
Bridging Neurons and Symbols
for Natural Language Processing and Knowledge Graphs

Reasoning @ COLING 2025

January 20th, 2025



©2025 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-210-7

ii



Message from the Program Chairs

Recent exploration shows that LLMs, e.g., ChatGPT, may pass the Turing test in human-like chatting but
have limited capability even for simple reasoning tasks (Biever, 2023). It remains unclear whether LLMs
reason or not (Mitchell, 2023). Human reasoning has been characterized as a dual-process phenomenon
(see (Sun, 2023) for a general overview) or as mechanisms of fast and slow thinking (Kahneman, 2011).
These findings suggest two directions for exploring neural reasoning: starting from existing neural
networks to enhance the reasoning performance with the target of symbolic-level reasoning, and starting
from symbolic reasoning to explore its novel neural implementation (Dong et al., 2024). These two
directions will ideally meet somewhere in the middle and will lead to representations that can act as a
bridge for novel neural computing, which qualitatively differs from traditional neural networks, and for
novel symbolic computing, which inherits the good features of neural computing. Hence the name of
our workshop, with a focus on Natural Language Processing and Knowledge Graph reasoning. This
workshop promotes research in both directions, particularly seeking novel proposals from the second
direction.
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Chain of Knowledge Graph:
Information-Preserving Prompting for Noisy Multi-Document

* Youngjin Lim1, * Kangil Lee1, * Jin-Woo Jang1, * MinSu Shin1

1LG Energy Solution, Seoul, Republic of Korea

Abstract

With the advent of large language models,
the complexity of multi-document summariza-
tion task has been substantially reduced. The
summarization process must effectively handle
noisy documents that are irrelevant to the main
topic while preserving essential information.
Recently, Chain-of-Density (CoD) and Chain-
of-Event (CoE) have proposed prompts to ef-
fectively handle the noisy documents by using
entity-centric approaches for the summariza-
tion. However, CoD and CoE are prone to in-
formation loss during entity extraction due to
their tendency to overly filter out entities per-
ceived as less critical but that could still be
important.
In this paper, we propose a novel instruc-
tion prompt termed as Chain of Knowledge
Graph (CoKG) for multi-document summa-
rization. Our prompt extracts entities and con-
structs relationships between entities to form
a Knowledge Graph (KG). Next, the prompt
enriches these relationships to recognize poten-
tially important entities and assess the strength
of each relation. If the acquired KG meets a pre-
defined quality level, the KG is used to summa-
rize the given documents. This process helps al-
leviate the information loss in multi-document
summarization. Experimental results demon-
strate that our prompt effectively preserves key
entities and is robust to noisy documents.

1 Introduction

The rise of foundation Large Language Mod-
els (LLMs) is redefining the landscape of various
natural language processing (NLP) tasks. LLM-
powered approaches are surpassing conventional
supervised learning methods in tasks such as rea-
soning, sentiment analysis, and others, often with
just a single prompt.

With this advancement, text summarization has
entered a new phase (Pu et al., 2023). Instead of

*All authors contributed equally to this work.

Figure 1: ROUGE-1 score charts showing the impact
of adding noisy documents. Standard deviations are
represented by error bars on each bar. ‘Base’ refers to
a generic instruction such as “Summarize these doc-
uments”. The low ROUGE1 scores of CoD and CoE
indicate that these methods suffer from information loss.
It is observed that the performance of ‘Base’ decrease
as the number of noisy documents increase.

relying on ‘golden’ answers, texts can now be
summarized with greater flexibility using LLMs.
Furthermore, instructions enable precise tailoring
of summary length and style. Examining prompt-
based text summarization methods, we find that
most of the recently proposed methods fall under
the Chain-of-Thought (CoT) category (Zhang et al.,
2024). Among the CoT approaches, CoD is a repre-
sentative method (Adams et al., 2023). CoD starts
with a sparse entity set and refines it iteratively to
obtain a denser entity set while balancing detail
and abstraction for summarization.

In real life, Multi-Document Summarization
(MDS) is needed across various fields for diverse
objectives. However, when collecting various doc-
uments from the web, such as news articles and
community posts related to a specific event, it is
common to come across documents that are irrele-
vant to the main topic. We define these documents
as noisy documents. To effectively deal with MDS,
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CoE is recently proposed (Bao et al., 2024). CoE
consists of four sequential steps: event extraction,
event abstraction, statistical event analysis and final
document summarization.

Although CoE and CoD prompts are designed
to be robust to noisy documents, their prompts can
lead to significant information loss in MDS 3. In
CoE, relying solely on frequency to determine en-
tity importance can result in the omission of con-
textually significant entities. Meanwhile, CoD can
suffer from lack of entities due to stringent condi-
tions to be entities.

For noise-robust and information-preserving
summarization, we propose a novel instruction
prompt termed as CoKG for MDS. CoKG aims to
extract enriched entities to minimize information
loss. Since our approach is entity-centric summa-
rization, it is also robust to noisy documents. Our
contributions are as follows.

• We propose a novel entity-centric MDS
prompt that is relatively free from informa-
tion loss by using knowledge graph.

• We demonstrate that chaining and expanding
entities reduce information loss and enhance
robustness to noisy documents.

2 Related Works

Text Summarization. Text summarization has
two distinct tracks: extractive and abstractive sum-
marization. In the context of neural machine ap-
proaches, extractive summarization is regarded
as a combination of sequence labeling and selec-
tion tasks. (Nallapati et al., 2017; Zhou et al.,
2018). Abstractive summarization is regarded as
a sequence-to-sequence problem (See et al., 2017;
Liu and Lapata, 2019) formulated as a source
document x = [x1, ..., xn] to a target summary
y = [y1, ..., ym], where n and m are the number of
tokens.

Despite the effectiveness of supervised meth-
ods, scalability issue is still challenging. With the
rise of LLMs, since LLMs can generate a sum-
mary with a few lines of instruction, prompt-based
summarization has gained attention to address the
issue (Kuznia et al., 2022; Liu et al., 2022; Adams
et al., 2023).

MDS is similar to general text summarization
but differs in that it integrates and deals with di-
verse perspectives on a single topic. For example,
CoE minimizes irrelevant information and focuses

on key events for a concise summary (Bao et al.,
2024).

3 Chain of Knowledge Graph

3.1 Preliminary

Terminologies are defined as follows.

• D = {T1, T2..., TN} represents either a sin-
gle document or set of documents.

• Ei represents a set of entities or events identi-
fied at iteration i.

• Si represents a summary at iteration i.

For MDS, CoD starts by extracting an initial
summary S0 from D, with E0 as an empty set. At
each step i ≥ 1, CoD identifies missing entities
Mi by comparing D and previous summary Si−1

and following five conditions and six guidelines.
These missing entities Mi are used to update Ei−1,
resulting in Ei. Using Ei, CoD refines Si−1 into
a new summary Si. This process is repeated five
times, resulting in a final summary after the last it-
eration. Meanwhile, CoE first extracts many events
E0 from D and consolidates E0 into a set of key
events A. Then, CoE identifies statistically the most
common abstract events and utilizes the events to
generate a summary S0.

The stringent five conditions of CoD for adding
entities limit the capacity to incorporate additional
ones which leads to information loss during sum-
marization. Thus, we propose a novel instruction
prompt termed as CoKG.

3.2 Instruction Prompt

To address the information loss, our prompt con-
structs KG to preserve critical information as much
as possible by enriching entities and relations. The
constructed KG is effectively utilized to summarize
the given documents.

CoKG prompt consists of six steps as fol-
lows (See Figure 2).

1. Identify entities: Identify and extract key enti-
ties Eo

i to minimize the influence of irrelevant
information from D.

2. Construct relations: Construct relations be-
tween the elements of Eo

i . The relations are
expressed as verbs, adjectives, and phrasal
verbs.
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Figure 2: Overall process to create a summary for multi-document. First, identify key entities and construct
relationships between entities (STEP 1 and 2). Second, expand and chain the entities to create a knowledge graph,
then evaluate the strength of the relationships and review the overall knowledge graph (STEP 3, 4, and 5). Third,
generate a summary with knowledge graph (STEP 6).

3. Expand the chain between entities: Since
each entity can have multiple relationships, it
is necessary to sufficiently expand and chain
entities (Eo

i → Ei) to provide rich contextual
information for summary.

4. Evaluate relation strength: Evaluate the en-
tity connections by assigning scores ranging
from 1 to 10, where 1 represents the weak-
est, 10 the strongest, and 5 a moderate link.
This score depends on the strength of the re-
lationships as found within the context of the
documents.

5. Review and assess knowledge graph: Quan-
titatively evaluate the KG obtained from the
previous four steps. If the KG effectively cap-
tures the main context and key entities of the
given documents by including all relevant en-
tities and relationships, assign a high score.
The score ranges from 1 to 10, and if it does
not achieve at least 7, return to Step 1 and
reconstruct the KG.

6. Summarize documents: Finally, generate a
summary based on the final KG and the given
documents.

To prevent information loss, CoKG chains and
expands entities. Furthermore, since CoKG is
entity-centric summarization prompt, it is robust to
noisy documents. Thus, the CoKG prompt can be
considered an effective prompt for MDS.

Table 1: Evaluation results on the Multi-News dataset
for assessing information loss. Even though CoKG com-
presses documents into key entity-focused graph, we
find that CoKG experiences relatively no loss of infor-
mation compared to the Base prompt.

Base CoD CoE CoKG
ROUGE-1 0.417 0.226 0.360 0.418
ROUGE-2 0.114 0.055 0.099 0.114
ROUGE-L 0.189 0.123 0.178 0.189
METEOR 0.266 0.111 0.195 0.269

4 Experiments

4.1 Datasets

To evaluate our instruction prompt for MDS, we
use two datasets: Multi-News and PeerSum.
Multi-News consists of news articles and profes-
sional human-written summaries (Fabbri et al.,
2019). Each summary includes links to the orig-
inal articles cited. We use 100 randomly sampled
sets of news collection from the test dataset.
PeerSum consists of review comments from Open-
Review (Li et al., 2023). These comments range
from official reviewers to public readers on a pa-
per. The meta-review is considered as the reference
summary. We used 100 randomly sampled sets of
review collection from the test dataset.

4.2 Experimental Setup

Evaluation Metrics. We use the widely adopted
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005) for evaluation. In addition, we uti-
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Figure 3: Performance degradation ratio resulting from
the addition of noisy document pairs to the original set
of documents. We use Multi-News dataset to obtain
these results. K means the number of noisy document
pairs. Performance degradation ratio represents the rate
of performance drop when noisy documents are intro-
duced.

Table 2: Evaluation results on the Multi-News and Peer-
Sum datasets. We assess each prompt using G-Eval to
evaluate summary quality from a human-friendly per-
spective. ↑ indicates that higher value is better, and ↓
indicates that lower value is better.

Base CoD CoE CoKG
Multi-News

Coherence (↑) 4.301 3.990 4.467 4.555
Consistency (↑) 4.630 4.50 4.644 4.685

Fluency (↑) 2.731 2.587 2.680 2.743
Relevance (↑) 4.722 4.537 4.781 4.818

Average Rank (↓) 2.75 4 2.25 1
PeerSum

Coherence (↑) 3.923 3.153 3.786 4.090
Consistency (↑) 2.240 1.833 2.047 2.107

Fluency (↑) 2.893 2.784 2.858 2.946
Relevance (↑) 3.103 2.412 2.898 3.059

Average Rank (↓) 1.5 4 3 1.5

lize G-eval (Liu et al., 2023) as a metric that has a
high correlation with human evaluations for Natu-
ral Language Generation (NLG).
Comparison Prompts. To evaluate CoKG, we
compare Base, CoD, and CoE prompts. The Base
prompt is a generic instruction for summarization
: "Summarize the document below, which includes
mutiple texts on similar topics."

Model Selection. CoKG requires two abilities :
decomposing instructions into several parts to eas-
ily handle each step and understanding the logical
flow and connections. We selected Claude Sonnet
3.5 (ANTHROPIC, 2024) based on its state-of-the-
art performance on decompositional and diagram-
matic reasoning (Huang et al., 2024).
Noise Test. To evaluate robustness against noisy
documents, we introduced text noise into a set of
documents by appending unrelated article pairs
both before and after the given document set.

4.3 Experimental Results

We evaluated how well the proposed prompt pre-
serves information by recall-oriented metrics. Ta-
ble 1 shows that CoKG exhibits almost no informa-
tion loss compared to the Base prompt. In contrast,
CoD and CoE show significant information loss.
Table 2 demonstrates that the CoKG achieves com-
petitive performance on two MDS datasets. In the
Multi-News, our prompt achieves the best perfor-
mance across all metrics. However, on the Peer-
Sum, our approach performs relatively worse than
the Base on two metrics. We infer that these results
attribute to the entity expansion process.

Meanwhile, Figure 3 illustrates that CoKG is
robust to noisy documents. As K increases, the
performance drop for Base and CoE prompts be-
comes more pronounced, whereas CoKG shows
relative robustness to noisy documents. Since CoD
performs poorly when K = 0 compared to other
prompts, it can be inferred that CoD does not per-
form well in MDS. Based on this, CoD may not be
robust to noisy documents but rather unsuitable for
MDS.

In conclusion, we find that CoKG effectively pre-
serves information while also being robust to noisy
documents.

5 Conclusion

MDS complexity is eased by advent of LLM-based
approaches. However, the previous approaches of-
ten suffer from information loss. In addition, since
generic prompt tends to show inferior performance
to severely noisy document set, entity-centric ap-
proach is necessary.

Thus, we propose CoKG that is robust to noisy
documents and has information-preserving prop-
erty. CoKG maximally extracts topic-related en-
tities to minimize information loss. In noise test,
we observe that our approach is resilient to noise.
In addition, the results from the Multi-News and
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PeerSum benchmarks demonstrate that CoKG ef-
fectively preserves information and that its sum-
maries closely align with human-generated ones.
These findings suggest CoKG produces a reliable
summary for multi-document.
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Abstract

Temporal knowledge graph reasoning (TKGR)
is increasingly gaining attention for its abil-
ity to extrapolate new events from histori-
cal data, thereby enriching the inherently in-
complete temporal knowledge graphs. Exist-
ing graph-based representation learning frame-
works have made significant strides in devel-
oping evolving representations for both enti-
ties and relational embeddings. Despite these
achievements, there’s a notable tendency in
these models to inadvertently learn biased
data representations and mine spurious cor-
relations, consequently failing to discern the
causal relationships between events. This often
leads to incorrect predictions based on these
false correlations. To address this, we pro-
pose an innovative Causal Enhanced Graph
Representation Learning framework for TKGR
(named CEGRL-TKGR). This framework in-
troduces causal structures in graph-based repre-
sentation learning to unveil the essential causal
relationships between events, ultimately en-
hancing the performance of the TKGR task.
Specifically, we first disentangle the evolution-
ary representations of entities and relations in
a temporal knowledge graph sequence into two
distinct components, namely causal representa-
tions and confounding representations. Then,
drawing on causal intervention theory, we advo-
cate the utilization of causal representations for
predictions, aiming to mitigate the effects of
erroneous correlations caused by confounding
features, thus achieving more robust and accu-
rate predictions. Finally, extensive experimen-
tal results on six benchmark datasets demon-
strate the superior performance of our model in
the link prediction task.

1 Introduction

Knowledge graphs (KGs) have gained significant
promise in natural language processing or knowl-
edge engineering perception tasks (Chen et al.,
2022a). They model real-world factual knowledge

using multi-relationship graph structures. However,
factual knowledge in reality is constantly evolving,
resulting in the form of event knowledge. This has
led to the development and application of temporal
knowledge graphs (TKGs). TKG encodes the rela-
tionship information of entities and events and their
timing for capturing the dynamics of entities and
their relationships over time (Gastinger et al., 2022).
Thus, analyzing the TKG provides a comprehen-
sive understanding of the evolving events, based
on which various time-dependent applications have
been developed, including time-sensitive semantic
search (Barbosa et al., 2013), policy making (Deng
et al., 2020), stock forecasting (Feng et al., 2019),
and more (Chen et al., 2022a).

The reliability of applications depends on ac-
curate predicting, which highly relies on data in-
tegrality. However, existing TKGs are inevitably
incomplete due to the partial observation of real-
world (Liang et al., 2022). To address this lim-
itation and enhance the representation capabil-
ity of the TKG, temporal knowledge graph rea-
soning (TKGR) models are proposed and aim
to extrapolate new facts and relationships in the
TKG according to their historical temporal infor-
mation. Existing models explore different strate-
gies to achieve satisfactory results on the TKGR
task. GHNN (Han et al., 2020) and GHT (Sun
et al., 2022) model historical facts as point-in-time
processes. TKGR-RHETNE (Sun et al., 2023)
jointly models the relevant historical event and
temporal neighborhood event context of events
in the TKG. RE-NET (Jin et al., 2020) and RE-
GCN (Li et al., 2021) introduce graph neural net-
works (GNN) into sequence models to capture
structural and temporal dependencies between en-
tities. TKGR-GPRSCL (Xiong et al., 2024) cap-
tures complex structure-aware information by en-
coding paths across entities and obtaining temporal
correlations in the complex plane. TLogic (Liu
et al., 2022) and TITer (Sun et al., 2021) design
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interpretable models based on logical rules and
reinforcement learning, respectively. Despite the
achievements of previous studies, they have over-
looked the reality that there are numerous con-
founding factors in the TKG, such as shallow pat-
terns and noisy links. However, these confounding
factors commonly misguide the reasoning process
in the TKG, resulting in the acquisition of incor-
rect dependencies and the generation of non-causal
predictions (Sui et al., 2022).

To address the aforementioned issues, we ad-
vocate for the integration of causal theory into
TKGR to guide learning of the essential causal
relationships between events and mitigate the im-
pact of confounding factors on the TKGR task.
Specifically, we first construct a structural causal
model (Zečević et al., 2021) to comprehensively an-
alyze and model the TKGR task from a causal per-
spective. Then, based on the causal model, we pro-
pose a new framework, namely Causal Enhanced
Graph Representation Learning (CEGRL-TKGR),
to disentangle confounding factors from the es-
sential causal factors in the TKG. To the best of
our knowledge, this is the first study to incorpo-
rate causal intervention in a graph representation
learning framework for learning the evolutionary
representations of entities and relations in the TKG.
To conclude, our contributions in this paper are 3-
folds:

• We propose a novel Causal Enhanced
Graph Representation Learning framework
for Temporal Knowledge Graph Reasoning,
called CEGRL-TKGR, to uncover the essen-
tial causal relationships between events and
mitigate the impact of confounding factors.

• The proposed CEGRL-TKGR framework dis-
entangles the evolutionary representations of
entities and relations into causal and con-
founding representations. Then, it applies
causal interventions to perform backdoor ad-
justments of representations, prioritizing pre-
dicted causal features while minimizing the
impact of spurious correlations introduced by
confounding features.

• Comprehensive experimental results demon-
strate that CEGRL-TKGR outperforms state-
of-the-art baselines on six real-world datasets
in the link prediction task. Further, compre-
hensive studies confirm the contribution of

the introduced causal structures and interven-
tions1.

2 Related Work

2.1 Temporal Knowledge Graph Reasoning
TKGR in extrapolation settings focuses on predict-
ing new facts about the future based on historical
events. Specifically, CyGNet (Zhu et al., 2021)
uses a copy-generating mechanism to capture the
global repetition rate of facts. GHNN (Han et al.,
2020) and GHT (Sun et al., 2022) construct a tem-
poral point process (TPP) to capture the temporal
dynamics of successive events, predicting future
facts by estimating the conditional probability of
the TPP. In recent years, with the successful appli-
cation of GNN in many dynamic scenarios (Zhang
et al., 2022), they have also been introduced into
structural-semantic dependency models in TKGR.
RE-NET (Jin et al., 2020) used a neighborhood
aggregator and cyclic event encoder to model his-
torical facts as subgraph sequences. RE-GCN (Li
et al., 2021) uses RGCN (Schlichtkrull et al., 2018)
to learn evolutionary representations of entities
and relationships at each timestamp. CEN (Li
et al., 2022a) uses length-aware convolutional neu-
ral networks (CNNS) to process evolutionary pat-
terns of different lengths. There are also some
studies to solve the TKGR problem through path
search. For example, TLogic (Liu et al., 2022)
completes link prediction tasks based on tempo-
ral logic rules learned from temporal knowledge
graphs. TITer (Sun et al., 2021) proposes a TKG
prediction model based on reinforcement learning,
which uses time-shaped rewards based on Dirich-
let distribution to guide model training. All of
the methods discussed above have limitations in
modeling entity and relationship representations, in
particular ignoring cause-and-effect relationships
between different entities, which we believe is key
to making correct predictions.

2.2 Causal Representation Learning
In graph causal representation learning, researchers
have explored various methods to improve the ex-
planatory power and generalization performance
of GNNs. By applying the principles of causal
reasoning to graph-structured data, the researchers

1To illustrate the evaluation of our CEGRL-TKGR frame-
work and facilitate further research on this topic, we have
made the experimental details and source code of the frame-
work publicly available at https://github.com/shengyp/
CEGRL-TKGR.
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sought to address the challenges GNNs face when
dealing with complex systems such as social net-
works, molecular maps, and syntax trees of pro-
gram code. DIR (Wu et al., 2022) is proposed
to reveal the intrinsic interpretability of GNNs by
discovering invariant reasons, which involves split-
ting input graphs into causal and non-causal fruit
graphs and training the two classifiers through in-
variant risk loss functions. GOOD (Chen et al.,
2022b) improves the cross-domain generalization
of graphs by distinguishing invariant subgraphs
from other parts of graphs that are susceptible to
domain transfer. CAL (Sui et al., 2022) introduces
de-confounding training to distinguish the key and
secondary parts of the graph and eliminate the con-
founding effect of the secondary parts on model
prediction. CFLP (Zhao et al., 2022) points out
that the causal relationship between graph structure
and link presence is often ignored, and proposed
to generate counterfactual links to enhance train-
ing data and reduce reliance on false associations.
Zevcevic et al. (Zečević et al., 2021) theoretically
analyze the relationship between GNNs and struc-
tural causal models (SCMs) and design a new class
of neuro-causal models. However, none of the work
has been done to combine causal learning with the
TKGR task.

3 Preliminary

3.1 Notations and Task Formulation

A TKG G can be formalized as a sequence of
knowledge graph slices {G1,G2, . . . .,GT }, where
Gt = {(es, r, eo, t) ∈ G} denotes a knowledge
graph slice that consists of facts that occurred at
the timestamp t range from t0 to tn. Here, es and
eo represent the subject and object entities, respec-
tively, and r denotes the predicate as a relation type.
Besides, es, r, eo written in bold represent their
embeddings. The objective of TKGR task is to pre-
dict either the subject in a give query (?, r, eo, t) or
the object in a given query (es, r, ?, t) with t > tn.

3.2 A Causal Perspective on the GNN-Based
TKGR Task

3.2.1 GNN-based TKGR Paradigm
Inspired by previous GNN-based modeling in a ca-
sual look (Didelez and Pigeot, 2001; Sui et al.,
2022), we abstract the GNN-based TKGR pro-
cess through a structural causal figure, as shown in
Fig. 1, encompassing five distinct variables. The
connectivity from one variable to another epito-

Figure 1: The GNN-based structural causal graph for
the TKGR task.

mizes the causal relationship, delineated as the
cause → effect. The variables are described as
follows:

• Graph data Gt: The knowledge graph at each
timestamp t, manifests as a directed multi-
relationship figure.

• Causal Feature C: These features epitomize
the causal essence of the targeted entity, pro-
viding a fundamental understanding of its in-
herent dynamics.

• Confounding Feature N : These features, dis-
cerned from GNN, embody the confounding
attributes, unveiling the potential biases or
trivial patterns ingrained in graph-based learn-
ing methodologies.

• Representation R: These representations are
the entity and relational representations of the
output of the final GNN layer after learning
for Gt.

• Prediction Y : Denoted as TKGR as the link
prediction, this aspect transitions through the
decoder, rendering the ultimate reasoning
based on the preceding representation.

The causal embedding encapsulates the causal
features C, authentically mirroring the implicit
knowledge inherent in the knowledge graph Gt.
Conversely, N symbolizes the confounding fea-
tures, which might be spawned by data biases, data
noise, or superficial patterns within graph-based
learning methodologies. These confounding fea-
tures forge a backdoor pathway between C and
Y , fostering spurious correlations that don’t con-
tribute to accurate reasoning. Functionally, the
structural operation denoted by C → R ← N por-
trays a GNN, wherein both the causal features C
and the confounding features N , as discerned by
the target entity from the graph data, exert a direct
impact on the output R of the GNN. Subsequently,
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the output R of GNN directly sways the model
inference outcome, illustrated as R → Y .

In the graph-based TKGR paradigm, causal and
confounding features are not decoupled for each
entity or relationship embedding. Using causal
graphs, we aspire to explicitly separate causal em-
beddings and confounding embeddings from entity
or relational representations, and aim to mitigate
the effects of confounding features by performing
causal interventions. This endeavor not only clari-
fies the inference process but also endeavors to re-
fine the accuracy and reliability of the GNN-based
TKGR mechanism.

3.3 Causal Intervention Strategies
Beyond fostering a novel comprehension of GNN-
based TKGR, causal theory avails analytical instru-
ments predicated on causal figures, such as causal
intervention. Causal intervention facilitates a pro-
found examination of the factors precipitating in-
ference outcomes. As delineated by Fig. 1., con-
founding feature N and causal feature C can be
discerned from the knowledge graph Gt. These fea-
tures are contemplated in the representation R of
entities and relations, thereby establishing a back-
door pathway represented as N ← Gt → C → R
→ Y , with N serving as the quick bridge between
C and Y .

To orchestrate a causal prognosis hinging on
the causal feature C, it necessitates the modeling
of P (Y | C). However, the backdoor path dis-
torts the probability distribution P (Y | C) through
the confounding effect of N , thereby necessitat-
ing the disentanglement of the backdoor pathway
from N to Y . It is imperative to stymie this back-
door pathway to mitigate the repercussions of the
hybrid embedding, thereby enabling the model to
reason robustly by leveraging the causal feature to
the fullest. Causality theory is a potent toolkit to
address this backdoor path dilemma.

We engage the do-calculus for executing causal
interventions on variable C, intending to sever the
backdoor path N ← Gt → C → R → Y. Our ob-
jective is to estimate P (Y | do(C)), as opposed to
muddling it with P (Y | C). By using Bayes’ theo-
rem with the causal postulation, we can extrapolate
the ensuing expression:

P (Y | do(C)) =
∑

n∈N
P (Y | C, n)P (n). (1)

The equation above illustrates that to gauge the
causal influence of C on Y , it’s requisite to take

into account the inference outcomes of both causal
and confounding features. This can be perceived
as re-coupling the disentanglement feature embed-
dings, utilizing them for deductive reasoning at
future timestamps. However, C and N are usually
unobservable, and it is difficult to obtain them di-
rectly at the data level, which makes the calculation
of the Eq. (1) very challenging. In the next section,
we discuss ways to overcome this problem.

4 The Proposed CEGRL-TKGR
Framework

4.1 The Overall Architecture of
TKGR-GPRSCL

We detail the CEGRL-TKGR framework for learn-
ing representations of entities and relationships
based on causal features and confounding features.
CEGRL-TKGR consists of three parts: (1) The
representation learning part that learns the struc-
ture dependence in each Gt; (2) The decoupling
learning part that learns the entity and relation rep-
resentations; (3) The decoder part that is designed
based on the time interval. The overall architecture
of the framework is shown in Fig. 2.

4.2 Entity and Relation Evolution
Representation

Within each Gt, representation learning of entities
and relationships involves the aggregation of multi-
ple relationships, as well as information from mul-
tiple hop neighbors under a single timestamp. Be-
tween adjacent Gt, we expect to accurately capture
the order dependencies inherent in the subgraph
with different timestamps. Drawing inspiration
from the RE-GCN model (Li et al., 2021), we em-
ploy the ω-layer RGCN, which hinges on structure
modeling and a recurrent mechanism to progres-
sively update the representations of entities and
relations. This approach allows for a more nuanced
understanding and modeling of the dynamic inter-
actions within the graph over time.

el+1
o,t = RReLu

( ∑

(es,r,eo)∈Gt

1

deo
Wl

1

(
Φ
(
els,t, rt

))

+Wl
2e

l
o,t

)
, (2)

Et = GRU
(
Et−1,E

′
t

)
. (3)

In the Eq. (2), we describe how the embedding
el+1
o,t of entity eo at time step t and layer l+1 is com-

puted. We integrate the information of all entities
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Figure 2: The overall architecture of our proposed CEGRL-TKGR framework.

and relations connected to entity eo in the knowl-
edge graph Gt. Wl

1,W
l
2 is learnable weights and

Φ has the option of addition or one-dimensional
convolution. In the Eq. (3), we showcase how the
entity embedding matrix Et is updated via the GRU.
Specifically, we take the entity embedding matrix
Et−1 at the previous time step t − 1 and the ag-
gregated entity embedding matrix E′

t as inputs to
obtain the entity embedding matrix Et at the cur-
rent time step t.

For relations, ensuring consistency with the en-
tity embedding updates within the subgraph se-
quence is crucial. To achieve this consistency, a
specialized GRU tailored for relations is employed
for the update process. This mechanism facilitates
a harmonized evolution of both entity and relation
causal embeddings over the sequence of subgraphs:

r′t = pooling (Et−1, Rt)⊕ r, (4)

Rt = GRU
(
Rt−1,R

′
t

)
, (5)

where r′t is an aggregation of all entities connected
to relation r via a mean pooling operation, and R′

t

is obtained by concatenating this result with the
embeddings of all relations. Eventually, we update
the relation embedding matrix Rt using a GRU.

4.3 Disentangled Causal and Confounding
Features

In the previous subsection, the entity and rela-
tion representations are learned based on GNN-

contained causal and confounding factors, and we
separate them at the presentation level, which pro-
vides a solution to the previously mentioned prob-
lem of not being able to separate these two features
at the data level. To do this, we introduce a decou-
pling module to decouple causal and confounding
features. Taking the entity embedding matrix as an
example, it is represented as follows:

DE,C ,DE,N = softmax(MLP(E)), (6)

EC = E � DE,C ,EN = E � DE,N . (7)

We want the two embeddings learned from the
decoupling module to be as independent as pos-
sible, which is essential to accurately separate
causal and confounding features (Chen et al., 2023).
Mutual information is a basic quantity to mea-
sure the nonlinear correlation of two random vari-
ables. Minimizing mutual information is a feasi-
ble scheme to decouple causal features from con-
founding features. Specifically, we implement this
process with contrastive log-ratio upper-bound MI
estimator (Cheng et al., 2020; Wu et al., 2021),
which utilizes variational distributions q and a neu-
ral network to approximate the true distribution.
We define the objective function as follows:

Lmi = Ep(EC ,EN ) [log qθ(EN |EC)]

− Ep(EC)Ep(EN )

[
log qθ(EN |E′

C)
]
.

(8)

We perform the same operation with relation
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embedding decoupling, after which we obtain RC

and RN .

4.4 Temporal Gap Guided Decoder
After the causal and confounding embeddings of
entities and relations in the derived data, we use
a specially crafted decoder to determine the like-
lihood score of potential entities and relations.
Events or facts in a data stream may span different
periods. For example, major political events may
occur in rapid succession over a short period, while
certain rare natural phenomena may occur sporad-
ically and at longer intervals. With this in mind,
it is reasonable to consider the time intervals of
events to get an accurate picture of their temporal
relationship. The key to the design of our decoder
is the time interval vector, which guides the decod-
ing process in considering the event time interval
while calculating the fraction. Formulaic as:

ts = αst+ βs, tl = αlt+ βl. (9)

Here, αs,βs,αl, and βl signify learnable pa-
rameters. Adopting ConvTransE as our decoder,
we introduce four variables, which traverse a one-
dimensional convolutional layer followed by a fully
connected layer, culminating in the extraction of a
probability vector encompassing all entities. This
process is mathematically articulated as:

pC (eo | es, r, t) = ReLU
(
ConvTransE

(
es,C,t,

rC,t, ts, tl
))

EC,t.

(10)

We apply the same decoding process to the con-
founding features to get pN (eo | es, r, t).

4.5 Causal Intervention and Training
Objective

Causal-based embedding learns the intrinsic causes
that cause events to occur, so the reasoning re-
sults obtained from causal-based embedding are
expected to yield reasonable input results. We de-
fine the supervised classification loss as follows:

LE,C =
∑

(es,r,eo,t)∈G
yt logpC (eo | es, r, t) , (11)

where yt is label vector. Conversely, confounding
features are conceptualized to address conceivable
biases or superficial patterns emanating from the
training dataset. Given their inability to aid in infer-
ence, we proceed to compute their output average

across all entity categories and encapsulate the loss
as:

LE,N =
1

|EN,t|
∑

(es,r,eo,t)∈G
KL
(

yu,

logpN (eo | es, r, t)
)
,

(12)

where KL denotes the KL-Divergence, yu repre-
sents the uniform distribution.

We believe that causal intervention is the mani-
festation of causal features under the influence of
confounding features, but we cannot directly con-
duct causal intervention at the data level to mitigate
confounding effects. Therefore, we obtain inter-
vention features that combine causal features and
confounding features at the representation level of
entities and relationships. Specifically, according
to the backdoor adjustment Eq. (1), we first intro-
duce a random addition procedure to obtain the
intervention feature, and for the intervention fea-
ture we expect the decoder to still output the correct
result:

EI,t = φ
(
EC,t,E

′
N,t

)
, (13)

pI (eo | es, r, t) = ReLU
(
ConvTransE

(
es,I,t, rI,t,

ts, tl
))

EI,t, (14)

where E′
N,t is the confounding feature of the

entites randomly sampled from EN,t. Then we
define the loss as follows:

LE,I =
∑

(es,r,eo,t)∈G
yt logpI (eo | es, r, t) . (15)

Finally, the loss function of the model for the
link prediction task is as follows:

LE = LE,C +λ1LE,N +λ2Lmi+λ3LE,I , (16)

where λ1, λ2, λ3 are designated as hyper-
parameters, and the first two are used to determine
the strength of decoupled learning of the model
and the latter is used to determine the strength of
causal intervention of the model.

5 Experiments and Analysis

5.1 Experimental Settings and
Implementation Details

Datasets. We evaluate our model and base-
lines on six benchmark datasets, includ-
ing ICEWS14 (Garcia-Duran et al., 2018),
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ICEWS18 (Jin et al., 2019), ICEWS05-15 (Garcia-
Duran et al., 2018), YAGO (Mahdisoltani et al.,
2014), WIKI (Leblay and Chekol, 2018) and
GDELT (Leetaru and Schrodt, 2013). Statistics of
the datasets are summarized in Table 1.

Table 1: Statistics of datasets in the experiments.

Dataset # Entity # Predict # Train # Valid # Test Time interval

ICEWS14 7128 230 63685 13823 13222 24 hours
ICEWS18 23033 256 373018 45995 49545 24 hours

ICEWS05-15 10488 251 322958 69224 69147 24 hours
YAGO 10623 10 161540 19523 20026 1 year
WIKI 12554 24 539286 67583 63110 1 year

GDELT 7691 240 1734399 238765 305241 15 mins

Baselines. For the link prediction task, we com-
pare CEGRL-TKGR model with two categories
of KGR models: (1) static KGR models, includ-
ing TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016)
and R-GCN(Schlichtkrull et al., 2018). We ap-
ply these models in static KGs that ignore times-
tamp information. (2) TKGR models, includ-
ing TTransE (Leblay and Chekol, 2018), TA-
DistMult (Garcia-Duran et al., 2018), TNTCom-
plEx (Lacroix et al., 2019), RE-GCN (Li et al.,
2021), GHT (Sun et al., 2022), EvoKG (Park et al.,
2022), TITer(Sun et al., 2021), xERTE (Han et al.,
2021), TLogic(Liu et al., 2022) and CEN(Li et al.,
2022b).
Evaluation Metrics. The mean reciprocal rank
(MRR) and Hits@k are standard metrics for the
TKG link prediction task. MRR is the average re-
ciprocal of the correct query answer rank. Hits@k
indicates the proportion of correct answers among
the top k candidates. We use a more reasonable
time-aware filter setting to report our experimental
results2.
Implementation Details. The whole of training
hyper-parameters and model configurations are
summarized in Appendix A.1.

5.2 Experimental Results and Discussion
Table 2 and Table 3 report the experimental re-
sults of the link prediction task on six benchmark
datasets. Static KG embedding methods fell far
behind CEGRL-TKGR due to their inability to cap-
ture temporal dynamics in the TKG. Our method
is also superior to other TKGR models in predict-
ing events. The improved performance shows that
surface patterns and noise are widely present in sev-
eral real-world TKG datasets. The previous models

2The time-aware filtering setting filters out only the four
groups that occur at query time and can simulate extrapolated
prediction tasks in the real world (Sun et al., 2021).

are generally inadequate in design. CEGRL-TKGR
based on evolutionary representation will learn the
inherent confounding features in the TKG when
gathering neighborhood information and transmit-
ting historical information, and the model based on
rule-based inference will mine the false correlation
in the data, all of which will lead to the model-
making non-causal predictions in the reasoning
stage. Our model incorporates causal theory into
the TKGR task and visibly separates causal features
from confounding features. This helps to protect
the model from surface patterns and noise present
in the dataset and to uncover the real reasons that
affect the formation of links between entities. TiTer
and EvoKG show excellent performance on YAGO
datasets because the former’s historical fact search
strategy works well on smaller datasets, while the
latter’s modeling of event timing works well on
datasets containing events at relatively regular time
intervals. More model configurations and experi-
mental results are summarized in the Appendix.

