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Abstract

Neural fuzzy repair (NFR) is a simple
implementation of retrieval-augmented
translation (RAT), based on data augmen-
tation. In NFR, a translation database is
searched for translation examples where
the source sentence is similar to the sen-
tence being translated, and the target side
of the example is concatenated with the
source sentences. We experiment with in-
troducing retrieval that is based on target
similarity to NFR during training. The
results of our experiments confirm that
including target similarity matches dur-
ing training supplements source similarity
matches and leads to better translations at
translation time.

1 Introduction

Retrieval-augmented translation (RAT) is a fam-
ily of machine translation (MT) approaches where
an MT system has access to translation examples
when generating a translation for a source sen-
tence. The translation examples are usually re-
trieved from a translation database based on sim-
ilarity with the current translation context, which
can be either the source sentence alone or a com-
bination of the source sentence and the transla-
tion that has been generated so far. The similar-
ity between the translation context and the transla-
tion examples from the database can be measured
using lexical methods, such as edit distance and
longest matching N-gram, or based on the distance
between the vector representations of the example
and the translation context. The intuition behind
RAT is that the MT system can, given an unseen
source sentence, use the retrieved matches as addi-
tional information when constructing a translation.
This supports the translation task, as the MT sys-
tem no longer has to rely solely on the informa-
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tion embodied in the neural network, and differ-
ent RAT methods have been shown conclusively
to improve MT quality (see for example Bulte and
Tezcan (2019), Khandelwal et al. (2021)).

This article focuses on a variant of RAT based
on augmenting data with lexical matches, first dis-
cussed in Bulte and Tezcan (2019), called Neu-
ral Fuzzy Repair (NFR). Our work further devel-
ops NFR by incorporating translation examples
that have been retrieved based on target instead
of source similarity. We also test how annotating
source sentences with the similarity levels of the
translation examples affects quality.

2 Related work

Many RAT approaches draw inspiration from re-
trieval methods that have been used in profes-
sional translation from the 1960s onward. The
three main traditional forms of retrieval in pro-
fessional translation (Hutchins, 1998) are termi-
nology lookup from a terminology database, full
segment fuzzy match retrieval from a translation
memory (usually based on edit distance), and con-
cordance search from a translation memory (re-
trieving translation pairs based on the occurrence
of a particular substring on the source side). In re-
cent decades, various subsegmental retrieval meth-
ods have also been introduced (Flanagan, 2014).

In MT research prior to the adoption of neural
machine translation (NMT), the concept of retriev-
ing translation examples based on source similar-
ity and the construction of new translations from
the retrieved examples was first proposed in the
1980s in the form of example-based MT (Nagao,
1984). In statistical MT, retrieving parts of exist-
ing translations from translation tables in order to
generate new translations was a core component of
MT systems, and there were also attempts to inte-
grate translation memory retrieval more directly in
a manner resembling RAT (Koehn and Senellart,
2010).
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Within NMT, various RAT methods have been
proposed. They can be roughly divided into
three categories, depending on whether they are
based on purpose-built neural network architec-
tures, data augmentation, or changes in the de-
coder component of the MT system.

Gu et al. (2017) introduces the first NMT archi-
tecture designed for RAT: translation examples are
retrieved from a translation database based on sen-
tence similarity, and the attention component of
the MT system is extended to cover the retrieved
examples. Bapna and Firat (2019) uses a simi-
lar architecture-based approach, but uses N-gram-
and vector-based retrieval to increase the amount
of matches. Hoang et al. (2022) attempts to control
the source-match interactions by encoding each
retrieved match separately with the source sen-
tence.

RAT based on data augmentation was intro-
duced in Bulte and Tezcan (2019), where source
sentences are concatenated with target translations
from translation examples that are retrieved from
the translation database with lexical matching. Xu
et al. (2020) extends the lexical matching to sep-
arate relevant and irrelevant target tokens by us-
ing word alignment data, and also utilizes matches
based on vector similarity. Concatenation-based
data augmentation methods are also used to con-
strain MT output to contain terms from a termi-
nology database (Dinu et al., 2019), which can be
considered a form of RAT.

