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Abstract

Recent years have witnessed the adoption of
parameter-efficient adapters in pre-trained lan-
guage models for natural language processing.
Yet, their application in speech processing re-
mains less studied. In this work, we explore
the adapters for low-resource speech recogni-
tion, introducing a novel technique - ConvA-
dapt into pre-trained speech models. We inves-
tigate various aspects such as data requirements,
transfer learning within adapters, and scaling of
feed-forward layers in adapters. Our findings
reveal that bottleneck adapters offer competi-
tiveness with full fine-tuning with at least 10
hours of data, but they are not as effective in
few-shot learning scenarios. Notably, ConvA-
dapt demonstrates improved performance in
such cases. In addition, transfer learning in
adapters shows promise, necessitating research
in related languages. Furthermore, employing
larger speech models for adapter-tuning sur-
passes fine-tuning with ample data, potentially
due to reduced overfitting than fine-tuning.

1 Introduction

Automatic speech recognition (ASR) advance-
ments have favored high-resource languages due
to abundant data and computing power. How-
ever, over 7000 languages are low-resource or zero-
resourced, raising concerns of extinction (Dunbar
et al., 2021). Large pre-trained self-supervised
speech models like Wav2vec 2.0 show promise
in enhancing ASR for low-resource languages
through fine-tuning with smaller datasets (Baevski
et al., 2020). Fine-tuning such large and even
multi-lingual models with a low-resource lan-
guage data usually works well in practice but
has its own limitations. It involves updating
most of the model parameters which is inefficient,
resource-intensive and storage-demanding. More-
over, it poses challenges in dealing with multiple
tasks/languages, causing catastrophic forgetting

and complex decision-making for choosing the task
sequence (Pfeiffer et al., 2021).

Bottleneck adapters, initially introduced in com-
puter vision (Rebuffi et al., 2017), consist of two-
layer feed-forward networks inserted into large pre-
trained models (Houlsby et al., 2019). This tech-
nique selectively updates adapter parameters while
keeping the rest of the model frozen, effectively
reducing trainable parameters. It facilitates task-
specific adapter integration into pre-trained models,
avoiding the need for full re-training and mitigating
catastrophic forgetting (Pfeiffer et al., 2021).

While adapters have been well studied in natu-
ral language processing (NLP) literature (Houlsby
et al., 2019), investigating adapters in the speech
signal processing domain is relatively new. Bottle-
neck adapters are implemented for ASR with the
Wav2vec 2.0 English base model (Thomas et al.,
2022; Yue et al., 2024), MMS (Pratap et al., 2023),
and Google Universal Speech Model (Zhang et al.,
2023). These studies indicate that adapters perform
on par with fine-tuning while being parameter ef-
ficient. Few studies explore bottleneck adapters
for specialized tasks like multi-domain ASR mod-
eling with Transformers (Lee et al., 2021), per-
sonalized speech recognition in a multi-turn di-
alog setting with Transducers (RNN-T) (Chang
et al., 2023), atypical and accented speech recog-
nition with RNN-T and Transformer Transducers
(Tomanek et al., 2021). The latter one utilized resid-
ual connections within adapters. Different adapter-
based approaches are compared for several speech
processing tasks with three of the state-of-the-art
pre-trained models (Chen et al., 2023a). The selec-
tion of different neural layers to insert the adapters
is performed with a two-stage algorithm (Huang
et al., 2023). While the prior works rely on bot-
tleneck adapters, CHAPTER technique based on
convolutional neural network (CNN) adapters are
employed in HuBERT feature extractor on emotion
and speaker tasks (Chen et al., 2023b). To the best
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of our knowledge, no work leveraged convolutional
nets as adapters by incorporating them into the con-
textual Transformer layers in the speech processing
domain. Also, given the limited work on ASR mod-
eling using adapters, there exist substantial research
gaps that necessitate a comprehensive study of this
method. It still remains an open question what
the training data size must be for adapter-tuning
to perform on par with complete fine-tuning for
the low-resource ASR task since the prior work in-
vestigates the adapter-tuning for speech processing
with only high-resource languages such as English,
omitting the suitability of the approach for low-
resource languages. Furthermore, the possibility
of scaling the adapter modules or pre-training the
adapters with a source language are not explored
in the literature.