6 Conclusion

In this paper, we revisit the GNN-based TKGR
model from the causality perspective, on this ba-
sis, we propose a novel CEGRL-TKGR frame-
work. By synergistically integrating causal struc-
tures with graph representation learning of the
TKG, our framework overcomes the problem of
existing TKGR models’ learning biased data repre-
sentations and mining for false correlations uninten-
tionally. Comprehensive experimental results and
analysis have proved the effectiveness of CEGRL-
TKGR.

Limitations and Future Work. The proposed
CEGRL-TKGR is an innovational causal enhanced
graph representation learning framework for opti-
mizing feature representations directly using causal
technology for the TGKR task. The limitations of
CEGRL-TKGR are as follows:

• From the dataset’s perspective, our research
primarily focuses on TKG datasets, which
may not verify the generalization ability of
the CEGRL-TKGR framework to those time-
interval insensitive graph datasets. Addition-
ally, we aim to further conduct case studies to
enhance the interpretability of the framework
in the reasoning procedure as future work.

• From the model’s perspective, our research
evaluates the TKGR task alone. Theoreti-
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Table 2: Experimental results of link prediction on ICEWS series dataset. The best result in each column is
boldfaced.

Model ICEWS14 ICEWS18 ICEWS05-15
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 22.48 13.36 25.63 41.23 12.24 5.84 12.81 25.10 22.55 13.05 25.61 42.05
Distmult 27.67 18.16 31.15 46.96 10.17 4.52 10.33 21.25 28.73 19.33 32.19 47.54
ComplEx 30.84 21.51 34.48 49.59 21.01 11.87 23.47 39.97 31.69 21.44 35.74 52.04
R-GCN 28.03 19.42 31.95 44.833 15.05 8.31 16.49 29.00 27.13 18.83 30.41 43.16
TTransE 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89 15.71 5.00 19.72 38.02

TA-DistMult 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59 24.31 14.58 27.92 44.21
TNTComplEx 32.12 23.35 36.03 49.13 21.23 13.28 24.02 36.91 27.54 19.52 30.80 42.86

Evo-KG 26.90 16.69 30.57 47.39 25.46 16.25 29.15 43.21 26.32 15.82 31.96 50.80
xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
TITer 40.59 31.41 45.47 57.62 29.55 21.37 33.10 44.87 46.62 36.46 52.29 65.23

TLogic 41.80 31.93 47.23 60.53 28.41 18.74 32.71 47.97 45.99 34.49 52.89 67.39
RE-GCN 42.00 31.63 47.20 61.65 32.62 22.39 36.79 52.68 48.03 37.33 53.90 68.51

CEN 41.93 31.71 46.86 61.36 29.41 19.60 33.91 49.97 47.04 36.58 52.60 67.18
GHT 38.28 28.43 42.85 57.47 28.38 18.78 32.01 47.27 42.90 31.76 46.77 64.64

CEGRL-TKGR 42.74 32.32 48.05 62.68 32.90 22.70 36.91 52.95 48.35 37.63 54.22 68.47

Table 3: Experimental results of link prediction on YAGO, WIKI, and GDELT datasets. The best result in each
column is boldfaced.

Model YAGO WIKI GDELT
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 38.97 26.87 42.45 56.05 23.46 16.53 28.45 35.71 - - - -
Distmult 44.05 39.19 49.70 59.94 27.96 18.84 32.45 39.51 8.61 3.91 8.27 17.04
ComplEx 44.09 39.33 49.57 59.64 27.69 18.67 31.99 38.61 9.84 5.17 9.58 18.23
R-GCN 20.25 11.25 24.01 37.30 13.96 7.21 15.75 22.05 12.17 8.64 12.37 20.63
TTransE 31.19 18.12 40.91 51.21 29.27 21.67 34.43 42.39 - - - -

TA-DistMult 54.92 48.15 59.61 66.71 44.53 39.92 48.73 51.71 10.34 6.25 10.44 21.63
TNTComplEx 57.98 52.92 61.33 66.69 45.03 40.04 49.31 52.03 19.53 12.41 20.75 33.42

Evo-KG 68.81 54.49 81.40 92.41 67.44 54.63 79.36 85.98 18.94 11.31 20.08 34.01
GHT 57.22 51.64 60.68 67.17 48.50 45.08 50.87 53.69 20.04 12.68 21.37 34.42

xERTE 84.19 80.09 88.02 89.78 73.60 69.05 78.03 79.73 19.45 11.92 20.84 34.18
TITer 87.47 80.09 89.96 90.27 73.91 71.70 75.41 76.96 18.19 11.52 19.20 31.00

RE-GCN 82.30 78.83 84.27 88.58 78.53 74.50 81.59 84.70 19.69 12.46 20.93 33.81
CEN 83.49 79.66 86.10 90.04 78.52 74.65 81.44 84.59 19.96 11.39 20.97 33.77

CEGRL-TKGR 86.25 82.92 88.72 91.70 79.66 75.73 82.83 85.59 20.11 12.73 21.46 34.51

cally, the GNN-based reasoning paradigm in-
corporated in the causal structure can be ap-
plied to any other graph representation learn-
ing tasks, such as triple classification (Jaradeh
et al., 2021), triple set prediction (Zhang et al.,
2024), and graph classification (Liu et al.,
2023). In future work, we desire to explore
powerful disentanglement methods and more
advanced causal intervention strategies to im-
prove the CEGRL-TKGR’s performance for
more rich graph representation learning-based
tasks. Besides, the increased complexity of
causal reasoning in the TKG is untouched.

• From the adaptation’s perspective, to adapt the
CEGRL-TKGR framework to more models,
there are some hyper-parameters to control
causal intervention and training. These hyper-
parameters are sensitive to different models
and datasets, hence it needs to take sufficient
time to experiment to find the optimal values
and combinations among them. Therefore,
how to reduce the consumption in the above
adaptation procedure upon the framework is

worthy of consideration.
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A Appendix

A.1 Implementation Details

We set the dimension of all embeddings and hidden
states to 200. The number of layers of the R-GCN
is set to 1 for YAGO and 2 for the other datasets.
The optimal number of historical snapshots is set
to 8, 10, 10, 1, 2, and 6 for ICEWS14, ICEWS18,
ICEWS05-15, YAGO, WIKI, and GDELT, respec-
tively. To fair comparison, static graph constraints
are added for ICEWS14, ICEWS18, and ICEWS05-
15. The channel number for decoding is set to 50,
and the kernel size is set to 4×3. We try several dif-
ferent values for λ1, λ2, and λ3, and finally chose
0.5, 0.5, 0.3. We use Adam to optimize the pa-
rameters, with a learning rate of 0.001. All of the
experiments are processed on a Linux server with
CPU Xeon Gold 6142, RAM 64G, and Nvidia 4090
GPU.

A.2 Ablation Study

We investigate the effectiveness of causally en-
hanced and time-interval guided decoders for the
link prediction task. Specifically, CEGRL-TKGR
w/o TD means that no time interval vector is used to
guide the decoder to work, and CEGRL-TKGR w/o
CE means that the model removes causal decou-
pling and causal intervention parts. Table 4 shows
the results of ablation experiments, which indicate
the effectiveness of these two components. As can
be seen from the results in the table, for datasets
such as YAGO and WIKI that contain relatively reg-
ular time intervals, a temporal gap-guided decoder
can capture this time interval pattern well enough
to make accurate predictions. At the same time,
it does not degrade performance even for time-
interval insensitive datasets. Our causal enhance-
ment module, under the independent constraint of
emphasizing causal features and confounding fea-
tures, eliminates the influence of the fast bridge
through causal intervention, forcing the model to
learn the intrinsic causes of the events. It is worth
noting that our causal enhancement module can be
seen as a flexible component that can be easily used
in several GNN-based reasoning frameworks.

A.3 Parameter Sensitivity Analysis

In the CEGRL-TKGR, λ1 and λ2 jointly affect the
disentanglement intensity of causal and confound-
ing features, and λ3 controls the intensity of causal
intervention. We study the sensitivity of parame-
ters in different benchmark datasets, as depicted

in Fig. 3. Specifically, one parameter is fixed at
0.5 and the other parameter varies in [0,1] with
a step size of 0.1. The model is relatively stable
in most parameter selection cases, but on noisy
datasets, the model has higher requirements for
hyper-parameters, and extreme values will degrade
the performance of the model. The best range for
λ1, λ2 is about 0.5 to 0.7. λ3 should be a relatively
small value, ranging from 0.3 to 0.6.

A.4 Performance on Noisy Temporal
Knowledge Graphs

To explore whether the proposed CEGRL-TKGR
can alleviate noise and surface patterns, we ran-
domly replace a certain percentage of positive
triples in the training set of each TKG dataset in
form of noisy TKGs. Taking YAGO and WIKI
datasets as examples, we test the performance of
CEGRL-TKGR and CEGRL-TKGR w/o CE un-
der different noise deviations, respectively. The
experimental results are shown in Fig. 4.

From the experimental results, we can draw the
following conclusion: when the noise in the dataset
increases, the performance of models lacking the
recognition of causal features and confounding fea-
tures will deteriorate sharply, and the performance
of MRR and Hits@1 will decrease, which indicates
that the CEGRL-TKGR w/o CE is easy to capture
data bias and make wrong predictions based on
it. In contrast, CEGRL-TKGR uses the causal en-
hancement module to effectively reduce the impact
of confounding features and shows more stable per-
formance on these two noisy TKG datasets. The
performance degradations on MRR and Hits@1 are
significantly smaller than those without the causal
module.
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Table 4: The ablation study of our model on the six benchmark datasets. "w/o" means "without".

Model ICEWS14 ICEWS18 ICEWS05-15 YAGO WIKI GDELT
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CEGRL-TKGR w/o TD 42.21 62.43 32.67 52.68 48.13 68.33 84.71 90.56 78.54 84.37 19.93 34.50
CEGRL-TKGR w/o CE 41.89 61.65 32.62 52.54 48.03 68.20 81.93 88.39 79.04 84.79 19.66 33.71

CEGRL-TKGR 42.74 62.68 32.90 52.95 48.35 68.47 86.25 91.70 79.66 85.59 20.11 34.51

Figure 3: The parameters sensitivity analysis of loss coefficients λ1, λ2 and λ3.

(a) MRR results on the YAGO dataset. (b) Hits@1 results on the YAGO dataset.

(c) MRR results on the WIKI dataset. (d) Hits@1 results on the WIKI dataset.

Figure 4: The performance of CEGRL-TKGR and CEGRL-TKGR w/o CE on the noisy YAGO and WIKI datasets,
respectively.

17



Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025, pages 18–30
January 20th, 2025. ©2025 NeusymBridge Workshop

Reasoning Knowledge Filter for Logical Table-to-Text Generation

Yu Bai1,4, Baoqiang Liu1, Shuang Xue2, Fang Cai3, Na Ye1,4, Guiping Zhang1,4

1School of Computer Science, Shenyang Aerospace University
2School of Foreign Language, Shenyang Aerospace University

3Department of Statistics, Stanford University
4National and Local Joint Engineering Laboratory for Multilingual Collaborative Translation Technology

Correspondence: {baiyu, liubaoqiang}@sau.edu.cn

Abstract

Logical table-to-text generation (LT2T) seeks
to produce logically faithful textual descrip-
tions base on tables. Current end-to-end LT2T
models, which use descriptions directly as
learning objectives, frequently face challenges
in maintaining logical faithfulness due to the
lack of a reasoning knowledge. Recent research
have introduced reasoning knowledge gener-
ated by models for LT2T task, but the noise
along with it limited its performance. We there-
fore propose a framework reasoning knowledge
filter that leverages the collaboration between
large language models and smaller models to
filter data points with high-quality reasoning
knowledge. This framework aims to provide
highly matched table, description and reason-
ing knowledge triplets for LT2T. The results ob-
tained on LogicNLG database demonstrate that
the efficiencies of the method in this paper has
achieved optimal performance with a reduced
amount of data. Specifically, it enhances SP-
Acc by 1.4 points and NLI-Acc by 0.7 points
compared to the current state-of-the-art model.

1 Introduction

The objective of the table-to-text generation task
is to generate a sentence or a paragraph based
on a table. In recent years, it has been an im-
portant research direction in natural language pro-
cessing(Lebret et al., 2016; Wiseman et al., 2017;
Parikh et al., 2020; Cheng et al., 2021).

However, previous work is still limited to
surface-level descriptions that simply use language
to describe the basic facts about the tables(Parikh
et al., 2020; Wiseman et al., 2017; Novikova et al.,
2017; Lebret et al., 2016). As shown in Figure 1,
a surface-level description of the table might be

“The attendance for the game held at the Wachovia
Center on December 2nd was 19,227”. Chen et al.
(2020a) argue that new research should go beyond
surface-level descriptions. To this end, they pro-
posed a new task called logical table-to-text gen-

date opponent location … attendance
december 2 … wachovia center … 19227
december 4 … st pete times forum … 15598
december 6 … st pete times forum … 17154

… … … … …
december 18 … st pete times forum … 16333

… … … … …
december 27 … st pete times forum … 18226

2008 - 09 tampa bay lightning season

description : 4 game were played at the St Pete Time Forum.

Figure 1: Example for logicNLG dataset.

eration (LT2T) with a dataset named LogicNLG.
In LT2T, the descriptions generated from tables
are no longer surface-level, instead, they are re-
quired to be logically faithful to the tables. The
facts included in such descriptions require multi-
step reasoning based on the table. For example, the
description in Figure 1 requires the following steps
of reasoning: (1) Select all rows with the “loca-
tion” column value as “st pete times forum”. (2)
Count the resulting rows to get “4”.

Since LogicNLG only provides tables and de-
scriptions, most research focuses on modifying
model architectures or training objectives to ul-
timately achieve a model that can outperform end-
to-end training(Chen et al., 2021; Nan et al., 2022;
Zhao et al., 2023b). These models need to implic-
itly learn how to generate logically faithful descrip-
tions by reasoning on tables.

A recent study RKT(Liu et al., 2024) suggests
that incorporating explicit reasoning knowledge
into LogicNLG can enhance the performance of
existing generation models. Based on the idea of
transfer learning, RKT generates the corresponding
reasoning knowledge for each LogicNLG data by
learning from out-of-domain datasets. For exam-
ple, RKT generate a reasoning knowledge for the
description in Figure 1 : “select the rows whose
location record fuzzily matches to St Pete Times
Forum. the number of such rows is 4".

We have observed that this reasoning knowledge
18



country date label format
united kingdom … parlophone lp
united kingdom … parlophone cd
united kingdom … parlophone cd digipak

united states … astralwerks cd
australia … capitol records cd

vehicles & animals

description : Australia and United State made their Label using the same 
Format. 
reasoning knowledge : select the rows whose country record fuzzily 
matches to Australia. for the format records of these rows, all of them 
fuzzily match to Cd. there is only one such row in the table. the label 
record of this unqiue row is Capitol Records.

Figure 2: The incorrect reasoning knowledge generated
by RKT.

is not manually annotated but generated by mod-
els, which introduces a significant amount of noisy
data. As shown in Figure 2, the reasoning knowl-
edge generated by RKT for description is incorrect,
it may have a negative impact on model training
process.

We hypothesize that if we can filter out some of
the noisy data and train the model to use only the
remaining clean data, we can further improve the
performance of existing generation models. How-
ever, relying on human to label nearly 30,000 such
pieces of data could take more time and effort. With
powerful reasoning capabilities, Large Languge
Models (LLMs) has the potential to replace hu-
mans in the annotation process(Zhao et al., 2023a).
But with large token size of serialized datas, LLMs
may have higher economic costs.

To filter reasoning knowledge and minimize
costs, we propose a framework reasoning knowl-
edge filter (RKF) based on knowledge distillation.
RKF first splits the LogicNLG dataset, which con-
tains reasoning knowledge introduced by RKT(Liu
et al., 2024), into two parts of different sizes. Then,
GPT-4o is tasked with adding correctness labels to
the reasoning knowledge in the smaller part. Sub-
sequently, the data with correctness labels is used
to train a reasoning knowledge correctness classifi-
cation model. Finally, this classification model is
employed to determine the correctness of the rea-
soning knowledge in the remaining larger part of
the data. The results obtained on LogicNLG dataset
demonstrate that our method further improves the
performance of existing models, with an increase
of 1.4 points in SP-Acc and 0.7 points in NLI-Acc
over the current state-of-the-art model.

Overall, our contributions are as follows:

• We proposed a framework reasoning knowl-
edge filter to filter out noisy data from the

existing reasoning knowledge in LogicNLG,
successfully reducing the training bias in ex-
isting generation models.

• We provided a updated version of the Log-
icNLG dataset, which offers a higher degree
of alignment between reasoning knowledge,
tables, and descriptions compared to provided
in RKT.

• We achieved optimal performance using less
data than the original LogicNLG training set.

2 Related Work

With the recognition of pre-trained language mod-
els (PLMs) by researchers, most recent works have
adopted the approach of end-to-end fine-tuning of
PLMs to accomplish table-to-text generation. Kale
and Rastogi (2020) obtained notable results across
various datasets by solely fine-tuning T5; Wang
et al. (2022a) changed the attention and position
encoding base on T5; and An et al. (2022) proposed
optimizing the loss function during the fine-tuning
of PLMs using contrastive learning. For LT2T,
R2D2 modified the input and loss function used
during the fine-tuning of T5(Nan et al., 2022).

Notably, in the data-to-text generation field,
some researchers have been dedicated to integrat-
ing PLMs with traditional natural language gen-
eration generation method content planning and
surface realisation(Holmes-Higgin, 1994). This
type of model, which uses PLMs for content plan-
ning and surface realization, is referred to as a
pipeline model. The generation of descriptions us-
ing a pipeline model typically involves two steps:
(1) Content Planning: selecting and ordering key
information from the input data, and (2) Surface
Realization: generating descriptions based on the
key information. PlanGen(Su et al., 2021) is a rep-
resentative of such pipeline models.

The reasoning capabilities of LLMs have gar-
nered significant attention in recent years. Chain-
of-Thought (CoT) is a crucial technique for fur-
ther unlocking the reasoning capabilities of LLMs.
Widely recognized research on CoT includes few-
shot CoT(Wei et al., 2022), zero-shot CoT(Kojima
et al., 2022), auto-CoT(Zhang et al., 2022) and Self-
consistency(Wang et al., 2022b). Our work par-
tially draws on few-shot CoT and self-consistency
research.

Knowledge Distillation (KD)(Xu et al., 2024) in
LLMs is a technique used to transfer knowledge
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from a large, complex model to a smaller, sim-
pler model. This process aims to retain the perfor-
mance of the larger model while reducing computa-
tional requirements. KD methods are mainly used
for white-box classification models or for training
smaller models to replicate the behavior of black-
box model APIs, such as ChatGPT. Many KD ef-
forts achieve text classification tasks by imitating
the output distribution of the teacher model(Song
et al., 2020; Liang et al.; Zhang et al., 2023).

3 Method

This section begins with some preliminary infor-
mation for our work (3.1), followed by reasoning
knowledge filter framework (3.2).

3.1 Preliminaries

3.1.1 LogicNLG Dateset
The LogicNLG dataset is divided into three parts:
train, dev, and test. We define these parts as fol-
lows:

DT = {(T, S)i}|DT |
i=1 (1)

DV = {(T, S)i}|DV |
i=1 (2)

DS = {(T, S)i}|DS|
i=1 (3)

in which T is a structured table, S is a description,
and |DT ||DV ||DS| is the size of dataset.

3.1.2 LogicNLG Dateset With Reasoning
Knowledge

RKT introduces explicit reasoning knowledge to
the LogicNLG train set, expanding the original
(T, S) pairs into triplets. We can redefine DT as

DTRK = {(T, S,RK)i}|DTRK|
i=1 (4)

where RK is reasoning knowledge.
Reasoning knowledge is a formal process of

reasoning out descriptions from tables(Liu et al.,
2024). It based on seven categories of logical op-
eration functions: count, superlative, comparative,
aggregation, majority, unique, and ordinal (details
of the logical operation functions are provided in
the AppendixA). High-quality reasoning knowl-
edge can be seen as a graph structure. As shown in
Figure 3, the bottom-up execution order in graph
structures provides a more intuitive explanation of
the formal process of inferring descriptions from
tables.

reasoning knowledge : select the rows whose location record fuzzily 
matches to St Pete Times Forum. the number of such rows is 4.

filter_ all

count

eq

4

St Pete Times 
Forumall rows location

Figure 3: The correspondence between reasoning knowl-
edge and graph structures for example in Figure 1.

3.1.3 Table Serialization
In table-to-text generation, tables are typically
transformed into a sequence format before being
fed into the model. Current research suggests vari-
ous methods for table serialization. Early research
tended to serialize tables using XML formats(An
et al., 2022). With the advent of pre-trained lan-
guage models, it has become common to use natu-
ral language templates for table serialization(Chen
et al., 2020a). For LLMs, directly adding special
tokens between cells and rows is also an effective
serialization choice. Moreover, Chen et al. (2020a)
highlighted that serializing the entire table can neg-
atively impact model performance. Consequently,
we adhere to Chen et al. (2020a) approach and
choose specific sub-columns of the table for serial-
ization.

3.2 Reasoning Knowledge Filter

To illustrate the dataset’s transformation, the pro-
cess of reasoning knowledge filter is depicted in
Figure 4. The numbers enclosed in brackets within
the figure correspond to the equations provided in
this paper. Now, we will separately introduce the
implementation details.

3.2.1 Dataset Partition
As mentioned in Section 1, we had planned to use
LLMs to replace human annotation because manu-
ally annotating the correctness of reasoning knowl-
edge incurs significant time and financial costs.
Therefore, we initially planned to use LLMs to
completely replace human annotation. However,
while LLMs can significantly reduce time costs,
they do not lower economic costs. According to
our estimates, with even the most token-efficient
method to serialize the tables, the entire training
set would still need over 30,000,000 prompt to-
kens and 45,000,000 completion tokens (for each
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DTRKp3_yes
(9)

DTRKp3_no

DTRKyes
(10)

finetune

Figure 4: Reasoning knowledge filter process.

data point, we assume that the prompt requires a
minimum of 1,024 tokens, and three completions
require 1,536 tokens). To further reduce economic
costs, we decided to partition DTRK in a 1:3 ratio.
The partitioned data is defined as follows:

DTRKp1 = {(T, S,RK)i}|DTRKp1|
i=1 (5)

DTRKp3 = {(T, S,RK)i}|DTRKp3|
i=1 (6)

3.2.2 Annotation of Reasoning Knowledge
Correctness Based on LLMs

It is widely acknowledged that LLMs possess pow-
erful multi-step reasoning capabilities. In sce-
narios where data is scarce, numerous studies
have attempted to use LLMs to generate training
data(Long et al., 2024). We believe that employ-
ing LLMs to assess the correctness of reasoning
knowledge is feasible.

The recently released GPT-4o has demonstrated
outstanding performance in multi-step reasoning
capabilities, particularly excelling in handling com-
plex logical reasoning tasks. It has shown signifi-
cant advantages in accurately generating and ver-
ifying intricate reasoning chains. Therefore, we
have chosen GPT-4o to assess the correctness of
reasoning knowledge in DTRKp1.

Figure 5 illustrates the entire process of us-
ing GPT-4o to assess the correctness of reason-
ing knowledge. Each prompt can be divided into
two parts: the instruction description and the se-
rialized data. The instruction description remains
constant in each prompt. We prompt GPT-4o to
perform step-by-step reasoning based on the rea-
soning knowledge to determine whether the facts

included in the description can be derived. To
quickly pinpoint the judgment results of GPT-4o,
we also require GPT-4o to return a definitive re-
sponse, specifically either “The result is yes” or

“The result is no”. In the completions generated by
GPT-4o, there remains a small portion of data that
does not include the two specified markers. We
consider this subset of data as containing incorrect
reasoning knowledge. In serialized data, we choose
to add special tokens between cells and rows when
table serialization. We distinguish cells and rows
with “#” and newlines, respectively. Based on our
tests, LLMs perform well with each serialization
scheme mentioned in Section 3.1.3. However, the
scheme involving the addition of special characters
is the most token-efficient. Due to the possibility
of errors in single-instance inferences generated by
LLMs, we require GPT-4o to randomly generate
three completions for each data point to maximize
the collection of accurate reasoning knowledge.
The conclusions derived from these three comple-
tions may differ. Inspired by research on the self-
consistency of CoT, we select the conclusion that
appears most frequently as the final result.

After GPT-4o completes the correctness assess-
ment of reasoning knowledge for all DTRKp1

data, the definition of DTRKp1 will be updated as
follows:

DTRKp1 = {(T, S,RK,FLAG)i}|DTRKp1|
i=1

(7)
where the FLAG is used to indicate the correct-
ness of the reasoning knowledge. The candidate
values for FLAG are “YES” or “NO”. Further-
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To determine if the fact implied by sentence S 
("4 games were played at the St Pete Times 
Forum") can be inferred from table T, we will 
follow the reasoning knowledge provided:
1. **Identify rows whose location matches "St 
Pete Times Forum":** 
…
2. **Compare the count with the statement in 
S:**
…
Since we have found 4 rows that correspond to 
"St Pete Times Forum", the fact implied by S is 
indeed supported by the data in T according to 
the reasoning knowledge.
Thus, the final conclusion is:
The result is yes.

completion 1Prompt

To determine whether…
…
The result is yes.

completion 2

To determine whether…
…
The result is yes.

completion 3

To determine if the fact…
…
The output is: "The result is no".

completion 1

Given a table T, a sentence S and a reasoning 
knowledge. The fact implied by S needs to be 
inferred from the data in T. Determine whether 
the fact implied by sentence S can be inferred 
according to the steps in the reasoning 
knowledge. If yes, output "The result is yes", 
otherwise output "The result is no".

T: huron , south dakota…

S: all Frequency…

reasoning knowledge: select the rows whose 
target city / market record fuzzily matches to 
Huron. the number of such rows is 1.

Prompt

To determine whether…
…
The result is no.

completion 2

To determine whether…
…
The result is no.

completion 3

GPT-4o

no

yes

Given a table T, a sentence S and a reasoning 
knowledge. The fact implied by S needs to be 
inferred from the data in T. Determine whether 
the fact implied by sentence S can be inferred 
according to the steps in the reasoning 
knowledge. If yes, output "The result is yes", 
otherwise output "The result is no".

T: 2008 - 09 tampa bay lightning season…

S: 4 game were…

reasoning knowledge: select the rows whose …

Figure 5: Annotation of reasoning knowledge correctness based on LLMs. Detailed examples will be presented in
the AppendixA.

more, we define the subset of DTRKp1 data where
the FLAG is set to “YES” as follows:

DTRKp1_yes = {(T, S,RK)i}|DTRKp1_yes|
i=1

(8)

3.2.3 Reasoning Knowledge Correctness
Classification Model

In previous section, we annotated DTRKp1 using
GPT-4o. Now, we need to complete the annotation
for DTRKp3. Knowledge distillation(Xu et al.,
2024), as a technique where smaller models learn
from the capabilities of LLMs, is widely utilized by
researchers. Inspired by knowledge distillation, we
decided to use a smaller text classification model
to learn the prediction distribution of GPT-4o on
DTRKp1. Subsequently, we will employ this clas-
sification model to annotate the reasoning knowl-
edge correctness for dataset DTRKp3.

We selected the BART-large(Lewis, 2019) model
as the foundation for our classification model. By
jointly training the pre-trained weights of BART-
large and the randomly initialized weights of the
linear classification layer, we can assess the correct-
ness of reasoning knowledge. We use DTRKp1

to train the classification model, requiring the clas-
sification model to determine the correctness of

reasoning knowledge based on the input table, de-
scription, and reasoning knowledge. Figure 8 in ap-
pendix illustrates the inputs and outputs during the
training of the classification model. Note that, fol-
lowing previous table-to-text research(Chen et al.,
2020a, 2021; Nan et al., 2022; Liu et al., 2024),
we use natural language templates to achieve table
serialization during training.

After completing the training, we use the classi-
fication model to assess the correctness of all rea-
soning knowledge in DTRKp3. Using the same
input format as during training, we provide the clas-
sification model with a table, a description, and a
reasoning knowledge, and require it to determine
the correctness of the reasoning knowledge. We
merge the data points that the classification model
deems as correct reasoning knowledge into a set,
which can be defined as:

DTRKp3_yes = {(T, S,RK)i}|DTRKp3_yes|
i=1

(9)

3.2.4 Merge Data
Through Sections 3.2.2 and 3.2.3, we successfully
filtered all data split according to a 1:3 ratio in
Section 3.2.1. The data marked as “YES” for the
correctness of reasoning knowledge are the ones
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table serialization

Autoregressive Decoder

Bidirectional Encoder

Autoregressive Decoder

<s> 4 game were … St …

Bidirectional Encoder

tampa… 2008 - 09 …

<s> select … to St Pete …

</s>select … to St Pete …

… 2008 - …… Andselect …

</s>

Table Reasoning Module Description Generation Module

4 game were … St …

DTRK𝑦𝑦𝑦𝑦𝑦𝑦 = {(𝑇𝑇, 𝑆𝑆,𝑅𝑅𝑅𝑅)𝑖𝑖}𝑖𝑖=1
|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦𝑦𝑦|

(𝑇𝑇, 𝑆𝑆,𝑅𝑅𝑅𝑅)

Figure 6: Training details of the generation model.

we need. Now, we need to merge the two parts of
the data.

We merge DTRKp1_yes and DTRKp3_yes to-
gether and define them as follows:

DTRKyes = {(T, S,RK)i}|DTRKyes|
i=1 (10)

where |DTRKyes| equals |DTRKp1_yes| plus
|DTRKp3_yes|.

3.2.5 Generation Model
DTRKyes and DT differ in two aspects: first, the
former has a smaller size; second, the former pro-
vides an additional piece of reasoning knowledge
for each data point compared to the latter. This
reasoning knowledge should be an intermediate
process that the model can generate on its own,
with the aim of better generating descriptions.

Following the work of Liu et al. (2024), we de-
compose the LT2T task into two subtasks: table
reasoning and description generation. We imple-
mented a pipeline-based generation model using
the BART-large model as the foundation to accom-
plish these two subtasks. Figure 6 illustrates the
training details of the generation model using the
data from Figure 1 as an example. The generation
model is divided into two independent modules:
table reasoning module and description generation
module.

The training objective of the table reasoning
module is to generate a reasoning knowledge based

on table. We expect the table reasoning module to
learn the experience knowledge embedded in rea-
soning knowledge, thereby enabling it to perform
logical reasoning based on tabular data.

The training objective of the description genera-
tion module is to generate a description based on
table and reasoning knowledge. Since the table rea-
soning module has already completed the reason-
ing based on the table, the description generation
module’s task now shifts to generate a summariz-
ing description based on the provided reasoning
knowledge and table.

This pipeline generation model decomposes the
originally complex task of table-to-text generation
into two relatively simpler subtasks: reasoning and
generation. Each module focuses solely on its re-
spective subtask, which facilitates the model’s abil-
ity to uncover logical relationships within the table
and produce accurate and logically faithful descrip-
tions.

The prediction process of this generation model
is as follows: (1) Input a serialized table into the
table reasoning module, and the table reasoning
module generates a reasoning knowledge based on
the table information. (2) The reasoning knowl-
edge generated by the table reasoning module is
appended to the serialized table. (3) The concate-
nated sequence is then input into the description
generation module, which combines the table and
the reasoning knowledge to generate a description
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that is logically faithful to the facts presented in the
table.

4 Experiments

In this section, we describe our evaluation method-
ology, including the evaluation metrics and com-
parison baselines, evaluation and ablation study to
thoroughly assess our model.

4.1 Evaluation Metrics
The evaluation metrics for LT2T are categorized
into two types: surface-level matching and logical
fidelity.

Similar to LT2T, we employ BLEU-1/2/3 (Pap-
ineni et al., 2002) as our evaluation metric, which
assesses the consistency between the model’s out-
put and the reference by using n-gram matching.

Following previous work (Chen et al., 2020a;
Nan et al., 2022; Zhao et al., 2023b), we assessed
our method using two evaluation metrics: SP-Acc,
based on semantic parsing, and NLI-Acc, based
on entailment scores. During evaluation, SP-Acc
converts the predicted description into a logical
form(Chen et al., 2020a) and executes it, while
NLI-Acc computes the entailment score between
the predicted description and the table. Both met-
rics determine the proportion of descriptions that
meet specific criteria, thereby measuring whether a
description is logically faithful to the table.

4.2 Baselines
Our method will be compared with the following
studies:

GPT-Coarse-to-Fine, a method proposed by
Chen et al. (2020a) when introducing LT2T. This
method involves copying the reference description
and masking key entity information, then append-
ing it to the front of the reference description as
training data for the model. This approach par-
tially alleviates the issue of the model generating
descriptions that are not logically faithful.

DCVED, a encoder-decoder for the LT2T, which
employ the causal intervention method to mitigate
spurious correlations(Chen et al., 2021).

R2D2, which addresses the issue of unfaithful
data-to-text generation by replacing key informa-
tion in the description with elements from the same
column or by sampling from the model’s prediction
distribution. It also introduces a new unlikelihood
loss function, training the system to act as both
a generator and a faithfulness discriminator(Nan
et al., 2022).

LoFT, which employs a model to transform de-
scriptions into logic forms(Chen et al., 2020b) and
subsequently trains the model to generate descrip-
tions based on both the tables and the logic forms.
By incorporating candidate logic form synthesiz-
ers, LoFT improves the fidelity and diversity of the
model’s predictions(Zhao et al., 2023b).

HISTALIGN, which enhances the context de-
pendence of language models by introducing a
novel Cache-LM training objective to ensure proper
cache alignment. This allows the model to effec-
tively utilize historical signals, thereby improving
the coherence and faithfulness of the generated de-
scriptions(Wan et al., 2023).

RKT, a framework that introduces explicit rea-
soning knowledge into LogicNLG, mitigating the
issue of erroneous information often generated by
end-to-end models that directly infer descriptions
from tables(Liu et al., 2024).

4.3 Automatic Evaluation
Table 1 presents the results of our experiment. It
can be observed that our method surpasses previous
approaches in terms of logical fidelity evaluation
metrics. Our method improves SP-Acc by up to
1.4 points and NLI-Acc by 0.7 points. The en-
hancement in these two metrics demonstrates that
our table reasoning module effectively generates
reliable reasoning knowledge from tables, and the
description generation module uses this reasoning
knowledge to guide the generation of more logi-
cally faithful descriptions.

Regarding BLEU scores, our method is competi-
tive with previous approaches. However, it appears
that further research is necessary. BLEU evalu-
ates the n-gram token matching between reference
descriptions and predicted descriptions, without
assessing the correctness of the descriptions. How-
ever, our method shows significant improvement in
logical fidelity metrics, indicating that the descrip-
tions we generated are indeed more accurate. By
observing the prediction results, we believe that the
low BLEU score was attributed to our generated de-
scriptions being logically faithful but not matching
the reference descriptions. This situation may have
occurred because the table reasoning module gen-
erated reasoning knowledge that did not match the
reference descriptions. We provide an example of
this situation in Figure 7. The reference description
indicates that Pierre Lamine has more points than
Shinji Someya, whereas the predicted description
states that Mark Cockerell had the highest number
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model bleu1 bleu2 bleu3 SP-Acc NLI-Acc
GPT-Coarse-to-Fine (sm)(Chen et al., 2020a) 46.6 26.8 13.3 42.7 72.2
GPT-Coarse-to-Fine (med)(Chen et al., 2020a) 49.0 28.3 14.6 45.3 76.4
DCVED(Chen et al., 2021) 49.5 28.6 15.3 43.9 76.9
R2D2(Nan et al., 2022) 51.8 32.4 18.6 50.8 85.6
LOFT(Zhao et al., 2023b) 48.1 27.7 14.9 57.7 86.9
HISTALIGN(Wan et al., 2023) 56.7 37.6 26.3 53.1 85.7
RKT(Liu et al., 2024) 54.8 34.1 19.7 59.6 88.1
Ours 55.2 34.3 20.0 61.0 88.8

Table 1: Performance results on the LogicNLG test set.

… name … point …

… mark cockerel … 172.42 …

… takashi mura … 165.70 …

… brian pockar … 166.62 …

… pierre lamine … 150.50 …

… shinji someya … 150.34 …

1976 world junior figure skating championships

Reference description : Pierre Lamine has a mere 0.16 more 
Point than Shinji Someya.
Prediction reasoning knowledge : select the row whose points 
record of all rows is maximum. the name record of this row is 
Mark Cockerell.
Prediction description : Mark Cockerell had the highest number 
of Point in the 1976 World Junior Figure Skating Championship.