Decoder-based RAT has the advantage of being
usable with any NMT model, since the model pa-
rameters and architecture are not changed. One
early implementation utilized phrase tables from
SMT systems (Dahlmann et al., 2017). Currently,
the most prominent form of decoder-based RAT is
kNN-MT (Khandelwal et al., 2021), which gener-
ates a datastore consisting of pairs of translation
contexts and output tokens. When generating the
next token of a translation, the decoder searches
for similar translation contexts based on vector
similarity, and utilizes the output tokens corre-
sponding to the most similar translation contexts
in generating the next token.

Neural RAT has also been implemented with
large language models (LLM) (Moslem et al.,
2023) using in-context learning (ICL), where the
LLM is prompted with the retrieved examples.
Bouthors et al. (2024) compare LLM-based RAT
with NFR, and NFR seems to have a clear quality
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advantage, although more advanced LLMs may
have better results.

3 NFR with lexical matches

In NFR, the source language sentences in the
training data are concatenated with target lan-
guage sentences. The concatenated target lan-
guage sentences originate from translation exam-
ples, where the source sentence is similar to the
source sentence in the training data by some sim-
ilarity measure. The concatenated target language
sentences are separated from each other and the
source sentence with a special symbol, and maxi-
mum amount of examples per sentence is usually
limited to 3 (see Table 1 for examples).

NFR has been implemented using both lexical
and vector-based retrieval methods (Tezcan and
Bulté, 2022). It is easier to conceptualize with lex-
ical retrieval methods, since there is a clear mecha-
nism for utilizing the retrieved matches: find parts
of the retrieved translation that match the parts of
the new source sentence, and copy them to the new
translation. Note that this copy behaviour has to be
selective in two ways:

1. Match selection: The MT system may be
provided with irrelevant or contradictory ex-
amples (if the system is designed to support
multiple translation examples), so the system
must be able to discard examples or to se-
lect the most appropriate one amongst mul-
tiple valid examples.

2. Sub-sentential selection Given relevant
translation examples, the MT system has to
identify the parts of the examples that can
be exploited for constructing new translations
and then adapt them correctly.

With vector-based retrieval methods, the mech-
anism for utilizing the matches is more murky,
as there is often no lexical similarity with the re-
trieved translations and any acceptable translation
for the new source sentence. Xu et al. (2020)
found that using vector-based matches improves
translation quality (although not by as much as
lexical matches), and they hypothesize that vector-
based matches improve quality by providing con-
text during translation.

One issue, which is not explored in the ex-
isting research literature, is how a RAT system
actually learns to utilize the retrieved matches.



Fuzzies | Augmented source sentence

2 Turvallisuutta

1 Tuensaajia - F UZZYBREAK There are _

Kiéyttovarmuutta _ FUZZYBREAK |Security _

FUZZYBREAK

3 Toimivaltaisen viranomaisen | tehtdvét ja velvollisuudet FUZZYBREAK

Vilimiesten | tehtdvit ja velvoitteet FUZZYBREAK
HRE:n  tehtdvét ja velvollisuudet FUZZYBREAK
Duties and obligations of children

Table 1: Source sentences (the English sentence after the last FUZZYBREAK delimiter symbol) aug-
mented with 1 to 3 target sentences from similar translation examples (Finnish sentences separated by
the delimiter symbols). Highlighted text indicates matching source and target portions.

For instance, for the MT model to learn the sub-
sentential selection behaviour associated with lex-
ical matches, it would seem necessary for the
training data to contain examples consisting of a
source sentence, one or more translations from
retrieved translation examples, and a target sen-
tence containing parts of those retrieved transla-
tions. However, in the existing RAT literature, the
matches are retrieved based on source similarity,
with no concern for whether any part of the tar-
get sides of the matches are actually present in the
translations of the training data. The only article
in which the target side similarity of the retrieved
examples is discussed is Xu et al. (2020), where
in one experiment source-side matches are re-
ranked according to target-side similarity. Other-
wise, there seems to be an implicit assumption that
source-side similarity implies target-side similar-
ity. However, most naturally occurring sentences
have billions of possible translations (Dreyer and
Marcu, 2012). Even though most of those possible
translations are slight variations of other transla-
tions, for most sentences there is a large amount of
valid translations that are meaningfully different
both lexically and syntactically, as is demonstrated
by the literature on increasing output diversity in
machine translation (see for instance Roberts et al.
(2020)).

