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Abstract

For philosophers, mentions of the names of
other philosophers and scientists are an im-
portant indicator of relevance and influence.
However, they don’t always come in neat cita-
tions, especially in older works. We evaluate
various approaches to named entity recogni-
tion for person names in 20th century, English-
language philosophical texts. We use part
of a digitized corpus of the works of W.V.
Quine, manually annotated for person names,
to compare the performance of several systems:
the rule-based edhiphy, spaCy’s CNN-based
system, FLAIR’s BiLSTM-based system, and
SpanBERT, ERNIE-v2 and ModernBERT’s
transformer-based approaches. We also ex-
periment with enhancing the smaller models
with domain-specific embedding vectors. We
find that both spaCy and FLAIR outperform
transformer-based models, perhaps due to the
small dataset sizes involved.

1 Introduction

Named Entity Recognition (NER) tools have the
ability to quickly and accurately extract named en-
tities that can then be used to form connections
between people. This has clear applications in Dig-
ital Humanities research (Ehrmann et al., 2023).
A user study on the national library of France’s
portal Gallica showed that 80% of search queries
contain a proper name (Chardonnens et al., 2018).
In philosophy, and particularly in histories of ideas
research, tracing names in digitized texts can reveal
how concepts have spread and what influence au-
thors had. Modern citation practices only emerged
around the beginning of the 20th century, which
makes citation analysis unsuited to study most of
the history of science and philosophy. Referencing
by mentioning names was the main type of refer-
encing before citation conventions developed, and
can thus be used to trace histories of philosophical
ideas, as outlined by Petrovich et al. (2024).

However, in the field of philosophy, remarkably
little attention has been paid to even simple com-
putational tools that could help with quantitative
analysis (Betti et al., 2019) and supplement the
traditional close reading of texts. Petrovich et al.
(2024) perform mention detection on late 19th cen-
tury and early 20th century Anglophone philosoph-
ical texts using a rule-based gazetteer approach,
after finding mistakes in applying spaCy’s NER
model to some of these texts. However, a down-
side of this approach is a lack of out-of-domain
coverage — such a system can only be expected to
identify mentions of philosophers, missing out on
e.g. other scientists, politicians or family members.

To support these interests, we perform a quan-
titative evaluation of a diverse range of NER ap-
proaches for philosophical text, from a rule-based
approach to the recent ModernBERT LLM.1 Of
course, extensive literature on NER systems and
their general performance already exists (e.g. this
survey by Hu et al., 2024), but that does not neces-
sarily translate to equal performance in the domain
of philosophical texts. Obtaining state of the art
results in NER relies heavily on domain-specific
knowledge (Lample et al., 2016) and large anno-
tated datasets, and many single-domain systems
have been developed (Kormilitzin et al., 2021; Set-
tles, 2004; Leaman and Gonzalez, 2008; Wei et al.,
2019; Giorgi and Bader, 2020). Philosophy is cer-
tainly a specific domain. Even for philosophical
texts that are in English and from the 20th century,
there are significant differences between such text
and Wikipedia text in terms of lexical semantics
and word frequencies (Bloem et al., 2019). The
frequent mention of low-frequency philosophical
terms and capitalized German nouns may throw
off NER systems. Similarly, the types of names
mentioned are likely to be different than those in

1Our model and evaluation code can be found in the
accompanying GitHub repository at https://github.com/
bloemj/NERphilosophy.
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general-purpose NER training datasets. Lastly, tex-
tual corpora in this domain are smaller.

Therefore, in this study, we manually annotated
part of the QUINE corpus (Betti et al., 2020), con-
sisting of the works of W. V. Quine, for person
names, for the purpose of tuning and evaluating
Named Entity Recognition systems in the domain
of philosophical text. We use this data to train
and evaluate state-of-the-art approaches as well
as approaches that are more accessible to humani-
ties researchers by being packaged in text process-
ing tools. For NER tools, we evaluate the CNN-
based NER (Lample et al., 2016) as implemented in
spaCy (Neumann et al., 2019) and BiLSTM-CRF-
based NER as implemented in FLAIR (Akbik et al.,
2019a). Furthermore, we evaluate the recent Mod-
ernBERT LLM (Warner et al., 2024), an updated
approach to bidirectional stacked encoders with
modern optimizations. We also include ERNIE-v2
(Sun et al., 2020), a model that incorporates entity-
level and phrase-level masking strategies into its
pre-training objectives, and SpanBERT (Joshi et al.,
2020), a model with a span-based version of the
BERT masked language modelling training objec-
tive. These BERT variants are potentially more
suited to performing the NER task compared to
base BERT (Devlin et al., 2019). We also include
a gazetteer baseline and a rule-based system based
on edhiphy, Petrovich et al.’s (2024) database of
philosophical names for mention detection.