This study aims to address the aforementioned
research gaps by conducting a comprehensive in-
vestigation of adapters for ASR, with a particular
focus on the low-resource aspect. Through this
research, we aim to reduce computational com-
plexity while simultaneously maintaining ASR per-
formance, ensuring the representation and preser-
vation of low-resource languages in the field of
speech technology. The contribution of this work
is four-fold:

* Exploring the adapter-tuning approach for
ASR across various resource-constrained
scenarios, spanning from low-resource to
medium/high-resource conditions in three di-
verse languages: English (West Germanic),
Bengali (Indo-Aryan), and Maltese (Semitic).
To this end, we propose a simple yet effec-
tive technique ConvAdapt for extreme low-
resource parameter-efficient ASR. Notably, no
prior research has explored the data require-
ments for adapter-based low-resource ASR, to
the best of our knowledge.

* Leveraging the potential of multilingual, pre-
trained self-supervised speech models, we in-
corporate adapters into state-of-the-art mod-
els, namely XLS-R (Babu et al., 2021) and
MMS (Pratap et al., 2023). Additionally, we
investigate whether employing a larger pre-
trained model with a higher number of pa-
rameters enhances the performance of the
adapter-tuning approach for ASR. Adapter
performance for varied sizes of multi-lingual
pre-trained models is not studied in the litera-
ture, to our knowledge.

* Exploring pre-training adapters on a source
language and subsequently fine-tune them for
the target language, enabling transfer learning
within adapters for the first time.

* While bottleneck adapters with a two-layer
feed-forward network are common in adapter
architectures (Houlsby et al., 2019; Thomas
et al., 2022), this study extends the adapter
module by adding more fully connected layers
and assesses their influence on performance
across the three languages.

2 Integrating Adapters into Wav2vec 2.0

Figure 1 presents the architecture of the adapter-
based Wav2vec 2.0 model. The core structure of
Wav2vec 2.0 remains unchanged (Baevski et al.,
2020), while each Transformer block includes two
adapter modules. The process starts with raw
input signal passing through a feature encoder,
then entering the contextual network (Transformer).
Each Transformer block consists of sub-modules
like Multi-Head Self-Attention (MHSA) and feed-
forward layer. Adapter modules are inserted af-
ter the MHSA and the feed-forward layer. There
are two residual connections in each Transformer
block. The model can contain N transformer
blocks, with N being either 24 or 48, depending on
the specific Wav2vec 2.0 model. A linear classi-
fier (classification head) is added at the end of the
network. During adapter-tuning, only adapter mod-
ules, normalization layers, and the head are trained
while keeping the pre-trained backbone frozen, sub-
stantially reducing trainable parameters.

The bottleneck adapter architecture (FFAdapter),
depicted on the upper right side of Figure 1, con-
sists of two fully-connected feed-forward networks.
The first layer acts as a down-sampler, projecting
the Transformer model dimension to a lower in-
ner dimension through down-projection. A GELU
activation is added after that. The second layer
functions as an up-sampler, projecting back to the
original dimension. Both layers maintain an inner
dimension of 256. A residual connection adds the
second layer’s output with the initial adapter input,
processed through layer normalization to yield the
final output.

Let the Transformer model representation be d,,
and the representation from the second FC layer is
fm. Both d,,, and the f,,, have the same dimension
of m. The output of the Add & Norm layer is

101



Wav2vec 2.0 with Adapters

— E E CT)
- MR 2 JIN
§8 1" E s T 158
L 3 3 ~o
< <
\_ xN )
FFAdapter ConvAdapter

£
S
]
LW — L <
> [T} u. 3 ——>
o e
©
<

-

-

v
ConviD
RelLU

Figure 1: The upper figure depicts the Wav2vec 2.0 architecture with adapter modules. The bottom left figure
shows the bottleneck adapter (FFAdapter), while the ConvAdapter is displayed on the bottom right. MHSA and FF
represent multi-head self-attention and feed-forward layers, respectively.

computed as,
AdapterOutput = Layer Norm(dy, + fm) (1)

We propose the ConvAdapt technique by re-
placing the bottleneck adapters with CNN-based
adapters while keeping them at the same position in
the Transformer layers (See Figure 1). The latent
representation from the MHSA/FF of the trans-
former is fed as input to the ConvAdapters after re-
arranging the tensors to avoid dimension mismatch.
We employ two 1-dimensional convolutional lay-
ers, each followed by a rectified linear unit (ReLU).
There are 1280 input channels and 1280 output
channels, and both kernel size and stride are set to
1. The same padding is used. Finally, we rearrange
the resultant tensors again to obtain the original
dimension and add this to the adapter input through
a residual connection.

