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Abstract

Large language model development relies on
the pre-train-then-align paradigm, in which the
model is typically pre-trained on a large text
corpus and undergoes a tuning stage to align
the model with human preference or down-
stream tasks. We investigate the relationship be-
tween pre-training and supervised fine-tuning
by considering multiple tasks as well as differ-
ent pre-trained model checkpoints. Our results
on 18 datasets and two models suggest that i) al-
though the model benefits significantly through
supervised fine-tuning, it may forget previously
known domain knowledge and tasks that are
not seen during fine-tuning; ii) the model ex-
hibits high sensitivity to evaluation prompts
after supervised fine-tuning, but this sensitivity
can be alleviated through further pre-training;
iii) continual pre-training improves the model
in a latent way that manifests after fi ne-tuning;
iv) The model can already solve some tasks
after pre-training, while fine-tuning most ben-
efits datasets where the model does not show
capability during pre-training. 1

1 Introduction

The rise of large language models (LLMs) as a
general-purpose tool for a diverse range of nat-
ural language processing tasks has dramatically
transformed the field, introducing new paradigms
for data collection and model training (Brown
et al., 2020, Biderman et al., 2023, Touvron et al.,
2023, Jiang et al., 2023, Chowdhery et al., 2023,
Groeneveld et al., 2024, Wang et al., 2024, in-
ter alia). Numerous models, training methods,
datasets, and evaluation methods continue to be
developed on an ongoing basis. Nevertheless, a
unified paradigm has emerged for training LLMs:

1Code, results, and data to repro-
duce the experiments are available at
github.com/KaiserWhoLearns/AmuroCharPTFTRelationship.
All the model checkpoints resulting from this work are avail-
able at huggingface.co/KaiserWhoLearns/PTvsSFT_OLMo1b

Figure 1: Illustration of the experimental scheme. In-
termediate pre-training checkpoints are fine-tuned on
different datasets.

pre-train on an enormous corpus of diverse docu-
ments, ranging from 250B (Biderman et al., 2023)
to 15T (AI@Meta, 2024) tokens, followed by an
alignment stage to make the model more useful and
performative for various tasks.

Based on this paradigm, work has focused on
improving these two stages. Work to improve pre-
trained models includes larger training sets (Hoff-
mann et al., 2022; AI@Meta, 2024; Touvron et al.,
2023), different data selection mechanisms (Xia
et al., 2024), higher quality data (Zhou et al., 2024),
and various model architectures (Su et al., 2024;
Touvron et al., 2023). Meanwhile, research on
model alignment includes different training objec-
tives (Rafailov et al., 2024; Schulman et al., 2017),
new datasets (Narayanan and Aepli, 2024), more
efficient training (Hu et al., 2021; Dettmers et al.,
2024) and safety tuning (Bianchi et al., 2023). The
alignment stage usually involves either supervised
fine-tuning for specific tasks or instruction fine-
tuning for general-purpose usage. Regardless, fine-
tuning (almost always) comes at the end of pre-
training and yields remarkable improvements on
downstream tasks (Touvron et al., 2023; Groen-
eveld et al., 2024). Consequently, the benefits of
each stage are largely explored independently, with
improvements to pretraining being orthogonal to
benefits from model alignment.

Rather than exploring these two training regimes
independently, we ask: What does the model learn
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and forget during pre-training and fine-tuning?
Specifically, how do pretraining and fine-tuning
interact to produce the resulting model? Does
more pre-training hinder better fine-tuning results?
Answering these questions requires us to exam-
ine how models learn during pre-training and how
this affects fine-tuning. Therefore, we begin by
fine-tuning two language models under a variety
of conditions to determine how fine-tuning affects
model behavior. We explore both supervised and
instruction fine-tuning, testing the models’ memo-
rization and forgetting when learning specific tasks
and serving as general-purpose language-AI tools.
We then explore the affect of pre-training on these
behaviors by fine-tuning multiple pre-training
checkpoints of a large language model (Figure 1),
evaluating each checkpoint and its fine-tuned vari-
ant on downstream evaluation sets. We track model
abilities during pre-training and compare them to
improvements achieved after fine-tuning at the cor-
responding pre-training step.2

Our experiments yield the following insights into
LLM training: (1) although supervised fine-tuning
can improve performance on in-distribution tasks,
it can also cause the model to forget domain knowl-
edge or tasks that it was previously capable of solv-
ing (§4); (2) fine-tuned models show high sensitiv-
ity to evaluation prompts, but this sensitivity can
be alleviated by more pre-training (§4); (3) contin-
ued pre-training can improve a model in ways that
are only revealed after fine-tuning (§6); (4) tasks
for which the model already performs well dur-
ing pre-training benefit much less from fine-tuning
than those where the model does not demonstrate
capabilities (§5, §6);

Our findings provide insights into model train-
ing and can inform methods for both pre-training
and fine-tuning. Furthermore, our work shows the
value of analyzing the training dynamics, in addi-
tion to analyzing the final checkpoint of an LLM,
as an aspect of interpretability, and we encourage
model developers to release these checkpoints to
aid future studies.

2 Background: Model Training

We use “model alignment” as a general term for
techniques that align a model with a desired behav-
ior, often accomplished by fine-tuning models after

2While we believe that we were the first to explore these
issues through intermediate model checkpoints, recently re-
leased work has also utilized pre-training checkpoints and are
highlighted in Section 8.

pretraining. The term is also associated with other
definitions (Shen et al., 2024).

We begin with a brief survey of the core com-
ponents of LLM training: pre-training, fine-tuning,
and instruction fine-tuning. The first step of train-
ing an LLM is pre-training on a massive text corpus
(Achiam et al., 2023; Touvron et al., 2023; Groen-
eveld et al., 2024). Initial work increased model
size to hundreds of billions of parameters (Brown
et al., 2020; Rae et al., 2021; Chowdhery et al.,
2023), along with explorations in model size, train-
ing corpus size, and training data characteristics
(Radford et al., 2019; Hoffmann et al., 2022; Gu-
rurangan et al., 2020). Other work increased the
amount of pre-training data (Computer, 2023; Sol-
daini et al., 2024), with new models now reaching
15 trillion tokens (AI@Meta, 2024).