2 Background

Even though some studies regarding the philosoph-
ical textual domain have been conducted (Muis
et al., 2006; Mazzocchi and Tiberi, 2009), only
Petrovich et al. (2024) cover the task of recognis-
ing named entities or person name mentions. Nev-
ertheless, names that are frequently referred to in
philosophical texts, especially names of philoso-
phers, are often relevant and important to the writer.
NER can aid in instantiating a web of relevance in
philosophical texts.

There is some work on domain adaptation of
word embeddings for philosophical text (Bloem
et al., 2019; Zhou and Bloem, 2021). These stud-
ies evaluate the performance of embedding mod-
els with different types of domain adaptation, fo-
cusing on the challenge of having a small amount
of in-domain data for philosophy. They test con-
catenation of in-domain and general-domain data
using the Hyperwords (Levy et al., 2015) imple-

mentation of a count-based model with SVD di-
mension reduction, in-domain pretraining from
scratch with Word2Vec (Mikolov et al., 2013),
continued pretraining on the target domain with
Word2Vec, tuning on target in-domain terms with
Nonce2Vec (Herbelot et al., 2017) and ELMo con-
textual embeddings (Peters et al., 2018) with in-
domain pretraining as well as general pretraining
and in-domain finetuning.

These studies show that models benefit from a
combination of in-domain pretraining and general-
domain tuning, and that older modeling approaches
are competitive with contextual embeddings in
small data settings. Based on these findings, we
experiment with incorporating domain-specific em-
beddings into the spaCy and FLAIR models.

2.1 spaCy

spaCy is a library for NLP in Python originally
released in 20052 and updated in 20213. The li-
brary is a very popular and robust framework that
achieved state of the art results on NER and other
NLP tasks (Kleinberg et al., 2018; Neumann et al.,
2019; Partalidou et al., 2019). Lample et al. (2016)
describe the CNN-based deep neural network that
spaCy is based on. CNNs are shown to have strong
generalisation ability, which spaCy uses to obtain
high accuracy (Wang et al., 2021). In the medical
domain, a F1-score of 94% is achieved predicting
drug names (Kormilitzin et al., 2021).

2.2 FLAIR

FLAIR is a NLP framework that achieved state
of the art results at the time of its release (Ak-
bik et al., 2019a). It implements a BiLSTM-CRF
sequence labeling architecture and contains multi-
ple pre-trained contexual word embeddings (Akbik
et al., 2019b; Huang et al., 2015). In these em-
beddings, words are represented as vectors that
are derived from training methods similar to neu-
ral networks (Levy and Goldberg, 2014). Eldin
et al. (2021) show that FLAIR is able to achieve a
95% F1-score on medical information extraction,
additionally, Weber et al. (2021) show a 90.57%
F1-score, compared to a 83.92% SciSpay (spaCy
for biomedical text) F1-score.

2https://explosion.ai/blog/introducing-spacy
3https://spacy.io/usage/v3
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3 Data

We use the QUINE corpus, version 0.5 (Betti et al.,
2020), which consists of 228 documents, philosoph-
ical articles, books and letters; all written by the
20th century American philosopher Willard Van
Orman Quine. Topics range from mathematics to
formula-heavy logical writing to philosophical the-
ories and concepts. The corpus contains 2,150,356
word tokens in the Format for Linguistic Anno-
tation (FoLiA-XML, van Gompel and Reynaert,
2013), originating from printed texts written by
Quine that were digitised using optical character
recognition and semi-automatically corrected.

We randomly select 6800 sentences from the
corpus (8.8% of the corpus) for manual person
name annotation. Random selection ensures sen-
tences from throughout Quine’s bibliography are
included. Sentences containing formulae were not
considered for random selection. Annotation was
performed using a web-based annotation tool4 that
yields character-based indices. Entities were anno-
tated by a single annotator for maximum coverage.
This annotator received domain instructions from a
Quine expert. Names with spelling or OCR errors
were also annotated, and in hyphen-linked enti-
ties, such as “The Einstein-Boole theory”, both
separate entities are labelled. Incorrect capitaliza-
tion was also included in labeling — for example,
Alonzo Church (a 20th century mathematician), of-
ten referred to as Church, is frequently written in
lowercase. The annotated data is split into a 70%
training, 20% test and 10% validation split.