This diversity in naturally occurring translations
makes it unlikely that most translation pairs re-
trieved from naturally occurring data are optimal
training examples for the copy behaviour that a
RAT system should exhibit. However, since RAT
systems trained with such data have been conclu-
sively shown to improve translation quality and to
copy tokens from the target sides of the retrieved
matches to the new translations more often than
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normal MT systems (Xu et al., 2020), there must
be enough good examples of copy behaviour in the
training data. However, it is likely, that a large
part of the lexical matches that are retrieved with
source similarity do not exemplify the subsenten-
tial copy mode, but rather contextualize the trans-
lation in the same way as vector-based matches.

The objective of this work is to verify whether
having training data that contains more suitable
training examples of the expected selective copy
behaviour improves the performance of NFR mod-
els. To obtain such training data, we retrieve lex-
ical matches based on target similarity during the
training phase. One issue with using target simi-
larity at training time is that a model that is trained
only with target similarity data cannot learn the
first type of selective copy behaviour explained
above, match selection. There will be no exam-
ples in the training data of irrelevant or contradic-
tory matches, since all matches will be similar to
their respective target sentences. Since at infer-
ence time, only matches based on source similarity
will be available, the model will almost certainly
copy irrelevant tokens from irrelevant matches to
the output. On the other hand, the data is more
conducive to learning the second type of copy
behaviour, sub-sentential selection, since all the
training examples are relevant for that purpose.

In our experiments, we attenuate the problem
of copying irrelevant tokens by adding source-
similarity matches to the target-similarity train-
ing data, and by ensembling source- and target-
similarity models. We also include similarity class
annotations in most models (a numerical suffix
from 5 to 9 attached to the example marker), indi-
cating the degree of similarity that each translation
example has with the source or target sentence,



with the aim of training the model to process ex-
amples from different classes differently (for in-
stance to copy less from low-similarity examples).

4 Data

Models are trained using the English to Finnish
data from the Tatoeba-Challenge data set (release
v2023-09-26) (Tiedemann, 2020). This data set
consists of most of the data included in the OPUS
corpus collection' at the date of the release. The
data in OPUS includes many crawled data sets.
Due to quality issues in crawled data (Kreutzer
et al., 2022), the data is filtered with Bicleaner Al
v2.0 (Zaragoza-Bernabeu et al., 2022): 5 million
best sentence pairs according to Bicleaner Al are
included in the training set (referred to as Train-
SM from here on). During the initial experiments,
we noticed that even after Bicleaner Al cleaning,
much of the crawled data was of very low qual-
ity (containing for instance machine translations
and lists of SEO terms). The crawled data also
contains many repetitive text templates, which oc-
cur hundreds of times with small changes, such
as You can fly from [X] to [Y] indirect via [Z]
or [WORD] pronunciation in [LANGUAGE]. We
suspected that the presence of these repetitive sim-
ilar sentences in the training data (often with sub-
standard translations) would affect the RAT train-
ing adversely. Because of these concerns, we de-
cided to create another training set, which con-
sists of 5 million best scoring non-crawled sen-
tence pairs in the Tatoeba-Challenge data set (re-
ferred to as NC-Train from here on).

RAT can be used for domain adaptation by us-
ing a domain-specific translation database for re-
trieval. In order to test the domain adaptation per-
formance of our RAT models, we exclude a por-
tion of the Tatoeba-Challenge data set as domain
test data. As there are no domain annotations in-
cluded in the data, we treat each individual cor-
pus in the dataset as a separate pseudo-domain
and extract at most 1,000 sentence pairs from each
of them as domain test sets. The corpora in the
dataset mostly map to actual domains, e.g. the
EMEA corpus contains data that is mostly from
the pharmaceutical/medical domain. The crawled
corpora are an exception, as they contain data from
many domains, and they are therefore excluded
from the domain test data. The domain test data
is excluded from the training sets.