After the pre-training stage, when a specific task
of interest has been identified, supervised fine-
tuning can improve a pre-trained model. Task-
agnostic tuning became popularized with the ad-
vent of T5 models (Raffel et al., 2020), where a
pre-trained LLM is tuned using a general text-to-
text solution. Instruction fine-tuning is preferred
when more general model behaviors are desired.
When multiple tasks are given to the model, the
model is commonly given a task-specific prefix or
an instruction along with the task input, leading
to the development of various methods of prefix
tuning (Li and Liang, 2021) and instruction tuning
(Wei et al., 2021; Mishra et al., 2022; Victor et al.,
2022).

Other works explore human preference tuning
with or without a reward model (Christiano et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Rafailov et al., 2024; Song
et al., 2024; Xu et al., 2024). In-context learn-
ing utilizes a small amount of supervised data to
improve model performance without updating the
parameters. In this work, we focus specifically on
single-task supervised fine-tuning and multi-task
instruction tuning.

3 Experimental Setup

In this section, we describe the models and datasets
used. The hyperparameter tuning procedure and
setup for each fine-tuning setting can be found in
Appendix B.

3https://huggingface.co/datasets/pietrolesci/gpt3_nli
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Supervised Fine-Tuning

Task Training ID Test OOD Test

Summary
Generation XSum XSum,

XLSum CNN

Question
Generation SocialIQa SocialIQA SciQ,

TweetQA

Natural Language
Inference MNLI MNLI1,

MNLI2
RTE,
GPT3NLI3

Paraphrase
Detection Paws Paws QQP,

STS-B

Instruction Tuning

Dataset Description

TÜLU-v2 A mixture of instruction datasets.
ARC Grade-school multiple-choice QA.
OpenbookQA Open book exam QA.
Hellaswag Commonsense inference.
BoolQ Reading comprehension.
SciQ Science exam multiple choice QA.

Table 1: Dataset information. For Generation tasks,
ROUGE-L is used as evaluation metric, and accuracy is
used for classification tasks. ID = In-domain, OOD =
Out-of-domain.

3.1 Model Choice

We consider two open models of different architec-
tures and scales: Llama3-8B (AI@Meta, 2024) and
OLMo-1B (Groeneveld et al., 2024). To minimize
potential confounding factors such as multilingual
ability and double descent (Belkin et al., 2019; Ca-
ballero et al., 2022; Schaeffer et al., 2023), we ex-
clusively select models predominantly pre-trained
in English and incorporate significantly more pre-
trained tokens than the number of parameters. We
do not include models trained in a multi-stage man-
ner to ensure uniformity of the tokens seen by the
model during pre-training. Some of our experi-
ments consider intermediate pre-training check-
points. We select checkpoints uniformly by the
number of tokens seen from the pre-training history
along with the first and the final checkpoints. Un-
fortunately, very few large language models release
intermediate pre-training checkpoints (summarized
in Table 2). Further consideration and reasoning of
model selection are included in Appendix A.

3.2 Training Procedure

We fully fine-tune each of the selected model check-
points using two different procedures to create
fine-tuned models: supervised fine-tuning and in-
struction tuning. The supervised fine-tuning is con-
ducted separately for each model checkpoint and
dataset, while the instruction fine-tuning is done

once using the instruction dataset. The instruction-
tuned model is evaluated on a suite of LLM bench-
marks. All experiments are conducted on two
Nvidia 80GB A100, with a total cost of approx-
imately 1100 GPU hours. The detailed number
of GPU hours consumed for each experiment is
included in Appendix E.

Supervised Fine-tuning. We adapt the datasets
from Yang et al. (2024) for supervised fine-tuning.
For each in-domain dataset, one to two cross-
domain evaluation datasets are supplied. OLMo-
1B is fully fine-tuned for 3 epochs with a batch size
of 8, while Llama3-8B is fine-tuned with a batch
size of 16 and 2 training epochs. Both models are
trained with learning rates resulting from minimal
hyperparameter tuning (Appendix B). Each task is
formatted using a default prompt-completion for-
mat (Table 5).

Instruction Fine-Tuning. We instruction-tune
the model on TÜLU (Ivison et al., 2023), following
the decision of Groeneveld et al., 2024. Each model
checkpoint is fully fine-tuned for 5 epochs with a
batch size of 8 and a learning rate of 2× 10−6.

3.3 Evaluation
For each model, we conduct a few-shot evaluation
with a shot size of 4, after examining with shot size
in {0, 2, 4, 6}.

Datasets. The datasets are summarized in Table
1 and data licenses are in Table 7. We evaluate
the model with an in-domain test set and one or
two out-of-domain test sets for each of the super-
vised fine-tuning tasks. We conduct experiments
on the tasks of summary generation (Narayan et al.,
2018; Hasan et al., 2021; Hermann et al., 2015),
question generation (Sap et al., 2019; Xiong et al.,
2019; Welbl et al., 2017), natural language infer-
ence (Williams et al., 2018; Wang et al., 2018; Da-
gan et al., 2006; Bar Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009), and para-
phrase detection (Zhang et al., 2019; Wang et al.,
2018; Agirre et al., 2007). We subsample 6,000
training instances for each set to ensure a fair com-
parison.