Figure 7: Prediction example in LogicNLG test set.

model SP-Acc NLI-Acc
Previous best 59.6 88.1
ours (L+C) 61.0 88.8
ours (C) 60.4 88.5

Table 2: Ablation study result. (L+C) indicates that the
filtering process utilized both the GPT-4o model and
the classification model. (C) indicates that the filtering
process used only the classification model.

of points.

5 Ablation Study

In Section 3.2.2 and 3.2.3, we utilized the GPT-
4o model and a reasoning knowledge correctness
classification model to filter out data from DTRK
that contained correct reasoning knowledge. To fur-
ther validate the effectiveness of the classification
model, we applied it alone to filter dataset DTRK,
resulting in a new dataset defined as follows:

DTRKcyes = {(T, S,RK)i}|DTRKcyes|
i=1 (11)

Subsequently, we retrained the generation model
using DTRKcyes according to the methodology

outlined in Section 3.2.5.
As shown in Table 2, significant performance

improvements were observed even when the clas-
sification model was used to filter DTRK. This
demonstrates the utility of our classification model
base on knowledge distillation.

6 Conclusion

In this paper, we propose a framework reasoning
knowledge filter based on large language models
and knowledge distillation. This framework suc-
cessfully filters out a dataset that is smaller in size
compared to the original LogicNLG dataset but has
a higher match quality among table, description,
and reasoning knowledge triplets. Through this
method, we are able to significantly enhance the
performance and logical faithfulness of the genera-
tion model.

7 Limitations

Although our method improved logical faithfulness,
it still falls short of human performance, which in-
directly highlights the difficulty of the task. Mean-
while, three-quarters of DTRK was filtered by
a smaller classification model, which learned the
output distribution of GPT-4o through knowledge
distillation. However, it is foreseeable that its fil-
tering performance is not as effective as that of
GPT-4o.
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A Appendix

Table 3 presents all logical operation functions re-
lated to reasoning knowledge. Figure 9 and 10
illustrate how data is annotated using GPT-4o.
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Name Arguments Output Description
count view number returns the number of rows in the view
only view bool returns whether there is exactly one row in the view
hop row, header string object returns the value under the header column of the row
and bool, bool bool returns the boolean operation result of two arguments
max/min/avg/sum view, header string number returns the max/min/average/sum of the values under the header column
nth_max/nth_min view, header string number returns the n-th max/n-th min of the values under the header column
argmax/argmin view, header string row returns the row with the max/min value in header column
nth_argmax/nth_argmin view, header string row returns the row with the n-th max/min value in header column
eq/not_eq object, object bool returns if the two arguments are equal
round_eq object, object bool returns if the two arguments are roughly equal under certain tolerance
greater/less object, object bool returns if argument 1 is greater/less than argument 2
diff object, object object returns the difference between two arguments
filter_eq/not_eq view, header string, object view returns the subview whose values under the header column is equal/not equal to argument 3
filter_greater/less view, header string, object view returns the subview whose values under the header column is greater/less than argument 3
filter_greater_eq /less_eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than argument 3
filter_all view, header string view returns the view itself for the case of describing the whole table
all_eq/not_eq view, header string, object bool returns whether all the values under the header column are equal/not equal to argument 3
all_greater/less view, header string, object bool returns whether all the values under the header column are greater/less than argument 3
all_greater_eq/less_eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to argument 3
most_eq/not_eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to argument 3
most_greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than argument 3
most_greater_eq/less_eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table 3: Logical Operation Functions, same as in logic2text(Chen et al., 2020b).

input Given a table T, a sentence S and a reasoning knowledge. The fact implied by S needs to be inferred from the data in
T. Determine whether the fact implied by sentence S can be inferred according to the steps in the reasoning
knowledge.
S:only Gary Player represented South Africa at the 2001 Open Championship.
reasoning knowledge: select the rows whose country record fuzzily matches to South Africa. there is only one such
row in the table. the player record of this unqiue row is Gary Player.
T: The caption is "2001 open championship". In row 1 , the player is Justin Leonard , the country is United States . In
row 2 , the player is Nick Faldo , the country is England . In row 3 , the player is Tom Lehman , the country is United
States . In row 4 , the player is John Daly , the country is United States . In row 5 , the player is Seve Ballesteros , the
country is Spain . In row 6 , the player is Bob Charles , the country is New Zealand . In row 7 , the player is Tony
Jacklin , the country is England . In row 8 , the player is Tom Watson , the country is United States . In row 9 , the
player is Gary Player , the country is South Africa .

output 1(YES)
input Given a table T, a sentence S and a reasoning knowledge. The fact implied by S needs to be inferred from the data in

T. Determine whether the fact implied by sentence S can be inferred according to the steps in the reasoning
knowledge.
S:only 1 Mass Suicide occured in the united state , in California in 1997.
reasoning knowledge:select the rows whose type record fuzzily matches to Mass Suicide. among these rows, select
the row whose date record of all rows is 1st minimum. the location record of this row is California.
T: The caption is "list of battles and other violent events by death toll". In row 1 , the type is Mass Suicide , Murder ,
the location is Japan , the date is 1945 . In row 2 , the type is Mass Suicide , the location is Mariana Islands , the date
is 1944 . In row 3 , the type is Mass Human Sacrifice , the location is Templo Mayor , Tenochtitlan , the date is 1487 .
In row 4 , the type is Mass Suicide , the location is Judea , the date is 73 . In row 5 , the type is Mass Suicide ,
Murder , the location is Guyana , the date is 1978 . In row 6 , the type is Mass Suicide , the location is Uganda , the
date is 2000 , March . In row 7 , the type is Mass Suicide , the location is Switzerland , Canada , the date is 1994 . In
row 8 , the type is Mass Suicide , the location is California , the date is 1997 . In row 9 , the type is Mass Suicide ,
the location is France , the date is 1995 , December 23.

output 0(NO)

Figure 8: Train data for reasoning knowledge correctness classification model.
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Prompt

Given a table T, a sentence S and a reasoning knowledge. The fact implied by S needs to be inferred from the data in T. Determine whether the fact implied by sentence
S can be inferred according to the steps in the reasoning knowledge. If yes, output "The result is yes", otherwise output "The result is no".
T: 2008 - 09 tampa bay lightning season
```
row number#location
1#wachovia center
2#st pete times forum
3#st pete times forum
4#td banknorth garden
5#hsbc arena
6#bell centre
7#scotiabank place
8#st pete times forum
9#philips arena
10#mellon arena
11#bankatlantic center
12#st pete times forum
```
S: 4 game were played at the St Pete Time Forum.
reasoning knowledge: select the rows whose location record fuzzily matches to St Pete Times Forum. the number of such rows is 4.

Completion 1

To determine if the fact implied by sentence S ("4 games were played at the St Pete Times Forum") can be inferred from table T, we will follow the reasoning 
knowledge provided:
1. **Identify rows whose location matches "St Pete Times Forum":** 

- Looking at the table T, we can see the following rows with the location "st pete times forum":
- Row 2
- Row 3
- Row 8
- Row 12

- We count the matches:
- There are **4 rows** that match the location "st pete times forum".

2. **Compare the count with the statement in S:**
- Sentence S states that "4 games were played at the St Pete Times Forum."
- The reasoning knowledge states that we should find 4 rows that match.

Since we have found 4 rows that correspond to "St Pete Times Forum", the fact implied by S is indeed supported by the data in T according to the reasoning knowledge.
Thus, the final conclusion is:
The result is yes.

Completion 2

To determine whether the fact implied by sentence S can be inferred from the data in table T, we will follow the reasoning knowledge provided.
1. The reasoning knowledge states to "select the rows whose location record fuzzily matches to St Pete Times Forum."
2. We need to count the number of rows in table T that match "St Pete Times Forum."
Looking at the data in T:
- Row 2: st pete times forum
- Row 3: st pete times forum
- Row 8: st pete times forum
- Row 12: st pete times forum
From the analysis, we see that there are 4 rows that match "St Pete Times Forum".
Now, let’s evaluate the fact implied by S: "4 games were played at the St Pete Time Forum." Since we have identified 4 rows that match the location "St Pete Times 
Forum," this supports the implication stated in S.
According to the reasoning knowledge, since the number of rows that match is indeed 4, we can conclude that the implication is valid.
Thus, the output is:
The result is yes.

Completion 3

To determine whether the fact implied by sentence S can be inferred from the data in table T using the reasoning knowledge provided, we can follow these steps:
1. **Identify the target location from S**: The sentence states that 4 games were played at the St Pete Times Forum.
2. **Apply the reasoning knowledge**: According to the reasoning knowledge, we need to select the rows from T whose location records fuzzily match "St Pete Times 
Forum". 
3. **Examine the data in table T**: Looking at the table, we can see the locations listed:

- Row 2: st pete times forum
- Row 3: st pete times forum
- Row 8: st pete times forum
- Row 12: st pete times forum

4. **Count the matches**: There are 4 rows where the location matches "St Pete Times Forum" (rows 2, 3, 8, and 12).
Since the reasoning knowledge states that we need to find 4 rows that fuzzily match "St Pete Times Forum", and we have found exactly 4 such rows, we can conclude 
that the fact implied by sentence S can indeed be inferred from the data in T.
Therefore, the final output is:
Th  lt i  

Figure 9: GPT-4o Annotation Detail.
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Prompt

Given a table T, a sentence S and a reasoning knowledge. The fact implied by S needs to be inferred from the data in T. Determine whether the fact implied by sentence
S can be inferred according to the steps in the reasoning knowledge. If yes, output "The result is yes", otherwise output "The result is no".
T: huron , south dakota
```
row number#frequency#target city / market#city of license
1#88.7 fm#huron#huron
2#90.5 fm#huron#huron
3#93.3 fm#huron / mitchell#wessington springs
4#105.1 fm#huron#huron
5#89.7 fm#huron#rocklin , california
```
S: all Frequency Target the City Of Huron.
reasoning knowledge: select the rows whose target city / market record fuzzily matches to Huron. the number of such rows is 1.

Completion 1

To determine if the fact implied by sentence S ("all Frequency Target the City Of Huron") can be inferred from the table T according to the provided reasoning 
knowledge, let's break down what needs to happen.
1. **reasoning knowledge Analysis**: The reasoning knowledge states to select rows whose "target city / market" record fuzzily matches "Huron" and the number of 
such rows must be 1.
2. **Table Analysis**: Let's examine the rows in table T:

- Row 1: target city / market is "huron" (matches)
- Row 2: target city / market is "huron" (matches)
- Row 3: target city / market is "huron / mitchell" (fuzzily could match "huron")
- Row 4: target city / market is "huron" (matches)
- Row 5: target city / market is "huron" (matches)
Thus, we have the following evaluation:
- Row 1: matches
- Row 2: matches
- Row 3: fuzzily matches (due to the presence of "huron")
- Row 4: matches
- Row 5: matches

3. **Counting Matches**: The total number of rows that match or fuzzily match "Huron" is 5 (Rows 1, 2, 3, 4, and 5).
4. **Conclusion Based on reasoning knowledge**: The reasoning knowledge requires that the number of such rows must be exactly 1. Since we found 5 rows that 
match or fuzzily match "Huron", we do not satisfy the condition of having exactly 1 row.
Therefore, following the steps outlined in the reasoning knowledge, we find that the fact implied by sentence S cannot be inferred from the data in table T.
The output is: "The result is no".

Completion 2

To determine whether the fact implied by sentence S ("all Frequency Target the City Of Huron") can be inferred from the data in table T according to the specified 
reasoning knowledge, we can follow the steps outlined in the rule.
1. The rule states to select the rows whose "target city / market" record fuzzily matches to "Huron".
2. In table T, we will look for rows where the "target city / market" includes "Huron":

- Row 1: target city / market = "huron" (matches)
- Row 2: target city / market = "huron" (matches)
- Row 3: target city / market = "huron / mitchell" (matches fuzzily, as it includes "Huron")
- Row 4: target city / market = "huron" (matches)
- Row 5: target city / market = "huron" (matches fuzzily, as it is part of the broader match)

3. Counting the matched rows, we have:
- Row 1: matches
- Row 2: matches
- Row 3: matches (fuzzy)
- Row 4: matches
- Row 5: matches (fuzzy)
- Total matched rows = 5

4. The reasoning knowledge also states that the expected number of such rows is 1. Since we found 5 rows that match, this contradicts the rule.
Based on this reasoning, the fact implied by sentence S cannot be inferred because the number of matching rows does not meet the condition specified in the reasoning 
knowledge.
Thus, the output is:
The result is no.

Completion 3

To determine whether the fact implied by sentence S ("all Frequency Target the City Of Huron") can be inferred from the data in table T according to the reasoning 
knowledge provided, we follow these steps:
1. **Examine the reasoning knowledge**: The reasoning knowledge states that we need to select the rows whose target city / market record fuzzily matches "Huron" 
and that the number of such rows should be 1.
2. **Check the Table**: Let's review the rows in table T:

- Row 1: Target city / market is "huron" (matches)
- Row 2: Target city / market is "huron" (matches)
- Row 3: Target city / market is "huron / mitchell" (fuzzily matches)
- Row 4: Target city / market is "huron" (matches)
- Row 5: Target city / market is "huron" (fuzzily matches, but does not exactly match Huron)

3. **Count Matching Rows**:
- Rows that match "Huron" (fuzzily or exactly): Row 1, Row 2, Row 3, Row 4, Row 5.
- Total matches: 5 rows.

4. **Compare with the reasoning knowledge**: The reasoning knowledge indicates that there should be exactly 1 row that matches. Since we found 5 rows that match 
"Huron", this does not meet the criteria of the reasoning knowledge.
Given that the condition of having exactly 1 matching row is not fulfilled, we conclude the following:
The result is no.

Figure 10: GPT-4o Annotation Detail.
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Abstract

With good explainability and controllability,
rule-based methods play an important role
in the task of Knowledge Graph Completion
(KGC). However, existing studies primarily fo-
cused on learning chain-like rules, whose chain-
like structure limits their expressive power.
Consequently, chain-like rules often exhibit
lower Standard Confidence, and are prone to
the incorrect grounding values during reason-
ing, thus producing erroneous reasoning re-
sults. In this paper, we propose the concept
of tree-like rules on knowledge graphs to ex-
pand the scope of the application and improve
the reasoning ability of rule-based methods.
To achieve this, we formalize the problem of
tree-like rule refinement and propose an ef-
fective framework for refining chain-like rules
into tree-like rules. Experimental evaluations
on four public datasets demonstrate that the
proposed framework can seamlessly adapt to
various chain-like rule induction methods and
the refined tree-like rules consistently exhibit
higher Standard Confidence and achieve bet-
ter performances than the original chain-like
rules on link prediction tasks. Furthermore,
we illustrate that the improvements brought by
tree-like rules are positively correlated with
the density of the knowledge graphs. The
data and code of this paper can be available
at https://github.com/forangel2014/tree-rule.

1 Introduction

Knowledge Graph Completion (KGC) (Taskar
et al., 2003; Chen et al., 2022; Wang et al., 2023) is
a fundamental and important task in Natural Lan-
guage Processing. For KGC, rule-based methods
play a pivotal role, which focus on first learning
symbolic and interpretable rules, and then lever-
age them for effective reasoning within Knowledge
Graphs (KGs). In these rule-based methods, the
development of comprehensive and high-quality

*corresponding author

Figure 1: An example of an inaccurate chain-like rule
and the refined tree-like rule. Although the chain-like
rule (bottom-left) can predict most cases correctly, due
to its chain structure, it has limited expressive power.
The refined tree-like rule (bottom-right) leverages the
information in the KG that originally ignored to improve
the chain-like rule.

rule sets is essential for the success of KGC (Nandi
et al., 2023; Meilicke et al., 2024).

To this end, previous works have proposed var-
ious types of methods to induce rules from the
KGs, like symbol-based (Galárraga et al., 2013),
embedding-based (Omran et al., 2018; Qu et al.,
2021; Cheng et al., 2023), Differentiable-ILP-
based (Yang et al., 2017; Yang and Song, 2020),
and RL-based (Meilicke et al., 2024). However,
these existing rule induction methods only con-
sider the chain-like rules in KGs (Galárraga et al.,
2013; Yang et al., 2017; Omran et al., 2018; Meil-
icke et al., 2024; Qu et al., 2021; Cheng et al.,
2023). chain-like rules are a special case of the
Horn Clauses (Russell and Norvig, 2016), which is
equivalent to a multi-hop reasoning process (Yang
and Song, 2020). For example, in the left-bottom
subfigure in Figure 1, live(X,Y ) ∧ lang(Y, Z)⇒
speak(X,Z) is a typical chain-like rule. Since
there is only one path leading the query variable
X to the target variable Z, there are limited con-
straints for the semantics in the reasoning path of
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the chain-like rules. Consequently, chain-like rules
are often prone to the incorrect grounding values
during reasoning, thus producing erroneous reason-
ing results. For example, in Figure 1, this rule may
reason erroneous facts when X is just a traveler, or
Y is a country with more than one official language
and X just speaks one of them.

Therefore, this paper introduces the concept of
tree-like rules, which is a more general form of
rules. Apart from a direct path from the query
variable X to the target variable Z, the tree-like
rule body also contains some branch atoms to con-
strain the grounding values of the rule. These
branch atoms can be seen as “hanging” triplets
on the path, which further shape and narrow down
the possible grounding values of the rule. The
path and the branch atoms stretched together into
a tree structure in the KG. For example, in the
right-bottom subfigure in Figure 1, the tree-like
rule may look like live(X,Y ) ∧ lang(Y,Z) ∧
bornIn(X,Y ) ⇒ speak(X,Z) or live(X,Y ) ∧
lang(Y, Z) ∧ is(Y, Italy) ⇒ speak(X,Z). The
added atoms bornIn(X,Y ) and is(Y, Italy) yield
new constraints for the grounding values of vari-
able Y . With these added constraints, tree-like
rules are expected to possess higher quality (Stan-
dard Confidence) and avoid the wrong predictions
that X speaks Z in the cases mentioned before. As a
result, tree-like rules possess higher Standard Con-
fidence than chain-like rules and will exhibit better
reasoning performance on the task of KGC.

To refine chain-like rules into tree-like rules, the
key challenge is to tackle the large combinatorial
space of the rule body, i.e. searching and select-
ing the probable branch atoms. The branch atoms
are supposed to exclude the incorrect groundings
while still including the correct groundings of the
rule. To refine chain-like rules into tree-like rules
by adding branch atoms, our proposed framework
first transforms the optimization problem of the
Standard Confidence of the entire rule to that of
the best branch atom selection in a specific vari-
able in the rule body. For the best branch atom
selection problem, our framework proposes a three-
step pipeline: Forward Reasoning, Backward Rea-
soning, and Candidate Atom Selections. Through
this pipeline, our framework effectively refines the
original chain-like rules into high-quality tree-like
rules.

To verify the effectiveness of tree-like rules re-
fined by our framework, we conduct experiments
on four widely used benchmark KGs with three dif-

ferent sources of chain-like rules. The experimen-
tal results show that tree-like rules continuously
exhibit higher Standard Confidence, and outper-
form chain-like rules on the link prediction tasks
for different sources of chain-like rules on different
KGs. With further analysis, we also find that the
improvements brought by tree-like rules are posi-
tively correlated with the density of the knowledge
graphs, showing that tree-like rules have greater
advantages in KGs with complex topological struc-
tures.

In summary, the contributions of this paper are
as follows:
• This paper proposes the concept of tree-like rules

for the task of rule induction on KGs. An effec-
tive framework is proposed for refining chain-
like rules induced from any existing method into
tree-like rules.

• The paper conducts experiments on four open-
accessed datasets and the results show our refined
tree-like rules from different chain-like rules con-
sistently have higher Standard Confidence, and
outperform on KG reasoning task than original
chain-like rules. Further analysis finds that the
improvements brought by tree-like rules are pos-
itively correlated with the density of the knowl-
edge graphs.

2 Problem Formulation

In the scope of First-Order Logic (FOL), the rule
(or Horn Clause) is formalized as σ ⇒ φ. Here, the
left part σ is called “rule body”, which serves as the
premise, when it is satisfied by some groundings,
then the right part, “rule head” φ, will be grounded
as the conclusion.

For the evaluation of the quality of such a rule,
as we are adding constraints to refine it to be more
precise, we adopt the widely-used metric, Standard
Confidence (sc). It can be defined as:

sc =
#(Sσ ∩ Sφ)

#Sσ
(1)

where #(·) stands for the count of possible ground-
ings. This metric can also be easily understood if
we take the rule as a binary classifier in machine
learning: Sσ stands for the situation that the classi-
fier output “positive”, and Sφ stands for the situa-
tions that are “true”. Therefore, sc corresponds to
the precision, being a key metric to describe how
much we can trust the rule.

Based on the definition and objective above, our
task can be stated as follows. A given chain-like

32



Figure 2: The framework of our proposed method. In the Forward Reasoning stage, the Query variable X is first
grounded with b randomly sampled entities and by forward reasoning, we obtain the grounding values of Y and
Z. In the Backward Reasoning stage, we then abductively obtain the positive groundings and negative groundings
of each variable in the rule body. Finally in the Candidate Atoms Selection stage, three types of candidate branch
atoms are then selected according to their inner product scores with the variable representation.

rule R of length n can be represented as:

R : r0(x0, x1) ∧ ... ∧ rn−1(xn−1, xn)⇒ r(x0, xn)

To obtain tree-like rules from it, we aim to find
branch atoms b(xi) for the variable xi while being
aware of the objective in Eq 1. Finally, a refined
tree-like rule has the following format:

R∗ :r0(x0, x1) ∧ ... ∧ ri−1(xi−1, xi) ∧ b(xi)

∧ ... ∧ rn−1(xn−1, xn)⇒ r(x0, xn)

Please note that when we represent branch atoms
as b(xi), we omit other variables and constants that
may appear within the predicate, to emphasize that
this branch is a constraint on the variable xi.

3 Method

Given the chain-like rule, this paper propose to first
grounded the rules with entities in the KG, and
then find the top branch atoms that could eliminate
the undesirable groundings, to make the ground-
ings satisfying rule body be as close as to those
satisfying rule head.

Given a KG G = (E ,R, T ), where E ,R, T
stands for the entity set, relation set, and triplet
set, respectively, to reason with the rule on this
KG, this paper adopts the matrix representation of
entities and relations for reasoning rules.

For an entity e ∈ E , let ve ∈ {0, 1}1×|E| be
the one-hot encoding of entity e, i.e. only the ith
element is 1 if e is the ith entity in E . Based on
the encoding of single entity, for a variable x in
the rule, if the set Cx denote the entities that can

be ground to x, then the variable grounding of x,
vx ∈ {0, 1}1×|E|, is defined as vx =

∑
e∈Cx

ve.
For an relation r ∈ R, let Mr ∈ {0, 1}|E|×|E|

be the binary adjacency matrix of relation r, i.e.
Mr[i, j] = 1 iff (ei, r, ej) ∈ T . With the definition
above, a reasoning hop (h, r, t?) can be modeled
by the following matrix multiplication:

vt = vhMr (2)

To obtain R∗ from R, we need to find a branch
atom b(xi) (correspond to a constraint vector bxi

)
for the ground value of variable xi, to best match
the reasoning results between rule body and rule
head, based on Eq 1, we have:

JR =

∥∥∥∥∥vx0Mr ⊙ [(vx0

i−1∏

j=0

Mrj ⊙ bxi)

n−1∏

j=i

Mrj ]

∥∥∥∥∥

/

∥∥∥∥∥(vx0

i−1∏

j=0

Mrj ⊙ bxi)

n−1∏

j=i

Mrj

∥∥∥∥∥

(3)

where ∥v∥ stands for the 1-norm of the vector v.
However, it is hard to directly find branch atoms

by maximizing Eq 3. Thus we approximately trans-
form it into the best branch atom selection problem:

J
′
R = S

(
vx0Mr

i∏

j=n−1

Mrj
⊤,vx0

i−1∏

j=0

Mrj⊙bxi

)
(4)

where S(a,b) = (1 − β) ∥a⊙ b∥ −
β ∥(1− a)⊙ b∥ is a similarity metric bal-
ancing the excluding of the incorrect groundings
and the including of the correct groundings.
Here, the ⊙ denotes the element-wise product,
and β ∈ (0, 1) balances the degree of including
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positive groundings and excluding negative
groundings. The colors in this equation correspond
to the colors in Figure 2.

To find the best branch atoms to maximize Eq 4,
as shown in Figure 2, we propose a three-step
framework:
• §3.1 Forward Reasoning: we first sample a batch

of b entities to ground the query variable x0 (i.e.
X in Figure 2). Then a forward reasoning pro-
cess transfers the groundings of x0 to the target
variable xn (i.e. Z in Figure 2) through both the
rule body and rule head. At target variable xn, the
positive groundings (pxn , the entities correctly
predicted by rule body) and negative groundings
(nxn , the entities incorrectly predicted by the rule
body) are obtained.

• §3.2 Backward Reasoning: we then abductively
obtain the positive groundings and negative
groundings of each variable in the rule body, by
sequentially multiplying the transpose of the re-
lation matrix with the current grounding vectors.

• §3.3 Candidate Atoms Selection: the variable
representation is a weighted sum of its positive
groundings and negative groundings, which is a
trade-off of including positive groundings and ex-
cluding negative groundings when adding branch
atoms. Finally, we consider three types of branch
atoms that are to be added to the rule bodies, the
candidate branch atoms are then selected accord-
ing to their inner product scores with the variable
representation.

3.1 Forward Reasoning

Let us first sample a batch of b entities to ground
x0, and we concatenate their encoding to get the
initial variable grounding vx0 ∈ {0, 1}b×|E|. As
most rules only cover a small part of entities on
the entire KG, directly sample b entities from the
entity set E may involve many “inactive tracks”
(line of all 0s in matrix) to the reasoning process,
we choose to sample from the entities that at least
satisfy the first relation r0. This can be done by
sum up the columns of Mr0 to find the candidate
entities:

vcand =
∑

j

Mi,j
r0 (5)

Then, by randomly keeping b entities from
vcand and concatenating their one-hot encoding,
we can obtain the initial variable grounding vx0 .
Based on the initial variable grounding vx0 , the
forward process of rule body can be modeled as a

series of matrix multiplication:

vxi+1
= vxi

Mri , i = 0, 1, ..., n− 1 (6)

where vxi
is the variable grounding of xi, and fi-

nally the reasoning result of this rule is vxn . Sim-
ilarly, we can obtain the true grounding of xn by
applying rule head: txn = vx0Mr. The vxn and
txn are vectorized groundings of Sσ and Sφ intro-
duced in Section 2.

3.2 Backward Reasoning
After obtaining the reasoning results from both
the rule body (vxn) and rule head (txn) of xn,
we then discriminate the positive (the groundings
that thought to ground the xn by rule body, and
proved to satisfy the rule head as well) and neg-
ative (the groundings that thought to ground the
xn by rule body, but proved not to satisfy the rule
head) groundings by performing element-wise pro-
duction:

pxn = vxn ⊙ txn

nxn = vxn ⊙ (1− txn)
(7)

where the i-th element in pxn /nxn represents how
many entity ei appear as positive/negative result in
rule R.

Notice that the encoding of r−1 (inverse relation
of r) is Mr

⊤. Then we can abductively obtain the
positive and negative groundings at all variables in
rule R by backward reasoning:

pxi
=
(
pxi+1

Mri+1

⊤
)
⊙ vxi

nxi
=
(
nxi+1

Mri+1

⊤
)
⊙ vxi

(8)

By performing such a backward reasoning process,
we can have the knowledge that at each variable of
the rule, which entities are desired (positive) and
which are undesired (negative).

3.3 Candidate Atoms Selection
After obtaining the positive and negative ground-
ings of each variable of the rule, we then propose to
refine the chain-like rules by evaluating the candi-
date branches on each variable. The branch atoms
we add at a specific variable of rule R aims to
include positive groundings while excluding the
negative ones as much as possible. So we define
the representation of each variable by linearly com-
bining pxi

and nxi
:

uxi
= (1− β) · pxi

− β · nxi
(9)
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where β ∈ (0, 1) is a weight balance the degree of
including positive groundings and excluding nega-
tive groundings. β → 0 tend to include all positive
groundings, while β → 1 tend to exclude all nega-
tive groundings.

Now that we have obtained the vectorized rep-
resentation of each variable in the rule body, we
thus consider applying a binary mask bxi

(the con-
straint brought by branch atom b(xi)) to the uxi

.
This paper considers three types of branch atoms
that are to be added to the rule body. As shown in
Figure 2, suppose that we add branches to constrain
the groundings of variable Y in the rule body:
• AUX. This type of branch atom yields a one-hop

result from an auxiliary variable M , constraining
Y to the entities that satisfy a certain relation. i.e.
b(Y ) ⇔ r(M,Y ). In this way, bY = 1⊤Mr,
where 1 denotes a |E| × 1 column vector with
all 1, which corresponds to the auxiliary M . For
example, b(Y )⇔ capital(Y,M).

• ENT. This type of branch atom grounds a vari-
able in the rule body to a unique entity. i.e.
b(Y )⇔ is(e, Y ). In this way, bY = one-hot(e).
For example, b(Y )⇔ Is(Y, Italy).

• QRY. This type of branch atom yields a one-hop
result from the query variable X (i.e. x0 in §2),
constraining Y to the entities that have an addi-
tional relation to X . i.e. b(Y ) ⇔ r(X,Y ). In
this way, bY = vXMr. For example, b(Y ) ⇔
bornIn(X,Y ).

For each KG, the candidate constraint vectors of
AUX and ENT can be obtained through prepro-
cessing and stay fixed during the whole refinement
process. For each rule, we can obtain the constraint
vectors of QRY after the b initial groundings are
sampled.

After obtaining the variable representations and
constraint vectors of candidate atoms, the score of
adding a branch atom b(xi) is defined by the inner
product:

score(b(xi)) = uxi
bxi

⊤ (10)

In the implementation, uxi
is multiplied with each

type of candidate atoms and we greedily select
the branch atoms with the top k scores for each
variable appearing in the rule body.

4 Experiments

In this section, we conduct a series of experiments
to evaluate and compare the refined tree-like rules

with original chain-like rules in the following two
aspects:
• Standard Confidence (§4.5). We adopt the Stan-

dard Confidence as the direct metric to evaluate
if the refined tree-like rules have better “quality”
than the original chain-like rules.

• Link Prediction (§4.6). To further verify the
effectiveness of the refined tree-like rules, we
compare two types of rules on the task of Link
Prediction and validate if tree-like rules conduct
better reasoning than chain-like rules.

4.1 Datasets

We employ four commonly used Knowledge
Graphs and their corresponding link prediction
benchmarks: FB15k-237 (Toutanova and Chen,
2015), WN18RR (Dettmers et al., 2018), UMLS
(Kok and Domingos, 2007), YAGO3-10 (Suchanek
et al., 2007) for the evaluations.

4.2 Chain-like Rules

We adopt the following methods to mine chain-like
rules to serve as the original chain-like rules for
evaluation and refinement:
• BBFS We propose a bi-directional breadth-first

search method to mine all chain-like rules within
length n in KG as a basic search-based rule in-
duction method.

• AMIE (Galárraga et al., 2013) AMIE is a classic
symbol-based rule mining system. It learns chain-
like rules by adding dangling atoms to the rule
body sequentially while evaluating their coverage
and confidence.

• AnyBurl AnyBurl (Meilicke et al., 2024) is a
novel RL-based rule induction method and is cur-
rently one of the best symbolic rule reasoning
methods competing with SOTA embedding rea-
soning approaches.

4.3 Implementations

For the tree-like rule refinement process, as it in-
volves many multiplications of large and sparse
matrices, we adopt the torch.sparse library to help
us store and operate such matrices. For the evalua-
tion process, to fairly evaluate the chain-like rules
mined by each method and the tree-like rules re-
fined by us, we adopt the toolkit of AnyBurl (Meil-
icke et al., 2024) to apply the learned rules to KGs
and evaluate the link prediction results with the
metrics MRR and Hit@n. As AnyBurl only origi-
nally supported chain-like rules, we modified the
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Avg. sc FB15k-237 WN18RR
Rule BBFS AMIE AnyBurl BBFS AMIE AnyBurl

CHAIN 12.85 30.71 26.84 5.93 28.05 8.66
TREE(AUX) 21.24 41.42 27.38 15.85 42.12 -
TREE(ENT) 61.34 76.47 61.12 88.14 93.63 87.30
TREE(QRY) 40.88 56.66 47.57 61.71 59.98 62.88
TREE 35.96 56.63 43.04 55.06 73.64 85.43

Avg. sc UMLS YAGO3-10
Rule BBFS AMIE AnyBurl BBFS AMIE AnyBurl

CHAIN 14.79 19.57 16.08 8.22 19.76 16.01
TREE(AUX) 19.86 33.29 26.05 15.56 27.60 19.09
TREE(ENT) 32.00 43.92 37.86 65.26 71.24 64.86
TREE(QRY) 25.65 39.51 32.19 41.08 44.48 47.23
TREE 24.48 38.24 30.93 37.17 49.18 42.38

Table 1: The average Standard Confidence of different rules on FB15k-237. CHAIN denotes the original chain-like
rules mined by each method. AUX, ENT, and QRY denote the three kinds of branch atoms in §3.3. TREE denotes
the refined tree-like rules. - denotes there are no such type of rules refined.

AnyBurl toolkit to make it compatible with tree-
like rules.

4.4 Setups

For each rule, we sample b = 100 entities to ground
the query variable X and conduct the forward &
backward reasoning process. We set β to the Stan-
dard Confidence sc of the original chain-like rule
R. For each variable, branch atoms with top k = 5
scores are selected to refine the rule. The chain-like
rules are all within length n = 3. The random seed
is fixed to 37.

4.5 Standard Confidence

We first verify if the refined tree-like rules are actu-
ally more precise, i.e. have higher Standard Confi-
dence than the original chain-like rules. As shown
in Table 1, The refined tree-like rules (TREE)
consistently have significant higher average Stan-
dard Confidence than the original chain-like rules
(CHAIN). These results verify that our proposed
refinement method effectively refine optimize the
initial objective in Eq 1. Moreover, we can observe
that among the tree types of proposed candidate
branch atoms, the ranking of their Standard Confi-
dence is ENT > QRY > AUX, indicating that their
constraining strength as branch atoms weakens in
this order, which aligns with our intuition.

4.6 Link Prediction

To further verify the effective of the refined tree-
like rules in the KG reasoning, we evaluated the
link prediction performances of chain-like rules
from all induction methods and their refined tree-
like rules on all four different KGs. As shown
in Table 2, the refined tree-like rules consistently
outperform the original chain-like rules induced
by different methods on different KGs. On the
FB15k-237 and UMLS datasets, the refinement of
chain-like rules into tree-like rules exhibits a per-
formance gain of more than 2% in most cases. No-
tably, on the UMLS dataset, tree-like rules demon-
strate a significant out-performance compared to
Anyburl chain-like rules, with an impressive 7.79%
improvement in MRR. These results lead us to the
conclusion that our framework effectively refines
chain-like rules from different rule-mining meth-
ods into higher-quality tree-like rules on different
knowledge graphs, thereby yielding superior rea-
soning outcomes.

4.7 Performance Analysis

From Table 2, we can also observe that the improve-
ments (delta values) vary across different knowl-
edge graphs. We explain this based on the topo-
logical structure and density of different knowl-
edge graphs. Intuitively, the sparser the knowledge
graph, the simpler the abstract structure it implies
(tending towards simple chain-like rules), while
the denser the knowledge graph, the more complex
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Dataset FB15k-237 WN18RR
Rule MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

BBFS
CHAIN 24.32 18.38 25.97 36.65 39.29 37.94 40.08 42.02
TREE 27.32 21.05 29.60 39.39 40.04 38.77 41.00 42.41
∆ +3.00 +2.67 +3.63 +2.74 +0.75 +0.83 +0.92 +0.39

AMIE
CHAIN 22.60 17.25 24.27 33.78 36.21 36.06 36.31 36.47
TREE 25.70 20.20 27.93 36.56 36.24 36.08 36.37 36.50
∆ +3.10 +2.95 +3.66 +2.78 +0.03 +0.02 +0.06 +0.03

AnyBurl
CHAIN 32.74 23.94 35.75 50.98 48.42 44.22 50.99 56.03
TREE 35.05 26.52 38.34 52.42 48.98 45.27 51.16 55.83
∆ +2.31 +2.58 +2.59 +1.44 +0.56 +1.05 +0.17 -0.20

Dataset UMLS YAGO3-10
Rule MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

BBFS
CHAIN 75.13 65.17 82.29 91.33 53.47 47.56 58.34 63.32
TREE 77.84 68.20 85.45 92.98 54.68 49.18 59.42 63.72
∆ +2.71 +3.03 +3.16 +1.65 +1.21 +1.62 +1.08 +0.40

AMIE
CHAIN 39.17 32.16 45.10 50.83 52.07 46.68 57.08 60.74
TREE 42.08 35.94 46.97 51.90 53.02 48.08 57.62 60.74
∆ +2.91 +3.78 +1.87 +1.07 +0.95 +1.40 +0.54 +0.00

AnyBurl
CHAIN 69.64 55.85 79.60 92.25 63.07 57.34 67.30 72.10
TREE 77.43 66.73 85.94 94.67 63.38 57.82 67.36 72.38
∆ +7.79 +10.88 +6.34 +2.42 +0.06 +0.48 +0.06 +0.28

Table 2: The link prediction performance of different rules on four KGs. CHAIN denotes the original chain-like
rules mined by each method. TREE denotes the refined tree-like rules. ∆ denotes the improvements.

