between the CM-Index and S-Index was 0.85. This
indicates that there is a generally strong positive
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Token Language
I English
mean English
. Universal
Ye Hindi
bol Hindi
ri Hindi
thi Hindi
ki Hindi
unki Hindi
pics English
do Hindi
Translation I mean. She was saying

to give her pictures.
N(s) 11
{tLmax}(s) 7
P (s) 3
CMI(s) 0.36
S(s) 0.41

Table 2: CMI undervalues the level of code-switching
here.

correlation between the two measures, yet also
shows that there is significant cases where they
differ and where we believe the S-index resolves
some of the flaws of the CM-Index.

3.2 POS-Tagging with BERT models

The tokenizers used by BERT models (and many
other Large Language Models) often produce multi-
ple tokens per word (Schuster and Nakajima, 2012).
This means that when assigning POS-tags, com-
plexity arises, as each POS-tag can be associated
with multiple tokens. Some simple solutions to this
problem (Saidi et al., 2021) include assigning the
POS tag to the first sub-word token of each word
and assigning the same POS tag to each sub-word
token. The solution implemented here is to pass
each sub-word token into the model, producing a
context-aware embedding for each sub-word token.
These are then re-aligned to the word level by tak-
ing the average embedding for words that consist
of more than one token (Lauren, 2022).

The use of sub-word tokenizers can be viewed
as a benefit in the case of code-switching as it en-
ables the model to more effectively deal with out-
of-vocabulary words (Nayak et al., 2020).

Here, the POS-tagging task is modelled as a
sequence-to-sequence task. Upon passing a se-
quence to the model, a tag is generated for each

Figure 1: Model Architecture

token in the input sequence.

3.3 Model

The sequences are tokenized using the XLM-
RoBERTa tokenizer and then passed into XLM-
RoBERTa which produces a high-dimensional em-
bedding of each token in the input sequence. This
embedding passes through a linear layer and fi-
nally, a softmax operation to transform it into a
low-dimensional probability distribution, indicat-
ing the likelihood of each token belonging to dif-
ferent part-of-speech tags.

We utilise dropout layers between the output of
XLM-RoBERTa and the linear layer to reduce the
effects of overfitting during training.

3.4 Fine-Tuning

We fine-tuned four XLM-RoBERTa models on dif-
ferent language pair combinations: (1) HI-EN, TE-
EN, and BE-EN; (2) HI-EN and TE-EN; (3) HI-EN
and BE-EN; and (4) TE-EN and BE-EN. The pur-
pose of this was to investigate whether the models
were capable of generalising the POS-tagging pro-
cess to language combinations that were not present
in the dataset used for fine-tuning. Previous studies
(Blum, 2022) have evaluated the effectiveness of
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Languages Mean CM-Index Mean S-Index Count
English-Hindi 0.405 0.583 1867
English-Bengali 0.507 0.776 625
English-Telugu 0.503 0.792 1487
Overall 0.458 0.692 3979

Table 3: Statistics for each language combination in the dataset.

fine-tuned multilingual language models for POS
tagging in languages that were absent from the
fine-tuning dataset, specifically in contexts without
code-switching.

We employ the use of a learning rate scheduler
and the AdamW (Loshchilov and Hutter, 2019)
optimiser during the fine-tuning process.

3.5 Performance on Unseen Combinations
during Fine-Tuning

Figure 3 shows the performance of the models on
the hidden language combination during training.
Despite the fine-tuning dataset containing no data
from the respective languages, it is clear that the
performance improves significantly during the fine-
tuning process.

One cause of this property is the overlap between
the subword tokens found in the training dataset
and the hidden language datasets. Therefore, the
model is still indirectly exposed to some of the
same tokens, improving its performance. Exper-
iments (Pires et al., 2019) show that when tested
in this way, fine-tuned multilingual models do not
solely rely on an overlap between tokens (which
would indicate learning through simple vocabulary
memorisation) and that the pretraining process has
enabled more robust multilingual representations.

However, the loss values for the hidden lan-
guages do not reach as low as the validation loss
(only containing the language combinations visible
in the fine-tuning process) as shown in Figure 2.
It is unclear whether this is due to the small size
of the model and the lack of data (Kaplan et al.,
2020) or if there is a hypothetical limit on the per-
formance on hidden languages when models are
fine-tuned in this way.

A cause of this limit could be catastrophic for-
getting (McCloskey and Cohen, 1989) whereby the
model loses some of its ability to understand the
languages that appeared during pre-training when
fine-tuned on the other languages.

Figure 2: The performance of the model on the vali-
dation dataset (containing data from the languages the
model is fine-tuned on) during the fine-tuning process.

Figure 3: The performance of the model on the data
from the language that is not contained in the fine-tuning
dataset.

4 Results

The fine-tuned models were tested on a portion of
the dataset. The results are shown in Table 4. The
testing shows that the models were able to predict
POS-tags with a reasonable degree of accuracy. We
feel that the performance of the models is highly
promising given that the language model used only
has 279 million trainable parameters and only a
small dataset was used.

4.1 Performance on Unseen Code-Switched
Combinations

The testing shows that the models are capable of
predicting POS-tags in unseen language combi-
nations to a similar level of accuracy as to when
these combinations are included in the fine-tuning
dataset.

The fact that Bengali, Hindi, and Telugu are all
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% of tokens correctly predicted
Combinations Trained On HI-EN TE-EN BE-EN Overall
HI-EN, TE-EN, BE-EN 76.54 71.86 73.75 74.53
HI-EN, TE-EN 78.67 74.32 67.68 70.28
HI-EN, BE-EN 77.80 67.90 75.32 69.60
TE-EN, BE-EN 72.14 73.15 77.90 72.40

Table 4: The % of tokens in the test dataset that each model correctly predicted.

Indian languages with shared grammatical features
likely contributes to this ability. Moreover, the
consistent subject-object-verb (SOV) word order
across these languages helps in POS tagging by
providing a similar syntactic structure.

However, Telugu belongs to a different language
family (Dravidian) than Bengali and Hindi (Indo-
European) which introduces some variance. This
would suggest that the models are capable of learn-
ing more general syntactic patterns that appear
across different languages. To determine whether
this ability persists in other code-switched language
combinations would require further experiments.
Unfortunately, the current lack of suitable datasets
presents a challenge to conducting such investiga-
tions.

When the HI-EN data is removed, the perfor-
mance on this language combination improves sig-
nificantly compared to when other language pairs
are removed. This is likely because Hindi, being
the most widely spoken language in India, is often
mixed into other language pairs. This pattern was
observed by the creators of the dataset1.

5 Conclusion and Future Work

Although the performance of the models trained
here is not comparable to those of today’s state-of-
the-art POS taggers, we feel that our models are
highly promising.

The ability of models to POS-tag in unseen
code-switched combinations is evident and more
research needs to be performed to analyse whether
this property extends to other code-switched lan-
guage combinations that are not so closely related.

Additionally, the ability of multilingual models
to be fine-tuned to perform other NLP tasks such as
Sentiment Analysis and Named Entity Recognition
is also an area that needs to be researched.

1https://amitavadas.com/Code-Mixing.html

Limitations

This study was limited to a small number of code-
switched combinations between English and three
Indian languages, due to a lack of widely available
datasets.

Furthermore, we noted a small yet significant dis-
crepancy between the performance of the models
on code-switched combinations that were included
in the fine-tuning dataset and those that were not.
We feel that more research needs to be done on
the causes of this discrepancy and how they can be
limited.
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