3 Experiments

Datasets: We conduct the experiments on three
languages: Bengali, Maltese, and English. The
LibriSpeech corpus is used for English (Panay-
otov et al., 2015), the SUBAK.KO corpus for
Bengali (Kibria et al., 2022), and a combina-

tion of datasets including CommonVoice, MASRI-
HEADSET, MEP, Tube, MERLIN, and Parliament
for Maltese (Ardila et al., 2020; Mena et al., 2020).
Various subsets of data are created, ranging from
10 minutes to 50 hours, for analyzing data require-
ments. Besides the 10 minute, 1 hour and 10 hour
subsets from LibriLight (Kahn et al., 2020), we
add an additional 50 hour subset from the standard
100-hour English LibriSpeech subset. For Ben-
gali, we create the subsets by randomly selecting
samples from the 200-hour SUBAK.KO train set.
We follow a similar random sampling approach
for Maltese. To ensure standardized benchmark-
ing, we utilize the LibriSpeech development (dev)
and test sets, both containing clean and other sub-
parts. The SUBAK.KO dataset includes standard
dev and test sets with 20 hours of data each. Simi-
larly, we utilize the standard Maltese dev and test
sets, containing 1.5 hours and 2.3 hours of speech,
respectively. The dataset details are summarized in
Table 1.

Experimental setup: We choose two large pre-
trained cross-lingual models, namely XL.S-R and
MMS (Pratap et al., 2023; Babu et al., 2021). XLS-
R has three variants with 0.3 billion (B), 1B, and 2B
trainable parameters. We utilize MMS containing
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Language

Group Datasets

Lang

test set
clean other

dev set
clean other

train set
length

SUBAK.KO

BN Indo-Aryan

(Kibria et al., 2022)

200.3 20.5 - 20.3 -

Common Voice

(Ardila et al., 2020)
MASRI-HEADSET
(Mena et al., 2020)

MT Semitic

MEP
Tube
MERLIN
Parlament

52.5 23 - 1.5 -

EN  West Germanic LibriSpeech

960.9 54 53 54 5.1

(Panayotov et al., 2015)

Table 1: The datasets are split into train, dev and test sets. BN, MT, and EN refer to Bengali, Maltese, and English,
respectively. For English, each of dev and test sets has clean and other (noisy) versions.

1B parameters. Both fully fine-tuned and adapter-
based ASR models are trained with a batch size
of 4, accumulating gradients for two steps, max
150K steps, early stopping patience for 10K steps,
and seed 100. The learning rates of 3e-5, 5e-5,
and Se-4 are used for complete fine-tuning, bottle-
neck adapter-tuning, and ConvAdapt, respectively.
We use greedy search decoding leveraging connec-
tionist temporal classification (CTC) to obtain the
output characters (Graves et al., 2006).

Results: The comparison between fine-tuning
and adapter-tuning reveals their distinct advantages
depending on the dataset size (See Table 2). In ex-
tremely low-resource scenarios, like those with just
10 minutes or 1 hour of training data, fine-tuning
significantly outperforms bottleneck adapter-tuning
(FFAdapter) across languages and model sizes.
This situation can be seen as few-shot learning due
to the extremely limited labeled speech. However,
in moderately low-resource conditions (at least 10
hours), bottleneck adapter-tuning performs com-
petitive to fine-tuning while significantly reducing
trainable parameters. We argue that, with less data,
the fully connected feed-forward adapters cannot
be properly trained and the subsequent modules in
Transformer rely upon the output representations
from adapter. For this reason, bottleneck adapters
are not suitable for few-shot learning. To counter
this issue, our proposed technique ConvAdapt is
able to outperform bottleneck adapters in extremely
low-resource cases while still under-performing
than full fine-tuning. We hypothesize that due to
sparse connectivity and weight sharing in convo-

lutional nets as opposed to full connectivity in FF
nets, ConvAdapter achieves superior performance
than bottleneck adapters in few-shot scenarios with
less data. As training data increases, however, the
benefit of ConvAdapt over bottleneck adapters di-
minishes because fully connected weights in bottle-
neck adapters can be learned with sufficient amount
of data.

From Table 2, it is evident that the fully fine-
tuned XLS-R model with 2B parameters yields
comparatively high WERs across different lan-
guages and training dataset sizes. The XLS-R 2B
performance is consistently surpassed by smaller
capacity fully fine-tuned XLS-R models (0.3B, 1B)
and the MMS 1B model in all cases. Investigating
further, we refer to (Babu et al., 2021), which ex-
plores fine-tuned XLS-R models on LibriSpeech.
Though the authors argue that higher-capacity mod-
els could mitigate interference issue of pre-trained
models and yield lower WERs, this remains un-
verified for the XLS-R 2B model with no results
presented for this model.