KG FB15k-237 WN18RR UMLS YAGO3-10
density 2.59e-03 1.06e-04 2.20e-01 1.42e-04
avg∆MRR 2.80 0.61 4.47 0.74

Table 3: The edge density and the average ∆MRR
brought by tree-like rules of each KG.

the abstract structure it implies (tree-like rules will
have an advantage in reasoning).

From a qualitative perspective, WN18RR and
YAGO3-10, with smaller deltas, are subsets of
WN18 (which is also a subset of WordNet (Fell-
baum, 2010)) and YAGO3, respectively. FB15k-
237, with a moderate delta, is a larger subset of
FB15k and is relatively denser. These three knowl-
edge graphs have suffered varying degrees of in-
formation loss as they are sampled from the whole
knowledge graphs. UMLS, on the other hand, is
an unfiltered and complete knowledge graph, and
therefore retains the most complete information.

From a quantitative perspective, we calculated
the density of the four knowledge graphs used in
the experiments using edge density (number of
edges / the number of possible edges) and the av-
erage ∆MRR brought by tree-like rules, and the
results are shown in Table 3. We can see that in

knowledge graphs with higher density, the reason-
ing gain brought by tree-like rules is greater, and
the Pearson correlation coefficient between them
is 0.844. These verify that the density of the used
knowledge graph and the improvement brought by
tree-like rules are positively correlated.

4.8 Case Study
To better compare and present the tree-like rules
refined from chain-like rules, we provide two spe-
cific examples from YAGO3-10 in Figure 3. It
can be observed that the original chain-like rules,
constrained by the semantic expressiveness of their
chain structure, tend to produce a large number of
factually incorrect groundings, resulting in lower
standard confidence. In contrast, the tree-like rules
refined by our method address the semantic gaps of
the original rules in various ways, thereby achiev-
ing higher standard confidence.

5 Related Work

Rule induction over knowledge graphs is a classical
yet challenging task. Inductive Logic Programming
(ILP) seeks to induce the symbolic pattern behind
the knowledge graphs. It faces the combinatorial
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Examples of Rule Refinement

Chain-like Rule 1
Standard Confidence: 0.39
isLocatedIn(X, Y) <= hasCapital(X, Y)
Refined Tree-like Rules:

1. Standard Confidence: 1.00
isLocatedIn(X, Y) <= hasCapital(X, Y), hasOfficialLanguage(Y, M)

2. Standard Confidence: 0.50
isLocatedIn(X, Y) <= hasCapital(X, Y), hasWonPrize(Y, M)

3. Standard Confidence: 1.00
isLocatedIn(X, Y) <= hasCapital(X, Y), is(Gangtok, Y)

Chain-like Rule 2
Standard Confidence: 0.11
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y)
Refined Tree-like Rules:

1. Standard Confidence: 0.17
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y),

influences(A, X)

2. Standard Confidence: 0.33
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y),

is(University_of_Cambridge, Y)

3. Standard Confidence: 0.20
worksAt(X, Y) <= hasAcademicAdvisor(X, A), graduatedFrom(A, Y), owns(Y, M)

Figure 3: Examples of the refinement of chain-like rules into tree-like rules from YAGO3-10, along with their
respective Standard Confidences.

space of searching predicates and binding variables.
Traditional ILP methods including AMIE (Galár-
raga et al., 2013), AMIE+ (Galárraga et al., 2015)
and RLvLR (Omran et al., 2018) used search-based
methods to induce chain-like rules. Recently, many
works have studied the way of inducing chain-like
rules in a differentiable approach, named Differen-
tiable ILP, like NeuralLP (Yang et al., 2017), NLM
(Dong et al., 2019), DLM (Zimmer et al., 2021),
NLIL (Yang and Song, 2020).

However, only a few works considered the de-
fect of expressive power chain-like rules. NLIL
(Yang and Song, 2020) induced conjunctions of
chain-like rules like Car(X) ⇐ Wheel(Y1) ∧
Of(Y1, X)∧Window(Y2)∧Of(Y2, X), but they
are only tree-like rules with branches at the target
variable X . TyRule (Wu et al., 2022) proposed
to learn typed rules with type predicate typen(xi)

adding to each variable, but it needs extra type in-
formation of the knowledge graphs. In this paper,
we propose the concept of tree-like rules and an
effective framework for refining chain-like rules
into tree-like rules to reach better reasoning ability.

6 Conclusion

This paper introduces the concept of tree-like rules
and presents an effective framework for refining
chain-like rules into tree-like rules. To verify the
effectiveness of the tree-like rules refined by our
framework, this paper carried out experiments to
show that the refined tree-like rules consistently ex-
hibit higher Standard Confidence and outperform
the original chain-like rules on KG reasoning tasks.
Further analysis illustrates that the improvements
brought by the tree-like rules are positively corre-
lated with the the density of the KGs.
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Abstract

Laboratory tests generate structured numerical
data, which a clinician must interpret to justify
diagnoses and help patients understand the out-
comes of the tests. LLMs have the potential to
assist with the generation of interpretative com-
ments, but legitimate concerns remain about
the accuracy and reliability of the generation
process. This work introduces LAB-KG, which
conditions the generation process of an LLM on
information retrieved from a knowledge graph
of relevant patient conditions and lab test re-
sults. This helps to ground the text-generation
process in accurate medical knowledge and en-
ables generated text to be traced back to the
knowledge graph. Given a dataset of labora-
tory test results and associated interpretive com-
ments, we show how an LLM can build a KG of
the relationships between laboratory test results,
reference ranges, patient conditions and demo-
graphic information. We further show that the
interpretive comments produced by an LLM
conditioned on information retrieved from the
KG are of higher quality than those from a stan-
dard RAG method. Finally, we show how our
KG approach can improve the interpretability
of the LLM generated text.

1 Introduction

Artificial Intelligence (AI) has become increasingly
influential in the medical field, offering transforma-
tive potential in various applications such as medi-
cal data summarisation (Van Veen et al., 2024) and
diagnostics (Tu et al., 2024). The data generated
in clinical care, from Electronic Health Records
(EHRs) to laboratory tests, present both an opportu-
nity and a challenge. In principle, using such data
efficiently and intelligently has the potential to cre-
ate efficiencies for healthcare professionals which
allow them to improve patient experiences and out-
comes. Laboratory diagnostics generate substan-
tial amounts of structured numerical data, which
can be difficult for patients and clinicians to inter-

pret effectively. AI models have the potential to
provide interpretative comments and personalised
explanations of laboratory results, improving the
laboratory-clinical interface, and improving patient
understanding (Padoan and Plebani, 2022a,b).

However, there are critical considerations when
using AI models in the medical domain, includ-
ing issues such as hallucinations, inaccuracies, and
non-determinism. These issues can lead to incor-
rect or harmful results in healthcare (Cadamuro
et al., 2023; Stevenson et al., 2024), and the errors
can often be difficult to identify during model eval-
uation and to characterize a priori. These problems
call for approaches to improve the reliability and
accuracy of AI systems in medicine.

Integrating Knowledge Graphs (KGs) with
LLMs through Retrieval-Augmented Generation
(RAG) can be a promising strategy. KGs provide
structured, interconnected data that can ground
LLM outputs in factual information, reducing hal-
lucinations, and improving the accuracy of AI-
generated content (Yan et al., 2024; Gilbert et al.,
2024). By combining the LLM’s generative capa-
bilities with the KG’s factual grounding, AI sys-
tems can be more reliable and explainable.

In this work, we aim to improve laboratory test
interpretation generation by combining RAG with
a Knowledge Graph, referred to as the LAB-KG
approach. Traditional RAG methods rely on em-
bedding similarity between the user’s query and a
set of documents or knowledge base entries. They
retrieve relevant information to condition the lan-
guage model’s generation process. However, the
reasoning behind the generated interpretations of-
ten remains a black box, Our LAB-KG approach
uses both the internal knowledge of LLMs and lab
test examples to build a knowledge graph that ex-
plicitly captures the relevance between each test
result and the patient’s condition. This allows
for more explainable and transparent interpretation
generation.
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Our contributions are threefold:

1. Knowledge Graph Construction with Lim-
ited Examples: We present a novel approach
for building a Knowledge Graph (KG) utilis-
ing the internal knowledge of Large Language
Models (LLMs) and a limited set of labora-
tory test examples, capturing the relationships
between test results and medical conditions.

2. Improved Performance over Retrieval-
Augmented Generation (RAG): Our KG-
based approach demonstrates better perfor-
mance compared to traditional Retrieval-
Augmented Generation methods. By struc-
turally representing knowledge, the system
can more accurately interpret and retrieve rel-
evant conditions from new patient test results.

3. Explainable System: The proposed KG ap-
proach offers greater interpretability than stan-
dard RAG methods. The explicit structure
of the KG allows for the tracing of errors in
generated reports back to specific nodes and
relationships within the graph.

2 Previous Work

The application of AI to the task of laboratory test
interpretation is an area of growing interest. Tra-
ditional methods of providing interpretative com-
ments on laboratory reports have been recognised
as essential to improving the laboratory-clinical
interface (Plebani, 2009).

Several studies have been applied to use AI and
natural language processing models to interpret
laboratory test results. Cadamuro et al. (2023) eval-
uated the performance of ChatGPT and other AI
models in understanding laboratory medicine test
results. Whilst the AI models could recognise lab-
oratory tests and detect deviations from reference
intervals, their interpretations were often superfi-
cial and incorrect. The models sometimes failed to
differentiate between slight and severe deviations
and did not provide meaningful suggestions for
follow-up diagnostics.

Stevenson et al. (2024) evaluated the thyroid
function test result interpretation by biochemist,
ChatGPT, and Google Bard. The AI tools correctly
interpreted only a fraction of the cases, showing
the limitations of current AI models in complex
medical interpretation tasks.

Abusoglu et al. (2024) assessed the perfor-
mance of various chatbots as assistants for problem-

solving in clinical laboratories. Their study showed
that AI applications had good performance in iden-
tifying cases and responding to questions related to
preanalytical, analytical, and postanalytical errors.
However, the chatbots’ accuracy varied, and there
were concerns about their reliability and safety in
clinical settings.

An early work by Patil et al. (2013) introduced
a Concept Graph Engine (CG-Engine) that gener-
ates patient-specific personalised disease rankings
based on laboratory test data, using the Unified
Medical Language System (UMLS) as a medical
knowledge base. The CG-Engine constructs a con-
cept graph connecting laboratory tests to diseases
and computes weights based on relation types, se-
mantic types, and other attributes. While their ap-
proach utilises a knowledge base to connect lab
tests and conditions, it relies on pre-existing medi-
cal ontologies that may differ from the actual data
terminology.

Despite these advancements, a major challenge
with LLMs in the medical domain is their tendency
to produce hallucinations and inaccurate informa-
tion. Retrieval-Augmented Generation (RAG) tech-
niques have been proposed to mitigate these is-
sues, where LLMs are augmented with external
knowledge sources to ground their outputs in fac-
tual data. Zakka et al. (2024) developed Almanac,
an LLM framework augmented with retrieval capa-
bilities from curated medical resources for medical
guidelines and treatment recommendations. Their
results showed significant performance improve-
ments compared to standard LLM pipelines.

In the domain of laboratory test interpretation,
He et al. (2023) built a dataset by collecting and an-
notating interpretations of textual lab results from
health articles. They evaluated transformer-based
language models for recognizing key terms and
mapped them to concepts in major controlled ter-
minologies.

In healthcare generally, integrating LLMs with
Knowledge Graphs can improve the reliability and
accuracy of AI models. Gilbert et al. (2024) dis-
cussed the potential of combining LLMs with KGs
as medical information curators. By providing a
structured representation of medical knowledge,
KGs can help LLMs generate more accurate and
verifiable outputs, reducing the risk of misinforma-
tion and enhancing patient safety.

Our work builds upon these approaches by con-
structing a knowledge graph that combines LLM
internal knowledge with examples to associate lab
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train_83.csv
test_63.csv
train_12.csv GPT-4o-mini

train_20.csv
2. Query

1. KG building 

1. strict matched: 
mild absolute neutropenia
2. score matched: 
None
3. candidate condition: 
mild absolute neutropenia

3. Result

Figure 1: Overview of LAB-KG. GPT-4o-mini helps to
find the relationship between the test result and condi-
tion. When a new patient’s test results are input into the
system, they are compared with the LAB-KG to iden-
tify relevant conditions using strict set matching and
confidence score matching. This process enables the
generation of accurate and explainable interpretations
of laboratory test results.

tests with conditions. This allows for improved
accuracy in lab test interpretation generation and
provides explainability through the graph structure.

3 Method

Given a set of patient full blood test csv files, we
build a LAB-KG with the help of GPT-4o-mini
to find the relationships between the test results
and conditions. A condition in our context refers
to a specific medical finding or diagnosis derived
from laboratory test results. For instance, “Mild
normochromic normocytic anaemia” indicates a
type of anemia characterized by red blood cells
that are of normal size (normocytic) and normal
hemoglobin content (normochromic). Clinicians
use those conditions to determine the appropriate
follow-up and management for the patient. The
new patient test result is compared with the LAB-
KG to find the relevant condition. An overview
of this process is in Figure 1. An example of a
transcribed report is shown in Table 1.

3.1 KG-RAG Approach
We propose an approach combining both the in-
ternal knowledge of a large language model and
limited examples to build a knowledge graph. A
laboratory test is a medical procedure using a sam-
ple of blood, urine, or other tissues to assess a
patient’s health. Interpreting lab test results can be
complex due to the subtle variations that may indi-
cate different medical conditions. Our knowledge
graph (KG) represents relationships between lab
tests, conditions, and patients and can be queried
to generate interpretations for new patients. The
relation between lab tests and conditions are built
as in the method described below.
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Figure 2: The schema of the lab-kg.

3.1.1 Graph Building

The knowledge graph is constructed to model the
relationships between lab tests, patients, conditions,
and results. The schema of the graph is shown
in Figure 2. The key nodes and relationships are
summarised in Table 4 in appendix.

Reference Ranges A reference range is the set
of values considered normal for a healthy individ-
ual for a specific test, serving as a benchmark to in-
terpret individual test results. The reference ranges
for some tests are sometimes missing, and to ad-
dress this issue, we aggregated all the reports’ ref-
erence. We ask LLM to infer the correct reference
range by providing all the related reference ranges
for that test and asking the LLM to use its internal
medical knowledge for the patient.

Test Names and Test Result Test names are the
standardised identifiers used to represent specific
laboratory tests. The test names in our dataset are
standardised by curating a list of test names and
manually mapping different variations to a standard
name. Each TestResult node represents the result
of a specific test. If the reference range is provided,
the test result will be labelled with a suffix indi-
cating its status (e.g., Normal, Abnormal (High),
Abnormal (Low), Borderline (High), Borderline
(Low)).

Condition Extraction The most important task
for LLM is extracting the conditions from the com-
ments and determining the relevance of each test
result to the conditions mentioned in the patient
comments. We prompted the LLM to split the com-
ment into several conditions and establish potential
CONTRIBUTES_TO relationships between each
test result node and condition node. This effectively
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Category Test Name Result Unit Ref Start Ref End norm Ab flag

Info Age 9
Blood Haemoglobin 11.30 g/dL 11.5 15.5 -0.05 Low
Blood Hematocrit 33.9 % 35 45 -0.11 Low
Blood Red cell count 4.71 x10^6/uL 4 5.2 0.59
Blood MCV 72.0 fL 78 96 -0.33 Low
Blood MCH 24.0 pg 26 32 -0.33 Low
Blood MCHC 33.4 g/dL 31 36 0.48
Blood RDW 14.2 % 11.5 14.5 0.9
Blood Platelet Count 292 x10^3/uL 170 450 0.44
Blood T.L.C 8.2 x10^3/uL 5 13 0.4
WBC Diff Basophils 1 % 0
... ...
WBC Diff Monocytes (Absolute) 1.1 x10^3/uL 0.2 1 1.12 High

Comments Mild microcytic hypochromic anaemia. Platelets are adequate. Mild absolute monocytosis.

Table 1: Patient report example (Abridged). Ab flag: abnormality flag.

builds a rule set based on the examples and the
LLM’s knowledge. For example, “Mild normocytic
normochromic anemia with mild anisocytosis” can
be split into two conditions: “Mild normocytic nor-
mochromic anemia” and “mild anisocytosis.” We
only ask LLM to infer that CONTRIBUTES_TO
relationship from the abnormal conditions to test
results, and omit the conditions such as “normal
blood picture” or “follow up is recommended”,
which cannot be mapped to a set specific test re-
sult.

Knowledge Aggregation We added an aggre-
gation stage where we asked the LLM to assign
weights to each relationship between a test result
and a condition identified by the LLM. First, we
added a StandardTerm node to group different con-
ditions with potential semantic similarity. This
grouping is based on querying each condition name
using the BioPortal API for standardised terms, pri-
oritizing matches in ontologies such as SNOMED
CT, LOINC, and MEDDRA. In this way, we can
group conditions under the same standard term,
such as “mild anaemia” and “moderate anaemia”
both being under the standard term “anaemia.”
Then, by providing all the CONTRIBUTES_TO
in the KG between a condition group and related
TestResult, we aim for the LLM to use these ex-
amples to indicate the importance of each test
result for a particular condition group by assign-
ing a weight to each CONTRIBUTES_TO relation-
ship. This weight-assigning stage uses the aggre-
gation CONTRIBUTES_TO from a condition with

the frequency of each test result and the patient
age/gender distribution.

3.2 Graph Retrieval Process
The KG is queried to find candidate conditions for
a new patient. We tested three methods to find
relevant conditions: an example-based match, a
confidence score ranking, and their combination.

We first identify abnormal test results for a new
patient and retrieve the connected Condition nodes
for any abnormal tests in that patient, creating a list
of candidate conditions. The connected patients
and their related test results for each potential con-
dition are retrieved from there.

Not all test results connected to a condition are
critical; some might be false positives or less rel-
evant. To filter less important conditions, we use
two methods to select potential conditions.

Strict Match For each condition, we compare
the test results of the new patient to those of the re-
trieved patients. Suppose the test results of the new
patient cover all the test results of one patient in the
training dataset connected to that condition (here,
Borderline and Abnormal are treated the same). We
consider it a “strict match” for that condition. An
example is illustrated in Figure 3, with the con-
dition “mild normochromic normocytic anemia.”
The new patient (with id 938) matches most of the
test results of an existing patient (with id 100) but
lacks “RBC count Abnormal (Low).” In this case,
the new patient will not be assigned to this con-
dition based on strict match. Note that there are
other test results related to the condition without
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Figure 3: The condition query process for a new patient.
The patient with ID 938 lacks “RBC count Abnormal
(Low)” compared to the example patient with ID 100
using strict test result matching.

Test result Weight

haematocrit_Abnormal (Low) 0.95
haemoglobin_Abnormal (Low) 0.95
rbc count_Abnormal (Low) 0.9
mcv_Normal 0.85
haemoglobin_Borderline (Low) 0.75
haematocrit_Borderline (Low) 0.75
rdw_Abnormal (High) 0.7
rbc count_Borderline (Low) 0.6
rdw_Borderline (High) 0.5
mch_Normal 0.5
mchc_Normal 0.4
rdw-cv_Normal 0.3

Table 2: The weight for “mild normochromic normo-
cytic anemia” assigned by LLM

any patient connected, due to additional borderline
connections added with slightly lower weights than
abnormal, or because there are existing patients in
the same condition group with those test results.

Confidence score-based match We utilise the
weight assigned on the CONTRIBUTES_TO rela-
tionship to calculate each condition’s confidence
score by normalizing the weights connected to that
patient for each condition. We sum the weights of
the test results in the patient connected to one con-
dition, and divide that sum by the total weight of
all test results linked to that condition. A detailed
example of a confidence score match is in the Ap-
pendix. The threshold to filter the confidence score
is decided by the performance of the training data,
as explained in section 4.

After the candidate conditions were retrieved

from graph retrieval, we added an optional finalis-
ing stage using LLM to refine the conditions given
the candidate conditions, merging potential dupli-
cates or selecting the most specific condition rather
than a broader one.

A key advantage of our LAB-KG approach is its
inherent explainability addressing the limitations
of traditional AI models in laboratory test inter-
pretation. When generating interpretations for a
new patient, clinicians can examine the specific
test results leading to each suggested condition,
along with the associated weights and confidence
scores. This allows the clinicians to understand
which conditions are being suggested and the ra-
tionale behind them. For instance, if a condition
is identified, clinicians can review the exact match
of test results between the new patient and existing
examples and the weights of individual test results
contribute to the overall confidence score.

Explainability Example The Knowledge Graph
(KG) provides a transparent means to explain why
each condition is retrieved, allowing us to iden-
tify and correct errors by examining the relation-
ships between conditions and test results. As an
illustrative example, consider the case of a patient
diagnosed with “mild microcytosis,” depicted in
Figure 4. Initially, the KG connected both low
Mean Corpuscular Hemoglobin (MCH) and low
Mean Corpuscular Volume (MCV) to “mild micro-
cytosis,” even though low MCV alone is sufficient
to diagnose microcytosis. When querying a new pa-
tient (ID 283) who exhibited low MCV but not low
MCH, the system failed to retrieve “mild microcy-
tosis” because the KG’s connections implied that
both low MCH and low MCV were required for
retrieval. Upon reviewing the definition of “mild
microcytosis”, we corrected the KG by removing
the redundant connection between low MCH and
“mild microcytosis.” After this, the system success-
fully retrieved “mild microcytosis” for the patient,
demonstrating how the explainability provided by
the KG facilitates refinement and improves retrieval
accuracy.

4 Implementation and Evaluation

To the best of our knowledge, there are very few
publicly accessible datasets providing detailed lab-
oratory test reports along with associated clinical
interpretations. We utilised a dataset from Mende-
ley Data (Abdelmaksoud et al., 2022), which in-
cludes 260 clinical laboratory test reports issued by
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Redundant Test Result

Redundant Test Result

Figure 4: Illustration of explainability in the KG. Ini-
tially, “mild microcytosis” was connected to both “low
MCH” and “low MCV.” When querying patient ID 283,
“mild microcytosis” was not retrieved because the KG in-
correctly required both “low MCH” and “low MCV” for
retrieval. After removing the unnecessary connection
to “low MCH,” “mild microcytosis” was successfully
retrieved for the patient.

24 Egypt laboratories covering several test types.
Among these, blood tests constitute the majority.
We used GPT-4o 1 to transcribe all the blood test
reports from PDF to CSV format. After remov-
ing duplicates, we obtained 47 unique blood test
reports.

We used the Cypher query language in Python to
build the KG in Neo4j Community Edition. GPT-
4o-mini was used as the default LLM. Once the
graph was built on training examples, it included
38 patient examples, 37 conditions, 78 test results,
459 nodes and 2287 relationships.

Our evaluation metrics include MEDCON (Yim
et al., 2023), BLEU-3 (Papineni et al., 2002),
ROUGE-1/2/L (Lin, 2004), BERTScore (Zhang
et al., 2019), METEOR (Banerjee and Lavie, 2005),
recall, precision, and F1 score. The LLM helps to
preprocess the condition result, aligning seman-
tically equivalent conditions (e.g., “mild anemia”
vs. “anemia”) between the generated and target,
so that the extracted sets of conditions are com-
parable. The calculation of recall and precision
itself remains a standard statistical comparison af-
ter the conditions have been extracted and aligned
by the LLM. The F1 score is based on recall and
precision. We use BLEU-3 instead of BLEU-4
because the results can be very short, such as “nor-
mal blood picture,” which BLEU-4 would omit.

1https://platform.openai.com/docs/models

MEDCON is a metric for evaluating medical con-
dition extraction from generated texts, considering
semantic similarity and clinical relevance. The KG
and KG with CONTRIBUTES_TO relationships in-
ferred without examples (referred to KG * below)
are compared for those metrics, together with other
methods listed below.

In all our experiments, we performed five-fold
cross-validation, with test data sizes of 10, 10, 9,
9, and 9 in each fold. We use MEDCON to select
the threshold for the confidence score in each fold
and from a list of values ranging from 0.1 to 0.9,
with step 0.05. The best threshold values are stable
across folds (0.55, 0.6, 0.55, 0.5, 0.5 for KG and
0.45, 0.35, 0.35, 0.35, 0.35 for KG *). The me-
dian values 0.55 and 0.35 are selected as the final
threshold values for all the folds in KG and KG *
respectively.

We compared the performance of the LAB-KG
approach with several baseline methods, including:

1. Prompt Engineering

A detailed prompt was designed to output
different conditions given the patient report,
which is a textual representation of each CSV
file.

2. Text Embedding-Based Retrieval

This method relies purely on text embed-
dings to retrieve relevant interpretations. The
eight most similar examples are provided to
the LLM for few-shot learning (we selected
eight by testing numbers from 1 to 8). The
query is the document of the new patient
without the comment row. HuggingFace’s
all-MiniLM-L6-v2 model embeds the text.
We tested different document components in
the retrieval and generation stages, including:

• (A) Using all the rows.
• (B) Using only the abnormal rows.
• (C) Adding the normalised value as a

column.

An exhaustive search of all possible compo-
nent combinations in the retrieval/generation
stages is infeasible, so we tested four config-
urations using the same components for both
retrieval and generation stages, and two con-
figurations using different elements, totalling
six results, as described in Table 3. The input
examples include the above components and
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the final comment, which the LLM may use
as context to align its knowledge to the format
and content of the example output comment.

3. LAB-KG Built with Examples (KG)

We evaluated the results of the strict match,
the confidence score match, and the combina-
tion of the strict and confidence score match.
We also tested the effect of using the LLM to
finalise the result.

4. Finding the relationship between TestResult
and Condition without examples (KG *)

An approach using the LLM’s internal knowl-
edge only to infer the CONTRIBUTES_TO
relationships between test result nodes and
condition nodes. We aim to assess the LLM’s
ability to find these relationships without ex-
amples. Based on the KG built with examples,
the CONTRIBUTES_TO relationships are re-
moved first. Then, for each condition, the
LLM is provided with all possible test results
to find the relationships and assign weights
based on its own knowledge. New test result
nodes can be created in this case.

5. Random Forest

This traditional machine learning classifier
was trained to predict the conditions given the
patient data. Two kinds of inputs are tested:
one with test results categorised as inputs (e.g.,
Haemoglobin Abnormal (High)), and another
using the numerical test values directly. The
conditions are classified, and adjectives such
as “mild” and “moderate” are removed to re-
duce the possible classes to predict.

To determine whether using the LLM to evaluate
the results is reliable, the correlation between F1
and each metric is shown in Table 5 in appendix.
The F1 score has the highest correlation with MED-
CON (0.95) and Bert score (0.94), and the corre-
lation for the KG without examples is MEDCON
(0.97) and Bert score (0.91). This validates the
LLM’s alignment between the generated and target
results.

The results are presented in Table 3. The results
show that combining the LLM’s internal knowl-
edge and examples can most effectively utilise the
LLM and data, with an F1 score of 0.76, higher
than the best KG * result of 0.71. The RAG ap-
proach has a best F1 score of 0.56, much lower

than the best KG retrieval approach. When using
the strict match, because it is based on the occur-
rence of test results in the examples, KG AND
KG * show little difference. The combination of
result of strict match and confidence score based
match achieved higher score than separate result
for KG, however, the combination of result for KG
* is worse. The finalisation step does not make the
result much different for the F1 score.

A detailed example about the difference in
the result using KG and KG * in the ap-
pendix. All the LLM generated interpretation
and the calculated metrics can be downloaded
at https://docs.google.com/spreadsheets/
d/10YTnKbLUs9UAJVGACh3wcNt-erMBLpJI

5 Conclusion

In this paper, we integrate the knowledge graph
with RAG and LLM to improve the interpretation
of laboratory test results with limited examples,
providing an explainable framework clinicians can
understand.

The evaluation demonstrated that the LAB-KG
method outperforms LLM prompt engineering, text
embedding-based retrieval, and random forests.
The combination of strict matching and confidence
score-based matching with KG allows us to retrieve
the most clinically relevant interpretations. The KG
with the relationship between condition and test
result built without examples also performs well,
especially in the strict match case, demonstrating
its accurate internal knowledge.

We observed that in some cases, the relevance
inferred by the LLM without examples was bet-
ter than when examples were provided. This sug-
gests the potential to combine the LLM’s internal
knowledge more effectively with examples to opti-
mise performance. When multiple conditions are
present in the example, the LLM sometimes strug-
gles to differentiate the test results associated with
each condition. Providing separate conditions in
examples or generating synthetic data could help
mitigate this issue.

The strength of our findings may be limited with
only 47 blood test reports. Expanding the dataset
and applying LAB-KG to other laboratory tests
are essential steps for validating LAB-KG. The
LLM’s internal knowledge may not be up to date
and limited, and integrating our knowledge graph
with external medical ontologies like SNOMED
CT is for future exploration.
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category medcon bleu bert score meteor rouge1 rouge2 rougeL recall precision f1

zero shot PE only 0.28 0.16 0.5 0.25 0.31 0.15 0.3 0.45 0.44 0.38

RAG

Q=G=A 0.39 0.29 0.6 0.44 0.47 0.32 0.45 0.56 0.46 0.48
Q=G=A,C 0.38 0.2 0.59 0.39 0.42 0.23 0.39 0.56 0.42 0.46
Q=G=B 0.49 0.29 0.64 0.47 0.5 0.32 0.48 0.68 0.5 0.56
Q=G=B,C 0.47 0.28 0.63 0.46 0.48 0.3 0.47 0.67 0.51 0.56
Q=A,C
G=B,C

0.46 0.29 0.64 0.45 0.49 0.3 0.47 0.67 0.52 0.56

Q=B
G=B,C

0.48 0.29 0.64 0.47 0.49 0.31 0.48 0.67 0.51 0.56

KG retrieval
strict 0.68 0.37 0.71 0.56 0.56 0.43 0.53 0.78 0.65 0.67
score 0.67 0.29 0.67 0.5 0.51 0.39 0.45 0.73 0.65 0.66
strict +
score

0.75 0.36 0.73 0.58 0.58 0.47 0.53 0.88 0.73 0.76

KG * retrieval
strict 0.67 0.3 0.7 0.51 0.54 0.38 0.5 0.78 0.65 0.68
score 0.58 0.23 0.63 0.45 0.45 0.35 0.41 0.74 0.58 0.62
strict +
score

0.6 0.25 0.65 0.49 0.47 0.36 0.44 0.81 0.59 0.66

KG retrieval +
finalise

strict 0.64 0.41 0.73 0.56 0.61 0.46 0.56 0.73 0.7 0.67
score 0.59 0.28 0.67 0.49 0.53 0.35 0.46 0.69 0.68 0.65
strict +
score

0.74 0.4 0.78 0.58 0.68 0.45 0.56 0.82 0.75 0.75

KG * retrieval +
finalise

strict 0.66 0.4 0.74 0.56 0.63 0.42 0.57 0.74 0.73 0.71
score 0.51 0.27 0.66 0.46 0.53 0.34 0.47 0.68 0.55 0.57
strict +
score

0.55 0.3 0.68 0.51 0.54 0.36 0.46 0.7 0.64 0.65

random forest
input =
categories

N/A 0.46 0.53 0.49

input =
values

N/A 0.28 0.38 0.32

Table 3: Evaluation results for different methods. PE: prompt engineering. RAG: A = using all the rows; B = using
abnormal rows; C = adding normalised value as a column. The KG achieves the best result with strict match +
confidence score, using the KG built with examples, with a F1 score 0.76. The KG * has a similar performance for
the strict match, but worse with the confidence score and combination of strict match and confidence score. The
best result for RAG is an F1 score of 0.56, which is higher than the zero-shot and random forest results.
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A Appendix

A.1 The KG Schema

Start Node Type Relationship Type End Node Type

TestResult CONTRIBUTES_TO Condition
Condition COMPOSED_OF StandardTerm
Report HAS_PATIENT Patient
Patient HAS_TEST Test
Patient HAS_COMMENT Comment
Patient HAS_CONDITION Condition
Patient HAS_AGE Age
Patient HAS_GENDER Gender
Patient HAS_RESULT TestResult
Condition IS_A StandardTerm
Test HAS_REF Reference
Test HAS_UNIT Unit
Test HAS_TEST_RESULT TestResult

Table 4: The schema of the lab-kg

A.2 An Query Example

0.6
5

HA
S_…

0.
60.4

0.85

0.
9HAS_RESULT

HAS_
PATIE

…

0.3

HAS
_RE

SUL
T

H
AS

_R
ES

U
LT

HAS_CONDIT…

mild
hypochro…

mcv_Border…

412

train_53.…

mch_Border…rbc
count_Ab…

mcv_Abnor…

mch_Abnor…

948

train_6.c…

rbc
count_Bor…

Figure 5: The “mild hypochromia” query process for
a new patient. The query patient with ID 948 lacks
“RBC count Borderline Abnormal (Low)” compared to
the example patient with ID 412 using strict test result
matching. The RBC count is not necessary for “mild
hypochromia”.

A.3 Confidence Score Calculation

In this example, the weights associated with
the condition “mild normochromic normocytic
anaemia” are shown in Table 2.

The maximum possible score is the sum of the
highest weights for each test result:

Max Score = 0.95 + 0.95 + 0.9 + 0.85

+ 0.7 + 0.5 + 0.4 + 0.3

= 5.55

We sum the weights of the matching test results
for the patient’s test results, omitting borderline
weights if there is a corresponding abnormal weight
with a higher value. In this case, the confidence
score is:

Patient Score = 0.75 + 0.75 + 0.85

+ 0.5 + 0.4 + 0.3

= 3.55

The normalised confidence score is:

Confidence Score =
3.55

5.55
= 0.64

A.4 KG and KG * Comparison
To compare the differences between the results
from CONTRIBUTES_TO relationships built by
the LLM with and without examples, we compared
the generated results and highlighted the most sig-
nificant differences below:

1. KG with relevance built with example wins

KG * cannot generate “Mild absolute neu-
tropenia” in many cases, which is in the
target output. The reason is that the LLM
only assigns weight to neutrophils percent-
age_Abnormal (Low), absolute neutrophils
count_Borderline (Low), and neutrophils per-
centage_Borderline (Low). However, the ab-
solute neutrophil count comprises absolute
segmented neutrophil count and absolute band
neutrophil count, which are present in the ex-
amples but not recognised by the LLM’s inter-
nal knowledge without examples.

2. KG with Relevance Built without Example
Wins

The KG built with examples cannot use strict
match for the condition “mild hypochromia.”
Because some example patients (12.5% across
all the patients with that condition) have
a test result RBC count_Abnormal (High)
associated with that condition, the LLM
connects that test result to the condition
with a low weight (0.4). However, in the
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strict match, the new patient only has the
test result MCV_Abnormal (Low), which
is not present in the example patient who
has both MCV_Abnormal (Low) and RBC
count_Abnormal (High). The internal LLM
did not connect RBC count_Abnormal to that
condition, and it can retrieve that condition by
strict match. The LLM’s decision is affected
by the noise of the dataset, which causes this
misidentification. The graph for this query is
Figure 5 in appendix.

A.5 Correlation between F1 Score and Other
Metrics

metrics medcon bleu bert_score meteor rouge1 rouge2 rougeL

corr 0.95 0.75 0.94 0.91 0.91 0.9 0.85
corr * 0.97 0.66 0.91 0.87 0.84 0.9 0.74

Table 5: The correlation between F1 score and each
metric, for the result built by 1. KG (corr) and 2. KG *
(corr *).
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Abstract

We introduce the methodology of explicit
model construction to bridge linguistic descrip-
tions and scene perception and demonstrate
that in Visual Question-Answering (VQA) us-
ing MC4VQA (Model Construction for Vi-
sual Question-Answering), a method developed
by us. Given a question about a scene, our
MC4VQA first recognizes objects utilizing pre-
trained deep learning systems. Then, it con-
structs an explicit 3-D layout by repeatedly re-
ducing the difference between the input scene
image and the image rendered from the cur-
rent 3-D spatial environment. This novel “itera-
tive rendering” process endows MC4VQA the
capability of acquiring spatial attributes with-
out training data. MC4VQA outperforms NS-
VQA (the SOTA system) by reaching 99.94%
accuracy on the benchmark CLEVR datasets,
and is more robust than NS-VQA on new test-
ing datasets. With newly created testing data,
NS-VQA’s performance dropped to 97.60%,
while MC4VQA still kept the 99.0% accu-
racy. This work sets a new SOTA performance
of VQA on the benchmark CLEVR datasets,
and shapes a new method that may solve the
out-of-distribution problem. The source code
and data sets are available for public access
https://github.com/writzx/mc4vqa/.