'https://opus.nlpl.eu/
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Each 5 million sentence pair training set is used
as a database from which the translation examples
are retrieved during the training phase for its re-
spective training set. The training set database
is also used as a translation database during test-
ing. We also use a larger All-Filtered database
consisting of all of the Tatoeba-Challenge data
with a BiCleaner-Al score of at least 0.7 for test-
ing. The All-Filtered database is used to deter-
mine whether the RAT system is capable of uti-
lizing matches that it has not seen during train-
ing. For the domain-specific test sets, we also
use domain-specific translation databases, which
consist of all the domain-specific data in the All-
Filtered database. For the NC-Train, the crawled
data is excluded from the All-Filtered database.

4.1 Retrieving translation examples

Retrieving similar sentences from a large database
for the millions of sentences in the training set
is computationally costly, so expensive similarity
metrics such as edit distance cannot be directly
used. The training database needs to be filtered
with a fast method that approximates more sophis-
ticated methods, so that the more accurate similar-
ity metrics can be applied to a smaller set of trans-
lation examples. Multiple retrieval methods have
been proposed for RAT, but according to Bouthors
et al. (2024), the choice of retrieval strategy does
not have a noticeable effect on NFR performance.
Because of this, we use the open-source fuzzy-
match library? and do not explore other retrieval
strategies. fuzzy-match uses suffix arrays for the
initial filtering, and then calculates the edit dis-
tance over the resulting filtered set of translation
examples. The search is performed on sentences
tokenized to words. Note that this means that the
morphological complexity of the language will af-
fect the number of matches that are found: fewer
matches will be found for morphologically com-
plex languages in otherwise identical scenarios, as
tokens tend to contain more morphemes and are
therefore more varied.

To retrieve similar sentences for the sentence
pairs in the training set, we first search the training
database (Train and NC-Train for source similar-
ity, Train-TS and NC-Train-TS for target similar-
ity) for a maximum of 100 matches with a fuzzy-
match edit distance score of at least 0.5 (with 1
being identical and O completely different). Per-

“https://github.com/SYSTR AN/fuzzy-match



Data set | DB 0.9-0.99 | 0.8-0.89 | 0.7-0.79 | 0.6-0.69 | 0.5-0.59 | Total
Train Train 1,085,811 | 1,659,270 | 1,461,893 | 2,248,088 | 3,214,326 | 9,669,388
Train Train-TS 680,150 1,957,426 | 1,290,774 | 1,914,313 | 2,308,767 | 8,151,430
NC-train | NC-train 855,918 2,098,593 | 1,650,462 | 2,465,417 | 3,118,555 | 10,188,945
NC-train | NC-train-TS | 680,150 1,957,426 | 1,290,774 | 1,914,313 | 2,308,767 | 8,151,430

Table 2: Amounts of translation examples retrieved for each data set and translation database. The
examples are divided into five classes of with different similarity ranges, which are indicated on the

header row.
Data set | DB 0.9-0.99 | 0.8-0.89 | 0.7-0.79 | 0.6-0.69 | 0.5-0.59 | Total
Train Train 250,475 | 375,277 | 335,332 | 523,819 | 933,652 | 2,418,555
Train Train-TS 213,722 | 358,967 | 278,138 | 424,350 | 712,278 | 1,987,455
NC-train | NC-train 202,711 | 441,879 | 383,819 | 577,702 | 871,335 | 2,477,446
NC-train | NC-train-TS | 167,540 | 439,522 | 335,202 | 494,354 | 670,596 | 2,107,214

Table 3: Amounts and classes of translation examples that were actually used to augment the data sets,
with 1 matches max per sentence (the counts are somewhat larger with training sets that allow multiple

matches).

fect matches are excluded from the results. Sub-
sets of the matches are then selected randomly to
augment the training data with translation exam-
ples. A maximum of three matches out of the pos-
sible hundred are actually used in our experiments,
but retrieving the extra matches makes it possible
to vary the examples based on their mutual simi-
larity and to control the distribution of examples of
different similarity scores in the training data. We
use the contrastive retrieval functionality of fuzzy-
match with a value of 0.7 to increase diversity in
the retrieved examples. See Table 3 for details on
the retrieved examples.