In instruction fine-tuning, we base our down-
stream evaluation settings on Groeneveld et al.
(2024), as OLMo is found to have stable per-
formance on these datasets. The instruction-
tuned models are evaluated on ARC (both arc
easy and arc challenge) (Clark et al., 2018),
OpenbookQA (Mihaylov et al., 2018), Hellaswag
(Zellers et al., 2019), BoolQ (Clark et al., 2019),
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Figure 2: Example of model performance with different task formats. The figure of all datasets can be found in
Figure 14.
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Figure 3: LLAMA3-8B performance with different task
format. Instruct and Default always lead to highest
evaluation results.

and SciQ (Welbl et al., 2017).
Metrics. We use accuracy (Pedregosa et al.,

2011) for classification tasks and ROUGE-L (Lin,
2004) for generation tasks. The maximum amount
of newly generated tokens is set to 5 for classifica-
tion tasks and 60 for generation tasks. Outputs are
generated with greedy decoding. For classification
tasks, we experiment with both constrained decod-
ing and logit-based predictions. We find the best
performance by selecting the label with the highest
logit of its first subtoken (Appendix C).

4 Supervised Fine-Tuning: What does the
model learn and forget?

We begin our analysis with the supervised fine-
tuning process to understand the downstream re-
sults of the training process. Specifically, we ex-
plore three dimensions: task format, task trans-
fer, and domain knowledge. In each case, we
fine-tune both final checkpoints and intermediate
pre-training checkpoints to understand the relation-
ship between pre-training and fine-tuning.

4.1 Task Format

LLMs can be extremely sensitive to prompt per-
turbation in few-shot settings (Sclar et al., 2023;

Leidinger et al., 2023; Salinas and Morstatter, 2024;
Wahle et al., 2024). We hypothesize that fine-
tuning fits the model to a specific task format, re-
sulting in higher performance when the evaluation
set matches this format. To test this hypothesis, we
vary the task format to either match the training for-
mat, use a different format, or rely on instructions.

We carefully construct three different prompt for-
mats for the following settings. 1) Default is the
same format used for training, where we expect the
model to benefit from learning the task format; 2)
IO format, by contrast, reflects a common way of
performing supervised fine-tuning by incorporating
only unprocessed input and output; 3) Instruct
uses a human-readable instruction template to for-
mat the input. Table 5 in the Appendix shows
an example of each format. The performance of
Llama3-8B with different task formats is shown
in Figure 3. Checkpoint performance on OLMo
before and after fine-tuning is shown in Figure 2.

Across both models, IO format leads to the least
favorable performance, as the only task-specific
information in this format is included in the eval-
uation shots. Model reports similar performance
when evaluated with the default and instruct
format, aligning with the findings in Hewitt et al.
(2024) that the models retain their instruction-
following ability after fine-tuning without instruc-
tions. However, in the early pre-training steps,
aligning the task format with fine-tuning data
plays a crucial role (Figure 2), suggesting that the
instruction-following ability has not yet been devel-
oped. In this view, fine-tuning teaches the model
how to format a response for the task, while
further pretraining enhances the instruction-
following ability. In other words, the instruction
provides a directed prior for the model to behave
in a certain way.
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Figure 4: Example of out-of-domain performance for
fine-tuned models. The solid blue line represents the
fine-tuned checkpoint evaluated on an out-of-domain
dataset, and the dashed orange line represents the base
checkpoint where the model is not fine-tuned. Figure 4a
shows an example of fine-tuning hurting OOD perfor-
mance, while Figure 4b shows an example of fine-tuning
boosting OOD performance as pre-traininng proceeds.

Question 
Generation

Summary 
Generation

NLI Paraphrase 
Detection

0.2

0.0

0.2

Figure 5: Ratio of out-of-domain performance change
for each task, averaged across checkpoints.

4.2 Domain Knowledge

We next explore how the domain-generalization
ability is affected by fine-tuning by inspecting
whether the model forgets the domain knowledge
after fine-tuning on a different domain. An ex-
ample of OOD model performance is shown in
Figure 4, and the mean ratio of change by datasets
is presented in Figure 5 and Figure 15.

The models do not benefit equally from the in-
domain fine-tuning: Llama shows subtle benefits
on question generation tasks, while not benefiting
at all on the other tasks (Figure 15). Across OLMo
training history (Figure 5), NLI datasets experi-
ence a boost when fine-tuning on MNLI, while fine-
tuning on Paws is detrimental to other paraphrase
detection datasets. This suggests that both forget-

ting and learning are happening in fine-tuning: the
model learns to perform the task with in-domain
knowledge, but it may, in turn, forget information
more distant from what is learned in fine-tuning.
Furthermore, under the same task, the amount
of general-purpose pre-training may not affect
the model’s reaction to out-of-domain knowl-
edge. Questions remain, however, about whether
domain-specific continual pre-training or contin-
ual pretraining on similarly distributed data would
bring different conclusions, which requires further
study of pre-training dynamics.

4.3 Task Transfer

Model forgetting occurs when model training on
new tasks improves those tasks at the expense of
previously trained tasks (Luo et al., 2023; Mehta
et al., 2023; Li and Lee, 2024). To understand
whether the model will forget a previously known
task solution when fine-tuned on a different one, we
evaluate model forgetfulness by examining whether
the model does worse on some tasks after fine-
tuning for other tasks. Specifically, we divide our
tasks into two types: classification and generation.

We notate the training datasets as DT and the
evaluation datasets as DE . We represent the per-
formance of a pre-trained model (BASE) on check-
point i as PerfiBASE(d) for an evaluation dataset
d ∈ DE , and the performance of the i-th check-
point fine-tuned on dataset t ∈ DT be Perfit(d).
To normalize the effect caused by uneven perfor-
mance across different datasets, we compute the
mean ratio of change (MRC) in performance for
each checkpoint as follows.

MRC = 1
|DE\{t}|

∑
∀d∈DE ,d ̸=t

Perfit(d)−PerfiBASE(d)

PerfiBASE(d)

(1)
Models fine-tuned on classification tasks and

evaluated on generation tasks decrease on aver-
age 61.4% compared to models that are never fine-
tuned. In contrast, models fine-tuned on generation
tasks can still perform the same as the BASE model
on classification tasks, with a 0.3% MRC, which
is not statistically significantly different from a 0%
change. Our findings on all pre-training check-
points align with the findings of Yang et al. (2024)
on the final checkpoint of LLAMA-7B and our ex-
periments on the final checkpoint of Llama3-8B
(Appendix G).