Besides personal names, other named entities
that NER typically covers such as organization
names and location names were not included in
the annotation effort due to resource constraints.
We did examine the potential relevance of loca-
tion mentions in this corpus but found that most of
them were related to holidays, travel or unrelated
examples rather than e.g. universities, academic
events and publisher locations. We also examined
instances where names of philosophers sometimes
occurred in the text without referring to the actual
person, such as plationian, copernican, boolean,
referring to Plato, Copernicus, Boole. These in-
stances, in which philosophers’ ideas or groups
were mentioned, were initially given the NORP
(Nationalities or Religious or Political groups) la-
bel. However, this entity group was too strongly

4To be found at http://agateteam.org/
spacynerannotate/

dominated by other NORP entries such as English,
French, Greek for classifiers to learn any domain-
specific associations, so we excluded it.

4 Models

Rule-based baseline As rule-based systems can
perform well in narrow domains, we include such
a baseline that draws on a gazetteer of 1117 names
of philosophers drawn from the Britannica list
of philosophers5 and the website famousscien-
tists.org6. We include a partial match baseline that
considers last names as a true match, or first names
if only a first name occurs, and an exact match
baseline that only considers firstname-lastname
occurrences as a true match. This baseline has
shallower coverage of the philosophy domain than
Petrovich et al.’s (2024) approach, who include far
more philosophers in their database, but our base-
line makes up for it by also including scientists.

edhiphy We also include a rule-based system
using a gazetteer of all the philosopher names in
Petrovich et al.’s (2024) edhiphy database. This
includes 10,276 philosopher names. With this
database, we exclude all names of 3 or fewer char-
acters to reduce false positives. Again, we try a
partial match and an exact match version.

spaCy We include the English spaCy pretrained
models, as well as three models trained on our
training split. One model is trained from scratch,
and two models are trained with custom Word2Vec
vectors (hyperparameters in Appendix A, following
Sienčnik 2015). One of these has vectors from the
QUINE corpus (2.2M tokens, 34712 vectors), the
other has vectors from QUINE corpus merged with
a 4.2M token domain-general corpus consisting
of the Brown corpus (Francis and Kucera, 1979),
Project Gutenberg corpus7 and the NLTK Webtext
corpus8, yielding 28093 vectors. The small size is
to avoid drowning out the domain-specific data.

FLAIR We use Akbik et al.’s (2019a) hyper-
parameters, shown in Appendix A, and default
domain-general GloVe (Pennington et al., 2014)
embeddings for English to train a BiLSTM-CRF
model on top of using our training split.

5https://www.britannica.com/topic/list-of-philosophers-
2027173

6https://www.famousscientists.org/
7https://github.com/RichardLitt/

natural-gutenberg
8https://www.nltk.org/nltk_data/

420

http://agateteam.org/spacynerannotate/
http://agateteam.org/spacynerannotate/
https://github.com/RichardLitt/natural-gutenberg
https://github.com/RichardLitt/natural-gutenberg
https://www.nltk.org/nltk_data/


Model P R F1

Rule-based partial match .97 .60 .74
Rule-based exact match .80 .63 .70
edhiphy partial match .78 .80 .79
edhiphy exact match .94 .10 .18
en_core_web_sm spaCy small .91 .31 .47
en_core_web_lg spaCy large .90 .56 .69
spaCy trained-base .90 .84 .87
spaCy trained-Quine W2V .86 .90 .88
spaCy trained-Merged W2V .93 .88 .90
FLAIR trained .94 .89 .91
SpanBERT base-tuned .83 .93 .87
SpanBERT large-tuned .83 .92 .87
ModernBERT base-tuned .78 .78 .78
ModernBERT large-tuned .77 .83 .80
ModernBERT CoNLL .50 .53 .51
ModernBERT CoNLL-tuned .77 .87 .82
ERNIE v2, base-tuned .76 .94 .84
ERNIE v2, large-tuned .82 .90 .86

Table 1: Performance metrics for all models

LLMs For the transformer-based models (Mod-
ernBERT, SpanBERT, ERNIE-v2), we use the hy-
perparameters in Appendix A. For ModernBERT,
we tune the base model as well as a model that has
been tuned on the CoNLL-2003 NER shared task
dataset (general-domain, Tjong Kim Sang, 2003).
The models we tuned are used with a token classi-
fier head, tuned on our training split.