5 Models

We trained several models in the English to
Finnish translation direction with both the Train
and NC-train datasets. All the models are stan-
dard transformer-base models and were trained
with the Marian NMT toolkit (Junczys-Dowmunt
et al., 2018) v1.11.13 using default settings. We
use SentencePiece (Kudo and Richardson, 2018)
to create a vocabulary of 50,000 symbols, which
includes marker symbols for indicating different
similarity classes. A shared vocabulary is used for
both source and target to facilitate the copying of
tokens from the examples to the translation. All
the models were trained to convergence.

The validation sets were selected from the de-
velopment set included in the Tatoeba-Challenge
data set by picking the longest sentences for which

retrieved examples were available (the develop-
ment set skews towards short sentences, which are
problematic from the point of view of example re-
trieval). The validation sets were augmented using
the same schemes that were used with the train-
ing data. This differs from test time, where only
source similarity augmentation is used, but initial
experiments indicated that using a different aug-
mentation scheme for validation than the one used
in the training data leads to unstable validation
scores.

5.1 Augmentation schemes

The following augmentation schemes were used:

Baseline: A standard transformer model trained
with non-augmented data.

Src-Sim: This is the standard augmentation
scheme from Bulte and Tezcan (2019). Examples
are retrieved based on source similarity. This can
be considered the NFR baseline.

Trg-Sim: Examples are retrieved based on tar-
get similarity.

Combo: Sentence pairs from Src-Sim and Trg-
Sim sets are combined. We test both combining
all the sentence pairs from both sets (doubling
the training set size to 10 M, referred to as 2X-
Combo), and picking odd sentence pairs from one
set and even sentence pairs from the other (origi-
nal training set size, referred to as Combo).

Mix-Sim: This scheme is only used when mul-
tiple translation examples are allowed. Mix-Sim
differs from Combo in that translation examples
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from both Src-Sim and Trg-Sim sets can be used
simultaneously to augment the same source sen-
tence. There can be a maximum of one Trg-Sim
example per a sentence, the rest of the examples
are picked from the Source-Sim set.

Manual inspection in early testing confirmed
that models trained with the Trg-Sim scheme were
prone to copying irrelevant tokens from the trans-
lation examples, especially with short sentences.
The motivation for the Combo-Sim and Mixed-
Sim schemes is to attenuate this problem of over-
copying by mixing in source similarity examples
into the training set. Another approach that we
used to attenuating this problem was to ensem-
ble Src-Sim and Trg-Sim models, as Hoang et al.
(2024) indicates that ensembling models with di-
verse strengths leads to larger quality improve-
ments than ensembling similar models. As a com-
parison, we also ensemble different checkpoints of
some models.

We train models that allow a minimum of 1
and a maximum of 1-3 examples. In the augmen-
tation phase, the examples are picked randomly
from the full list of retrieved examples and con-
catenated with the source sentence. For all aug-
mentation schemes, we generate training files both
with and without fuzzy classes. The fuzzy class
of an example is indicated in the data by using
class-specific delimiter markers. Table 3 shows
the ranges of fuzzy_match scores for each of the
five classes used.

6 Evaluation

The test sets which are commonly used for MT
evaluation are a bad fit for RAT evaluation, as they
generally have very few fuzzy matches available
even in large translation databases. For instance,
for the flores-devtest, matches were found for only
72 out of 1,012 sentences in the All-Filtered set.
More matches are found for the WMT news test
sets, but the news domain is otherwise not well
suited for RAT, as it is more varied and less repet-
itive than other domains.

Because of these concerns, we compiled our
own test set. We extracted a maximum of 1,000
sentence pairs from each of the corpora that com-
pose the Tatoeba-Challenge data set. We com-
piled separate test sets for the Train (75,249 sen-
tence pairs) and NC-Train (65,549 sentence pairs)
models. These test sets are mainly designed for
domain translation performance evaluation, so we
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designate them as the Domeval and Domeval-NC.
As the data has not been annotated with domain
information, we use the sub-corpora as pseudo-
domains.