Regardless of the pre-training stage, a model
maintains classification abilities when trained
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Figure 6: Few-shot performance on different pre-training steps.

for generation but loses generation abilities
when trained for classification. This is not sur-
prising given that classification tasks can be seen as
a subset of generation, while the reverse is not true.
The model follows a simplicity bias (Shah et al.,
2020) and thus is more likely to memorize simple
classification tasks than generation tasks with an
exponentially larger search space. Additionally,
since we evaluate the classification tasks based on
the output logits and the base model performs ran-
domly on the classification tasks, it is much easier
for the models to maintain the same performance
as the BASE models. Regardless of the stage of
pre-training, fine-tuning can cause a model to lose
abilities when the desired fine-tuning behavior does
not support those abilities.

Across these three experimental settings, we
find that fine-tuning teaches a model how to per-
form a task without hurting the model’s instruction-
following ability, but can sacrifice generalization
across domains and tasks.

5 How does the model change across
pre-training?

Section 4.1 reveals that the effect brought by fine-
tuning could be different depending on the amount
of pre-training, but how exactly does pre-training
affect downstream fine-tuning results? We begin
by considering how additional pre-training changes
the BASE model. Typically, researchers track the
value of the training or held-out loss during training.
However, performance improvements on down-
stream tasks do not always follow the same trend
with the loss curves (Groeneveld et al., 2024).

Instead, we evaluate the pre-trained checkpoints
with few-shot examples, as models without align-
ment tend to do poorly in a zero-shot context. Four
shots are randomly sampled from the datasets,
which are selected based on the highest perfor-

mance shot amount reported in Yang et al. (2024).
The model’s performance at each pre-training step
is reported in Figure 6.

Broadly speaking, our results suggest that all
datasets fall into one of two groups. For the first
group of datasets (Figure 6a), although the model
shows clear improvement during the early stages
of pre-training, performance levels off fairly early
on and remains consistent. The dramatic improve-
ments in the early stages of pre-training may result
from larger steps in early optimization. We find im-
provements stop increasing past step 342,000. The
second group (Figure 6a) shows tasks that are never
learned during pre-training. Performance remains
constant throughout the whole pre-training process
even when we vary shot sizes. These datasets in-
clude MNLI, XSum, and BoolQ. A natural hypoth-
esis for this finding is potential data contamina-
tion in the pre-training data. However, the eval-
uation datasets are selected based on the popu-
larity of the task and the content of pre-training
data. All datasets that experience improvement do
not exist in the model’s pre-training data (Soldaini
et al., 2024), while the more likely leaked datasets
(MNLI, XSUM) never gain an improvement during
the pre-training process.

Overall, these results reveal an interesting di-
chotomy. Some tasks can be learned during pre-
training, while others cannot. Next, we explore
what exactly the model is learning regarding this
second group of datasets during pre-training by
exploring the fine-tuned models.

6 Does more pre-training yield better
fine-tuning results?

Groeneveld et al. (2024) compares OLMo’s perfor-
mance on several tasks before and after fine-tuning
the final checkpoint and finds that fine-tuning en-
ables the model to do well on tasks for which the
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(b) Hellaswag

Figure 7: Example of few-shot performance on different
pre-training steps of the models that benefited (7a) and
did not benefit from fine-tuning (7b). The solid blue line
represents the fine-tuned checkpoint, and the dashed
orange line represents the base checkpoint. The results
of all datasets can be found in Figure 10 and Figure 9.
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Figure 8: Amount of performance increase brought by
fine-tuning between tasks that model can solve in pre-
training (mandarin orange) and tasks that the model
could not solve until fine-tuning (sage green). The exact
number of mean increase is shown in Appendix J.

unaligned model does poorly. We observe (§5) that
while some datasets improved during pre-training,
there is a group of datasets for which a pre-trained
model does poorly. Does the model learn useful
information for these tasks but cannot express it
without fine-tuning? In this section, we further
explore this dataset dichotomy by examining fine-
tuned checkpoints for each of the datasets.

Our results appear in Figure 7 and Figure 8. First,
we consider those datasets where the pre-trained
models do well (Figure 6a). These datasets do not
improve with fine-tuning, suggesting that whatever
is learned during fine-tuning, which we discuss be-
low, the model already gains the knowledge during
pre-training. This effect is observed at all check-
points; fine-tuning simply does not help.

However, a different story is observed for
datasets that are not learned during pre-training.
For these, fine-tuning yields significant improve-

ments at every model checkpoint, with Figure 8
showing the magnitude of improvement on these
datasets compared to no improvement to the
datasets already learned during pre-training. More-
over, earlier checkpoints obtain more substantial
gains from fine-tuning than later checkpoints. The
benefit of fine-tuning continues to increase until a
certain threshold in pre-training steps is reached
(approximately 424,000). Figure 7 shows represen-
tative plots comparing the performance of a pre-
trained versus fine-tuned model at different check-
points for two datasets (full list in Appendix F).
For Hellaswag (learned during pre-training), fine-
tuning does not benefit the model, even during
early checkpoints when the model performs poorly
on the task. Nevertheless, for MNLI (not learned
during pre-training), fine-tuning dramatically im-
proves the model. Interestingly, later checkpoints
achieve better results after fine-tuning, even when
the performance of the pre-trained model is un-
changed. This suggests that the model is, in fact,
improving during pre-training, but it cannot
express that improvement without fine-tuning.