4.1 Results

Table 1 shows all of our model results. Overall,
we observe that the pre-transformer deep learning
models outperform the transformer models in our
setup, with the highest F1 score for labeling person
names being achieved by FLAIR, trained on our
training split. All models with good performance
are dependent on domain-specific labeled data. We
find that the rule-based baselines indeed outper-
form the general-domain spaCy models, as was
also anecdotally found by Petrovich et al. (2024),
mainly due to poor recall of spaCy. Presumably,
it hasn’t been trained on many philosopher names.
Partial matches of gazetteer names in the rule-based
setups are fairly successful for this specific domain,
achieving the highest precision and a reasonable F1
score of .79 thanks to Quine’s frequent mentioning
of fairly famous philosophers and scientists that
are included in the list. The rule-based edhiphy ap-

proach outperforms our rule-based baseline, achiev-
ing lower precision due to the larger list of names
including some false-positives-inducing names like
‘English’, but higher recall, while still failing to rec-
ognize the names of some non-philosophers such
as (Pierre de) Fermat.

Still, training spaCy on our labeled data leads
to clearly better performance, and incorporating
pre-trained vectors enhances this further. The best
spaCy result (F1 = .91) is achieved with vectors
trained on a combination of in-domain and out-
of-domain data, which is in line with previous
findings for this domain (Zhou and Bloem, 2021).
In-domain word embeddings appear to lower pre-
cision, while increasing recall. FLAIR slightly
outperforms trained spaCy with a more recent ar-
chitecture and access to larger GloVe embeddings,
achieving the best overall performance.

Among LLMs, we also observe the need for in-
domain data. ModernBERT tuned on the CoNLL-
2003 shared task NER-labeled data does not outper-
form the baseline (.51). Tuning it on our training
data leads to far better results (.78), with slightly
higher performance if the CoNLL-tuned model
is used as a base (.82). Despite being smaller
than ModernBERT (139M vs 103M parameters),
ERNIE-v2 outperforms it, perhaps due to more
relevant pre-training objectives. This includes a
knowledge masking task, which requires the model
to learn to predict masked spans and masked named
entities rather than just tokens, forming a suitable
base for the NER task. This model also achieves
the highest recall of all models. SpanBERT-base
is also smaller than ModernBERT (110M parame-
ters), but has a more relevant pre-training objective
of span masking. With this, it achieves the highest
F1-score of the transformer-based approaches (.87).
Lastly, we observe negligible differences between
base and large versions of models. This suggests
that the transformer models are mainly limited by
the tuning of their classifier heads, for which we
have limited labeled data available.

Some examples of errors made by the best-
performing LLM, SpanBERT-large, include identi-
fying “Ibid.” as a name (when used to refer to an
earlier reference), not identifying Cantor in “Can-
tor’s principle”, identifying “Oklahoma” as a per-
son name, and not identifying Aristotle as a person
name. In the sentence “Tom believes Cicero de-
nounced Catiline”, used as an example sentence,
only Catiline is identified while the other names
are not. In “Church cites examples from Ayer and
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Figure 1: The influence of training data on FLAIR NER

Ryle”, only Church is identified, while the others
are not. Due to the black box nature of these LLMs,
we can only speculate on why these errors might
occur. The Aristotle error may be due to the oc-
currence of “Aristotelian” (not labeled as a person
name) in the tuning data. Not identifying names
like Tom in example sentences may not be a bad
thing in this context, as the name does not refer to
a philosopher. We would need to perform a struc-
tured error analysis on a larger dataset to identify
patterns in the errors made.

5 Discussion

Our results show that in-domain labeled data is
essential for successfully performing the NER task
in the domain of philosophy, even if the amount
of labeled data is fairly small. With limited data,
simpler and older model architectures occasionally
outperform state-of-the-art ones, an observation
that has also been made by Ehrmanntraut et al.
(2021) in the digital humanities context of language
modelling for literary text.

To investigate the data size issue, we performed
an ablation study with FLAIR, shown in Figure 1.
We observe that FLAIR starts as a conservative
model with high precision and relatively low recall,
and then seemingly learns domain-specific names
during training to increase recall and therefore the
F1-score. More than half of our total training split
is necessary to beat the LLM’s performance. This
suggests that, with the LLMs requiring more data
to tune a larger number of parameters, the size of
the labeled dataset is the bottleneck that causes
older architectures to outperform recent LLMs in
our philosophical domain corpus.

Based on our findings, it seems possible to
achieve better performance on our dataset in future
work by augmenting FLAIR with domain-adapted
embeddings, or higher quality embeddings in gen-
eral. Annotating a larger portion of our corpus
would lead to better NER performance and poten-
tially allow the state-of-the-art LLMs to reach their
full potential. One open question is to what ex-
tent models tuned on our data would generalize
to other domains of philosophical text, such as au-
thors writing about the same topics in an earlier
time period or working in different traditions than
analytic philosophy. Historical data is very rele-
vant to philosophical research and there are BERT
models pre-trained on historical text that could be
used for NER, but a study on NER for Dutch histor-
ical texts has shown that models pretrained on his-
torical text do not necessarily outperform modern
models at person name identification, even on 17th
and 18th century data (Provatorova et al., 2024).
Most importantly, future work will have to demon-
strate whether NER for philosophical text can be
combined with bibliometric analysis or other down-
stream tasks to gain more detailed insight into net-
works of authors and the history of ideas.