For each sub-corpus, we build a fuzzy_match
index using all the sentence pairs from that sub-
corpus included in the respective All-Filtered set.
We generate augmented versions of the source
sentences of the Domeval sets using the subcorpus
indexes, as well as the Train and All-Filtered in-
dexes, and then translate the augmented Domeval
source sentences using a model.

Domeval, 72,549 sents, with crawled data
Train DB All-Filtered
Scheme BLEU | chrF | BLEU | chrF
Baseline 31.14 | 62.43 | 31.14 | 62.43
Src-Sim 1 | 32.32 | 62.66 | 41.08 | 66.95
-classes 32.67 | 63.06 | 41.14 | 67.17
Src-Sim 2 | 32.16 | 62.61 | 40.99 | 66.92
Src-Sim 3 | 31.92 | 62.45 | 40.32 | 66.35
-classes 32.01 | 62.56 | 39.69 | 65.88
Trg-Sim-1 | 31.87 | 62.52 | 40.23 | 66.62
-classes 32.08 | 62.54 | 40.58 | 66.67
Trg-Sim-2 | 31.49 | 62.22 | 39.60 | 66.07
Combo 3238 | 62.76 | 41.21 | 67.14
2X-Combo | 32.82 | 63.16 | 41.57 | 67.47
Mix-Sim-2 | 32.11 | 62.79 | 41.10 | 67.18
Mix-Sim-3 | 31.94 | 62.60 | 40.55 | 66.67
-classes 3197 | 62.61 | 40.26 | 66.38

Domeval-NC, 65,549 sents, no crawled data

NC-Train DB | NC-All-Filtered
Scheme BLEU | chrF | BLEU | chrF
Baseline 30.86 | 62.35 | 30.86 | 62.35
Src-Sim 1 | 32.26 | 62.99 | 37.61 | 65.62
Trg-Sim-1 | 31.70 | 62.58 | 36.84 | 65.09
Combo 3220 | 62.90 | 37.61 | 65.57

Table 4: Scores for all augmentation schemes. The
scores are calculated over the whole Domeval, in-
cluding sentences for which there are no examples.
The results in the two tables are not directly com-
parable, but the relative performance of the models
is similar. -classes indicates that a model has been
trained without similarity class annotations.

We also evaluate the performance of the models
on full Domeval set with the Train and All-Filtered
databases to measure general translation perfor-
mance. SacreBLEU (Post, 2018) is used to gen-
erate BLEU and chrF metric scores. Neural eval-



Domeval, 72,549 sents, with crawled data

Train All-Filtered
Ensemble BLEU chrF BLEU chrF
Baseline 31.14 62.43 31.14 62.43
Src-Sim-1 + Trg-Sim-1 32.99 (32.32) | 63.27 (62.66) | 41.69 (41.08) | 67.48 (66.95)
2X-Combo + 2X-Combo | 32.93 (32.82) | 63.21 (63.16) | 41.66 (41.57) | 67.52 (67.47)
Src-Sim-1 + Src-Sim-1 32.93 (32.32) | 63.18 (62.66) | 41.54 (41.08) | 67.36 (66.95)

Domeval-NC, 65,549 sents, no crawled data

NC-Train DB NC-All-Filtered
Ensemble BLEU chrF BLEU chrF
Baseline 30.86 62.35 30.86 62.35
Src-Sim-1 + Trg-Sim-1 | 33.11 (32.26) | 63.62 (62.99) | 38.41 (37.61) | 66.20 (65.62)

Table 5: Ensemble scores. Src-Sim-1+Src-Sim-1 and 2XCombo+2X-Combol are ensembles of different
checkpoints of the same model. Values in parentheses indicate the metric scores for the model in the
ensemble that had better scores individually. Note that the differences between the different ensembles

in the upper table are not statistically significant.

uation metrics, such as COMET, have been found
to be superior to lexical metrics, such as BLEU
and chrF, in recent meta-evaluations (Freitag et al.,
2022). However, in the context of evaluating RAT
systems, it is desirable for metrics to reward copy-
ing parts of the translation examples to the trans-
lation. With lexical metrics, this happens to some
degree (depending on the lexical similarity of the
translation examples and reference translations).
With neural metrics, the translations do not need
to be lexically similar with the reference transla-
tions, which is usually their advantage, but it be-
comes a potential problem in the context of RAT
evaluation. Lexical metrics have also been found
to be adequate in contexts where they are used to
evaluate similar MT systems (Kocmi et al., 2024),
and all the models we compare share their training
data, subword segmentation, and model architec-
ture. Because of these factors, we decided to use
only lexical evaluation metrics.