Our findings suggest that early stopping in pre-
training will not be detrimental to downstream
fine-tuning performance. When the budget is lim-
ited, the benefits of fine-tuning an LLM could ex-
ceed the benefits of continued pretraining, which
sheds light on the potential of a cost-effective train-
ing paradigm with less pre-training. However, di-
rectly identifying such stopping criteria without
fine-tuning intermediate checkpoints is challeng-
ing. We only empirically observed that the point
where more pre-training lead to diminishing return
on downstream fine-tuning results approximately
align with the turning point of few-shot perfor-
mance in Section 5. Without such a hypothesis, the
improvement trend is invisible before fine-tuning
the checkpoints. Overall, when resource-intensive
pre-trained LLMs are not available, fine-tuning
models on checkpoints with less pre-training may
be a reasonable practical choice for obtaining a
high-quality model.

7 Discussion

Our study fine-tunes model pre-training check-
points to understand the dynamics of pre-training
and fine-tuning on model performance.

Fine-tuning teaches additional task format but
leads to forgetting unused abilities. Our results
show that fine-tuning guides the model to under-
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stand the format and complete a given task. As this
information diminishes, the model’s overall ability
improves. Additionally, more pre-training will lead
to a model that reacts better to instruction-style
prompts, and the ability to interpret such instruc-
tion will not be lost when the model is fine-tuned
in a different format. However, fine-tuning comes
at the expense of other model abilities, such as the
capability of solving tasks or domains that are unre-
lated or weakly related to the fine-tuning task. This
insight can be helpful in our understanding of the
multitask abilities of LLMs, where certain tasks
can introduce conflicts during multi-task training
(Mueller et al., 2022).

Some datasets can be learned without fine-
tuning. We discover a dichotomy between datasets.
Some are learned during model pre-training, while
others show no improvements during pre-training.
Furthermore, the datasets learned during pre-
training do not benefit from fine-tuning. This ob-
servation, combined with our study about what is
learned during fine-tuning (§4) suggests that some
tasks are presented in a manner that aligns with
what the model sees during pre-training, and thus
fine-tuning provides no additional information. It
may be possible to modify tasks to better align with
pre-training and thus make them learnable.

Pre-training can improve models in unseen ways.
Some datasets are not learned during pre-training
but benefit significantly from fine-tuning (§5).
However, these datasets still benefit from addi-
tional pre-training, even though those benefits are
not revealed without fine-tuning (§6). The model
learns important information to solve the task, even
though it cannot express that information without
fine-tuning. We empirically observe that the point
where more pre-training lead to diminishing return
on downstream fine-tuning results approximately
align with the turning point of few-shot perfor-
mance in Section 5. Future work may identify
ways to verify the turning point and detect these
improvements during pre-training, which can better
guide pre-training choices to produce models that
perform better post-fine-tuning. Perhaps there is a
way in which information about these tasks can be
included in pre-training, allowing the model to bet-
ter utilize the massive amount of pre-training data.
For example, early stopping during pre-training
could lead to better utilization of limited training
resources if we know when to stop.

8 Related Work

Recent studies identify phase transition of model
training (Olsson et al., 2022; Wei et al., 2022),
where new capabilities or behaviors suddenly
emerge when certain thresholds of model complex-
ity are reached. The aspects of complexity often
include model size, amount of training by FLOPs
or tokens, and model architecture. Several prior
works studied the training dynamics of language
models by analyzing the internals of train-from-
scratch models (Tirumala et al., 2022; Chen et al.,
2023; Tian et al., 2023; Chen et al., 2024; Chang
et al., 2024). The results of these works suggest
that the behaviors that are often overlooked after
training could be valuable signals for model analy-
sis. In addition to train-from-scratch models, Ren
and Sutherland (2024) studied the fine-tuning dy-
namics of language models. This work focuses on
the effect of pre-training dynamics on downstream
fine-tuning results by fine-tuning intermediate pre-
training checkpoints on various tasks. Due to the
scarcity of publically accessible intermediate pre-
training checkpoints, the effect of fine-tuning at
different pre-training stages is largely unexplored.
Concurrent work (Snell et al., 2024) also fine-tunes
intermediate pre-training checkpoints and finds that
supervised fine-tuning results can be used as a
signal to predict when emergence occurs, while
our findings point out a dichotomy of model be-
havior on different datasets, with the potential for
data-efficient and budget-friendly training by un-
derstanding the stages of model training.

9 Conclusion

We explore the relationship between fine-tuning
and pre-training LLMs through fine-tuning mul-
tiple pre-training checkpoints of large language
models. Our results on 18 datasets and two models
provide insights into LLM training. We identify
the aspects that LLM learns and forgets during su-
pervised fine-tuning; By analyzing pre-training his-
tory, we find that pre-training improves the model
in a latent way that is only observable after fine-
tuning. The model may excel at some tasks without
fine-tuning. However, the model can rapidly learn
datasets that it does not demonstrate capabilities
during pre-training with a small amount of super-
vision. Overall, our study highlights the value of
analyzing language model training dynamics. We
encourage model developers to release pre-training
checkpoints to facilitate research on LLM training.
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Limitations

While our insights suggest directions for future
work, we note important limitations inherent in
our experiments. We discuss the weaknesses and
limitations in the following section.

Computing Resource. Due to computational
constraints, we can only conduct checkpointing
experiments on a 1B model. We supply the final
checkpoint of an 8B model to verify the findings
that are shared across checkpoints. The amount of
GPU hours spent for each experiment in this study
is listed in Table 4.

Model Size and Variant. For the analysis with
intermediate checkpoints, this study considered a
single, relatively small LLM, which may, therefore,
conceal the emergent capability brought by larger
models (Wei et al., 2022). To combat this, we
include the final checkpoint of an 8B model from
a different model family. Future work needs to
confront these issues on larger models and more
datasets.

Availbility of Pre-training Checkpoints. Al-
though Choshen et al. (2024) points out that the
behavior of a model can often be predicted with
a model with the same architecture but a differ-
ent family. This study would benefit significantly
from including a broader spectrum of models, but
the public pre-training checkpoint releases are lim-
ited. We list open-source LLMs with intermediate
checkpoint release in Appendix A. After a series of
preliminary experiments, we select available mod-
els’ best-performing and robust families.