1 Introduction

The success of LLMs is witnessed by
its capability of human-like question-
answering (Biever, 2023), but, they remain
as black-box systems, data hungry, and do
not work well for out-of-distribution data in
real application (Goyal and Bengio, 2022).
Spatial semantics bridges spatial descriptions
and visual perception and is the first semantics
that human babies acquire. It is used as a
reference for the understanding of other se-
mantics (Regier, 1997; Bellmund et al., 2018).
It plays a fundamental role in computational
linguistics and cognitive modelling (Tversky,

2019). Visual question answering (VQA) is
a challenging task that involves answering
questions about an image in natural language
(Agrawal et al., 2016; Wu et al., 2016). For
example, given an image of a dice and the
question "What is the shape of the object?", a
VQA system should be able to generate the
answer “cube". VQA is a challenging task
because it requires the model to understand
both the visual and spatial content of the image
and the meaning of the question (Agrawal
et al., 2016; Zou and Xie, 2020). A VQA
system must be able to reason about spatial
relations, such as the distance between objects,
the relative positions of objects, and the
orientation of objects. The state-of-the-art
(SOTA) VQA system is Neural-Symbolic
VQA (NS-VQA) (Yi et al., 2019). NS-VQA
achieves a near-perfect accuracy of 99.8% on
the CLEVR dataset (Johnson et al., 2016),
which is a challenging dataset of images and
questions that test a VQA system’s ability to
reason about spatial relations.

NS-VQA combines deep representation learn-
ing for visual recognition and language under-
standing with symbolic program execution for
reasoning. NS-VQA generates executable pro-
grams as the meaning of the question, and apply
for the learned visual and spatial attributes to
produce the answer. NS-VQA learns spatial
attributes about an input image by supervised
deep learning. Therefore, it does not have an
explicit 3-D spatial layout of the input image.
This weakens the explainability and reliability,
makes the system data-hungry and performs
well only when training and testing data share
the same or very similar distribution (Goyal
and Bengio, 2022; Gigerenzer, 2022).

On the other hand, sufficient empirical experi-
ments in psychological research advocates the
model theory for spatial reasoning (Johnson-
Laird and Byrne, 1991; Knauff et al., 2003;
Goodwin and Johnson-Laird, 2005; Knauff,
2009, 2013), whose standard process is a se-
quence of model construction, model inspec-
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(a) an input image

(b) current 3-D layout

(c) current generated image(iv) Update

(ii) Render(i)
In
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Figure 1: Overview of the MCIR process: (a) An input 2-D image; (i) Initializing a 3-D model of a scene with the
colors, shapes and materials of the objects detected in the 2-D input image; (b) Reconstruction of a 3-D spatial
layout of the input image; (ii) Perform perspective projection on the 3-D model to generate a 2-D image and realistic
2-D coordinates of the objects; (c) A projected 2-D image generated using the current 3-D spatial layout; (iii)
Compare the projected coordinates of the objects with the bounding boxes to calculate their distances from their
original 2D locations; (iv) Update the positions of the objects in 3-D layout to reduce the difference calculated in
(iii).

tion, and model variation (Johnson-Laird and
Byrne, 1991). The preferred mental model the-
ory argues that people construct a preferred
and simplified model in mind, in a determinis-
tic manner, while ignoring other possible mod-
els (Ragni and Knauff, 2013; Knauff, 2013) –
The construction of the first model shall not be
a stochastic process that produces one model
this time and another the next time (Ragni and
Knauff, 2013, p.563-564), the next model will
be revised following the principle of minimal
changes from the current one (Harman, 1986;
Gärdenfors, 1988; Gädenfors, 1990; Knauff
et al., 2013), and generated by a local trans-
formation of the current model.

Inspired from the model theory, here, we move
one step ahead of NS-VQA, by replacing its
supervised learning component of spatial at-
tribute with a 3-D spatial reconstruction com-
ponent, and developed the process of “Model
Construction by Iteration Render” (MCIR). As
illustrated in Figure 1, the MCIR process first
initialises a 3-D spatial layout for all recognised
objects, Figure 1(i), followed by the loop of
Render-and-Update, Figure 1(ii,iv). The Ren-
der operation projects a 3-D layout into a 2-D
image, Figure 1(c); the Update operation is car-
ried out to reduce the difference between the

original input image and the current rendered
image. The result of the Comparison operation
is always greater than or equal to zero.

We compare MC4VQA with NS-VQA in two
experiments. The first experiment is performed
using the original CLEVR dataset. MC4VQA
achieved an accuracy of 99.94%. This outper-
forms all state-of-the-art methods, including
NS-VQA. The aim of the second experiment
is to examine whether traditional supervised
learning endows neural-networks the ability to
acquire 3-D spatial attributes from 2D images.
We developed a new testing dataset, which con-
tains 4000 images, generated by the CLEVR
image generator from four different camera per-
spectives. Each scene is generated using a ran-
domly selected camera configuration. NS-VQA
had an overall accuracy of 98.39%. In con-
trast, our proposed method maintained another
near-perfect accuracy at 99.8%. The success of
MC4VQA not only demonstrates the power of
the method of model construction and inspec-
tion for the acquisition of spatial knowledge
(advocated in the psychological literature), but
also shows the limitation of supervised deep
learning – lacking the ability of generalisation
of training patterns (Goyal and Bengio, 2022).
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The contributions of MC4VQA are listed as
follows: (1) it is the first VQA system that ex-
plicitly reconstructs 3-D spatial layout to bridge
spatial linguistic descriptions and visual percep-
tion; (2) MC4VQA can be further developed
by integrating more features of mental model
theory in psychology, or used in psychological
experiments; (3) Source code and new datasets
are publicly accessible. The rest of the paper
is structured as follows: Section 2 reviews a
number of related works; Section 3 formalises
the task of VQA by explicitly re-constructing
3-D spatial layout; Section 4 presents the detail
of MC4VQA; Section 5 reports experiment re-
sults of MC4VQA, which grealy outperforms
the SOTA performance, and demonstrates the
power of the model construction method in new
testing data; Section 5 concludes the paper, and
lists a number of future research topics.

2 Related Work

A convergent opinion from linguistics, neu-
roscience, and psychology is that the spatial
domain is the first domain that human babies
understand, and is the reference domain for
the understanding of other domains (Lakoff
and Johnson, 1980; Regier, 1997; Grady, 1997;
Tversky, 2019). The next generation of lan-
guage system shall be a brain- and AI-inspired
understanding system that explicitly represents
situations (McClelland et al., 2020). Our work
focuses on the NS-VQA model, and promises
a novel method to explicitly represent scene
images by constructing 3-D geometric spatial
models. NS-VQA uses an older object de-
tection model based on Detectron (Girshick
et al., 2018) and Mask R-CNN (He et al., 2018).
Since then, newer models with improved ac-
curacy and speed have been released, such
as YOLO (Redmon et al., 2016; Jocher et al.,
2023), which produces impressive results and
can be used for real-time video processing.

YOLO YOLO (You Only Look Once) is
a powerful object detection model which is
known for its speed and accuracy (Redmon
et al., 2016). The current version of YOLO
(v8) (Jocher et al., 2023) is the state-of-the-
art object detection model that utilizes Cross
Stage Partial (CSP) (Wang et al., 2019) ar-
chitecture, which was introduced in YOLOv4
(Bochkovskiy et al., 2020). Our MC4VQA uses
YOLOv8 as its object detection model. YOLO
offers several pretrained models, of which we
chose “YOLOv8x-seg" which has great seg-
mentation accuracy.

Question Parsing and Execution Several
papers have used program search and neural
networks to recover programs from domain spe-
cific language (Neelakantan et al., 2016; Balog
et al., 2017), including semantic parsing meth-
ods (Berant et al., 2013; Liang et al., 2011)to
map sentences to logical forms from a knowl-
edge base. Prior knowledge of semantics of
the program and execution context is important
to correctly parse an arbitrary set of question
tokens following the semantics. So, the model
needs the learn based on a set of input questions
and answer pairs. NS-VQA’s question parser
follows the work done by (Andreas et al., 2016;
Rothe et al., 2017; Goldman et al., 2019). The
parser implementation uses a Bi-LSTM parser
to generate programs from sentences similar to
CLEVR-IEP (Johnson et al., 2017). The exe-
cution engine is slightly different from IEP, in
the sense that it uses symbolic reasoning based
on object positions generated by its attribute
network.

Neural-symbolic approach to VQA NS-
VQA stands for “Neural-symbolic Visual Ques-
tion Answering" (Yi et al., 2019). Traditional
neural-network approaches often do not have
competitive performance on challenging rea-
soning tasks on CLEVR dataset (Johnson et al.,
2016). In contrast, NS-VQA achieves a near-
perfect accuracy on the CLEVR dataset, by
learning a symbolic program from the question,
and executing the program on an implicit spa-
tial model learned by supervised deep learning,
ResNet34 (He et al., 2015). It remains unclear
whether NS-VQA’s ResNet34 really learns the
way to acquire 3D spatial relations from 2D im-
ages. The symbolic program may only match
similar pairwise relationships in the training
scene images. Furthermore, supervised mod-
els for generating 3D scene representations are
prone to bias due to the invariant camera con-
figuration used by the CLEVR training images.

3 Motivation of VQA through
Model Construction and Inspection

Ever since Tolman’s rats experiments (Tolman,
1948) in the 1940s, sufficient evidence has been
collected to show that animals and humans
can construct comprehensive spatial models
in mind of their environments through sensori-
motor interaction (Spelke and Lee, 2012) and
that this spatial model in mind structures our
language (Lakoff and Johnson, 1980; Tversky
and Lee, 1999; Tversky, 2019). This moti-
vates us to move one step ahead of NS-VQA
by replacing its supervised ResNet34 compo-
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nent with a novel component that explicitly
constructs 3D spatial layout, thus MC4VQA
(Model Construction for VQA). This allows
the symbolic program execution engine to more
accurately identify objects and their spatial rela-
tionships in the scene. As being unsupervised,
our method may improve the overall general-
ization of the scene construction, allowing to
function on unknown camera configurations.

4 Formalising the task

In this section, we define the task of VQA
through model construction and inspection.
The input of MC4VQA consists of an image I
and a question Q asking the content of this im-
age, whose content can be described as a set of
objects IO1 . . . IOn and a set of 2D locations
LOi of IOi , line 1 in Algorithm 1. The process
of model construction P will construct a 3D
spatial layout S for I . S consists of a set of 3D
objects Oi with their size and their 3D location
information.

Let S0 be an initial 3D layout, line 2 in Al-
gorithm 1, the construction process P will
update Si to Si+1, with the following proce-
dure: P will trigger an inspection function I
to take a photo of Si, so called “rendering”, let
I(Si) = I(i). Then, a function M will measure
the difference between I(i) and the original im-
age I. Finally, a function g will apply a set
of geometric operations on objects in Si. This
transforms Si into Si+1, so that a photo of Si+1

will be more similar to the original image, that
is, M(I(i+1), I) < M(I(i), I). The construc-
tion process will stop, if M(I(i+1), I) is less
than a predefined threshold value ε. The final
3D layout Sn will be inspected to answer the
question Q (Algorithm 1).

5 MC4VQA

MC4VQA has four components: an object
detector (YOLOv8), a 3D model constructor
(MCIR), a question parser (Bi-LSTM encoder),
and a program executor.

Object Detection The YOLOv8 object de-
tector is trained on the same 4000 CLEVR im-
ages used by NS-VQA. The input image is first
passed to the object detector to generate object
proposals. The object proposals are composed
of the predicted object masks and the object
bounding boxes, along with their class names.
Object proposals with a score of less than 0.9
are discarded. The predicted class names are
composed of the discrete attributes of the ob-
jects, e.g., the object size, colour, material, and

Algorithm 1: VQA by 3D model construc-
tion and inspection
Input: an image I;
Input: a question Q about the content of I;
Output: an answer A to Q;

1 recognise 3D objects O1 . . . On in I;
2 Initialise 3D spatial layout Sc by placing all

Oi at the same location;
3 I(c) ← I(Sc);
4 while I(c) not similar with I do
5 update 3D locations and postures of

objects Oi in Sc, to increase the
similarity to I; . reduce the value
M(Ic)−M(I)

6 I(c) ← I(Sc); . I(c) is a photo of Sc
7 A ← answer Q by inspecting 3D layout Sc;
8 return A

shape. These attributes are used to construct
the 3D scene and to answer the questions.

3D Model Construction The object pro-
posals generated by the object detector are
passed to MCIR, which processes the bounding
boxes of the objects to compute more realistic
box midpoints. The bounding boxes from the
object detector do not take into account occlu-
sion behind other objects, so it is important to
correct them before generating the 3D scene.

After the approximately realistic midpoints are
generated, they are passed to MCIR, which
generates the 3D spatial model. This model
is then passed to the question executor as the
scene representation of the input image.

Question Parsing and Program Execu-
tion The question parser and the program
executor used by MC4VQA are both directly
taken from the NS-VQA implementation with-
out any changes. The output format of MCIR
is compatible with the input format of the pro-
gram executor, so they integrate well with each
other. The reconstructed 3-D representation is
used to generate the answers.

6 Experiments

A series of experiments are conducted to com-
pare the methods of model construction and of
supervised learning for VQA.

Experiment I MC4VQA is implemented
by replacing NS-VQA’s supervised learning
model with a model of 3D scene construction
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YOLOv8

size color material shape
1 large green metal cube
2 large cyan rubber cylinder
3 small blue metal cylinder
4 small red rubber sphere
5 small gray metal sphere

xbmin
ybmin

xbmax ybmax

1 185.42 127.68 298.77 250.71
2 149.13 78.64 217.59 164.19
3 401.49 120.74 440.61 164.00
4 276.95 102.17 306.27 131.52
5 95.10 147.13 131.34 182.92

Render
Object

Update
Position

Compare
Distance

xS yS zS
1 1.80 −1.50 0.70
2 −1.15 −0.65 0.70
3 2.45 2.95 0.35
4 −0.30 1.90 0.35
5 −0.95 −2.45 0.35

How many spheres that are behind the

cube are small?

Program
Generation

Program Execution

(i) Answer: 2

Program

(a) input image

(b) object classes (properties)

(c) bounding boxes (d) image coordinates (px)

(e) question

(f) MCIR

(g) reconstructed 3d model(h) object positions

Figure 2: Overview of NS-VQA Extended with Iterative Rendering

to acquire spatial attributes, and share the same
object detection model and the same model of
question parsing and program execution.

We used three camera configurations to test
the performance of MC4VQA as follows: (1)
C1 was a random configuration to serve as a
baseline; (2) C2 was chosen to simulate the
camera direction that a human would likely
choose when looking at the CLEVR images;
(3) C3 was calculated based on the average of
the first ten camera directions specified in the
CLEVR scenes to represent a manually fine-
tuned camera configuration.

YOLO for object proposals We trained a
YOLOv8 object detector on the same 4000
CLEVR images. These are the same images
used to train the object proposal model of NS-
VQA in (Yi et al., 2019). Object proposals with
a score of less than 0.9 were discarded. A pre-
dicted class name consists of discrete attributes

of the object, such as the size, the colour, the
material, and the shape. These attributes are
used to construct the 3D scene and to answer
the questions using the program executor. The
training of the YOLOv8 model was run on re-
sized image size of 480x480 for 100 epochs
with a learning rate of 0.01.

Equipped with this YOLO model, NS-VQA (Yi
et al., 2019) improves its overall accuracy from
99.8% to 99.93%, as listed in Table 1.

VQA through 3-D Model Construction
MC4VQA uses YOLO object proposals to ini-
tialise a 3-D layout, then repeatedly optimizes
this layout by reducing the difference between
the objects in the input image and the objects
in the 3-D scene generated by the rendering
engine. Then, MC4VQA uses NS-VQA’s
question parser to generate programs and apply
them to the 3D layout to generate answers,
whose correctness is validated by the ground
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Methods Count Exist Compare
Number

Compare
Attribute

Query
Attribute Overall

Humans 86.7 96.6 86.5 95.0 96.0 92.6
MDETR (Kamath et al., 2021) 99.3 99.9 99.4 99.9 99.9 99.7
NMN (Andreas et al., 2017) 52.5 72.7 79.3 79.0 78.0 72.1
N2NMN (Hu et al., 2017) 68.5 85.7 84.9 90.0 88.7 83.7
IEP (Johnson et al., 2017) 92.7 97.1 98.7 98.1 98.9 96.9
TbD (Mascharka et al., 2018) 97.6 99.4 99.2 99.5 99.6 99.1
RN (Santoro et al., 2017) 90.1 93.6 97.8 97.1 97.9 95.5
FiLM (Perez et al., 2017) 94.5 93.8 99.2 99.2 99.0 97.6
NS-CL (Mao et al., 2019) 98.2 99.0 98.8 99.3 99.1 98.9
MAC (Hudson and Manning, 2018) 97.2 99.4 99.5 99.3 99.5 98.9
OCCAM (Wang et al., 2021) 98.1 99.8 99.0 99.9 99.9 99.4
NS-VQA (Yi et al., 2019) 99.7 99.9 99.9 99.8 99.8 99.8
NS-VQA (YOLOv8) 99.87 99.96 99.93 99.93 99.95 99.93
MC4VQA [C1] 99.89 99.97 99.94 99.91 99.92 99.92
MC4VQA [C2] 99.92 99.98 99.93 99.94 99.95 99.94
MC4VQA [C3] 99.92 99.97 99.93 99.97 99.94 99.94

Table 1: NS-VQA outforms state-of-the-art methods on the CLEVR dataset. With introduction of the YOLO model
the accuracy is improved. Integrating with iterative render further improves the accuracy to a near perfect 99.94%.
Our model depends on the camera configuration of the system. C1 is a random configuration to serve as a baseline.
C2 is chosen to simulate the camera direction that a human would likely choose when looking at the CLEVR images.
C3 is calculated based on the average of the first ten camera directions specified in the CLEVR scenes to represent a
manually fine-tuned camera configuration.

Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 97.86 99.03 99.22 98.53 98.21 98.39
MC4VQA 99.52 99.85 99.97 99.90 99.88 99.80

Table 2: NS-VQA (YOLOv8) with attribute net performs slightly worse at 98.39% than MC4VQA (YOLOv8) with
MCIR, which still maintains near perfect accuracy at 99.80%

truth in the validation set. The performance is
measured in terms of the accuracy.

Results and Analysis Experiment results show
that MC4VQA reaches 99.94% overall accu-
racy on the benchmark CLEVR dataset without
training data. This outperforms the SOTA NS-
VQA (Yi et al., 2019) and the NS-VQAv8 (NS-
VQA with YOLO model). Experiments also
show that MC4VQA reaches the performance
of NS-VQAv8 in each evaluation task, at least
from one camera configuration. We conclude
that MC4VQA successfully acquired spatial at-
tributes by utilising the method of 3D model
construction without training data.

Experiment results show that MC4VQA
reaches 99.94% accuracy on the benchmark
CLEVR dataset, without training data. This
outperforms the SOTA NS-VQA (Yi et al.,
2019) and the NS-VQAv8 (NS-VQA with
YOLO model). Experiments also show that
MC4VQA reaches the performance of NS-
VQA at least from one camera configuration
for rendering. We conclude that by utilising the
method of 3D model construction, MC4VQA
successfully acquired spatial attributes without

training data.

Experiment II In Experiment I, the testing
and training data are from benchmark CLEVR
dataset, sharing the same distribution. The sec-
ond experiment compares the performances of
the well-trained NS-VQA and MC4VQA on
new test datasets.

Design of the experiment We generated 4000
CLEVER images with four different cam-
era configuration, and 40000 questions, and
fed them to the well-trained NS-VQA with
YOLOv8 and MC4VQA.

Experiment Results show that the overall per-
formance of NS-VQA drops from 99.93%
to 98.39% and that the overall performance
of MC4VQA slightly drops from 99.94% to
99.80%, Table 2. This suggests our method is
more robust than NS-VQA.

Error Analysis We examined cases when NS-
VQA made mistakes. In Figure 3, NS-VQA
fails to locate the small gray cube accurately,
resulting in an incorrect answer. MC4VQA
overcomes this limitation by using corrected
bounding boxes and a 3D spatial model to cor-
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Algorithm 2: The simple MCIR Algorithm
Input: object proposals from YOLO
Data: omax- total number of objects
Data: jmax- maximum number of iterations

1 oi ← 1; /* oi: current object index */

2 while oi ≤ omax do
3 j ← 1;
4 O ← objects[oi];
5 C ← box-midpoints[oi];
6 S ← initialize(O);
7 I ← project(S); /* I ∼ (xI , yI): 2-D

image coordinates of O (current) */

8 d← |C − I|; /* d: pixel distance */

9 up ← 1; /* up: previously used update

value */

10 while d > dthreshold do
11 ui ← up; /* ui: index of update

value */

12 while j ≤ jmax do
/* U: set of available update

values */

/* umax: number of update

values */

13 u← U [ui mod umax];
14 Sc ← S + u; /* Sc: candidate

scene coordinate */

15 Ic ← project(Sc); /* Ic:

candidate image coordinate */

16 dc ← |C − Ic|; /* dc: new pixel

distance */

17 if dc < d then
18 S ← Sc; I ← Ic; d← dc;
19 up ← ui;
20 break

21 ui ← ui + 1

22 oi ← oi + 1

rectly identify the cube’s location. NS-VQA
made similar mistakes when there are objects
very close to together each other. We hypothe-
size that the performance of NS-VQA drops if
the questions are about closely situated objects.
We report Experiment III as follows.

Experiment III We create a new testing
dataset, in which some objects are very close
to each other, and evaluate the performances of
NS-VQA and MC4VQA.

Design of the experiment Two sets of CLEVR
images were created, 1000 images for each, as
follows.

(a) An input image, where
two gray cubes are very
closely located.

(b) Bounding boxes created
by YOLO object detection
model.

(c) 2D spatial attribute used
by NS-VQA

(d) 3D spatial layout used by
MC4VQA

Figure 3: (a) Given an input image and the question
“what number of objects are behind the small brown
metallic thing and in front of the yellow metta object?”
(b) YOLO successfully identifies all objects with bound-
ing boxes. In (c) NS-VQA uses 2D YOLO bounding
boxes. In this case, the small gray cube is not calculated
as being in front of the yellow cylinder. (d) MC4VQA
used its constructed 3-D spatial layout, instead of 2D
YOLO bounding boxes, and correctly calculated the
small gray cube being in front of the yellow cylinder.

• In one set, there are two objects being
very close to each other; (minimum dis-
tance between two objects is 0.1 units, as
opposed to CLEVR default of 0.4 units)

• In another set, at least two objects are
close, and all objects are less spread out in
the scene. (maximum coordinates along
the axes: 2.0 units, as opposed to CLEVR
default of 3.0 units)

These two testing datasets were fed to NS-VQA
and MC4VQA.

Results an analysis The performance of NS-
VQA continued to decrease to below 98.0%.
The performance of MC4VQA decreased
slightly, and still reached 99.0% in both testing
datasets, as listed in Tables 3 and 4, respectively.

Limitations of MC4VQA Our MCIR pro-
cess optimises a 3D layout through reducing the
difference between a rendered image and the
input image. It does not have other spatial con-
straints, such as extended 3D objects cannot be
partially overlapped. This limitation will cause
MC4VQA to construct incorrect 3D layout. For
example, Figure 4 illustrates a new testing im-
age whose camera configuration is very near
to the objects. This causes the effect of plac-
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Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 96.54 98.48 98.97 99.47 97.44 97.90
MC4VQA 98.70 100.00 97.94 100.00 99.43 99.30

Table 3: NS-VQA vs MC4VQA when the objects are closer to each other.

Methods Count Exist
Compare
Number

Compare
Attribute

Query
Attribute

Overall

NS-VQA 95.67 99.24 96.91 98.94 97.73 97.60
MC4VQA 98.70 100.00 98.97 99.47 98.58 99.00

Table 4: NS-VQA vs MC4VQA when the objects are close and less spread out.

Figure 4: When objects are very close to each other in a
3D layout, they may be partially overlapped, as we see
there is a yellowish black at the edge of the top surface
of the yellow cylinder behind it.

ing large 3D objects in a relative small place.
Without explicit spatial constraints, nearby 3D
objects can be partially overlapped.

Another limitation of the MCIR system is using
single camera configuration. Under certain situ-
ations, it might not be possible to figure out the
precise location of an object in the 3D layout.
For example, Figure 5(a) illustrates an image,
in which a purple object is behind a big yellow
cylinder and a green cuboid, only a very small
part can be seen. Although this small part is
sufficient to recognise what object class and
what size it is, figuring out its precise location
will be hard. Tentative solutions can be to set
the bounding box as left (or right) as possible,
Figure 5(a), or let the centre of the bounding
box and the seen part be coincided, Figure 5(b).
Each tentative solution can cause MC4VQA to
give incorrect answers.

7 Conclusions and outlooks

Understanding surrounding environment is a
fundamental ability for the survival of animals
and humans, e.g., to escape from dangerous
predators. It is a challenging research task in
NLU and AI, and has various downstream ap-
plications, e.g., autonomous driving, service

(a) Left-most or right-most
bounding-boxes can be used
as tentative solutions.

(b) An alternative tentative so-
lution is to put the object to
the centre of the bounding
box.

Figure 5: A purple object is occluded by two big objects,
whose location is hard to figure.

robots. VQA with the benchmark CLEVR
dataset is a micro-world to explore this field, in
which images are about layouts of synthesised
geometric objects. Supervised neural networks
to learn spatial attributes are very successful,
with two conditions: (1) it needs a huge amount
of training data; (2) the testing data shall have
the same distribution as the training data. Both
conditions are either expensive or unrealistic
for real applications. We replace the method of
supervised learning with the method of model
construction to free the acquisition of spatial
attributes from the imprisonment of data and
go beyond the paradigm of supervised learning.

Our experiment results show that our new
method is very promising – it does not need
training data for acquiring spatial regions and
achieves higher accuracy in answering ques-
tions about out-of-distribution scenes.

In this work, we implemented MCIR using a
simple object-level loop to optimize object loca-
tions and used NS-VQA’s question parser and
executor with the CLEVR validation questions.
In the future, we will adopt a dual-camera con-
figuration to figure out the locations of 3D ob-
jects precisely and will use the constructed 3D
layout construction as the spatial semantics to
interpret linguistic descriptions.
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Abstract

With the continuous growth of multi-modal
data on social media platforms, traditional
Named Entity Recognition has rendered insuf-
ficient for handling contemporary data formats.
Consequently, researchers proposed Multi-
modal Named Entity Recognition (MNER). Ex-
isting studies focus on capturing the visual re-
gions corresponding to entities to assist in en-
tity recognition. However, these approaches
still struggle to mitigate interference from vi-
sual regions that are irrelevant to the entities.
To address this issue, we propose an inno-
vative framework, Visual Cue Refinement in
MNER(VCRMNER) using CLIP Prompts, to
accurately capture visual cues (object-level vi-
sual regions) associated with entities. We lever-
age prompts to represent the semantic informa-
tion of entity categories, which helps us assess
visual cues and minimize interference from
those irrelevant to the entities. Furthermore,
we designed an interaction transformer that op-
erates in two stages—first within each modality
and then between modalities—to refine visual
cues by learning from a frozen image encoder,
thereby reducing differences between text and
visual modalities. Comprehensive experiments
were conducted on two public datasets, Twit-
ter15 and Twitter17. The results and detailed
analyses demonstrate that our method exhibits
robust and competitive performance.

1 Introduction

Named Entity Recognition (NER) primarily identi-
fies key entities (e.g., person, locations, organiza-
tions) within unstructured textual data sources (Li
et al., 2020b). In the context of social media appli-
cations, NER technology is primarily used to ana-
lyze and track the dynamics of public opinion, ma-
jor events, and other related information trends. As
social networks evolve, the volume of multi-modal
data on social media continues to grow, rendering
traditional text-based NER methods insufficient for

this new form of data. Consequently, researchers
have developed Multi-modal Named Entity Recog-
nition (MNER) (Lu et al., 2018)(Moon et al., 2018).
MNER integrates image and text data to identify
named entities, effectively resolving the ambigu-
ities present in traditional NER tasks (Lu et al.,
2018). It has now become an important research
direction in the field of information extraction.

In MNER tasks, textual content and images of-
ten exhibit low relevance (Sun et al., 2021)(Hu
et al., 2017), with entities usually concentrating
on specific visual regions (visual cues). Other re-
gions might interfere with the accurate identifica-
tion of named entities (Xu et al., 2022)(Zhang et al.,
2023a). Early studies (Lu et al., 2018)(Moon et al.,
2018)(Wu et al., 2020)(Jia et al., 2022) have ex-
plored the inherent correlations between images
and text using attention mechanisms. However,
this approach does not address the low correlation
between images and text, and it is challenging to as-
sess the effectiveness of implicit alignments. Subse-
quently, research (Sun et al., 2021)(Xu et al., 2022)
focused on reducing the influence of irrelevant im-
ages on entity recognition by evaluation mecha-
nisms to assess the correlation between entire im-
ages and their corresponding textual sentences. For
instance, they utilized contrastive learning methods
to assess image-text similarity, or they employed
pre-trained models for this assessment. Addition-
ally, this approach diminishes the significance of
object-level visual regions. Recently, studies (Chen
et al., 2022)(Yu et al., 2023)(Zheng et al., 2020)
have attempted to exploit object-level visual re-
gions using visual tools such as Mask R-CNN (He
et al., 2017). The object-level visual information
typically corresponds directly to visual objects with
less noise, these visual regions can better assist in
entity recognition. However, these visual tools are
typically trained solely on visual datasets, which
hampers their ability to accurately capture the vi-
sual regions pertinent to the entities. Consequently,
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Figure 1: An example shows the problems of different
MNER methods.

irrelevant visual regions can mislead the model’s
judgments, resulting in error propagation.

As shown in Fig. 1, the similarity score between
the input image and the sentence, as evaluated by
similarity assessment, is merely 0.36. Despite the
person in the image being "Taylor Swift" as men-
tioned in the text, the relevance of the visual re-
gion where this person is located has decreased.
In the method that utilizes Mask R-CNN to detect
object-level visual regions within the image, three
pertinent object regions were identified. However,
the "car" in the image does not contribute to the
identification of the entity "Taylor Swift". If the sig-
nificance of this visual region is not diminished, it
could potentially mislead the identification process
of the entity.

Employing semantic information of entity cate-
gory words to evaluate the relevance of visual re-
gions helps minimize the interference caused by vi-
sual regions that are unrelated to the entities. CLIP
(Radford et al., 2021) as a pre-trained multi-modal
model, bridges the modalities of images and text.
When used as an evaluator, CLIP is capable of as-
sessing the relevance between images and textual
content. However, the training corpus for CLIP
lacks category words for entity classifications, in-
cluding person, location, organization, and miscel-
laneous. Consequently, it is crucial to guide visual
region assessments with category words.

In this paper, we propose a new framework Vi-
sual Cue Refinement for MNER (VCRMNER) that
uses prompts instead of category words to guide
the evaluation of visual regions. Specifically, we
characterize the types of entities using a series of
prompts and compute the center of these prompts’
vector representations to represent the entity cate-
gory words. The similarity between these category
word representations and the representations of vi-

sual cues is assessed with CLIP to determine the
relevance of these visual regions. Furthermore,
we developed a two-stage modal fusion interactive
transformer. First, attention is calculated within
each modality separately. Then, the model fuses
the modalities together. This balances the differ-
ences between text and visuals, avoiding excessive
interference from visual representations. By re-
fining visual cues from the frozen image encoder,
our model reduces modal discrepancies effectively.
Comprehensive experiments were conducted on
two public datasets Twitter15 (Zhang et al., 2018)
and Twitter17 (Lu et al., 2018). The results and
detailed analyses confirm that our method provides
robust and competitive performance. Our main
contributions are summarized as follows:

• We proposed an innovative architecture
VCRMNER that employs a transformer
block that combines cross-attention and self-
attention, interacting with a frozen visual en-
coder. This interaction reduces the semantic
gap between modalities, thereby more effec-
tively integrating information from different
modalities to achieve MNER.

• We designed a prompt-guided visual cue eval-
uation module that supplements additional se-
mantic information by using prompts to re-
place entity category words, thereby effec-
tively reducing interference from visual noise
unrelated to the entities.

• We conducted extensive experimental verifica-
tion on two benchmarks, and the experimental
results fully demonstrated that our method
achieved sota.

2 Related Work

2.1 Prompt learning
The concept of prompt learning involves design-
ing appropriate "prompts" to elicit the desired out-
puts from the model. The core of this approach
lies the idea of not training the model directly
for specific tasks, but rather constructing a form
of input that enables the model to infer the cor-
rect answers based on existing knowledge (Liu
et al., 2023). Recently, some studies (Huang et al.,
2022) developed a prompt learning method for
NER that uses category-specific words to optimize
contrastive learning of label representations. This
approach, however, is generally limited to the tex-
tual modality. In multimodal approaches, (Wang
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et al., 2022) proposed a method that leverages the
association between prompts and visual images
to filter prompts containing entity semantics to
assist in entity recognition. This method signif-
icantly mitigates the differences between the vi-
sual and textual modalities. In contrast, we pro-
pose using a specifically designed prompt-driven
vision-language model as an evaluator, starting
from raw data, to assess whether object-level visual
regions (visual cues) are related to entity categories.
This approach minimizes interference from irrele-
vant object-level visual regions and enhances entity
recognition through precise visual cues.

2.2 Pretrain vision language model
With the continuous advancement of pre-trained
models, significant progress has been made in the
fields of computer vision and natural language
processing. In this context, Unicoder (Li et al.,
2020a) attempted to use a universal encoder to in-
tegrate visual and linguistic representations, draw-
ing on the paradigm of cross-lingual pre-training
models, inputting both visual and textual data
into multi-layer Transformers for multi-task cross-
modal pre-training, aimed at image-text retrieval
tasks. CLIP (Radford et al., 2021), which uses
large-scale image-text pairs and contrastive learn-
ing to predict the match between captions and im-
ages, thereby understanding the relevance between
two different modalities. The CLIP model demon-
strates strong generalization ability across various
visual tasks without the need for specific task train-
ing.

These multimodal visual-language pre-trained
models break down modality barriers, narrow the
gap between modalities, and exhibit great potential
in numerous downstream tasks. For the MNER
task, images in image-text pairs often contain vi-
sual objects unrelated to entity types, and the exist-
ing multimodal visual-language models, with their
capability to evaluate image-text associations, pro-
vide a technical foundation for the assessment of
visual objects.

2.3 MNER
With the increasing amount of multi-modal data on
social media platforms, MNER has attracted the
attention of many researchers. Based on different
image processing methods, we categorize MNER
research into two main classes:

(1) Treating the entire image and merging
through the interaction between image represen-

tations and text representations in vector space. For
example, CNN-LSTM (Lu et al., 2018) introduces
a modality attention module that diminishes irrel-
evant modality information while amplifying the
primary modality, used for multi-modal represen-
tation. CoA (Zhang et al., 2018) introduces an
adaptive co-attention architecture to integrate vi-
sual and textual information for MNER. UMT (Yu
et al., 2020) has designed a unified multi-modal
transformer framework that utilizes an entity span
detection task to learn rich multi-modal representa-
tions. MAF (Xu et al., 2022) proposes a matching
and alignment framework to mitigate the effects of
mismatched text-image pairs and enhance the con-
sistency of multi-modal representations. DebiasCL
(Zhang et al., 2023a) employs implicit alignment
between visual objects and textual entities, using
debiasing-based contrastive learning to optimize
the shared semantic space between text and im-
ages. These methods attempt to leverage entire
image to enhance textual representations; however,
they overlook the preference for object-level visual
regions in the MNER task.

(2) Explicitly extracting object-level visual re-
gions (visual cues) and facilitating interaction be-
tween representations of visual regions and textual
representations. OCSGA (Wu et al., 2020) utilizes
a dense co-attention mechanism to establish both
intra-connections and inter-connections between
textual entities and visual objects. UMGF (Zhang
et al., 2021a) proposes a graph fusion method to
learn various semantic relationships between words
and multiple visual objects. BGAMNER (Chen
et al., 2023) explores the matching relationships
between visual regions and words through bidi-
rectional image-text generation. The HamLearn-
ing (Liu et al., 2024) enhances text word repre-
sentations by dynamically aligning image and text
sequences and modeling the relationships among
the mined visual regions, thereby achieving multi-
level cross-modal learning. Although visual re-
gions more accurately point to named entities, the
visual regions in images are not always relevant to
the entities.

Unlike the above methods, we propose an ap-
proach that uses prompts instead of entity cate-
gory words to evaluate visual cues and dynamically
achieves word alignment with visual cues and inter-
modal fusion through an interactive transformer.
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Figure 2: The overall architecture of the approach we proposed.

3 Our Method

Overview our method. Fig. 2 shows our model
architecture, which is divided into two main stages.
In the first stage, we design the corresponding ten
text prompts for each entity category word and map
each text prompt to the multi-modal vector space
through the clip text encoder. Further, we find the
center of the vector representation of the prompts
corresponding to each entity category by averaging,
and we use this center as the text vector represen-
tation of the entity category words. Subsequently,
we map the object-level visual regions, obtained
by Mask R-CNN, to the shared vector space of
image and text via the clip. We then compare the
visual representation with the prompts center to
evaluate the correlation. In the second stage, we
designed an interactive transformer aimed at refin-
ing the captured visual cues, enabling the model
to more effectively learn the knowledge embed-
ded in the visual modality. This module achieves
sustained intra-modal and inter-modal interactions
through self-attention and cross-attention mecha-
nisms, thereby narrowing the semantic gap between
the textual and visual modalities. Finally, we input
the final vector representation obtained from the in-
teraction transformer into the Conditional Random
Field (CRF) (Wallach et al., 2004) to complete the
sequence annotation decoding process. The follow-
ing section describes the details of our method.