During test time, only examples retrieved based
on source similarity are used, also with the mod-
els that were trained with target similarity, since
target-side data would not be available in actual
translation scenarios.

7 Discussion of the results

All results are in accordance with earlier evalua-
tions of NFR in Bulte and Tezcan (2019) and Xu
et al. (2020): NFR improves translation quality
very significantly (up to 10 BLEU points) com-
pared to a NMT baseline.
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The domain translation results for the five do-
mains with most retrieved translation examples
(see Table 6) are more ambivalent, although it
should be noted that two of the five domains are
highly atypical. The Open-Subtitles corpus con-
sists of subtitles of TV shows and films, which are
typically very short in order to fit the screen and
often non-literal, due to e.g. jokes and references
to visual content. Consequently the metric scores
are very low for the domain. The bible-uedin
corpus receives very high scores, which is proba-
bly due to repetition in the corpus, which means
that very similar translation examples are avail-
able for many sentences. The scores are higher
for Train, indicating that the crawled data contains
bible translations.

Evaluation of both full test sets and specific do-
mains suggests that annotating similarity classes
of examples in the source sentences degrades
translation quality slightly compared to treating all
examples in the same way. It should be noted,
though, that for the EMEA, DGT, and Mozilla-10n
domains similarity class annotation does seem to
improve translation quality. These are also do-
mains that are well-suited for RAT, as they are
repetitive and noncreative.

The Trg-Sim scheme underperforms all other
schemes on its own, probably due to excessive
copying from the retrieved matches. However,
models combining source and target similarity
matches perform better than pure Src-Sim models.
In domain-specific evaluation, the best results are



Train: domain translation, domains with most matches, only matches from domain DB

Open-Subtitles | EMEA DGT bible-uedin Mozilla-I110n
(822) (654) (589) (523) (482)

BLEU | chrF | BLEU | chrF | BLEU | chrF | BLEU | chrF | BLEU | chrF

Src-Sim-1 28.15 | 53.60 | 58.89 | 77.31 | 69.78 | 82.60 | 93.38 | 96.01 | 69.23 | 79.04
-classes 28.35 | 53.72 | 58.17 | 77.99 | 69.87 | 82.62 | 93.35 | 96.07 | 68.19 | 78.37

Src-Sim-2 2741 | 53.50 | 58.30 | 77.06 | 66.25 | 80.47 | 93.96 | 96.54 | 65.24 | 76.17

Src-Sim-3 2877 | 54.03 | 5742 | 76.62 | 61.58 | 76.38 | 93.84 | 96.42 | 62.48 | 74.68

-classes 28.99 | 54.20 | 55.82 | 7523 | 59.66 | 75.14 | 93.52 | 96.13 | 59.65 | 70.78
Trg-Sim-1 17.43 | 43.85 | 57.25 | 78.11 | 70.97 | 83.63 | 79.24 | 88.52 | 69.96 | 80.11
-classes 2035 | 44.55 | 56.62 | 78.01 | 70.21 | 82.76 | 91.52 | 95.24 | 69.39 | 79.52
Trg-Sim-2 14.63 | 39.42 | 56.57 | 75.68 | 65.83 | 80.15 | 79.73 | 88.80 | 64.51 | 76.05
Combo 2471 | 51.77 | 59.15 | 7898 | 71.04 | 83.28 | 93.11 | 96.06 | 70.50 | 80.30

2X-Combo | 26.79 | 52.73 | 58.73 | 79.17 | 70.85 | 83.36 | 93.52 | 96.50 | 70.77 | 79.99

Mix-Sim-2 | 22.56 | 49.30 | 59.00 | 78.22 | 67.65 | 81.37 | 92.79 | 9592 | 6791 | 78.33