In our work, we find that employing the bottle-
neck adapter-tuning approach enables the XL.S-R
with 2B parameters to achieve the lowest WERs
across several dataset sizes except for the extremely
low-resource ones e.g. 10 min or 1 hour. This find-
ing is noteworthy since XLS-R 2B with bottleneck
adapters not only improves performance but also
reduces trainable parameters remarkably from 2B
to 64M (almost 31 times reduction). We argue that
adapters can function as regularizers in large pre-
trained speech models by mitigating overfitting and
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Maltese

Bengali English

Train set Adapter # Params

. Model in ad FT Ad FT Ad FT Adapter
size Type in adapters apter apter clean other clean other
XLS-R0.3B  FF 26M 63.6 989 702 937 393 48.4 100.0 100.0

XLS-R 1B FF 64M 70.5 90.3 704 899 36.1 457 98.3 100.0

10 min XLS-R 2B FF 64M 629 935 699 87.6 394 49.0 91.8 96.2
MMS 1B FF 64M 60.5 890 64.2 1000 36.5 43.4 100.0 100.0

XLS-R 1B Conv 192M 70,5 76.7 704 765 361 457 433 542
XLS-R0.3B FF 26M 43.1 654 462 634 167 255 86.0 922

XLS-R 1B FF 64M 48.1 634 443 569 155 249 38.2 533

1 hour XLS-R 2B FF 64M 439 982 475 662 179 27.6 242 363
MMS 1B FF 64M 435 619 443 585 161 239 349 494

XLS-R 1B Conv 192M  48.1 463 443 493 155 249 16.8 26.8
XLS-R0.3B FF 26M 27.8 348 20.1 26.9 87 17.2 10.7 21.6

XLS-R 1B FF 64M 286 294 19.8 21.0 83 174 93 183

10 hours XLS-R 2B FF 64M 31.1 31.0 202 257 101 20.1 7.6 157
MMS 1B FF 64M 350 36.1 188 284 8.7 167 9.2 18.1

XLS-R 1B Conv 192M  28.6 27.7 198 24.2 83 174 173 139
XLS-R0.3B FF 26M 260 282 152 17.4 7.1 16.3 80 19.8

XLS-R 1B FF 64M 262 265 186 250 7.1 182 6.8 16.7

20 hours XLS-R 2B FF 64M 28.2 25.6 13.7 15.8 74 182 6.0 149
MMS 1B FF 64M 26.5 302 139 18.0 75 165 75 162

XLS-R 1B Conv 192M 262 265 18.6 15.4 7.1 182 6.2 14.7
XLS-R0.3B FF 26M 245 262 124 14.6 58 141 64 162

XLS-R 1B FF 64M 21.1 249 109 12.9 6.0 162 51 127

50 hours XLS-R 2B FF 64M 244 239 198 11.3 64 173 53 129
MMS 1B FF 64M 21.5 299 121 13.2 6.0 148 55 126

XLS-R 1B Conv 192M 211 252 109 12.6 6.0 162 51 128

Table 2: Evaluation of full fine-tuning (FT) and adapter-tuning (bottleneck with FF and ConvAdapt ap-
proaches) with XLS-R and MMS models for low-resource ASR in terms of WERs (%). Varied trainable
parameters (0.3B, 1B, 2B) in pre-trained ASR models are explored. Maltese, Bengali, and English (LibriSpeech)
are chosen, representing diverse language groups. Five training subsets ranging from 10 min to 50 hours are derived
from corresponding datasets. Test set results are provided, and CTC-based greedy decoding is employed.

Language ISO XLS-R pre-training data
English en 69493 hours
Maltese mt 9120 hours
Bengali bn 100 hours

Table 3: Number of hours of English, Maltese, and
Bengali untranscribed speech data used for pre-training
XLS-R (Babu et al., 2021).

effectively harnessing their potential.

Table 2 highlights that adapter-tuning provides
the most benefits for English ASR, while Bengali

ASR with adapters exhibits higher WERs across
all dataset sizes. Notably, XLS-R underwent pre-
training with 69,493 hours for English, 9,120 hours
for Maltese, and only 100 hours for Bengali as
shown in Table 3 (Babu et al., 2021). The subpar
performance of adapter-tuning in Bengali might be
attributed to its insufficient representation in the
pre-trained XLS-R model (See Table 1). However,
with increased Bengali labeled data (200 hours)
for adapter-tuning, performance substantially im-
proves over full fine-tuning (See Table 4).