Analysis Protocol. Wu et al. (2023) show that
the evaluation result may be affected by samples
that have been memorized by the model during
training instead of revealing the reasoning capabil-
ity. The only analysis protocol used in this work
is the downstream performance of a trained model.
More investigation should be done into model in-
ternals during pre-training dynamics and how they
relate to the effects of fine-tuning.

Training Paradigm. Although multiple tun-
ing strategies exist, to create a fair comparison
environment where checkpoints receive the same
amount of training, models are fine-tuned with a
fixed amount of epochs in this work. On different
pre-training stages, the model may converge at a
different speed. Further study can be done to study

the effect of pre-training on different fine-tuning
methods or fine-tuning dynamics in different pre-
training stages. We only explored the scenario
of full-parameter fine-tuning. Whether parameter-
efficient fine-tuning or human preference tuning
will lead to a different conclusion also remains an
open question.

Randomness. In this study, we only assess un-
certainty with Bootstrap during evaluation. How-
ever, uncertainty may emerge during training,
which poses optimizer initialization and data or-
dering, the study of which requires an extensive
amount of computing resources.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Alina Leidinger, Robert Van Rooij, and Ekaterina
Shutova. 2023. The language of prompting: What lin-
guistic properties make a prompt successful? arXiv
preprint arXiv:2311.01967.

Chen-An Li and Hung-Yi Lee. 2024. Examining for-
getting in continual pre-training of aligned large lan-
guage models. arXiv preprint arXiv:2401.03129.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

LLM360. 2024. K2 blog release.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar,
and Emma Strubell. 2023. An empirical investiga-
tion of the role of pre-training in lifelong learning.
Journal of Machine Learning Research, 24(214):1–
50.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

David Mueller, Nicholas Andrews, and Mark Dredze.
2022. Do text-to-text multi-task learners suffer from
task conflict? In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 2843–
2858, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Manu Narayanan and Noëmi Aepli. 2024. A Tulu re-
source for machine translation. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 1756–1767,
Torino, Italia. ELRA and ICCL.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

141

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://www.llm360.ai/blog/several-new-releases-to-further-our-mission.html
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.findings-emnlp.206
https://doi.org/10.18653/v1/2022.findings-emnlp.206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://aclanthology.org/2024.lrec-main.155
https://aclanthology.org/2024.lrec-main.155


F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Yi Ren and Danica J Sutherland. 2024. Learn-
ing dynamics of llm finetuning. arXiv preprint
arXiv:2407.10490.

Abel Salinas and Fred Morstatter. 2024. The butterfly
effect of altering prompts: How small changes and
jailbreaks affect large language model performance.
arXiv preprint arXiv:2401.03729.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463–
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Rylan Schaeffer, Mikail Khona, Zachary Robertson,
Akhilan Boopathy, Kateryna Pistunova, Jason W
Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. 2023.
Double descent demystified: Identifying, interpret-
ing & ablating the sources of a deep learning puzzle.
arXiv preprint arXiv:2303.14151.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan,
Prateek Jain, and Praneeth Netrapalli. 2020. The
pitfalls of simplicity bias in neural networks. Ad-
vances in Neural Information Processing Systems,
33:9573–9585.

Hua Shen, Tiffany Knearem, Reshmi Ghosh, Kenan
Alkiek, Kundan Krishna, Yachuan Liu, Ziqiao Ma,
Savvas Petridis, Yi-Hao Peng, Li Qiwei, Sushrita
Rakshit, Chenglei Si, Yutong Xie, Jeffrey P. Bigham,
Frank Bentley, Joyce Chai, Zachary Lipton, Qiaozhu
Mei, Rada Mihalcea, Michael Terry, Diyi Yang,
Meredith Ringel Morris, Paul Resnick, and David
Jurgens. 2024. Towards bidirectional human-ai
alignment: A systematic review for clarifications,
framework, and future directions. arXiv preprint
arXiv:2406.09264.

Aaditya K Singh and DJ Strouse. 2024. Tokenization
counts: the impact of tokenization on arithmetic in
frontier llms. arXiv preprint arXiv:2402.14903.

Charlie Snell, Eric Wallace, Dan Klein, and Sergey
Levine. 2024. Predicting emergent capabilities by
finetuning. arXiv preprint arXiv:2411.16035.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
et al. 2024. Dolma: An open corpus of three tril-
lion tokens for language model pretraining research.
arXiv preprint arXiv:2402.00159.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18990–18998.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Kaiser Sun, Peng Qi, Yuhao Zhang, Lan Liu, William
Wang, and Zhiheng Huang. 2023. Tokenization con-
sistency matters for generative models on extractive
NLP tasks. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 13300–
13310, Singapore. Association for Computational
Linguistics.

142

https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887


Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang,
William Marshall, Bhargav M Kanakiya, Joel Hest-
ness, Natalia Vassilieva, Zhiqiang Shen, Eric P Xing,
et al. 2024. Crystal: Illuminating llm abilities on lan-
guage and code. arXiv preprint arXiv:2411.04156.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S
Du. 2023. Scan and snap: Understanding training dy-
namics and token composition in 1-layer transformer.
Advances in Neural Information Processing Systems,
36:71911–71947.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. Advances in Neural Informa-
tion Processing Systems, 35:38274–38290.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Sanh Victor, Webson Albert, Raffel Colin, Bach
Stephen, Sutawika Lintang, Alyafeai Zaid, Chaffin
Antoine, Stiegler Arnaud, Raja Arun, Dey Manan,
et al. 2022. Multitask prompted training enables zero-
shot task generalization. In International Conference
on Learning Representations.