Mix-Sim-3 | 2449 | 50.82 | 56.65 | 74.95 | 64.69 | 79.03 | 93.10 | 96.18 | 63.64 | 75.11
-classes 25.69 | 51.06 | 56.57 | 76.23 | 62.54 | 77.53 | 93.12 | 9592 | 62.84 | 74.63

Src-Sim-1 +
Trg-Sim-1 22.00 | 48.13 |1 59.24 | 7792 | 71.75 | 83.99 | 90.92 | 94.90 | 71.21 | 80.43

Src-Sim-1 +
Src-Sim-1 2849 | 54.21 | 58.74 | 77.39 | 70.57 83.06 | 93.56 | 96.09 | 69.36 | 78.67

2X-Combo+
2X-Combo 26.84 | 52.70 | 58.80 | 79.30 | 71.18 82.90 | 93.55 96.58 | 70.74 | 80.24

NC-Train: domain translation with domain database, domains with most matches

Open-Subtitles | EMEA DGT bible-uedin Mozilla-110n
(822) (654) (589) (523) (482)

BLEU | chrF | BLEU | chrF | BLEU | chrF | BLEU | chrF | BLEU | chrF

Src-Sim-1 2994 | 54.48 | 60.00 | 79.91 | 72.47 | 84.86 | 89.36 | 94.20 | 69.81 | 79.52

Trg-Sim-1 18.25 | 44.51 | 5791 | 78.67 | 72.05 | 84.28 | 75.28 | 86.59 | 68.95 | 78.61

Combo 27.66 | 53.24 | 60.08 | 79.76 | 73.23 | 84.99 | 87.21 | 93.03 | 69.64 | 79.52

Src-Sim-1 +
Trg-Sim-1 22.84 | 49.23 | 59.61 79.61 | 73.02 | 84.99 | 85.36 | 92.06 | 71.38 | 80.41

Table 6: Domain translation BLEU and chrF metrics scores for all models and ensembles. The number
in the parentheses under the domain name indicates how many sentences out of 1,000 had at least one
translation example.

Train: domains with short sentences, only matches from domain DB
Ubuntu (313) | KDE (418) GNOME (420) | WikiTitles (373)
BLEU | chrF | BLEU | chrF | BLEU | chrF | BLEU | chrF
Mix-Sim-3 | 66.30 | 78.34 | 68.12 | 80.23 | 67.21 | 78.95 | 56.71 | 74.16
Src-Sim-1 | 62.58 | 74.68 | 62.73 | 76.27 | 63.64 | 76.35 | 47.09 | 69.17
Trg-Sim-1 | 60.61 | 74.40 | 62.92 | 77.07 | 62.89 | 76.54 | 45.58 | 69.84

Table 7: Scores for domains with short sentences (max 5 words per line). Not all models are shown here,
but Mix-Sim models perform best, notably against Src-Sim-1, which we use as NFR baseline.
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obtained with the Combo models and the ensem-
ble of Src-Sim and Trg-Sim models.

While the Mix-Sim scheme does not appear to
work generally, it performs better than alterna-
tives with a specific subgroup of domains, i.e.
those with very short sentences (see Table 7). In
general, models that allow multiple examples are
better with short sentences. One reason for this
is probably that more examples are available for
shorter sentences. However, it might also be due
to the long source sentences becoming too long
when augmented with multiple translation exam-
ples, thus degrading performance.

8 Conclusion and future work

Our experiments demonstrate that both adding tar-
get similarity matches to the training data, and
ensembling Trg-Sim models with Src-Sim models
improve the quality of translation output compared
to normal NFR. In the future, we plan to extend
the 2X-ComboSim approach by replicating source
sentences with different source and target similar-
ity matches in the training data at a larger scale.
We also plan to experiment further on ensem-
bling NFR models, including ensembles of mod-
els trained with different numbers of translation
examples. Ensembling may also offer an alterna-
tive way of handling multiple translation exam-
ples: a l-example model can be provided with
multiple translation examples as separate inputs,
the outputs of which can then be ensembled to pro-
duce a translation that is influenced by all the ex-
amples. Ensembling could also be used to com-
bine terminology models (Dinu et al., 2019) and
NFR models, by preparing separate inputs anno-
tated with terminology and translation examples
respectively, and ensembling the outputs.
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