6 Limitations

Our experiments are limited in scope — although
representative for philosophical text where target
domains are often narrow, the corpus we used only
covers a single author writing in a single language.
We only cover the initial stages of a pipeline for
bibliometric analysis, and do not experiment with
automated entity linking, which would be the next
step for incorporating mentions into bibliometric
analysis. The use of a single annotator means that
we don’t have an inter-annotator agreement score
to quantify the difficulty of the task, although anno-
tating person names isn’t the most difficult of tasks.
In annotating their NER dataset for the archaeol-
ogy domain, Brandsen et al. (2020) observed an
inter-annotator agreement rate of 0.95.

The applicability of our described methods is
limited by the fact that the most successful ones
require thousands of in-domain labeled sentences.
This limits the extent to which our method can
be applied in other linguistic contexts and areas
of philosophy. To facilitate comparison between
architectures and data domains, we haven’t fully
optimized all our model conditions. Performance
would benefit from model-specific hyperparameter
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tuning, although this would also involve the use of
more computational resources, and some of the top-
performing models could be equipped with better
general-domain or domain-adapted embeddings.
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word2vec to named entity recognition. In Proceed-
ings of the 20th Nordic Conference of Computational
Linguistics (NODALIDA 2015), pages 239–243.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding.

Erik Tjong Kim Sang. 2003. Introduction to the conll-
2003 shared task: Language-independent named en-
tity recognition. In Proceedings of CoNLL-2003,
Edmonton, Canada, pages 142–147.

Maarten van Gompel and Martin Reynaert. 2013.
FoLiA: A practical XML format for linguistic
annotation–a descriptive and comparative study.
Computational Linguistics in the Netherlands Jour-
nal, 3:63–81.

Dalei Wang, Cheng Xiang, Yue Pan, Airong Chen, Xi-
aoyi Zhou, and Yiquan Zhang. 2021. A deep con-
volutional neural network for topology optimization
with perceptible generalization ability. Engineering
Optimization, 0(0):1–16.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Leon Weber, Mario Sänger, Jannes Münchmeyer,
Maryam Habibi, Ulf Leser, and Alan Akbik. 2021.
HunFlair: an easy-to-use tool for state-of-the-art
biomedical named entity recognition. Bioinformatics,
37(17):2792–2794.

Hao Wei, Mingyuan Gao, Ai Zhou, Fei Chen, Wen
Qu, Chunli Wang, and Mingyu Lu. 2019. Named
Entity Recognition from biomedical texts using a Fu-
sion Attention-Based BiLSTM-CRF. IEEE Access,
7:73627–73636.

424

https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://doi.org/10.1109/ACCESS.2019.2920734
https://doi.org/10.1109/ACCESS.2019.2920734
https://doi.org/10.1109/ACCESS.2019.2920734


Wei Zhou and Jelke Bloem. 2021. Comparing contex-
tual and static word embeddings with small data. In
Proceedings of the 17th Conference on Natural Lan-
guage Processing (KONVENS 2021), pages 253–259.

A Hyperparameters

dim alpha wsize min_c sample neg epoch
500 0.025 2 5 0.001 5 5

Table 2: Hyperparameters used for Word2Vec embed-
dings used in spaCy models. Bolded values are adapted
from default to suit the small data setting.

Emb hidden crf alpha max_epochs
GloVe 256 true .1 150

Table 3: Hyperparameters of the FLAIR model. FLAIR
trains either until it reaches max_epochs, or until it en-
counters a series of 4 consecutive “bad epochs”, defined
by the absence of improvement in F1-score. All models
were done after ∼60 epochs.

alpha batch epoch optimizer epsilon
2e-5 8 25 adamw 1e-08

Table 4: Hyperparameters used for tuning the trans-
former models - ModernBERT, SpanBERT and ERNIE-
v2.

B Software specifications

Python: 3.11.4
numpy: 2.2.2
torch: 2.6.0+cu124
transformers: 4.48.2

All models are available on HuggingFace:
SpanBERT/spanbert-large-cased
answerdotai/ModernBERT-base
IsmaelMousa/modernbert-ner-conll2003
nghuyong/ernie-2.0-base-en

C Hardware specifications

GPU: NVidia L4
GPU Memory: 24GB
CPU: AMD 9445P
Total Number of Cores: 64
Memory: 384 GB
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