Jan Philip Wahle, Terry Ruas, Yang Xu, and Bela Gipp.
2024. Paraphrase types for generation and detection.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
2024. Helpsteer2: Open-source dataset for train-
ing top-performing reward models. arXiv preprint
arXiv:2406.08673.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2023. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint
arXiv:2307.02477.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulka-
rni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and
William Yang Wang. 2019. TWEETQA: A social
media focused question answering dataset. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5020–
5031, Florence, Italy. Association for Computational
Linguistics.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024. Contrastive prefer-
ence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu,
Pheng Ann Heng, and Wai Lam. 2024. Unveiling
the generalization power of fine-tuned large language
models. arXiv preprint arXiv:2403.09162.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.

143

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/P19-1496
https://doi.org/10.18653/v1/P19-1496
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/N19-1131


In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A Model and Data Selection

Only a small subset of large language models pub-
licly release their intermediate training checkpoints.
We list these models in Table 2 and would like to
call for model developers to release intermediate
checkpoints in the future to aid the research of train-
ing dynamics. To reduce the confounding factor
of language and stages of training, we select the
models that are dominantly trained in English and
followed a single-staged training strategy. Only the
models pre-trained with significantly more tokens
than the model parameters are considered to avoid
the occurrence of double descent (Belkin et al.,
2019; Schaeffer et al., 2023) in the middle of pre-
trianing, which could lead to a broken scaling law
(Caballero et al., 2022) that complicates the analy-
sis. Additionally, we restrict our selection to mod-
els pre-trained on over one trillion tokens, thereby
ensuring a sufficiently extended training trajectory
is represented. We conduct initial experiments with
OLMo and RedPajama-INCITE. We observe that
the RedPajama-INCITE shows subtle improvement
following instruction-tuning or fine-tuning, and its
7B variant shows lower performance compared to
OLMo 1B. Therefore, we select OLMo 1.0 1B as
the backbone for analysis.

During this study, several recent initiatives re-
leased the intermediate checkpoints. We also list
these works in Table 2.

B Hyperparameter Tuning

For both supervised fine-tuning and instruction tun-
ing, we pre-set the effective batch size to 8, and
tune the learning rate within {2× 10−5, 2× 10−6,
2 × 10−7}. OLMo-1B is fine-tuned for 3 epochs
on the supervised fine-tuning tasks and 5 epochs

on Tulu for instruction tuning. Llama3-8B is fine-
tuned for 2 epochs with a learning rate of 5×10−6,
with learning rate selected from {5 × 10−5, 5 ×
10−6, 5 × 10−7}. In both settings, we adopt an
AdamW optimizer with a linear learning rate sched-
uler. The optimizer is warmed up for the first 3%
of the training time.

C Prediction Generation Method

For classification tasks, we examine three different
prediction generation methods: Free Generation
(Free), Constrained Generation (Constrained),
and Token Probability (TokenProb), the results are
shown in Table 3. In Constrained, we force the
output to include at least one label in the acceptable
label set. In TokenProb, we compare the logits of
acceptable labels and select the label with the high-
est score as the final output. This ablation study
is conducted only on the BASE and fine-tuned
versions of the final checkpoint of the pre-trained
model. We find that, although prediction gener-
ation methods have less effect on the evaluation
result of a fine-tuned model, BASE variants suffer
much more from not knowing the desired output.
Therefore, we proceed with all the classification
experiments with TokenProb.

C.1 Label and Tokenizations

Depending on the tokenizer variant, the label text
may be tokenized differently, leading to evaluation
unreliability. For example, in paraphrase detection,
the model could assign probability on both “yes"
and “ yes" (the same label with a prefix space).
This behavior is reported and explored in various re-
lated work (Sun et al., 2023; Batsuren et al., 2024;
Singh and Strouse, 2024). In this study, we le-
niently regard all individual tokens that contain the
whole label or part of the label along with some
special characters that do not affect the semantics
as an acceptable target label.

D Task Format

We adopt the task format from (Yang et al., 2024),
with an additional task format of input-output. How
each dataset is formated can be found in Table 5.

E GPU Hours per-Experiment

We show a table of GPU hours spent for each exper-
iment in Table 4. The total number of GPU hours
spent on this project is approximately 1067 A100
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Pythia OpenLLAMA K2 (LLM360) Crystal (LLM360) Baichuan2

Citation Biderman et al., 2023 Geng and Liu, 2023 LLM360, 2024 Tao et al., 2024 Yang et al., 2023

Size (Param)

70M, 160M,
410M, 1B,
1.4B, 2.8B,
6.9B, 12B

3B, 7B 65B 7B 7B, 13B

Languages English English English English English & Chinese

Pre-trained
Tokens 300B 1T 1.4T 1300B 2.6T

Note - - Multi-phase
pre-training

Multi-phase
pre-training -

OLMO-2 OLMO TinyLLaMA RedPajama-INCITE Bloom

Citation Ai2, 2024 Groeneveld et al., 2024 Zhang et al., 2024 Computer, 2023 Le Scao et al., 2023

Size (Param) 4T, 5T 1B, 7B 1B 7B 176B

Languages English English English English Multilingual

Pre-trained
Tokens 7B, 13B 3T, 2.5T 3T 1.2T 366B

Note Multi-phase
pre-training -

BOS Token leads
to training history
inconsistency.

Poor
fine-tunablity -

Table 2: Large language models with public release of intermediate pre-training checkpoints. All models are under
Apache 2.0 license.

Dataset Model Free Constrained TokenProb

MNLI Fine-tuned 0.786 0.791 0.792
BASE 0.0 0.0 0.327

RTE Fine-tuned 0.658 0.662 0.66
BASE 0.0 0.0 0.241

Paws Fine-tuned 0.871 0.878 0.878
BASE 0.0 0.0 0.558

STS-B Fine-tuned 0.775 0.741 0.744
BASE 0.0 0.0 0.964

Table 3: Performance of final checkpoint with different
prediction generation method.

hours. We lose track of the GPU hours spent on pre-
liminary experiments, so a lower-bound estimation
is reported.