Formula definition. Given a sentence S =
(w1, w2, w3, ..., wn), where n represents the total
number of words in the sentence. I is the image
corresponding to the sentence S. The goal of the
MNER task is to combine the image I to label each
word in the sentence S to obtain the sequence Ŷ .
ŷi ∈ Ŷ , ŷi type is the label of the model predict,
Y = (y1, y2, y3, . . . , yn), yi represents the type
of the real label. According to the BIO notation,
the MNER task pre-defines four types of entities
PER,LOC,ORG,MISC.

Input Embedding: In this paper, we choose
RoBERTa (Liu et al., 2019) as the text encoder.
Before feeding a sentence S into RoBERTa, the
RoBERTa tokenizer segments it into a sequence
of word embeddings. Special tokens "[CLS]" and
"[SEP]" are inserted at the beginning and end of
the word embedding sequence, respectively. This
process generates a token sequence T = {Ti}Nt

i=1 ∈
RNt×d, where Nt represents the number of tokens
in the sentence, and d represents the dimension of
the embeddings. The token sequence is then input
into RoBERTa to obtain the vector representation
Ht ∈ RNt×d, where h0 is the vector representation
of the entire sentence, and the others are the vector
representations of the words in the sentence.

As a Transformer-based image recognition
model, Vision Transformer (ViT) (Dosovitskiy
et al., 2020) efficiently processes global features
of images through the self-attention mechanism.
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Therefore, we choose clip-vit as the model’s visual
encoder. Given an image I , ViT segments the input
image into multiple fixed-size image patches (e.g.,
16x16 pixels) and linearly projects these image
patches into a series of one-dimensional embedding
vectors, represented as V = {Vi}Nv

i=1 ∈ RNv×d,
where Nv represents the number of patches in the
image, and d represents the embedding dimension.

3.1 Stage one. Prompt-guided visual cues
extraction and evaluation

Prompts for design: When evaluating the rele-
vance of object-level visual regions, directly using
label words from named entity recognition (such as
person, location, and organization) may lead to low
recognition accuracy because these keywords do
not directly correspond to the content in the CLIP
model’s training set. To overcome this limitation,
we introduce a prompt-based visual cue method
that utilizes a set of carefully designed prompts as
substitutes for entity category words, thereby har-
nessing CLIP’s capability to assess visual regions.
We designed ten distinct prompts for each entity
category using the large language model GPT-4,
which generated and screened prompts based on
the MNER task description and the definitions of
entity category words. These prompts were then
manually filtered to select those that accurately de-
scribe the image content and align with the entity
type definitions. All prompts are available in the
supplementary material.

Visual cues assessment: The predefined
prompts are used in place of entity keywords and
are encoded through a CLIP text encoder, which
converts each prompt into a vector representation.
Given promptji has the following formula to map
it to a multi-modal vector representation space:

pji = cliptext(promptji ) ∈ Rd (1)

where pji ∈ Rd represents the vector embedding of
the i-th prompt in the j-th category, with d denot-
ing the dimensionality of the embedding space, and
cliptext is the CLIP model’s text encoder, responsi-
ble for mapping the input prompt into the shared
multi-modal vector space.

After obtaining the vector representation of all
prompts for each category, we obtain the entity
category textual representation by calculating the
average of these vectors:

cj =
1

n

n∑

i=1

pji (2)

where cj ∈ Rd represents the centroid vector of
the j-th entity category in the multi-modal embed-
ding space, obtained by averaging the n prompt
vectors pji , with n denoting the total number of
prompts in the category and d being the dimension-
ality of the embedding space.

It is noteworthy that, since the entity category
words are fixed, the prompts we design will also
be fixed. Therefore, the process of computing the
center of the prompt is performed only once. After
obtaining the vector representation of the prompts
center, it is passed as a fixed parameter into the
model. As the text prompts undergo only a sin-
gle pass through the text encoder and are fixed,
the model we propose does not lead to excessive
computational growth.

Given an image, we follow the approach of
(Zhang et al., 2021b) by utilizing the Visual toolkit
to extract the top m most salient local visual ob-
jects. These visual cues O = {O1, o2, o3, ..., om}
are then resized to 224×224 pixels and mapped
into the multimodal representation space using the
CLIP visual encoder. The process is represented as
follows:

v′i = clipimg(oi) (3)

where oi represents the visual objects. v′i denotes
the vector representation of the i-th object-level
visual region in the multimodal vector space.

Subsequently, the text representation of entity
category words cj and the visual representation v

′
i

are normalized to eliminate the influence of the
length of the vector on the similarity calculation so
that the similarity is mainly affected by the direc-
tion of the vector and not by its length.

cj =
cj

Dc
, vi =

vi
Dv

(4)

where Dc and Dv are the dimensions of cj and vi,
and then we use softmax to increase the disparity
in similarities.

w_simj
i = softmax(logit ∗ vi ∗ cjT ) (5)

where w_simj
i represents the relevance between

the i-th visual region and the j-th class entity, logit
is a parameter in clip which utilized to enhance the
discriminative power between categories.

After obtaining the similarities between visual
regions and various categories, we select the simi-
larity w_simj

i with the maximum relevance to the
visual region as the weight to update the visual rep-
resentation. At this point, visual regions that are
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irrelevant or have low relevance are assigned lower
weights.

cuev = cat(vi ∗max(w_simj
i ), 2) (6)

where cuev is the visual cues, and cat is the con-
catenate method that concatenates each visual rep-
resentation along the second dimension. cuev is
the visual representation fed into the interaction
transformer.

3.2 Stage two. Interaction transformer for
visual cues refinement

To refine and effectively learn visual cues and
achieve interactions and fusion between modali-
ties, we have designed an interaction transformer
architecture that interacts with the visual repre-
sentations obtained from a frozen visual encoder.
Within this framework, textual interacts with con-
text through self-attention mechanisms to capture
intra-modal semantic associations. The updated
textual representations are then fed into alternating
cross-attention as queries, thereby facilitating the
extraction of associations between text and visual
modalities.

In the intra-modal interaction process, self-
attention is first used to learn the associative in-
formation within the modality. Given the input
sentence S, we utilize text encoder to obtain the
textual representation:

H0
t = encodert(S) (7)

where H0
t ∈ RNt×d is the textual representation.

Subsequently, for intra-modal interactions, we em-
ploy the classical multi-head self-attention mecha-
nism to update the textual representations. During
this computation process, the updated textual con-
text representations are calculated as follows:

Q = H l−1
t W q,K = H l−1

t W k, V = H l−1
t W v

(8)
I
′
t = MA(Q,K, V ) (9)

where l denotes the number of the layers, I
′
t rep-

resents the representation after intra-modal inter-
actions, MA(Q,K, V ) is the multi-head attention
mechanism, and Q,K, V are the query matrix, key
matrix, and value matrix respectively. I

′
t is directly

input into the feedforward network:

It = LN(I
′
t + FFN(I

′
t)) (10)

After completing intra-modal interactions, we
employ a cross-attention mechanism to facilitate

inter-modal interactions and refine visual cues,
thereby reducing the differences between modali-
ties. With It serving as the Query in cross-attention
calculations with the visual representations. Given
the visual representation cuev. The computation
process is as follows:

Q = I l−1
t W q,K = cuevW

k, V = cuevW
v

(11)
I
′
m = CA(Q,K, V ) (12)

Im = LN(I
′
m + FFN(I

′
m)) (13)

where Im represents the representation after intra-
modal interactions, LN() is the layer norm, CA()
is the cross attention, Q,K, V are the query matrix,
key matrix, and value matrix respectively.

3.3 Label prediction and Model training
A decoder is required to decode the final represen-
tations. Extensive research has demonstrated the
superior performance of CRF in sequence labeling
tasks. CRF is capable of extracting hierarchical
information from the semantic space for sequence
labeling and has achieved commendable results in
numerous sequence labeling tasks. Consequently,
we employ a CRF for the purpose of decoding.

P (y | G) =

∏n
i=1Ei(yi−1, yi, G)∑

y′∈Y
∏n

i=1Ei(y′i−1, y
′
i, G)

(14)

where G is the final vector representation output
by the interactive transformer. We choose the max-
imum likelihood function to calculate the loss and
train our model:

L = −
M∑

j=1

(
logP (yj | Gj)

)
(15)

4 Main Result

4.1 Experimental Setup
Dataset. Our experimental tests are consistent with
previous studies using two benchmarks: Twitter15
(Lu et al., 2018) and Twitter17 (Zhang et al., 2018).
Table 2 shows the basic statistics of the two bench-
marks.

Table 2: The basic statistics of twitter15 and twitter17.

Entity Type
twitter15 twitter17

Train Dev Test Train Dev Test
Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178
Organization 927 247 839 1674 375 395
Miscellaneous 931 220 720 701 150 157
Total 6166 1541 5072 6049 1324 1351
Num of sentence 4000 1000 3257 3273 723 723
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Table 1: The proposed method was compared with several baselines on the Twitter15 and Twitter17 benchmark
datasets.

Modality Methods
twitter15 twitter17

P R F1 P R F1

TEXT
CNN-BLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37

HBiLSTM-CRF 70.30 68.05 69.17 82.69 78.16 80.37
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44

TEXT+IMAGE

AdapCoAtt(Zhang et al., 2018) 69.87 74.59 72.15 85.13 83.20 84.10
OCSGA(Wu et al., 2020) 74.71 71.21 72.92 - - -
RpBERT(Sun et al., 2021) 71.15 74.30 72.69 - - -

UMT(Yu et al., 2020) 71.67 75.23 73.41 85.28 85.34 85.31
UMGF(Zhang et al., 2021a) 74.49 75.21 74.85 86.54 84.50 85.51
MEGA(Zheng et al., 2021) 70.35 74.58 72.35 85.84 87.93 86.87
HVPNeT(Chen et al., 2022) 73.87 76.82 75.32 85.84 87.93 86.87

MAF(Xu et al., 2022) 71.86 75.10 73.42 86.13 86.38 86.25
DebiasCL(Zhang et al., 2023a) 74.45 76.13 75.28 87.59 86.11 86.84

TGF(Zhang et al., 2023b) 73.88 75.98 74.91 88.42 86.96 87.70
BGA-MNER(Chen et al., 2023) 78.6 74.16 76.31 87.71 87.71 87.71
HamLearning(Liu et al., 2024) 77.25 75.75 76.49 86.99 87.28 87.13

VCRMNER(Ours) 75.48 78.23 76.83 87.76 89.79 88.76

Implementation details. Our experiments were
conducted under one Nvidia Tesla T4, using the Py-
Torch 1.8.0 framework to build the model. We use
roberta (Liu et al., 2019) base as the text encoder
and clip base as the visual encoder and evaluator.
The visual encoder was frozen. The learning rates
for the Interaction Transformer and the text en-
coder were set at 4e-5, while the learning rate for
the CRF was established at 1e-4. We employed a
linear warm-up strategy, with the warm-up rate set
at 1e-2. Within the model, the heads of multi-head
attention were set to 8. Interaction transformer
blocks were configured 3. The maximum sequence
length for the text was determined to be 70, ensur-
ing coverage of all words within the sentences. The
model was trained over 40 epochs with a batch size
of 18.

4.2 Main Experimental Results and Analysis
To validate the effectiveness of the proposed
method VCRMNER, we select a total of 14 base-
line methods for comparison, including both pure
text-based approaches and multimodal methods. In
our experiments conducted on the Twitter15 and
Twitter17 datasets, we employed precision (P), re-
call rate (R), and F1 score (F1) as evaluation met-
rics. We compared our method with several com-
petitive MNER methods. The results in Table 1
demonstrate that our method has outperformed the
current sota methods.

Firstly, under the single-text modality, the
method of fine-tuning a pre-trained language model
demonstrates significant advantages over the ap-
proach using a non-pretrained BiLSTM model.
This indicates that the rich prior knowledge em-
bedded in pre-trained models plays a crucial role in
the task of NER, thereby enhancing the recognition
performance.

Secondly, by comparing methods between multi-
modal and single-text modalities, we found that
approaches utilizing either entire image or visual
regions consistently outperformed those relying
solely on the single-text modality. These results
adequately demonstrate the importance of visual
information in MNER tasks. Furthermore, methods
that utilize visual regions, such as HVP (Chen et al.,
2022), BGA-MNER (Chen et al., 2023), and TGF
(Zhang et al., 2023b), have shown clear advantages
over those using entire images, like UMT (Yu et al.,
2020) and UMGF (Zhang et al., 2021a).

Lastly, methods such as MAF (Xu et al., 2022)
and DebiasCL (Zhang et al., 2023a), which assess
the significance of visual images, have proven to
be crucial in enhancing the effectiveness of MNER
tasks, as evidenced by experimental results. This
underscores the indispensability of evaluating vi-
sual regions in MNER tasks. Compared to methods
that assess relevance using sentences and entire im-
age, such as MAF (Xu et al., 2022), DebiasCL
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Table 3: Results of ablation study for the MNER task.

Method
twitter15 twitter17

P R F1 P R F1
w/o Inter-former 75.68 76.46 76.06 87.44 87.64 87.54

w/o ev 74.64 76.21 75.42 86.26 88.75 87.49
w/o prompt 74.17 77.96 76.02 87.2 89.27 88.22

VCRMNER(Ours) 75.48 78.23 76.83 87.76 89.79 88.76

Table 4: Results of cross-domain performance on different methods.

17→ 15 15→ 17
cross-domain

P R F1 P R F1
HamLearning 69.17 66.84 67.98 71.03 59.4 64.7
BGA-MNER 72.17 67.98 68.71 70.81 59.6 64.91

VCRMNER(Ours) 71.87 68.31 69.08 72.45 60.25 65.11

(Zhang et al., 2023a), and HamLearning (Liu et al.,
2024), our approach has demonstrated significant
advantages. This further confirms the critical im-
portance of precise evaluation of visual regions in
MNER tasks.

4.3 Further experiments and analysis

Ablation Study. To explore the effectiveness of
each component of our proposed method, we con-
ducted comprehensive ablation studies. The results
of these studies are shown in Table 3, where "Inter-
former" refers to the interaction transformer mod-
ule, "ev" denotes our initial evaluation of visual
regions, and "prompt" indicates our method of as-
sessing visual regions using entity category words
instead of prompts.

The experimental results demonstrate that every
component of our proposed method is effective;
removing any part leads to a decrease in model
performance. The most significant decline in per-
formance occurs when the evaluation module is ab-
lated, highlighting the critical importance of visual
cue assessment in MNER. Eliminating the method
of using entity category words for assessment in
favor of prompts significantly reduces performance,
indicating that prompts align more closely with vi-
sual representations than do entity category words.
By ablating the Interaction Transformer module
and directly concatenating text and visual represen-
tations, the lack of effective inter-modal interaction
leads to a substantial disparity between visual and
textual modalities, resulting in decreased perfor-
mance.

Cross-domain generalizability analysis. We
swapped the test sets of Twitter15 and Twitter17.

For instance, we trained on Twitter17 and tested
on Twitter15. From Table 4, we observe that our
model maintains competitive performance across
various test sets. Compared to previous state-of-
the-art methods, our model demonstrates certain
advantages, indicating the strong generalization
capability of the proposed approach.

5 Conclusion

In this paper, we proposed a new framework to
implement the MNER task in two stages. It
guides Mask R-CNN to mine visual objects through
prompts and obtains visual objects closely related
to the entity category words. Through the inter-
active transformer, we refined the visual cues and
narrowed the semantic gap between modalities. We
have constructed a variety of experiments to prove
that our method is effective and achieves SOTA
effects.

6 Limitation

While we have placed the calculation of prompt
centers outside the training process to avoid exces-
sive increases in computational complexity during
model training and inference, the necessity of eval-
uating visual cues requires us to employ the CLIP
text encoder. Consequently, the final model in-
cludes the CLIP text encoder, inevitably leading to
an increase in the overall number of model param-
eters.
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A Appendix

Prompts Used in the Experiment:
The prompts employed in our experiment were

categorized into four main groups: Person (PER),
Location (LOC), Organization (ORG), and Miscel-
laneous. Each category was designed to capture a
specific aspect of visual content, facilitating a com-
prehensive analysis across diverse image types.

Person (PER)
In the Person category, we included a range of
human subjects. This involved images such as a

photo of a person, an image of a woman, and a
photo of a child. Additional variations included
a picture capturing someone, an image of a per-
son with glasses, a portrait of an elderly man, a
snapshot of a teenager, a group photo of a family,
a candid shot of a person laughing, and a studio
portrait of a young adult. These selections aimed
at representing different age groups, genders, and
social contexts.

Location (LOC)
The Location category encompassed various geo-
graphical and architectural elements. It featured
a photo of a famous landmark, a scenic view of a
well-known city, the landscape of a famous natural
wonder, a street view in a recognizable city, the
architecture of a well-known building, a panoramic
view of a historic site, a night shot of a city skyline,
a sunrise behind famous city landmarks, a detailed
architectural close-up of a historical building, and
a picturesque view of a village. This variety en-
sured that both urban and natural settings were
adequately represented.

Organization (ORG)
For the Organization category, we focused on in-
stitutional and corporate imagery. This included
the exterior of a famous institution, a logo of a
well-known company, the entrance of a renowned
university, a branded product from a famous man-
ufacturer, an official sign of a governmental orga-
nization, the front view of an international airport,
the headquarters of a global tech company, a fran-
chise store of a popular brand, the emblem of a
prestigious college, and a product lineup of a lead-
ing electronics brand. These images were chosen
to reflect the diversity of organizational structures
and their public representations.

Miscellaneous
Lastly, the Miscellaneous category covered a wide
array of objects and scenes not fitting into the previ-
ous categories. This included a close-up photo of a
consumer electronic device, a portrait of an animal,
an image depicting a traditional cultural festival, a
detailed image of a plant, a macro shot of a unique
flower, a still life photo of a classical instrument,
an artistic depiction of a folk dance, a photo of in-
tricate jewelry, a high definition image of an exotic
bird, and a festive scene from a national holiday.
The aim here was to introduce a broader spectrum
of visual interests and cultural elements.

70



Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025, pages 71–85
January 20th, 2025. ©2025 NeusymBridge Workshop

Neuro-Conceptual Artificial Intelligence: Integrating OPM with Deep
Learning to Enhance Question Answering Quality

Xin Kang1, Veronika Shteingardt2, Yuhan Wang1, and Dov Dori2
1Tokushima University, Tokushima, Japan

2Technion – Israel Institute of Technology, Haifa, Israel
kang-xin@is.tokushima-u.ac.jp, veronika-s@campus.technion.ac.il,

c612494013@tokushima-u.ac.jp, dori@technion.ac.il

Abstract

Knowledge representation and reasoning are
critical challenges in Artificial Intelligence
(AI), particularly in integrating neural and sym-
bolic approaches to achieve explainable and
transparent AI systems. Traditional knowledge
representation methods often fall short of cap-
turing complex processes and state changes.
We introduce Neuro-Conceptual Artificial
Intelligence (NCAI), a specialization of the
neuro-symbolic AI approach that integrates
conceptual modeling using Object-Process
Methodology (OPM) ISO 19450:2024 with
deep learning to enhance question-answering
(QA) quality. By converting natural language
text into OPM models using in-context learn-
ing, NCAI leverages the expressive power
of OPM to represent complex OPM ele-
ments—processes, objects, and states—beyond
what traditional triplet-based knowledge graphs
can easily capture. This rich structured knowl-
edge representation improves reasoning trans-
parency and answer accuracy in an OPM-QA
system. We further propose transparency eval-
uation metrics to quantitatively measure how
faithfully the predicted reasoning aligns with
OPM-based conceptual logic. Our experiments
demonstrate that NCAI outperforms traditional
methods, highlighting its potential for advanc-
ing neuro-symbolic AI by providing rich knowl-
edge representations, measurable transparency,
and improved reasoning.

1 Introduction

Integrating neural and symbolic approaches in AI
seeks to combine the learning capabilities of neu-
ral networks with the interpretability of symbolic
reasoning (Besold et al., 2017; Garcez and Lamb,
2023). However, traditional knowledge represen-
tations, such as triplet-based knowledge graphs,
are limited in capturing complex processes, state
changes, and hierarchical relationships inherent in
dynamic systems (Wang et al., 2017; Heinzerling

“Heuristic often starts as an 
informal rule of thumb based on 
practical experience.”

NL TextInput:

An LLM converts the NL text into 
structured OPM knowledge using 
In-Context Learning.

Conversion to 
OPM KnowledgeProcess 1:

An Object (Heuristic) with States 
(rule of thumb, principle).
A Process (Heuristic-to-Principle 
Evolving) changing the state.

Structured OPM 
KnowledgeOutput:

An LLM uses the OPM 
knowledge to answer questions, 
leveraging the structured 
information.

OPM-Based QA 
SystemProcess 2:

Question: “How does a heuristic 
become a principle?”
Answer: “Through Heuristic-to-
Principle Evolving, a Heuristic 
changes from a rule of thumb to a 
principle, involving processes like 
Documenting, Sharing and 
Consensus Building.”

Answers with 
Reasoning TransparencyOutput:

Heuristic
rule of thumb principle

Heuristic-to-
Principle Evolving

Heuristic
rule of thumb principle

Heuristic-to-
Principle Evolving

Heuristic
rule of thumb principle

Heuristic-to-Principle Evolving

Documenting Sharing Consensus 
Building

Figure 1: Overview of the NCAI framework, illustrat-
ing how the LLM converts natural language text into
structured OPM knowledge and uses it in OPM-QA for
transparent reasoning. Starting from the text “Heuristic
often starts as an informal rule of thumb . . . ”, the model
generates an OPM model and answers questions by ref-
erencing processes like Heuristic-to-Principle Evolving.

and Inui, 2021; Shi et al., 2021). Additionally, neu-
ral networks are often viewed as a black box due
to their opaque decision-making processes, which
poses significant challenges in domains requiring
transparent reasoning, such as healthcare and fi-
nance (Lipton, 2018; Rudin, 2019; Doshi-Velez
and Kim, 2017; Tjoa and Guan, 2020).

Recent advancements have focused on enhanc-
ing AI reasoning capabilities by integrating lan-
guage models with external knowledge sources.
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For example, combining language models with
knowledge graphs has been applied to improve
question answering systems (Yasunaga et al., 2021;
Oguz et al., 2022; Shi et al., 2021; Zhang et al.,
2023). Despite these efforts, fully capturing dy-
namic behaviors and providing transparent reason-
ing paths remains a challenge.

To address these limitations, we introduce
Neuro-Conceptual Artificial Intelligence
(NCAI), a specialization of the neuro-symbolic
AI approach, in which the symbolic component
is an Object-Process Methodology (OPM ISO
19450:2024) conceptual model. OPM is a
conceptual modeling language and methodology
that unifies the system’s structural and behavioral
aspects within a single model (Dori, 2002; Dori
et al., 2016). It represents objects (things that
exist) and processes (things that transform objects)
in both graphical and textual modalities. By
combining OPM with the large language model
(LLM), NCAI enhances reasoning transparency
and answer accuracy in QA tasks.

An overview of the NCAI framework is illus-
trated in Figure 1. The framework begins by con-
verting natural language text into structured OPM
knowledge using in-context learning with an LLM.
This structured knowledge is then used in an OPM-
QA, which leverages the expressive power of OPM
to represent complex processes and state changes
that traditional triplet-based knowledge graphs can-
not easily capture. By integrating conceptual mod-
eling with deep learning, NCAI creates a pipeline
that transforms unstructured text into a rich knowl-
edge representation, enabling more effective AI
reasoning and interpretability.

Our contributions in this work are threefold:
(1) We propose NCAI, which integrates OPM

with deep learning to enhance reasoning trans-
parency and answer accuracy.

(2) We develop OPM-QA that utilizes OPM
knowledge to improve question-answering quality.

(3) We introduce transparency evaluation metrics
to quantitatively assess how faithfully the predicted
reasoning aligns with the conceptual logic defined
by OPM, and we demonstrate the effectiveness
of NCAI through experiments showing improved
performance over traditional methods.

2 Related Work

Neuro-Symbolic AI Approaches Neuro-
symbolic AI integrates neural networks with

symbolic reasoning to harness the strengths of
both paradigms (Besold et al., 2017; Garcez and
Lamb, 2023). Challenges in achieving reasoning
transparency and interpretability persist, with ap-
proaches such as symbolic knowledge distillation
(West et al., 2022) and factual knowledge editing
(De Cao et al., 2021) addressing these issues.
Frameworks like TransferNet (Shi et al., 2021)
and interpretable reasoning models for dialogue
generation (Yang et al., 2022) aim to provide
clear reasoning paths. In sentiment analysis and
mental health, neuro-symbolic frameworks like
TAM-SenticNet (Dou and Kang, 2024) and causal
inference models (Ding et al., 2024b,a) enhance
explainability and logical inference. Specifically,
in aspect-based sentiment analysis (ABSA), mod-
els such as the Multi-Agent Collaboration (MAC)
(Kang et al., 2024) and approaches to improve AI
transparency using generative agents (Kang, 2024)
demonstrate the potential of neuro-symbolic AI
in providing transparent and rational sentiment
analysis.

Interpretability and Transparency in Language
Models Ensuring transparency and interpretabil-
ity in AI decision-making is critical, particularly
in complex systems (Lipton, 2018; Rudin, 2019).
Various methods have been developed to enhance
the interpretability of language models, includ-
ing representation dissimilarity measures (Brown
et al., 2023), SHAP-based explanation techniques
(Mosca et al., 2022), and prompt-based explainers
like PromptExplainer (Feng et al., 2024). Evalua-
tion benchmarks for interpretability (Wang et al.,
2022) and approaches to improve faithfulness and
robustness (El Zini and Awad, 2022; Horovicz and
Goldshmidt, 2024; Zhao et al., 2024) further con-
tribute to making language models more transpar-
ent. Despite these advancements, achieving full
transparency remains challenging, especially in ap-
plications requiring a clear understanding of the
reasoning process.

Language Models and Knowledge Graphs for
Question Answering Integrating language mod-
els with knowledge graphs has been a significant
focus to enhance QA capabilities. Approaches like
QA-GNN (Yasunaga et al., 2021), DRLK (Zhang
et al., 2022), and UniK-QA (Oguz et al., 2022) com-
bine language models with graph neural networks
and dynamic interactions to improve reasoning in
QA tasks. Frameworks such as CIKQA (Zhang
et al., 2023) and Triple-R (Kanaani et al., 2024)
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(a) System Diagram (SD)

(b) In-Zoomed Diagram (SD1)

Figure 2: Constructed OPDs illustrating the transformation of a Heuristic from a rule of thumb to a principle through
various OPM elements—processes, objects, and states—within the OPM framework.

emphasize the integration of external knowledge
sources for more accurate and interpretable reason-
ing. Additionally, methods like TaPERA (Zhao
et al., 2024) enhance faithfulness and interpretabil-
ity in long-form table QA through content plan-
ning and execution-based reasoning. These integra-
tions, while improving performance, often involve
complex architectures and still face challenges in
achieving complete reasoning transparency.

3 NCAI Framework

3.1 Object-Process Methodology for NCAI
OPM unifies objects and processes within a sin-
gle model, representing structural and behavioral
aspects in both graphical and textual forms (Dori,
2002; Dori et al., 2016). OPM’s bimodal prop-
erty provides Object-Process Diagram (OPD) and
Object-Process Language (OPL), enhancing under-
standing and reasoning transparency.

To illustrate OPM’s capabilities, we use a run-
ning example based on natural language text de-
scribing the evolution of a Heuristic from a rule of
thumb to a principle. This text serves as the input
to the NCAI framework, as shown in Figure 1, and
is provided in Appendix A.

Using this text, we constructed OPDs represent-
ing the processes and state changes of a Heuristic.
The diagrams can be created and visualized using

the OPCloud software (Dori et al., 2018; Kohen
and Dori, 2021).

Figure 2 presents the constructed OPDs. The
System Diagram (SD) in Figure 2a captures the
overall transformation of object Heuristic from
state rule of thumb to state principle through the
process Heuristic-to-Principle Evolving. The In-
Zoomed Diagram (SD1) in Figure 2b provides a
detailed view of the subprocesses involved, such
as Documenting & Sharing, Testing & Refining,
Pattern Emerging & Recognizing, Effectiveness
Validating, Theoretical Backing, and Consensus
Building.

The corresponding OPL for the System Diagram
(SD) and the In-Zoomed Diagram (SD1) are pre-
sented in Appendix B . These OPLs provide a tex-
tual representation that details the processes and
state changes of the evolution of a heuristic from a
rule of thumb to a principle.

OPM’s bimodal property, combining graphical
OPD and textual OPL, facilitates a comprehen-
sive representation of complex processes and state
changes. The in-zooming mechanism allows for hi-
erarchical decomposition, where processes can be
detailed further in subsequent diagrams, enhancing
understanding of intricate systems.
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3.2 Converting Natural Language to OPM
using In-Context Learning

We employ in-context learning to guide the LLM in
converting natural language text into OPM models.
The process involves providing the LLM with a
carefully crafted prompt that includes OPM syntax,
semantics, and examples. The prompt details can
be found in (Dori and Shteingardt, 2025).

Let TNL be the natural language text (Ap-
pendix A) and POPM the prompt containing OPM
instructions and examples. The input to the LLM
is:

I = POPM ◦ TNL, (1)

where ◦ denotes concatenation. The LLM gener-
ates the OPL representation:

TOPL = LLM(I). (2)

This process leverages the LLM’s ability to gen-
erate structured textual OPL representations from
unstructured text, utilizing in-context learning to
guide the model’s output toward the desired OPL
format. The OPL generated by the LLM is pre-
sented in Appendix C.

While the preliminary results are encouraging,
designing prompts that yield accurate and syntac-
tically correct OPM models from free-form text
introduces several challenges. These include pin-
pointing the primary process, focusing on essen-
tial conceptual elements, and clarifying ambiguous
relationships in the natural language source. To
address these issues, we iteratively refine prompts,
adjust instructions, and incorporate carefully cho-
sen examples. Through this iterative approach, the
LLM learns to better navigate textual ambiguities
and produce more coherent OPM models, thus re-
ducing the need for extensive manual refinement
and enabling more reliable neuro-symbolic reason-
ing pipelines.

3.3 OPM Knowledge-Based
Question-Answering System

We developed OPM-QA, an OPM knowledge-
based Question-Answering system, that integrates
OPM knowledge with the LLM to enhance answer
accuracy and reasoning transparency. This system
is a core component of NCAI, leveraging the struc-
tured knowledge representation of OPM to improve
the reasoning capabilities of the LLM.

OPM-QA employs in-context learning by pro-
viding the LLM with OPL as the OPM knowledge,
a set of example question-answer pairs, and the test

questions as context. The knowledge KOPL is de-
rived from the constructed OPM (see Appendix B)
and provides a structured and formalized repre-
sentation. This structured knowledge allows the
LLM to reason more effectively when generating
answers.

For each test question qi in the set of test ques-
tions Qtest, the input to the LLM is formulated as:

Ii = KOPL ◦ EQA ◦ qi, (3)

where EQA is the set of example question-answer
pairs, and ◦ denotes concatenation. The LLM pro-
cesses this input and generates an answer:

ai = LLM(Ii). (4)

To assess the impact of using structured OPM
knowledge on the QA performance, we compare
the OPM-QA with a baseline QA system using nat-
ural language knowledge (NL-QA). In NL-QA, we
replace KOPL with the natural language knowledge
KNL, which corresponds to the text provided in
Appendix A. This allows us to compare the effec-
tiveness of the structured OPM knowledge against
unstructured natural language knowledge in the QA
task.

4 Experiments

4.1 Experiment Setup

The purpose of our experiment is to evaluate the ef-
fectiveness of the NCAI framework in performing
multi-hop reasoning tasks and enhancing reasoning
transparency. We aim to compare the performance
of OPM-QA with the baseline NL-QA.

Data: We manually developed a dataset of 50
multi-hop reasoning question-answer pairs, follow-
ing the FanOutQA benchmark (Zhu et al., 2024).
These questions are based on the knowledge of the
process that transforms informal rules of thumb
into well-established principles. The questions re-
quire the model to integrate information from mul-
tiple statements to arrive at an answer, testing both
answer accuracy and reasoning transparency. Ex-
amples of the QA pairs are provided in Appendix E,
Table 3.

Knowledge Sources: The OPL knowledge KOPL
is the OPL generated from the constructed OPM
model in Appendix B. The natural language knowl-
edge KNL is the text provided in Appendix A. The
QA systems use either KOPL or KNL, along with 5
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example QA pairs EQA as context, to answer the
50 test questions Qtest.

QA Systems: The QA systems employ in-
context learning by providing the LLM with
the respective knowledge source, a set of ex-
ample QA pairs, and the test questions. The
LLM used for both systems is GPT-4o (version
o1-preview-2024-09-12), with parameters set to
temperature = 0 and top_p = 1 to ensure de-
terministic output. By using the same LLM and
parameter settings, we ensure a fair comparison
between OPM-QA and NL-QA. The prompt used
in these QA systems is shown in Appendix D. It
has been carefully designed to be general enough
for QA tasks across various domains and yet in-
structive enough to guide the model to answer with
explicit reference to the OPM elements—processes,
objects, and states, thereby increasing reasoning
transparency and answer accuracy.

Evaluation Metrics: We evaluate system out-
puts using a combination of metrics that capture
different aspects of answer quality and reasoning
transparency. To assess how well the generated
answers align with the ground truth in terms of con-
tent, we use Loose Accuracy and Strict Accuracy.
Loose Accuracy measures the fraction of reference
tokens that also appear in the predicted answer after
lemmatization, removing stop words, and stripping
punctuation, providing a relatively lenient measure
of correctness. Strict Accuracy applies a non-linear
weighting (with a parameter k = 1.5) to penal-
ize partial matches more severely, thus enforcing a
stricter standard of correctness.

While Loose Accuracy and Strict Accuracy
focus on token-level overlap, ROUGE-1 (R-1),
ROUGE-2 (R-2), and ROUGE-L (R-L) (Lin,
2004) quantify lexical overlap through n-gram and
sequence-based comparisons, capturing syntactic
similarity between the generated answer and the
reference. BLEURT (BT) (Sellam et al., 2020)
complements these metrics by providing a more
semantic-oriented evaluation, as it uses a learned
model to judge the meaning and quality of the gen-
erated text. The GPT Judge Score (GPT) (Zhu
et al., 2024) further evaluates factual consistency
and logical coherence, reflecting how well the an-
swer maintains internal logical structure and cor-
rectness from a large language model’s perspective.

To address the need for a quantitative measure of
reasoning transparency, we propose Transparency
Precision (PT), Transparency Recall (RT), and

Transparency F1 (F1T). Let Ep be the set of OPM
elements-processes, objects, and states-identified
in the prediction, and Eg the set of OPM elements
in the ground truth. Let Ep∩g be the intersection
of these sets, representing correctly matched OPM
elements. We define:

PT =
|Ep∩g|
|Ep|

, (5)

RT =
|Ep∩g|
|Eg|

, (6)

F1T =
2 · PT · RT

PT + RT
. (7)

Here, PT measures how accurately the predicted
reasoning structure identifies the correct OPM el-
ements, RT gauges how completely it recovers
them, and F1T balances both. Together, these trans-
parency metrics provide a statistical measure of
how faithfully the system’s reasoning aligns with
the conceptual logic defined by OPM, offering a
principled, quantitative response to calls for more
objective assessments of reasoning transparency.

4.2 Results

Table 1 presents the results of our evaluation. For
Loose Accuracy, OPM-QA achieves 0.858± 0.162,
greatly exceeding NL-QA’s 0.638 ± 0.212. This
indicates that OPM-QA captures a significantly
larger fraction of reference tokens under a lenient
matching criterion. The difference is statistically
significant (P < 0.001). Strict Accuracy, which im-
poses a harsher penalty on partial matches, shows
OPM-QA at 0.806 ± 0.213 compared to NL-QA’s
0.530 ± 0.252. This improvement is also statis-
tically significant (P < 0.001), demonstrating that
OPM-QA provides answers that are both more com-
plete and more precisely aligned with the ground
truth.