For a mid-resource case (200 hours and 360
hours of training data), Table 4 illustrates that
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. dev set test set
Train dataset Approach clean other clean other
fine-tuning 18.8 - 16.3 -
BN - 200 hrs adapter-tuning 8.1 - 6.9 -
fine-tuning 6.4 17.9 5.8 15.7
EN-360hrs  japter-tuning 3.5 94 37 94

Table 4: Evaluation of fine-tuning and bottleneck adapter-tuning with XL.S-R 2B for moderately large amount of
data of 200 hours for Bengali (BN) and 360 hours for English (EN). Results are reported in terms of WERSs (%).

Laneuage Transfer learning dev set test set
guag in adapters clean other clean other
No 11.6 - 11.3 -
BN EN — BN 14.8 - 13.8 -
MT — BN 14.5 - 13.6 -
No 15.4 - 23.9 -
MT BN — MT 14.0 - 22.7 -
EN — MT 15.3 - 24.1 -
No 5.0 12.7 53 12.9
EN BN — EN 4.9 12.8 4.9 12.9
MT — EN 4.7 12.6 4.7 12.6

Table 5: Bottleneck adapters in XLS-R 2B are pre-trained with a 50-hour source language dataset, then fine-tuned
with an equivalent-sized target language dataset. The classification head dedicated to the source language is removed.
WERSs (%) on dev and test sets are reported. “Source language" — “target language" signifies knowledge transfer.

bottleneck adapter-tuning achieves notably lower
WERSs than fine-tuning for both Bengali and En-
glish, indicating its suitability for developing ASR
models with a moderate to large amount of data.
We underscore the significance of this finding for
the speech processing community.

Pre-training the adapters with a source language
shows a slight performance improvement for Mal-
tese and English ASR, yet the Bengali ASR perfor-
mance deteriorates when adapters are pre-trained
with a source language (See Table 5). We hypothe-
size that initializing adapters with weights from a
closely related source language could be advanta-
geous.

The standard bottleneck adapter, widely used in
computer vision and NLP, contains two FF layers.
We investigate the impact of increasing the number
of FF layers in each adapter block (See Figure
2), with an inner dimension of 256 and GELU
activation after each FF layer. Our results show that
using 6 FF layers in the adapter architecture yields
optimal performance across all three languages. It

is worth noting that increasing FF layers in adapters
elevates the number of trainable parameters, such
as from 64M for 2 FF layers to 102M for 6 FF
layers, although not significantly.

4 Conclusion and Future Scope

This study presents a comprehensive analysis of
parameter-efficient adapters for large pre-trained
speech models. We find that bottleneck adapters
are not suitable for few-shot learning, however,
they perform competitive to full fine-tuning when
at least 10 hours of data are available. Our pro-
posed ConvAdapt technique in Transformer lay-
ers is simple yet effective to deal with extremely
low-resource cases. In mid-to-high resource scenar-
ios, bottleneck adapter-tuning surpasses the widely
used full fine-tuning technique, signifying its con-
siderable impact in the field. Leveraging higher-
capacity models like XLS-R 2B significantly im-
proves adapter-based tuning, countering the over-
fitting challenge posed by large pre-trained mod-
els during full fine-tuning. Impressively, adapters
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Figure 2: Impact of increasing the number of FC layers in each bottleneck adapter, inserted into XLS-R 2B.

achieve strong performance with merely 2.96% of
total trainable parameters. The approach proves
better for languages with ample pre-training data.
Moreover, transfer learning within adapters bene-
fits Maltese and English, but not Bengali potentially
due to the lower amount of Bengali data used in pre-
training. Scaling adapters with six feed-forward
layers is optimal for all three languages.

We believe that our intriguing findings on
adapter-tuning showing remarkable potential for
both low-resource and mid/high-resource ASR
would encourage more research into this direction.
Future work includes exploring transfer learning
in adapters with closely-related languages and per-
forming multiple tasks using a single encoder.

5 Limitations

While this work provides novel findings applying
adapters for ASR, there exist some limitations. In
our experiments with pre-training adapters on the
source language and then finetuning on the target
language, we use three languages (Bengali, Mal-
tese, and English) that derive from distinct lan-
guage groups. However, using closely-related lan-
guage pairs, more performance gain is expected as
observed in different studies on transfer learning
(Baevski et al., 2020). Due to the limited scope, we
restrict this experiment to only the selected three
languages in this paper and leave it for future stud-
ies.
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