F Per-dataset Figures

We show the model performance on each dataset
after supervised fine-tuning and instruction tuning
correspondingly in Figure 10 and Figure 9. The
datasets that already show improvement during pre-
training do not benefit from fine-tuning, while per-
formance improves drastically on the datasets that
the model has never learned during pre-training.

Out-of-domain Generalization The out-of-

domain performance for each dataset with respect
to pre-training steps is shown in Figure 11. Over-
all, the model generalizes well after fine-tuning on
NLI tasks, while its performance deteriorates when
evaluated on out-of-domain paraphrase detection
tasks.

Cross-task Generalization The cross-task per-
formance for each dataset with respect to pre-
training steps is shown in Figure 12 and Figure 13.

Task-Format The performance of models on
evaluation sets formatted with different prompt for-
matting methods is shown in Figure 14.

G Llama3-8B Results

To provide more evidence of the findings on a
different model architecture and size, we con-
duct some experiments on the final checkpoint of
Llama3-8B.

Task Transfer Similar to our findings with
OLMo, Llama3-8B fine-tuned on classification
tasks and evaluated on generation tasks decreases
on average 61.0% compared to models that are
never fine-tuned. In contrast, models fine-tuned
on generation tasks perform similarly to the BASE
model on classification tasks, with a 10.6% MRC.
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Prelinminary Experiments

Description GPU Hours

Instruction Tuning on LIMA, TULU, and NaturalInstructions ∼300
Model Performance Verification, Dataset Selection 120

Instruction Tuning

Instruction Tuning 360
Evaluation 10
Total 370

Fine-Tuning

XSum SocialIQa MNLI Paws

Training 12 6 4.6 5.3
Evaluation 8 5.3 3 2

OOD Evaluation 96 32 11 25.6
CrossTask Evauation 5.2 6.5 7.7 8.15

Task Format Evaluation 16 12.8 6 4
Total 137.2 + 62.6 + 32.3 + 45 = 277.1

Table 4: GPU hours for each experiment. The total amount of GPU hours spent in this project is approximately
1067 A100 hours.
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Figure 9: Model performance after instruction tuning on each pre-training step.

Domain Knowledge The ratio of out-of-domain
performance change by task is shown in Figure 15.
Overall, we observe that Llama and OLMo experi-
ence benefits with different tasks after fine-tuning,
but both model shows an inconsistent change
across tasks.

H License of Artifacts

We include the license of artifacts used in this paper
in Table 7

I Full Performance Table

Due to the availability of space and the amount
of fine-tuned checkpoints, we omit displaying all
exact metric values in the paper. The performance
of each fine-tuned variant on each dataset can be
found in the csv file under directory results in
the code base.

J Performance Difference Numbers

The average performance change before and after
fine-tuning for each checkpoint is shown in Table 6.
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Figure 10: Model performance after supervised fine-tuning on each pre-training step.
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Figure 11: Out-of-domain performance after supervised fine-tuning on each pre-training step.

The data in this table is used to create Figure 8.

K Generalization Taxonomy

Following the generalization taxonomy in Hupkes
et al. (2023), the evaluation card is included in
Table 8.
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(f) XSum -> Paws

Figure 12: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a classification task and evaluated on a generation task or a classification task with a different label set.
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Figure 13: Cross-task performance after supervised fine-tuning on each pre-training step. The model is fine-tuned
on a generation task and evaluated on a classification task.
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Task Default Prompt Instruction Prompt IO Prompt Expected Output

Summary
Generation

### Input: {document}
### Summary:

Please read the following text: {document}
Provide a summary: {document} {summary}

Question
Generation

### Input: {context}
### Answer: {answer}
### Question:

Given the context: {context}
And the answer: {answer}
Generate a suitable question:

{context}
{answer} {question}

Natural Language
Inference

### Input_1: {premise}
### Input_2: {hypothesis}
### Inference:

Consider the following texts: Text 1: {premise}
Text 2: {hypothesis} The relation is

{premise}
{hypothesis} {label}

Paraphrase Detection
### Input_1: {sentence1}
### Input_2: {sentence2}
### Paraphrase Classification:

Let’s compare the two sentences:
Sentence_1: {sentence1}
Sentence_2: {sentence2} Are they paraphrasing?:

{sentence1}
{sentence2} {label}

Table 5: Formatting of the prompts
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Figure 14: Model performance with different task formats.
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Checkpoint Learned in
Pre-train

Learned in
Fine-Tune

1000 0.048 0.062
18000 0.048 0.149

342000 0.004 0.286
424000 0.01 0.297
505000 0.03 0.304
592000 0.027 0.297
738000 0.021 0.264

main -0.005 0.290

Table 6: Average performance change before and af-
ter fine-tuning for each checkpoint (Perf(Fine-tuned) -
Perf(BASE)). The group that is never learned during pre-
training is picked up by the model during fine-tuning.

Question 
Generation

Summary 
Generation

NLI Paraphrase 
Detection

0.0

0.1

Figure 15: Ratio of out-of-domain performance change
for each task on the final checkpoint of LLAMA3-8B.
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Name License Name License

OLMo-1b Apache 2.0 SocialIQa CC-BY
TULU ODC-BY CNN/DailyMail Apache 2.0
ARC CC BY-SA TweetQA CC BY-SA-4.0

OpenbookQA Apache 2.0 MNLI CC-BY-3.0
Hellaswag MIT GPT3NLI MIT

BoolQ Apache 2.0 RTE N/A
SciQ CC-BY-NC-3.0 Paws Free

XSum MIT QQP Non-Commercial
XLSum CC-BY-NC-SA 4.0 STS-B Other

Table 7: License of artifacts used in this paper.

Motivation
Practical Cognitive Intrinsic Fairness
□ △

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

△ □
Shift type

Covariate Label Full Assumed
□ △

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□ △
Shift locus

Train–test Finetune train–test Pretrain–train Pretrain–test
□ △

Table 8: Generalization experiment summary following taxonomy in Hupkes et al. (2023).
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