Regarding syntactic overlap measures, OPM-QA
significantly outperforms NL-QA in all ROUGE
metrics. The ROUGE-1 score for OPM-QA is
0.772 ± 0.159 versus NL-QA’s 0.558 ± 0.195,
ROUGE-2 is 0.607 ± 0.201 compared to 0.373
± 0.198, and ROUGE-L is 0.715 ± 0.155 com-
pared to 0.504 ± 0.174. All these differences are
highly statistically significant (P < 0.001). These
results confirm that OPM-QA’s generated answers
exhibit considerably more lexical and subsequence-
level similarity to the reference answers, adhering
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Metric OPM-QA NL-QA P-value

Loose Accuracy 0.858 ± 0.162 0.638 ± 0.212 < 0.001
Strict Accuracy 0.806 ± 0.213 0.530 ± 0.252 < 0.001
ROUGE-1 0.772 ± 0.159 0.558 ± 0.195 < 0.001
ROUGE-2 0.607 ± 0.201 0.373 ± 0.198 < 0.001
ROUGE-L 0.715 ± 0.155 0.504 ± 0.174 < 0.001
BLEURT 0.596 ± 0.165 0.474 ± 0.111 < 0.001
GPT Judge Score 0.920 ± 0.274 0.800 ± 0.404 0.086
Transparency Precision 0.917 ± 0.161 0.759 ± 0.417 0.015
Transparency Recall 0.953 ± 0.143 0.455 ± 0.329 < 0.001
Transparency F1 0.922 ± 0.136 0.546 ± 0.342 < 0.001

Table 1: Evaluation results comparing OPM-QA and NL-QA across correctness, lexical similarity, semantic quality,
factual consistency, and transparency. P-values indicate that OPM-QA significantly outperforms NL-QA on all
metrics with high statistical confidence, except for GPT Judge and Transparency Precision, where the differences
are less significant.

better to the structural and phrasing patterns of the
ground truth.

In terms of semantic quality, the BLEURT score
for OPM-QA is 0.596 ± 0.165, which surpasses
NL-QA’s 0.474 ± 0.111. This difference is sta-
tistically significant (P < 0.001). This suggests
that OPM-QA not only matches lexically but also
maintains closer semantic fidelity to the intended
meanings of the ground truth answers.

Factual consistency and logical coherence are
further evidenced by the GPT Judge Score of 0.920
± 0.274 for OPM-QA compared to NL-QA’s 0.800
± 0.404. This difference is not statistically sig-
nificant (P = 0.086), although it still indicates a
notable improvement in maintaining factual and
logical integrity within the answers.

Most notably, the transparency metrics reveal
OPM-QA’s substantial advantage in conceptual
alignment. OPM-QA achieves a Transparency Pre-
cision of 0.917 ± 0.161 and Transparency Recall
of 0.953 ± 0.143, whereas NL-QA scores 0.759
± 0.417 and 0.455 ± 0.329, respectively. The
Precision difference is statistically significant (P
= 0.015), while Recall remains highly significant
(P < 0.001). Consequently, Transparency F1 for
OPM-QA is 0.922 ± 0.136 compared to NL-QA’s
0.546 ± 0.342, with a P-value of P < 0.001. This
metric, which balances Transparency Precision and
Transparency Recall, underscores the overall supe-
rior performance of OPM-QA in aligning with the
ground truth both accurately and comprehensively.

Overall, the majority of these metrics demon-
strate statistically significant improvements, affirm-
ing the superior performance of OPM-QA over

NL-QA. Additionally, the enhancements in Trans-
parency Precision metrics, despite being less sta-
tistically significant, further highlight OPM-QA’s
effectiveness in achieving greater factual consis-
tency and precision in answers. Detailed evaluation
results for 10 representative QA examples and addi-
tional evaluation tables are provided in Appendix E,
including Tables 3, 4, and 5, which further confirm
these findings.

4.3 Discussion

The experimental results confirm that grounding
the reasoning process in a conceptual model leads
to both improved accuracy and clearer interpretabil-
ity. Compared to its counterpart, the OPM-QA
system consistently aligns its reasoning with the
well-defined ontology provided by the OPM model.
While the NL-QA system may occasionally pro-
duce correct or partially correct answers, it often
does so without revealing the underlying concep-
tual structure. In contrast, OPM-QA not only iden-
tifies the correct OPM elements-processes, objects,
and states-required to transform the heuristic from
one state to another but also presents a reasoning
chain that is faithful to the conceptual logic defined
by OPM.

Table 2 illustrates a representative case where
the question focuses on the processes that guide the
heuristic from a documented and shared state to a
theoretically backed one. The ground truth answer
specifies all of the required processes involved in
this transformation. OPM-QA’s answer success-
fully enumerates each of these processes, maintain-
ing exact alignment with the conceptual elements
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Question What processes change Heuristic from documented & shared to theoretically backed?

AnswerGT Heuristic changes from documented & shared to theoretically backed through Testing
& Refining, Pattern Emerging & Recognizing, Effectiveness Validating, and Theoreti-
cal Backing.

AnswerOPL The processes that change Heuristic from documented & shared to theoretically
backed are Testing & Refining, Pattern Emerging & Recognizing, Effectiveness
Validating, and Theoretical Backing.

AnswerNL The processes that change Heuristic from documented & shared to theoretically
backed are Testing & Refinement, Pattern Recognition, Formal Studies, and Theoret-
ical Backing.

Table 2: Comparison of ground truth answer AnswerGT and answers from OPM-QA and NL-QA AnswerOPL

and AnswerNL for a sample question, highlighting the matched processes in blue corresponding to the reasoning
transparency. While the ground truth and OPM-QA specify all relevant processes, NL-QA mentions only one
correct process (Theoretical Backing). OPM-QA demonstrates a complete and conceptually aligned reasoning
structure, whereas NL-QA’s reasoning chain remains incomplete.

defined by the OPM model. In doing so, OPM-QA
achieves high transparency metrics, as measured
by the previously defined precision, recall, and F1
scores for transparency. Conversely, NL-QA identi-
fies fewer correct conceptual elements, and in some
cases introduces extraneous or irrelevant processes.
This discrepancy highlights not merely a difference
in correctness, but also a fundamental gap in the
clarity and coherence of the reasoning steps offered
by the two QA systems.

In addition to the tabular comparison, Figure 3
visually confirms that OPM-QA’s reasoning path-
way closely follows the conceptual map provided
by OPM. The figure displays an in-zoomed portion
of the OPM model (SD1), where the processes crit-
ical to changing the heuristic’s state are clearly
marked. Each process chosen by OPM-QA is
found exactly where it should be according to the
conceptual model. Observing these elements in
the figure shows that OPM-QA’s improved trans-
parency metrics correspond to verifiable reason-
ing sequences that can be directly traced in the
conceptual diagram. This contrasts with NL-QA,
whose reasoning cannot be similarly verified, leav-
ing users and experts uncertain of how and why
specific processes were mentioned or omitted.

Taken together, these findings demonstrate that
integrating conceptual modeling into the QA frame-
work moves beyond improving standard perfor-
mance metrics. The introduction of quantitative
transparency metrics, supported by direct compar-
isons in both textual and visual forms, underscores
how OPM-QA’s answers are not just better in terms

of correctness, but also clearer, more verifiable, and
more trustworthy. This alignment of reasoning with
a conceptual backbone is particularly valuable in
complex domains where understanding the logic
behind an answer is as important as the answer
itself. As a result, the synergy between neuro-
symbolic reasoning and OPM-based conceptual
structures offers a promising avenue toward AI sys-
tems that users and domain experts can scrutinize,
trust, and ultimately shape with confidence.

5 Conclusion

We propose Neuro-Conceptual Artificial Intelli-
gence (NCAI), a neuro-symbolic approach that in-
tegrates OPM conceptual modeling with deep learn-
ing to overcome limitations in traditional knowl-
edge representation and reasoning. By embed-
ding OPM-based conceptual logic into a QA sys-
tem, NCAI captures complex processes and state
changes that conventional triplet-based represen-
tations and black box neural models struggle to
address. Through this structured, bimodal OPM
representation, NCAI provides not only improved
answer accuracy but also a demonstrably transpar-
ent and interpretable reasoning pathway. The in-
troduction of transparency metrics (PT, RT, F1T)
offers quantitative support for the alignment with
OPM-defined conceptual structures, moving be-
yond purely qualitative assessments of interpretabil-
ity.

Our experimental results demonstrate that
NCAI substantially outperforms traditional meth-
ods on both standard accuracy-based measures and
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Figure 3: In-Zoomed Diagram (SD1) highlighting the specific processes in blue involved in transforming Heuristic
from documented & shared to theoretically backed. These highlighted processes match exactly those identified by
OPM-QA in Table 2, demonstrating a coherent and transparent reasoning path.

transparency-focused metrics. By leveraging OPM
as a symbolic backbone and employing the LLM
under structured guidance, NCAI brings neuro-
symbolic AI closer to genuine explainability. Al-
though this work focuses on QA, our conceptual
modeling approach may generalize to other tasks re-
quiring robust and interpretable reasoning. Future
research will examine scalability to larger, more
complex domains, refine prompt designs to han-
dle richer conceptual structures, and integrate our
approach with emerging prompting and agentic
frameworks. The code and dataset are available on
https://github.com/kangxin/NCAI.

Limitations

One limitation of our study is that it relies on a rela-
tively small, self-constructed dataset of 50 question-
answer pairs. While sufficient for an initial proof
of concept, the generalizability and scalability of
NCAI to larger and more complex real-world sce-
narios remain to be explored. In future work, we
intend to evaluate NCAI on larger publicly avail-
able benchmarks and more intricate conceptual do-
mains, potentially requiring more efficient prompt
designs or incremental model updates to handle
extensive OPM knowledge.

Additionally, although QA serves as a proof-of-
concept task to demonstrate the feasibility of inte-
grating OPM with LLM, applying this approach to
other downstream tasks, such as predictive mod-
eling and real-time decision-making in dynamic
environments, would require additional domain-

specific adaptations and possibly integration with
external data sources. While the OPM-based rea-
soning structure holds promise beyond QA, con-
firming its utility in these broader contexts remains
an area for future investigation.

Moreover, while our method improves trans-
parency through OPM-driven conceptual align-
ment, certain ambiguities in the source text can still
challenge the strict adherence of the LLM to OPM
syntax and conventions. The generated OPM rep-
resentations might require subsequent refinement
by human modelers or more specialized training
to ensure full syntactic correctness. Developing
standardized benchmarks and further metrics for
reasoning transparency, as well as exploring more
advanced prompting and agentic design patterns,
can help refine the approach, but these steps also
remain as future endeavors.
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A Natural Language Text

Natural Language Text

A plausible set of concise steps of how the process that transforms informal rules of thumb into
well-established principles that guide systems engineering practice follows.
1. Initial observation: Heuristics often start as informal rules of thumb based on practical experi-

ence.
2. Documentation and sharing: These observations get documented and shared among practition-

ers.
3. Testing and refinement: The heuristics are tested in various projects and refined based on

outcomes.
4. Pattern recognition: As similar heuristics prove useful across multiple projects and domains,

recognizable patterns emerge, enabling heuristic generalization.
5. Formal studies: Researchers conduct formal studies to validate the effectiveness of the heuristic.
6. Theoretical backing: The heuristics are connected to underlying theories in systems engineering

and related fields.
7. Consensus building: As evidence accumulates, a consensus forms in the systems engineering

community about the validity and importance of the heuristic.

B OPL of Constructed OPM Model

OPL for System Diagram (SD)

1. Heuristic can be principle, rule of thumb or at one of five other states. State rule of thumb is
initial. State principle is final.

2. Heuristic-to-principle Evolving changes Heuristic from rule of thumb to principle.
3. Systems Engineering Practitioner & Expert Group handles Heuristic-to-principle Evolving.

OPL for In-Zoomed Diagram (SD1)

1. Heuristic-to-principle Evolving from SD zooms in SD1 into Initial Observing, Documenting &
Sharing, Project Selecting, Testing & Refining, Pattern Emerging & Recognizing, Effectiveness
Validating, Theoretical Baking, and Consensus Building, which occur in that time sequence.

2. Heuristic can be documented & shared, effectiveness validated, pattern recognized, principle,
rule of thumb, tested & refined or theoretically backed. State rule of thumb is initial. State
principle is final.

3. Systems Engineering Practitioner & Expert Group handles Heuristic-to-principle Evolving.
4. Documenting & Sharing changes Heuristic from rule of thumb to documented & shared.
5. Testing & Refining changes Heuristic from documented & shared to tested & refined.
6. Testing & Refining requires Project Set.
7. Pattern Emerging & Recognizing changes Heuristic from tested & refined to pattern recog-

nized.
8. Pattern Emerging & Recognizing requires Project Set.
9. Effectiveness Validating changes Heuristic from pattern recognized to effectiveness validated.

10. Effectiveness Validating requires Project Set.
11. Theoretical Baking changes Heuristic from effectiveness validated to theoretically backed.
12. Consensus Building changes Heuristic from theoretically backed to principle.
13. Initial Observing changes Heuristic to state rule of thumb.
14. Project Selecting yields Project Set.

81



C OPL Generated by LLM

OPL Generated by LLM

1. Principle Establishing changes Heuristic from rule of thumb to principle.
2. Practitioner handles Documenting.
3. Practitioner handles Sharing.
4. Researcher handles Formal Studying.
5. Systems Engineering Community handles Consensus Building.
6. Principle Establishing zooms into Observing, Documenting, Sharing, Testing, Refining, Pattern

Recognizing, Formal Studying, Connecting, and Consensus Building, which occur in that time
sequence.

7. Heuristic can be rule of thumb, documented, shared, tested, refined, recognized pattern,
validated, theorized, principle.

8. The state rule of thumb is initial. State principle is final.
9. Observing yields Heuristic.

10. Documenting changes Heuristic from rule of thumb to documented.
11. Sharing changes Heuristic from documented to shared.
12. Testing changes Heuristic from shared to tested.
13. Refining changes Heuristic from tested to refined.
14. Testing requires Project.
15. Refining consumes Outcome.
16. Pattern Recognizing changes Heuristic from refined to recognized pattern.
17. Formal Studying changes Heuristic from recognized pattern to validated.
18. Connecting changes Heuristic from validated to theorized.
19. Connecting consumes Theory.
20. Consensus Building changes Heuristic from theorized to principle.

D Prompt for the QA System

Prompt for OPM-QA and NL-QA Systems

Prompt:

You are a knowledgeable assistant. Your task is to answer questions based on the provided
domain knowledge. Your answers should align closely with the domain knowledge, use precise
terminology, and remain concise and accurate. Focus on identifying and describing key processes,
objects, and states explicitly, and clarify their relationships where relevant.

Domain Knowledge:

[OPL Knowledge in Appendix B or NL Knowledge in Appendix A]

Examples of Question-Answer Pairs:

Q: [example question 1]
A: [example answer 1]
...
Q: [example question N]
A: [example answer N]

New Question:

Q: [question]
A (concise and precise):
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E Examples of Questions, Answers, and Evaluation Results

Table 3: 10 example questions and ground truth answers from the QA dataset.

ID Question Ground Truth Answer

1 What is the relationship between Testing & Refining and
Pattern Emerging & Recognizing in Heuristic evolution?

Testing & Refining changes Heuristic from documented & shared to tested & refined, and
Pattern Emerging & Recognizing then changes it from tested & refined to pattern recognized.

2 How does Heuristic achieve theoretical backing before be-
coming a principle?

Heuristic achieves theoretical backing by undergoing Formal Studying, which changes it
from pattern recognized to effectiveness validated, followed by Theoretical Baking, which
changes it to theoretically backed, and finally Consensus Building to become a principle.

3 How does Heuristic change from effectiveness validated to
principle?

Heuristic changes from effectiveness validated to principle through Theoretical Baking and
Consensus Building.

4 How does the Heuristic-to-priniciple Evolving process re-
late to the different states of Heuristic?

The Heuristic-to-priniciple Evolving process changes Heuristic from rule of thumb through
documented & shared, tested & refined, pattern recognized, effectiveness validated, theoreti-
cally backed, and finally to principle.

5 What processes change Heuristic from rule of thumb to
pattern recognized?

Heuristic changes from rule of thumb to pattern recognized through Documenting & Sharing,
Testing & Refining, and Pattern Emerging & Recognizing processes.

6 What processes change Heuristic from rule of thumb to
tested & refined?

Heuristic changes from rule of thumb to tested & refined through Documenting & Sharing
and Testing & Refining processes.

7 How does Heuristic transition from effectiveness validated
to principle?

Heuristic transitions from effectiveness validated to principle through Theoretical Baking
and Consensus Building.

8 How does Heuristic transition from documented & shared
to pattern recognized?

Heuristic transitions from documented & shared to pattern recognized through Testing &
Refining and Pattern Emerging & Recognizing processes.

9 How does Heuristic evolve from documented & shared to
effectiveness validated?

Heuristic evolves from documented & shared to effectiveness validated through Testing &
Refining, Pattern Emerging & Recognizing, and Formal Studying processes.

10 What processes are involved in Heuristic evolving from rule
of thumb to effectiveness validated?

Heuristic evolves from rule of thumb to effectiveness validated through Documenting &
Sharing, Testing & Refining, Pattern Emerging & Recognizing, and Formal Studying pro-
cesses.

83



Table 4: Evaluation results of OPM-QA for 10 examples. Performance was measured using Loose Accuracy (LA), Strict Accuracy (SA), ROUGE-1 (R-1), ROUGE-2 (R-2),
ROUGE-L (R-L), BLEURT (BT), the GPT Judge Score (GPT), Transparency Precision (PT) , Transparency Recall (RT), and Transparency F1 (F1T).

ID Answer LA SA R-1 R-2 R-L BT GPT PT RT F1T

1 Testing & Refining precedes Pattern Emerging & Recognizing in Heuristic evolution.
Testing & Refining changes Heuristic from documented & shared to tested & refined, while
Pattern Emerging & Recognizing subsequently changes Heuristic from tested & refined to
pattern recognized. Both processes require a Project Set.

1.000 1.000 0.696 0.591 0.696 0.444 1.000 1.000 1.000 1.000

2 Heuristic achieves theoretical backing through Theoretical Baking, which changes it from
effectiveness validated to theoretically backed. Subsequently, it undergoes Consensus
Building to transition from theoretically backed to principle.

0.619 0.487 0.714 0.400 0.571 0.496 1.000 1.000 1.000 1.000

3 Heuristic changes from effectiveness validated to principle through Theoretical Baking,
which transitions it to theoretically backed, followed by Consensus Building, which
transitions it to principle.

1.000 1.000 0.750 0.636 0.750 0.461 1.000 0.800 1.000 0.889

4 The Heuristic-to-principle Evolving process transitions Heuristic through the states of rule
of thumb (initial), documented & shared, tested & refined, pattern recognized, effectiveness
validated, theoretically backed, and finally to principle (final), following a defined sequence
of processes.

0.895 0.846 0.756 0.605 0.756 0.583 1.000 1.000 0.857 0.923

5 The processes that change Heuristic from rule of thumb to pattern recognized are
Documenting & Sharing, Testing & Refining, and Pattern Emerging & Recognizing.

1.000 1.000 1.000 0.769 0.857 0.808 1.000 1.000 1.000 1.000

6 The processes that change Heuristic from rule of thumb to tested & refined are
Documenting & Sharing followed by Testing & Refining.

1.000 1.000 0.957 0.571 0.783 0.753 1.000 1.000 1.000 1.000

7 Heuristic transitions from effectiveness validated to principle through Theoretical Baking,
which changes it to theoretically backed, followed by Consensus Building, which changes it
to principle.

1.000 1.000 0.750 0.636 0.750 0.463 1.000 0.800 1.000 0.889

8 Heuristic transitions from documented & shared to pattern recognized through the processes
of Testing & Refining, which changes it to tested & refined, followed by Pattern Emerging
& Recognizing, which changes it to pattern recognized.

1.000 1.000 0.774 0.621 0.710 0.537 1.000 0.667 1.000 0.800

9 Heuristic evolves from documented & shared to effectiveness validated through the
processes of Testing & Refining, Pattern Emerging & Recognizing, and Effectiveness
Validating, in that sequence.

0.857 0.794 0.828 0.667 0.759 0.634 1.000 0.750 1.000 0.857

10 The processes involved in Heuristic evolving from rule of thumb to effectiveness validated
are Initial Observing, Documenting & Sharing, Testing & Refining, Pattern Emerging &
Recognizing, and Effectiveness Validating.

0.812 0.732 0.800 0.667 0.743 0.500 1.000 0.667 1.000 0.800
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Table 5: Evaluation results of NL-QA for 10 examples. Performance was measured using Loose Accuracy (LA), Strict Accuracy (SA), ROUGE-1 (R-1), ROUGE-2 (R-2),
ROUGE-L (R-L), BLEURT (BT), the GPT Judge Score (GPT), Transparency Precision (PT), Transparency Recall (RT), and Transparency F1 (F1T)

ID Answer LA SA R-1 R-2 R-L BT GPT PT RT F1T

1 Testing & Refining provides the practical outcomes and data that enable Pattern Emerging
& Recognizing, where recurring success across projects reveals generalizable patterns.

0.417 0.269 0.364 0.194 0.364 0.370 0.000 1.000 0.333 0.500

2 Heuristic achieves theoretical backing through formal studies that validate its effectiveness
and by connecting it to underlying theories in systems engineering and related fields.

0.286 0.153 0.421 0.222 0.368 0.428 1.000 0.000 0.000 0.000

3 Heuristic changes from effectiveness validated to principle through Consensus Building,
where accumulated evidence and community agreement establish its validity and
importance as a guiding principle.

0.778 0.686 0.560 0.435 0.560 0.424 1.000 1.000 0.750 0.857

4 The Heuristic-to-principle Evolving process transitions the heuristic through distinct states:
starting as a rule of thumb (Initial Observation), becoming documented and shared
(Documentation and Sharing), then tested and refined (Testing and Refinement). It
progresses to a pattern recognized state (Pattern Recognition), followed by effectiveness
validated (Formal Studies), and finally becomes theoretically backed (Theoretical Backing)
and widely accepted through consensus (Consensus Building). Each process step
transforms the heuristic into a more formalized and reliable principle.

0.895 0.846 0.493 0.239 0.464 0.404 1.000 0.800 0.571 0.667

5 The processes that change Heuristic from rule of thumb to pattern recognized are Initial
Observation, Documentation and Sharing, Testing and Refinement, and Pattern Recognition.

0.692 0.576 0.828 0.519 0.690 0.584 1.000 1.000 0.333 0.500

6 The processes Initial Observation, Documentation and Sharing, and Testing and Refinement
change Heuristic from rule of thumb to tested & refined.

0.818 0.740 0.917 0.545 0.417 0.576 1.000 1.000 0.500 0.667

7 Heuristic transitions from effectiveness validated to principle through Theoretical Backing
and Consensus Building, where it is connected to underlying theories and gains community
agreement on its validity and importance.

0.889 0.838 0.615 0.500 0.615 0.448 1.000 1.000 0.750 0.857

8 Heuristic transitions from documented & shared to pattern recognized through Testing &
Refinement, where it is applied across projects, and Pattern Recognition, where recurring
usefulness across domains leads to generalization.

0.636 0.508 0.581 0.483 0.581 0.509 1.000 1.000 0.500 0.667

9 Heuristic evolves from documented & shared to effectiveness validated through Testing &
Refinement, followed by Pattern Recognition and Formal Studies.

0.643 0.515 0.815 0.640 0.815 0.705 1.000 1.000 0.667 0.800

10 The processes involved in Heuristic evolving from rule of thumb to effectiveness validated
are Initial Observation, Documentation and Sharing, Testing and Refinement, Pattern
Recognition, and Formal Studies.

0.625 0.494 0.824 0.625 0.765 0.589 1.000 1.000 0.500 0.667
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Abstract

Large Language Models (LLMs) based on self-
attention circuits are able to perform, at infer-
ence time, novel reasoning tasks, but the mech-
anisms inside the models are currently not fully
understood. We assume that LLMs are able to
generalize abstract patterns from the input and
form an internal symbolic internal representa-
tion of the content. In this paper, we study this
by analyzing the performance of small LLM
models trained with sequences of instantiations
of abstract sequential symbolic patterns or tem-
plates. It is shown that even a model with two
layers is able to learn an abstract template and
use it to generate correct output representing
the pattern. This can be seen as a form of sym-
bolic inference taking place inside the network.
In this paper, we call the emergent mechanism
abstraction head. Identifying mechanisms of
symbolic reasoning in a neural network can
help to find new ways to merge symbolic and
neural processing.

1 Introduction

Recognizing abstract patterns is a fundamental abil-
ity that humans have, allowing them to generalize
from a few instances and make inferences on un-
seen scenarios. LLMs seem to be able to perform
similar reasoning tasks and even exceed human per-
formance in some cases (Biever, 2023). Symbolic
machine reasoning systems have a long history
(Turing, 1950; Berkeley, 1959; Wiener, 1965) but
the emergence of the capability in current machine
learning systems is not fully understood. Large
transformers (Vaswani et al., 2017) and state-space
models (Gu and Dao, 2024) exhibit intriguing emer-
gent properties. Extremely large models appear
capable of executing tasks like in-context learning
(Brown et al., 2020) and chain-of-thought reason-
ing, which are not directly derivable from their
training data. The reasoning abilities of LLMs with
tabular, non-text data have been illustrated recently,

as noted in (Jiang et al., 2024). Furthermore, the
reasoning prowess of LLMs has been highlighted
in robotic control (Zeng et al., 2023), autonomous
vehicle navigation (Chen et al., 2023), and the pro-
cessing of IoT sensor data (An et al., 2024).

The mechanistic interpretability of large lan-
guage models (LLMs) remains a highly active field
of research, with numerous recent theories about
how specific behaviors manifest in such extensive
models (Wei et al., 2022; Nichani et al., 2024;
Allen-Zhu and Li, 2024; Huang et al., 2023). This
line of research is driven by the common under-
standing that current LLMs are computationally
extremely expensive and environmentally unsus-
tainable, for most use cases, and still from their
theoretical capacity (Härmä et al., 2024). The cur-
rent methods for the minimization of the models,
e.g., using distillation techniques, produce only
relatively small gains (Xu et al., 2024). A better
understanding of the mechanisms can help to im-
prove the design of LLM architectures and training
paradigms.

The induction head mechanism is considered
a key factor behind in-context learning, enabling
a language model to identify a recurring pattern
from its input and either replicate it in the output
or merge it with previously stored knowledge (Ols-
son et al., 2022). Other theories explaining the
emergence of certain behaviors in large language
models include the concept of task-vectors (Hendel
et al., 2023; Akyürek et al., 2023) and Bayesian
inference occurring during the model’s inference
phase (Xie et al., 2022).

In this paper, we investigate the ability of small
transformer models to recognize, learn, and gener-
alize abstract sequential symbolic patterns, or tem-
plates. A template refers to an abstract sequential
symbolic pattern that follows a defined structure
but can be instantiated with different symbolic ele-
ments. For example, the template ABCABCAB
represents a repeated sequence where A, B, and C
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are symbolic placeholders that can take on specific
values. Templates represent the underlying struc-
ture of patterns, allowing us to explore whether
models can learn these abstract patterns and gen-
eralize to new instances that the model has never
seen, such as ABACABAC, that follow similar
structural rules. These templates can be instanti-
ated into specific sequences,such as 12312312 or
45645645, by assigning values to the placehold-
ers. Understanding whether models can generalize
across unseen instantiations and solve such patterns
dynamically during inference is in the focus of this
work.

Furthermore, we aim to determine whether a
model can recognize such instantiations in-context,
that is, whether it can recognize the symbolic map-
pings during inference without retraining and by us-
ing this understanding to solve new instances of the
same abstract template. This ability would indicate
that the model is not only learning patterns from its
training data but also reasoning dynamically based
on the input it encounters during inference.

Our experiments demonstrate that small trans-
former models with two or three layers can success-
fully solve the task of abstract pattern matching,
whereas single-layer models fail to solve the ab-
stract task, which aligns with the theory of single-
layer models inability to perform the induction
head task (Sanford et al., 2024). Additionally, we
observed the emergence of an abstraction head. We
define an abstraction head as an attention mecha-
nism in transformer models that attends to previ-
ous instantiations of a pattern in an abstract man-
ner, identifying the structural relationships between
symbolic placeholders, and using this information
to perform pattern matching on unseen instances
with a similar abstract structure.

The identification of the mechanisms of sym-
bolic reasoning emerging in the training of neural
networks can help to build new types of neuro-
symbolic processing paradigms. Moreover, it may
also help to train neural networks with an internal
visible symbolic reasoning mechanism. The recent
survey by Bhuyan et al. (2024) gives a taxonomy
of different neurosymbolic systems. The explicit
training of abstraction head configurations could
be seen as novel way to implement Type 6 neuro-
symbolic systems in their taxonomy.

2 Methodology

To achieve our primary objective of understanding
how LLMs perform on abstract sequential sym-
bolic patterns, we designed a controlled experi-
mental setup involving synthetic datasets of tem-
plates and their instantiations. To generate the data,
we define abstract patterns of length eight using
three symbolic variables: A, B, and C. For exam-
ple, consider the abstract pattern ABCABCAB.
By assigning specific values to A, B, and C, we
generate different instantiations of the same tem-
plate such as 12312312, 45645645, 78978978, and
15915915.

We generated all possible permutations of length
8, resulting in 6561 patterns. During this process,
we observed that some patterns did not include all
three variables, such as the pattern ACACACAC
which only contains variables A and C, leav-
ing out B. To ensure uniformity, we excluded
such patterns, requiring that all three variables
are present. Additionally, we excluded patterns
where the last token appeared only once at the
end (e.g. ABABABAC), as the last digit in each
pattern serves as an evaluation metric in our ex-
perimental setup. To avoid duplication, we also
treated patterns that are equivalent after instantia-
tion as duplicates. For example, ABCABCAB
and ACBACBAC were considered the same pat-
tern and only one was used. This resulted in 1,806
unique patterns, which we split into 80% for train-
ing and 20% for testing to evaluate whether the
models can learn new abstract patterns they have
never encountered before from context.

After generating the abstract patterns, the next
step is to concretize them using instantiations. This
is achieved by generating all possible unique com-
binations of variables A, B, and C, ensuring that
each variable is different. Per pattern, we obtain
504 different instantiations.

To prepare the data for training and evaluation,
we combined every four instantiation in each input
sequence, where every instance should represent
the same abstract pattern. This choice ensures that
the model is exposed to different representations
of the same abstract structure, providing sufficient
context for generalization. Furthermore, it ensures
that the model is exposed to at least one instantia-
tion of a pattern early in the sequence, before gen-
eralizing on the rest of the input sequence, which is
a crucial pattern in determining the model’s ability
of learning during inference time. For instance, the
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abstract pattern ABCABCAB could produce the
following input sequence:

[12312312|45645645|78978978|15915915]
To further test the model’s ability, we added the

unique values of the variables of each instantiation
at the end of the input sequence. Since the variables
A, B and C are abstract, we added the variables
in the order they appeared first, without arranging
them according to the abstract pattern. For ex-
ample, for the pattern ACCABBAC, we append
ACB at the end, instead of ABC, which reflects
what appears first in the instantiation rather than the
abstract pattern itself. Finally, the previous input
sequence example would be altered to look as fol-
lows: [12312312|45645645|78978978|15915915|
123|456|789|159]

In a complementary experiment, we tested the
model by placing the variables A, B, and C at
the beginning of the input sequence. This experi-
ment exposed the model to the variables first before
requiring it to perform the pattern matching task.
For instance, the input sequence mentioned earlier
would be tweaked to be: [123|456|789|159|
12312312|45645645|78978978|15915915]

3 Models

To evaluate the ability of small LLM models to gen-
eralize and learn abstract patterns, we experiment
with several transformer (Vaswani et al., 2017) ar-
chitectures, designed to test the models capabilities.
The primary task for training these models is auto-
regressive sequence prediction (Brown et al., 2020).
In this setup, the model predicts the nth token based
on the n-1 previous tokens, using them as context
to predict the next output. As for the main experi-
ment, we focus on experimenting with models with
one, two, and three layers consisting of eight, four
and two attention heads, respectively. Meanwhile,
we focus on the 2-layer, 4-head architecture for the
second experiment. The hidden size dimension is
set to 128 across all architectures, and each model
includes a single feed-forward layer. Absolute po-
sitional embeddings are used to encode positional
information in the input sequences. In this paper,
we used the python library X-transformer to build
the transformers(Wang, 2024) . As for the train-
ing, the models were trained on a batch size of 64
using Adam’s optimizer (Kingma and Ba, 2017),
publicly available in PyTorch with a learning rate
of 1× 10−3 for a total of 100,000 steps.

4 Evaluation

To assess the ability of the models to generalize
and learn new patterns, we designed two evalua-
tion tasks for the main experiment: the last token
prediction and variable matching. Accuracy is the
primary evaluation metric for both tasks. For the
last token prediction task, accuracy measures the
proportion of correct predictions for the last digit in
the 4th instantiation. For example, given the input:

[12312312|45645645|78978978|15915915]

the model predicts the bolded final token (5). This
task evaluates whether the model can correctly rec-
ognize the structure of abstract patterns and gen-
eralize to the final token over the unseen abstract
patterns in the test set. The second task evaluates
the model’s ability to match variable mappings in
the sequence. Given the previous input sequence,
the model should predict that the next set of tokens
should be: [1, 2, 3|4, 5, 6|, 7, 8, 9|1, 5, 9], and the
proportion of those variables predicted correctly
over the test set, represents the second task of vari-
able matching. We will also look briefly at the
training loss to compare the overall performance of
the models.

For the complementary experiment, we focus on
measuring the accuracy of the second, third, and
fourth instantiations, since the model would have
seen both the variables and one instantiation, allow-
ing it to generalize on the rest of the instantiations.

5 Results

In this section, we present the results of training the
models on instantiations based on abstract patterns,
and testing them on the instantiations of the ab-
stract patterns in the test set, which the model has
not been exposed to. We will include the training
loss of the models, in addition to the last token pre-
diction and variable matching metrics. In addition,
we visualize specific attention heads based on their
importance and contribution to solving the tasks.

5.1 3-Layers&2-Head

Figure 1 shows the training loss for different runs
of the 3-Layer, 2-head model. Although all models
converge to the same training loss( 0.68), different
runs exhibit different behaviors. For instance, we
notice bumps emerging in the training loss. Specifi-
cally, the model represented in green experiences a
bump that occurs after approximately 15,000 steps,
and the model represented in pink, where a similar
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Figure 1: Training loss of five different runs of the 3-
Layer, 2-Head model

Figure 2: Accuracy of the variable matching task of five
different runs of the 3-Layer, 2-Head model

bump occurs after approximately 70,000 steps. We
can also see a correspondence between the number
of steps where the bumps occur, and the number of
steps before the sudden rise in the last digit accu-
racy shown in Figure 3 for both models represented
in green and pink. Figure 3 also shows that not all
models achieve perfect accuracy, with two models
reaching an accuracy of approximately 0.98. Mean-
while, Figure 2 shows that all models successfully
complete the variable matching task, achieving an
accuracy of approximately 1.0 across all runs.

To further evaluate the performance of the 3-
layer, 2-head model, we showcase an example
from the test set, highlighting how one of the
runs(represented in gray) solves the pattern.
Predicted pattern by the 3l2h Model:

[? 3 3 1 3 3 1 3 | 7 6 4 2 5 7 6 7 | 4 9 7 5 6 8 9 8 | 7
9 6 3 1 5 9 5 | 3 1 7 | 6 2 7 | 9 5 8 | 9 3 5 ]

Correct pattern:

[3 3 1 1 7 7 3 7 | 6 6 2 2 7 7 6 7 | 9 9 5 5 8 8 9 8 | 9
9 3 3 5 5 9 5 | 3 1 7 | 6 2 7 | 9 5 8 | 9 3 5]

To understand how the model solves the prob-

Figure 3: Accuracy of the last digit task of five different
runs of the 3-Layer, 2-Head model

Figure 4: Attention head responsible for abstraction in
3-Layer, 2-Head model

lem, we visualized the attention patterns of solv-
ing a test instance during inference time. Among
the six attention heads, two attention heads pro-
vided us with useful insight into how both tasks
are solved(Figures 4 and 5). Figure 4 visualizes
the abstraction of patterns, where the attention
mechanism focuses on the relationship between the
first instantiation and the last three instantiations.
Specifically, the tokens in the last three instantia-
tions, which are attending back to the first instan-
tiation to predict the next token. For example, in
the second instantiation the bolded 6 in 66227767
is attending to the bolded 3 in 33117737 in the first
instantiation. This behavior is consistent across all
three later instantiations(second, third and fourth).
Moreover, this pattern of attention is not only spe-
cific to the first token, with nearly all tokens in the
instantiations attending back to their corresponding
"abstract" next token in the first instantiation, with
the exception of the fifth position.

5.2 2-Layers&4-Head
Figure 6 shows the training loss across multiple
runs of the 2-layer, 4-head model, where we ob-
serve that only one run fails to converge to the
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Figure 5: Attention head responsible for variable match-
ing task in 3-Layer, 2-Head model

Figure 6: Training loss of five different runs of the 2-
Layer, 4-Head model

minimum loss ( 0.68). Figure 7 shows that the
model consistently succeeds in the task of identi-
fying unique variables. Meanwhile, this is not the
case for the last-digit prediction task. Only two
runs achieved perfect accuracy, two runs achieved
near-perfect accuracy between 0.96 and 0.98, and
one run reached a maximum accuracy of 0.6.

We now present an example showing how the
model predicts an input sequence using one of the
best-performing runs (represented in purple). Pre-
dicted pattern by 2l4h model:
[? 3 3 3 1 1 3 3 | 9 6 1 2 9 7 6 7 | 9 9 1 5 8 8 9 8 | 1

9 3 3 8 5 9 5 | 3 1 7 | 6 2 7 | 9 5 8 | 9 3 5 ]

Correct pattern:
[3 3 1 1 7 7 3 7 | 6 6 2 2 7 7 6 7 | 9 9 5 5 8 8 9 8 | 9

9 3 3 5 5 9 5 | 3 1 7 | 6 2 7 | 9 5 8 | 9 3 5]

To better understand how the model predicts
patterns, we visualize the attention mechanisms
of the two most significant heads out of the eight
available attention heads in Figures 9 and 10. In
Figure 9, most of the tokens in the second, third,
and fourth instantiations are attending back to the
first instantiation to predict the next token. For in-
stance, we observe the attention of the highlighted

Figure 7: Accuracy of the variable matching task of five
different runs of the 2-Layer, 4-Head model

Figure 8: Accuracy of the last digit task of five different
runs of the 2-Layer, 4-Head model

digits in the second instantiation, 66227767 , to
the corresponding highlighted digits in the first in-
stantiation(excluding black), 33117737. We also
observe that the attention is not always directed to
the first pattern; at times, it shifts between other
instances, such as the bolded 8 in the third instan-
tiation: 99558898 attending back to the bolded 7
in the second instantiation: 66227767, which is
abstractly the next token. Figure 10 shows the at-
tention mechanism used to solve the second task of
matching the variables, where we observe that the
attendance was on the correct next token, eleven
out of twelve times.

5.3 1-Layer&8-Head

Figure 11 shows the training loss across four runs
of the 1-layer, 8-head model, where all the runs
fail to converge to the minimum training loss. This
failure is reflected in Figure 13, which shows that
the model is unable to solve the last digit prediction
task. Thus, we do not present any examples of the
model’s predictions. In contrast, Figure 12 shows
that all runs successfully performed the variable
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Figure 9: Attention head responsible for abstraction in
2-Layer,4-Head model

Figure 10: Attention head responsible for the variable
matching task in 2-Layer, 4-Head model

matching task.

5.4 2-Layer&4-Head(Experiment 2)

Another experiment involved appending the vari-
ables at the beginning of the sequence, followed
by the instantiations of the pattern. As shown in
Figure 15, all models eventually converge to per-
fect accuracy. Figure 16 shows the attention head
responsible for abstraction in this task, where the
second, third, and fourth instantiations attend back
to the first instantiation.

6 Discussion

This section analyzes the results presented in the
previous section, focusing on the model’s perfor-
mance on the training loss and the accuracy metrics
we defined, attention mechanisms, and the models’
ability to generalize on abstract patterns during in-
ference time.

6.1 3-Layer&2-Head

Referring back to Figure 1, we previously noted
that all models converged to a training loss of ap-
proximately 0.68 which we assume to be the low-
est achievable loss for this task. This limitation
is caused by the model’s lack of knowledge about

Figure 11: Training loss of four runs of the 1-Layer,
8-Heads model

Figure 12: Accuracy of the variable matching task of
five different runs of the 1-Layer, 8-Head model

the abstract pattern and the specific values of the
variables A ,B and C which it only learns during
inference, relying on a trial-and-error process.

We also observed bumps in the training loss
that correspond to the sudden rise in accuracy
shown in Figure 3. We hypothesize that this
reflects a change in the models’ behavior, where
the models learns a critical strategy that allows
it to generalize over the instances in the training
set, thus improving its performance on the test
set. In Figure 3, we observed that two out of five
models did not achieve perfect accuracy but still
managed to achieve a minimum accuracy of 0.98.
Although we did not find a justification on why
it is not acting like the other three models, we
can still conclude that the 3-layer, 2-head model
succeeds in this task, as all runs can generalize and
achieve near-perfect accuracy.

6.2 The abstraction head

We now proceed to analyze the model’s predic-
tions(see 5.1) across the four instantiations to better
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Figure 13: Accuracy of the last digit in the fourth in-
stance of a pattern of four runs of the 1-Layers 8 heads
model

Figure 14: Attention head responsible for variable
matching task in 1-Layer, 8-Head model

understand its reasoning process and generalization
capabilities. The model begins by predicting ran-
dom tokens in the first eights positions due to the
lack of prior information on the abstract pattern
and the variables. After predicting the first eight
tokens and receiving the prior context, the model
gains two pieces of information: the abstract pat-
tern is AABBCCAC and the first three unique
digits are A = 3, B = 1 and C = 7. Using this
feedback, the model proceeds to predict the next
instance. Initially, it tried to predict that the value
of A is nine, but updates its understanding after
receiving feedback on the correct value of A. The
model then correctly predicts the value of A in
the following position based on the feedback re-
ceived, and predicts six. This process is repeated
for the next four tokens, BBCC, where the model
similarly predicts the unseen values of B and C,
refining its predictions based on the feedback re-
ceived. For the last two positions: 66227767, the
model uses its prior knowledge that the abstract
pattern is AABBCCAC and that the values of the
variables in the second instance are A = 6, B = 2,
and C = 7 to predict the last two values correctly.

Figure 15: Accuracy of the last three instantiations over
the test set

Figure 16: Attention head responsible for abstracting in
2-Layer, 4-Head model

The same logic is applied to the third and fourth
instantiation. Figure 4 shows the attention mecha-
nism we assume is mainly responsible for solving
the task of abstract pattern matching. In Figure 4,
we observe that the current position in the second,
third, and fourth instantiations consistently attends
to the corresponding next position in the first in-
stantiation. For example, we mentioned previously,
the bolded 6 in 66227767 from the second instanti-
ation attends to the bolded 3 in 33117737 from the
first instantiation. This can be seen as the bolded
A in AABBCCAC attending to the next position,
represented as the bolded A in AABBCCAC. We
identify this attention head as the one responsible
for abstracting the patterns, and we refer to it as the
Abstraction Head, AH. This head seems to have
developed the ability to look back at first eight
tokens, or the first instantiation and attend to its
abstract form. This head aligns with the concept
of induction heads, particularly in its ability to per-
form pattern completion, such as [A∗][B∗] . . . [A]
→ [B], where A∗ ≈ A and B∗ ≈ B (Olsson et al.,
2022). However, the abstraction head we found op-
erates at a more abstract level, focusing on pattern
matching according to a template that has not been
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specified to the model, and the model was able
to figure out from only instantiations of the data
about this abstract pattern. In Figure 2, we observe
that the models succeed in the variable matching
task within the first 2,000 steps. This task appears
to require no abstraction, as the models develop
a straightforward matching strategy, which is also
shown in the attention pattern shown in Figure 5.

6.3 2-Layer&4-Head

Regarding the training loss of multiple runs of the
2-layer, 4-head architecture, as shown in Figure 6,
we observe that four out of five runs successfully
converge to the minimum loss. We hypothesize
that the failed run is a result of undertraining and
with enough training, all models are able to reach
a near-perfect accuracy. We also observe a corre-
lation between the last digit accuracy, as shown in
Figure 8, and the training loss, specifically, the run
represented in pink, which failed to converge to the
minimum training loss, and was unable to achieve
perfect accuracy in the last digit prediction task.
Regarding the model’s prediction (see 5.2), we ob-
serve that it uses a similar approach to the 3-layer,
2-head model. Specifically, the model relies on a
trial-and-error process when the values of the vari-
ables were unknown and started to guess random
digits when it did not have any pieces of informa-
tion about the abstract pattern. We also see that one
of the attention mechanisms in the attention heads
(Figure 9) is similar to the mechanism observed in
Figure 4, specifically what we refer to as an abstrac-
tion head. However, the abstraction head in Figure
9 not only attends to the first instantiation but also
sometimes focuses on the previous instantiations
(second and third). While what causes this behav-
ior remains unclear, the model still uses a valid
approach to solve the pattern matching task. As
shown in Figure 7, all runs successfully performed
the variable matching task. Furthermore, Figure
10 reveals that the attention mechanism used for
this task is very similar to the one observed in Fig-
ure 5, suggesting that the variable matching task
is straightforward, where the model develops an
attention head that performs a simple tracking back
to the digits and predicts the correct variables.

6.4 1-Layer&8-Head

For this architecture, we observed that 1-layer
might not be sufficient to solve the last digit pre-
diction task, as shown in Figure 13. However,
we found that a single layer can still be used to

tackle non-abstract tasks, such as variable match-
ing, which does not require abstraction. This is
demonstrated in Figure 12. The mechanism used
for this task, shown in Figure 14, aligns with the
behavior observed in other models.

6.5 2-Layer&4Heads(Experiment 2)
The complementary experiment confirmed that 2-
layer models are capable of solving the task of
abstract pattern matching, as demonstrated in Fig-
ure 15. Additionally, we observed the emergence
of the abstraction head, illustrated in Figure 16.
However, unlike the previous task, we found that
some models were able to solve this task without
developing similar abstraction heads. This suggests
that these models may have discovered an alterna-
tive mechanism to solve the problem, which needs
further investigation in future work.

7 Conclusions

In this study, we investigated the ability of small
transformer models to recognize, learn, and gener-
alize abstract sequential symbolic patterns through
controlled experiments. We demonstrated that mod-
els with two or three layers successfully perform
this task, unlike single-layer models. A key find-
ing was the emergence of the abstraction head, an
attention mechanism that directs its focus toward
the first instantiation in an abstract manner. Our
findings on the emergence of abstraction heads pro-
vide a foundation for advancing neuro-symbolic
processing paradigms, potentially enabling the de-
velopment of new Type 6 neuro-symbolic systems
which contain symbolic processing inside a trained
neural network.

8 Limitations of the work

The results of this paper are based on a very simpli-
fied experiments based on sequences of numbers.
It is possible that the proposed abstraction mecha-
nism is not a primary mechanism in reasoning tasks
based on human language or in cases where the en-
tities have more complex relations. The study was
also limited to small transformer models with only
1-3 layers of self-attention models. It is possible
that different abstraction mechanisms emerge in
models of more layers, which may not be visible
in the experiments reported in this paper.
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A Appendix: Abstraction Heads

One aspect we explored was whether the abstrac-
tion head tends to emerge in a specific layer(e.g.
the first or the last). Figure 17 shows the visual-
ization of another successful run of the 3-Layers,
2-Head architecture. The abstraction head shown
in Figure 4 emerges in the third layer, while the
abstraction head in Figure 17, emerges in the sec-
ond layer. However, even tho attention heads tend
to appear in the last few layers, none of the ex-
periments showed an abstraction head in the first
layer. Research showed that attention heads that
extract and makes use of critical information such
as label appear in deep layers (Wang et al., 2023).
This might suggest that abstraction heads appear
in Deep Layers(i.e. layers closer to the output),
and might show that attention heads that require
abstraction(label, abstract pattern, etc.), are usually
closer to the output, even in small models, which
is a matter of further investigations.

Figure 17: Visualization of all attention heads from
another run
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Abstract

We explore the behaviour of language models
on adjectival scales in connection with negation
when prompted with material used in human
experiments. We propose several metrics ex-
tracted from the language model predictions
and analyze those metrics in relation to human
data. We then use these metrics to propose new
items to be tested in both human and model-
based experiments.

1 Outline

In this paper, we describe various experiments that
explore the relationship between scalar implica-
tures and language modeling Scalar implicatures
are inferences such as the one in (1).

(1) a. The project is difficult.
b. ⇝ The project is not impossible.

Here, difficult and impossible form a scale. The
inference is such that using the weaker item on
that scale (1-a) leads to the negation of the stronger
item (1-b).

In the first part of the paper, we aim to elicit
an implicature (1-b) from the language model as
the next token prediction. To do this, we prompt
the model with the original sentence (containing a
weak scalar item) followed by the repetition of the
initial portion of the same sentence and a negation
(2). We base this experiment on the material pre-
sented in Sun et al. 2024 and explore the output as
well as the underlying processing of prompts that
include negation.

(2) The project is difficult. This means that the
project is not (PROMPT)

Next, we introduce metrics that are based on the
model behaviour. These metrics prioritize lexical
items that are likely to co-occur in the top predic-
tions of the language model. We use these metrics

to automatically extract new pairs of adjectives.
From the obtained list of pairs we then select such
pairs where the adjectives are on a scale and repeat
the negation experiment using corpus data and both
established and new adjective pairs. We analyze
the model behaviour for both sets of pairs, focus-
ing on the desirable crossing pattern of adjectival
activation when the model encounters the negation.

In the last part of the paper, we use the proposed
model-related metrics in connection with human
experiments. On one hand, with the help of one
of the metric variants we can explain some part of
the variability on the human ratings for scalar im-
plicatures and negative strengthening. On the other
hand, we discover that almost all the scales used in
human experiments receive low values according
to our metrics. We then extract new adjective pairs
from the model and propose a set of scalar pairs
to use in future human experiments that would be
more evenly distributed from the perspective of the
language model.1

2 Language models and negation

2.1 Introduction

Recent papers have demonstrated time and again
that negation poses a challenge for language mod-
els that is not resolved by increasing the model
and the dataset size (Kassner and Schütze, 2020;
Lipkin et al., 2023; Zhang et al., 2023; Sullivan,
2024). This becomes especially relevant in con-
nection with the natural language inference task:
the performance on datasets that focus on negation
even after fine-tuning is significantly lower than
on general datasets where negation does not play
a special role (Hossain et al., 2020; Truong et al.,
2023).

Another challenge for language models is re-
lated to pragmatic inferences that are not tradition-

1Our implementation is made available at https://
github.com/davidarps/lm-scales
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ally included in the NLI datasets but are relevant
for human daily conversations (Hu et al., 2023).
These include presuppositions, scalar implicatures
and other related inference types, such as negative
strengthening, extensively studied in the theoreti-
cal literature (Horn 1984; Hirschberg 1985; Degen
2015; Gotzner and Romoli 2022, among others) but
severely underrepresented in NLI datasets (Jeretic
et al., 2020). Negative strengthening refers to a
type of implicature whereby the meaning of a scalar
expression containing a negation (3-a) is enriched
using its non-negated antonym (example (3-b), (27)
in Gotzner and Romoli 2022).

(3) a. The room is not large.
b. ⇝ The room is (rather) small.

A recent dataset that aims to address the problem of
underrepresented inference types provides premise-
hypothesis pairs that include scalar items, such as
some/not all and warm/hot (SIGA, Nizamani et al.
2024). It contains premise-hypothesis pairs pre-
ceded by a context (4-a) and labeled as contradic-
tion, entailment or neutral. In case of example (4),
the label for the pair (4-b)-(4-c) is contradiction.

(4) a. Five weeks later, I had my first batch
of polished stones in nearly 40 years.
I was also disappointed.

b. The polished stone looked good
c. The polished stone looked great

The challenge in creating such datasets, apart from
extracting or generating the data, is data annota-
tion, especially given the fact that the rate with
which humans predict scalar implicatures in exper-
imental studies varies significantly between items
(Van Tiel et al., 2016; Sun et al., 2018; Gotzner
et al., 2018b; Ronai and Xiang, 2022). Multiple
experimental studies aimed to explain this varia-
tion with the help of various linguistic properties
as well as the relation to priming (Ronai and Xiang,
2023; Lacina and Gotzner, 2024) but achieved only
partial success: no combination of the proposed
factors could explain the full range of human rating
variation.

Since the only available naturalistic dataset for
scalar inferences (SIGA, Nizamani et al. 2024) fo-
cuses on the implicatures or their absence in a pos-
itive context, it does not allow to evaluate the be-
haviour of the language models with respect to the
scalar terms in the context of negation. Such an
evaluation is an important missing step, since the

underlying process of implicature computation in-
volves reasoning about the alternatives and their
negated variant (Van Tiel et al., 2016; Gotzner et al.,
2018a). For this reason, in the first experiment we
test the behaviour of the (smallest) OPT language
model for next word prediction, trying to elicit a
completion following a prompt that includes a nega-
tion similar to the experimental setup of Van Tiel
et al. 2016.

We show that the language model exhibits a sig-
nificant amount of copying in such a scenario, what
on the surface level looks like ignoring the negation
(and leads to a contradicting sentence completion).
We examine the underlying representations and
find evidence for the desired trends in processing
the negation that often do not reach the level to
become visible in the output.

2.2 Experiment 1
In the first experiment we evaluate negation pro-
cessing by a language model using both scales and
contexts from Sun et al. (2024). To approach this
task, we test whether a language model is likely to
predict an adjective compatible with a scalar im-
plicature as the next word. We use a setting that
is compatible with computing a scalar implicature
based on the gradable adjectives.

Model Previous work has shown that models
of different sizes show similar performance on
token-level predictions related to scalar implica-
tures (Arps and Zinova, 2024). Therefore, all exper-
iments are conducted with only one model, namely
OPT-125m (Zhang et al., 2022). OPT-125m is a
decoder-only (causal) language model with twelve
layers and an embedding size of 768. It has been
trained on next-token prediction on 180B tokens
of predominantly English books and web-crawled
data from different domains.

Data In this experiment we use the scales and
the sentences from Sun et al. (2024). The prompts
for the experiment were constructed following the
scheme in (5): the first sentence contains a weak
adjective (5-a) and is taken from the material of
Sun et al. (2024). In our prompt, this sentence is
followed by a second sentence that starts with a con-
nector (5-b) and continues with the same prompt
as in (5-a) repeated up to the adjective position and
followed by a negation (5-c). We then obtained
the model predictions over all the vocabulary for
the next word following the complete prompt (5)
(including negation). The expected item according
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to the implicature pattern would be (the negation
of) brilliant, the stronger alternative of intelligent.

(5) a. This student is intelligent.
b. Put differently,2

c. this student is not . . .

The results of this experiment are in line with the
previous predictions concerning language models
and negation: in most cases the model predicted the
same weak adjective it observed in the first part of
the prompt as one of the top predictions. The same
weak adjective has rank 0 after negation in 383 out
of 1276 cases (30%), rank 1 in 102 cases (8%) and
rank between 2 and 4 in another 145 cases (11%).
This means that in 30% of all the cases the resulting
sentence (in this case "Put differently, this student
is not intelligent") contradicts the preceding part
of the prompt (5-a). This is not surprising given
the difficulty of the task, previous findings and the
absence of fine-tuning.

In order to check whether the model ignores the
negation, as suggested by Kassner and Schütze
(2020) and by the surface evaluation above, we
have traced the activation of the weak and the
strong gradable adjectives at the position before
the weak gradable adjective is introduced in (5-a),
at the same point (before the negation) in the last
part of the prompt (5-c) and after the negation (end
of the prompt (5-c)).

Despite the very high surface copying rate, we
can observe that the model does not ignore the nega-
tion, which is visible on the cumulative represen-
tations of scalar adjective activation for a specific
scale. To obtain such a representation, we have col-
lected the logit activation at the following points,
accumulating them over various prompts: [0] at the
beginning of the first sentence, [1] before the scalar
adjective in the first sentence, [2] after the adjective
in the first sentence, [3] at the beginning of the sec-
ond sentence, [4] before the negation in the second
sentence, and [5] after the negation in the second
sentence. Example (6) shows these points in the
exemplar prompt provided above in (5).

(6) [0] This student is [1] intelligent [2]. Put
differently, [3] this student is [4] not [5] . . .

The case illustrated in Fig. 1 demonstrates the de-
sired behaviour of a language model in the context

2We have tested various connectors such as It means that
and In other words as well as an empty connector, but did not
observe any significant variation in the model behaviour.
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Figure 1: Activation of sometimes, always and lucky
(an unrelated adjective) across various prompts at the
different points in the prompt.

of implicature computation given a negation: al-
though the activation of the weak item (the one
present in the first sentence) is higher at point [4]
(before the negation), the insertion of a negation
leads to a drop of the activation of the weak adjec-
tive and a rise of the activation of the strong adjec-
tive at point [5]. The magnitude of these effects is
such that the activation of the strong adjective after
negation is higher than that of a weak adjective and
the model does not copy the adjective that occurred
in the prompt. The standard deviation bars on the
plot show that in this case the effect can be reliably
observed over individual prompts. We will call this
behaviour of the model crossing. Note that cross-
ing does not guarantee that the strong adjective will
appear as the most likely token after negation, it
only guarantees the non-copying behaviour of the
model.

In the other case, illustrated in Fig. 2, both the ef-
fect of decreasing the activation of the weak scalar
item and the effect of increasing the activation of
the respective strong scalar item is observed, so
the approaching trend of the two activations does
not reach the level at which we could observe a
reflection of this trend in the next word prediction
behaviour: the weak item remains the most likely
continuation and the model exhibits the copying
behaviour. We will call this scenario approaching.

The last scenario illustrated in Fig. 3 includes
the already observed effect of decreasing the acti-
vation of the weak scalar item but the activation of
the strong scalar item also drops slightly. As a re-
sult, the difference in the activations decreases but
similar to the approaching case there is no surface
evidence of this trend. We will call this scenario
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Figure 2: Activation of adequate, good and lucky (an
unrelated adjective) across various prompts at the differ-
ent points in the prompt.
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Figure 3: Activation of snug, tight and borrowed (an un-
related adjective) across various prompts at the different
points in the prompt.

difference lowering.
These results show that introducing a negation in

the second sentence does influence underlying acti-
vation of the language model but in most cases does
not lead to a visible change of the output. In the
next section, we introduce a negation-independent
metric for adjective pairs. We hypothesize that
the probability of the two adjectives to be simulta-
neously encountered among the top candidates for
the next token in a positive scenario (corresponding
to close and high activations of both adjectives at
point [1]) correlates with the probability of crossing
behaviour of the model if it is prompted following
the schema (5).

2.3 Extracting new adjective pairs from the
language model

We propose a method to evaluate the quality of
scales from the literature, using language model

behavior.

Corpus Our corpus-based experiments are per-
formed on the training data of the BabyLM 2023
challenge (Warstadt et al., 2023). This data consists
of mostly transcribed and child-directed speech
from different sources. We preprocess the data
using the Boot-BERT pipeline (Samuel, 2023).

Identifying Matches The method starts with an
unlabeled tokenized text corpus C, a next word
prediction language model M and a collection
A = {a1 . . . am} of m (adjective) terms. M pro-
vides, for each token si,j in each sentence si ∈ C,
a probability distribution pM(si,j+1|si,:j) over all
possible next tokens si,j+1 given a prefix si,:j .
Specifically, we collect all k = 10 most likely
continuations for every prefix in the corpus, and
filter the corpus for prefixes s:i where a scalar term
is among the k most likely next tokens. We call
these situations matches. Matches are independent
from whether that scalar term is actually present in
C as a continuation.

Co-occurrence counts from matches Assume
that count(a) is the number of times that the ad-
jective a is matched across the corpus. Further
assume that cc(ar, as) is the number of times that
two adjectives ar and as are matched at the same
prefix si,j in the corpus. To account for the fact
that the adjectives occur with different frequencies,
we compute the following scores:

The scaled cooccurence score, conditioned on
one of the terms:

cclog(ar, as) =
log cc(ar, as)
log count(ar)

By this we obtain two coocurence scores, con-
ditioned either on the weak or on the strong scalar
item. We call the following score scale by strong:

cclog(aweak, astrong) =
log cc(aweak, astrong)

log count(aweak)

And the following score scale by weak:

cclog(astrong, aweak) =
log cc(astrong, aweak)

log count(astrong)

Thus we collect two scores that can be used ei-
ther separately or combined. One way to combine
them and make the resulting metric symmetric is
calculating the harmonic mean of these scaled cooc-
curence scores:
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cc-hm(ar, as) = 2
cclog(ar, as) ∗ cclog(as, ar)
cclog(ar, as) + cclog(as, ar)

The harmonic mean prioritizes pairs of adjec-
tives such that each of them is likely to be found in
the top predictions of the model when the other one
is in the top predictions. We can now sort all cooc-
curing adjective pairs ar, as by their cc-hm(ar, as),
and put special focus on the pairs with very high
cooccurence scores.

Finding new scalar adjective pairs From the
pairs obtained on the previous step we have manu-
ally selected those that are scalar alternatives and
identified the weaker and the stronger scale mates
between them (see Table 5 in the Appendix). We
have also attempted an automatic filtering of non-
scalar pairs and automatic strength evaluation fol-
lowing the proposal by de Melo and Bansal (2013).

Among the versions we attempted were (1) rank
extraction from the language model for the patterns
suggested by de Melo and Bansal (2013) when the
first adjective of the pattern is in the ground truth as
well as (2) corpus search in the corpus used for the
other experiments as well as (3) Google n-gramm
inquiry.

Neither method brought results reliable enough
to justify automatic scale and strength extraction
from the proposed list. Since for human experi-
ments items have to be often evaluated according
to additional criteria, our proposal at the moment is
to supply a list of pairs with their model scores and
leave it to the linguists to select the suitable pairs.

2.4 Experiment 2

In this experiment we have tested the behaviour of
the language model on the adjective pairs from Sun
et al. 2024 together with some extra scales from
Lacina and Gotzner 2024 and on the scales ex-
tracted in the previous section using the harmonic
mean score (all the scales are provided in the Ap-
pendix). For a fair evaluation, we have used the
same corpus (BabyLM challenge, Warstadt et al.
2023) for all the scales. We have identified all the
sentences where the weak adjective from either list
occurs in the corpus and applied the pattern shown
in (5) to all such sentences.

For each example we have computed the logit
of the weak and the strong adjectives before and
after negation (analogous to the points [4] and [5]
in the first experiment). We have then computed

the proportion of cases when the activation of the
weak item decreases after the negation is intro-
duced (matched term lowering), the proportion of
cases where the activation of the strong item after
negation exceeds the activation of the weak item
(crossing) and the proportion of cases where the
two activations approach each other but the acti-
vation of the weak item remains higher than that
of the strong item (approaching). The results are
presented in Table 1.

Sun et al New pairs
Matched term lowering 1.00 0.99

Crossing 0.31 0.33
Difference lowering 0.99 0.99

Approaching 0.22 0.15

Table 1: Comparison of model behaviour for scales from
human experiments and scales extracted on the basis of
the language model data.

As can be seen in Table 1, exchanging the scalar
pairs in the experiment led to an increase of the
crossing instances, but this increase remained small.
Another interesting observation is related to the
approaching scenario: The number of approach-
ing instances reduces when the scale selection is
performed according to the model cooccurence
scores. This can be interpreted as that, loosely
said, stronger related items tend to increase and
decrease their activation together, which is not a
desirable trend in the current setup. At the same
time we observe an approaching behaviour in al-
most all (99%) of the cases with either selection of
the items.

This means that if the trend behind the nega-
tion processing could be magnified, in principle
it would be possible to achieve a desired (non-
copying) behaviour under negation in almost all
the cases. It is left for future research to explore
such possibilities.

3 Model metrics and human behaviour

In order to evaluate the obtained metrics on human
data, we extract all the values as described above
for the scalar adjectival pairs that were used in hu-
man experiments (Gotzner et al., 2018a,b; Lacina
and Gotzner, 2024). We then compute the correla-
tions between our metrics and human data. This
reveals that the most helpful metric is scale by
strong: that of the high ranking of the weak item
in those sentences where the strong item is ranked
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Figure 4: Correlation of scale by strong metric from
the OPT language model and human scalar implicature
ratings.

high (e.g. how often is attractive present in the
top ten prediction of those sentences that have stun-
ning in top ten predictions). This metric strongly
negatively correlates with human scalar implica-
ture rating (−0, 51) and positively correlates with
human rating for negative strengthening (0, 34). It
must be noted, however, that our results are lim-
ited by the range of scales for which human data is
available: as described above, for the metrics we
have calculated how often the two adjectives of the
pair co-occur within the top ten predictions of the
language model. We have discovered that within
this metric, although values between zero and one
are possible (see Appendix), the actual values for
the original experimental items (see Figure 4) are
very low (less than 0.6).

Figure 4 illustrates that both linear and quadratic
correlations are plausible (r = −0.51 for linear
and r = −0.47 for quadratic correlation) given the
data from the previous experiments due to the lim-
ited range of values of the scale by strong metric.
The extension of the two correlation curves demon-
strates that obtaining the experimental results for
items that lie on the right spectrum of the scale
by strong metric is essential for making a decision
about the validity of either correlation.

One parameter to take into account is the up-
per boundedness of the scale. It has been shown
to be the main predictor for the human scalar im-
plicature and negative strengthening ratings from
a collection of linguistic features (Van Tiel et al.
2016 as well as Sun et al. 2018; another rele-
vant but less strong predictor is semantic similar-
ity). Although statistical evaluation of non-upper-
bounded scales is not possible due to the insuffi-
cient amount of data, the two categories are shown

Figure 5: Correlation of scale by weak metric from
the OPT language model and human scalar implicature
ratings.

on Figure 5. It can be observed that all the human
ratings of bounded scales are higher than these of
non-bounded scales and at the same time almost
all the language model scores for those scales are
very low. The question whether this accidental or
systematic can be studied by exploring the linguis-
tic properties of the scales that receive high scores
by the language model metrics.

In relation to this it is also worth exploring
Fig. 5 that depicts the possible correlations of hu-
man scalar ratings with the model scores scale by
weak. Although the statistical analysis produces
very low correlation values (r = 0.05 for linear
and r = 0.08 for quadratic correlation), the visual
inspection reveals that most of the values for the
model scores are below 0.12, so the correlation
analysis can not be reliably performed on the basis
of this data.

Since scale by weak score is very low for most
of the scales, the harmonic mean score that takes
into account both scale by strong and scale by weak
also does not provide a significant correlation for
the available set of data. Similarly to the case de-
picted on Fig. 5 the set of data does not exclude the
possibility of discovering such a correlation given
a different set of data.

Since the value of the proposed metrics are very
low for most of the items found in the experimen-
tal literature, we suggest that more experiments
should be performed with different scales that are
better distributed according to those metrics. As
described above, we propose a list of pairs that
satisfies these criteria from the model perspective
and leave if to the linguists to pick the best exper-
imental items from it. This list is provided in the
Appendix and the suggestions are marked in bold.
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4 Discussion

In this paper we described several experiments re-
lated to scalar adjectives. First of all, we could es-
tablish that despite the overt copying behaviour of
the analyzed language model the underlying activa-
tion exhibits desirable trends. Second, we have pro-
posed model-based metrics to evaluate the scales
and experimented with scales that receive high rat-
ings according to these metrics. We could achieve
a slight increase in desirable behaviour (crossing
pattern between the activations of the weak and
the strong items), although these results provided a
lesser increase than we had expected.

We believe that the observed underlying be-
haviour of the language model while processing
the negation opens new perspectives in adjusting
the model predictions by magnifying the desired
trends.

Finally, we have explored the connection be-
tween the human experimental results and pro-
posed metrics. We could observe that one of the
metrics (scale by strong) can be used to partially ex-
plain the variability in human ratings of the scalar
implicatures associated with different scales. At the
same time time we could see that the scales used
in human experiments have very low scores on all
the proposed language model metrics. In this light
we suggest new material for further experiments.

This type of work opens a field of automatic gen-
eration of possible experimental material as well as
running the experiments using the language model
before transferring them to the lab. This can lead
to a significant decrease in time needed for exper-
imental design as well as to lowering the cost of
running various versions of the same experiment
since some relevant design problems can be already
observed and corrected on the level of the language
model experiments.
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Appendix: established scale used for the
experiments and proposed scales

weak strong

0 adequate good
1 allowed obligatory
2 attractive stunning
3 big enormous
4 cheap free
5 dark black
6 difficult impossible
7 few none
8 funny hilarious
9 hard unsolvable
10 hungry starving
11 intelligent brilliant
12 low depleted
13 memorable unforgettable
14 old ancient
15 possible certain
16 rare extinct
17 scarce unavailable
18 silly ridiculous
19 small tiny
20 snug tight
21 some all
22 special unique
23 tired exhausted
24 ugly hideous
25 warm hot
26 wary scared

Table 2: Scales from (Sun et al., 2024) that we used in
our experiments

weak strong

0 angry annoyed
1 bad mediocre
2 good excellent
3 overweight obese
4 pretty beautiful
5 warm hot

Table 3: Additional scales from (Lacina and Gotzner,
2024)

weak strong

0 afraid scared
1 amazing incredible
2 angry mad
3 bad terrible
4 big huge
5 calm quiet
6 clear obvious
7 courageous fearless
8 damaged destroyed
9 difficult hard
10 frightening terrifying
11 good great
12 great awesome
13 great good
14 honest frank
15 odd strange
16 overweight obese
17 pleased proud
18 popular famous
19 pretty beautiful
20 silly stupid
21 small tiny
22 smart intelligent
23 some all
24 surprised shocked
25 tasty delicious
26 useless worthless
27 warm hot
28 wealthy rich

Table 4: Scales annotated by the authors which have a
high cc-hm score.
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weak strong sc
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ng
0 red purple 0.78 0.98
1 second third 0.90 0.98
2 better worse 0.82 0.97
3 yellow white 0.97 0.81
4 pink red 0.96 0.79
5 purple black 0.96 0.73
6 good great 0.92 0.96
7 pink white 0.95 0.75
8 orange red 0.95 0.77
9 interesting amusing 0.61 0.95
10 important essential 0.70 0.95
11 yellow black 0.94 0.79
12 bulky heavy 0.94 0.49
13 different separate 0.74 0.94
14 interesting exciting 0.78 0.94
15 gray white 0.94 0.64
16 brown black 0.94 0.78
17 brown white 0.94 0.78
18 gray black 0.94 0.63
19 happy proud 0.87 0.93
20 brown blue 0.93 0.83
21 red black 0.93 0.89
22 blue black 0.92 0.86
23 concerned worried 0.90 0.92
24 green white 0.92 0.82
25 tired exhausted 0.69 0.92
26 kind generous 0.60 0.92
27 overweight obese 0.85 0.92
28 tired sleepy 0.57 0.91
29 bruised broken 0.91 0.59
30 interesting important 0.91 0.85
31 tedious difficult 0.91 0.51
32 damaged destroyed 0.90 0.79
33 good better 0.83 0.90
34 green black 0.90 0.80
35 attractive beautiful 0.89 0.70
36 moist wet 0.89 0.69
37 important vital 0.58 0.89
38 some all 0.89 0.86
39 relieved happy 0.89 0.54
40 harmful dangerous 0.89 0.69
41 good cheap 0.58 0.88
42 hot boiling 0.63 0.88
43 good new 0.87 0.86
44 warm hot 0.87 0.80
45 important obvious 0.73 0.87
46 old ancient 0.73 0.86
47 sunny warm 0.86 0.69
48 distinct separate 0.86 0.77
49 impractical impossible 0.86 0.45

weak strong sc
al

e
by

w
ea

k

sc
al

e
by

st
ro

ng

50 new recent 0.68 0.85
51 unconscious dead 0.85 0.57
52 pale white 0.85 0.63
53 difficult dangerous 0.81 0.85
54 full empty 0.72 0.85
55 difficult impossible 0.77 0.85
56 several all 0.85 0.67
57 important critical 0.65 0.85
58 good complete 0.61 0.85
59 damaged broken 0.84 0.73
60 similar identical 0.67 0.84
61 good high 0.74 0.84
62 dark black 0.84 0.81
63 oval round 0.84 0.52
64 good large 0.71 0.84
65 polite friendly 0.83 0.71
66 sad angry 0.82 0.83
67 concerned alarmed 0.54 0.83
68 possible probable 0.47 0.83
69 interesting unusual 0.62 0.83
70 accurate true 0.83 0.67
71 useful valuable 0.79 0.83
72 steep high 0.83 0.55
73 good perfect 0.65 0.83
74 violent dangerous 0.82 0.73
75 new better 0.74 0.82
76 mediocre poor 0.82 0.43
77 allowed required 0.75 0.82
78 serious fatal 0.60 0.82
79 interesting attractive 0.69 0.82
80 amused pleased 0.81 0.64
81 special unique 0.74 0.81
82 useless impossible 0.81 0.69
83 interesting beautiful 0.81 0.75
84 uncommon rare 0.80 0.58
85 great perfect 0.66 0.80
86 pleased surprised 0.80 0.76
87 severe fatal 0.67 0.80
88 equal identical 0.71 0.80
89 bad evil 0.67 0.80
90 simple obvious 0.76 0.80
91 near close 0.76 0.80
92 important necessary 0.68 0.79
93 free all 0.79 0.62
94 ready willing 0.70 0.79
95 interesting valuable 0.64 0.78
96 great certain 0.67 0.78
97 willing eager 0.56 0.78
98 aggressive violent 0.77 0.73
99 neglected abandoned 0.77 0.60

weak strong sc
al

e
by
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100 interesting remarkable 0.53 0.77
101 full crowded 0.49 0.77
102 lost all 0.76 0.59
103 necessary vital 0.57 0.76
104 best better 0.70 0.76
105 long difficult 0.64 0.76
106 understandable acceptable 0.75 0.54
107 violent cruel 0.65 0.75
108 full all 0.75 0.60
109 good superior 0.46 0.75
110 authorized required 0.75 0.50
111 nervous afraid 0.75 0.66
112 damaged lost 0.75 0.59
113 light white 0.74 0.75
114 comfortable luxurious 0.44 0.75
115 deep loud 0.69 0.74
116 emotional moral 0.71 0.74
117 unusual unique 0.74 0.62
118 serious dangerous 0.71 0.74
119 sick dead 0.74 0.61
120 cool cold 0.72 0.74
121 certain all 0.74 0.56
122 tender soft 0.74 0.68
123 acceptable necessary 0.73 0.60
124 cheap free 0.73 0.57
125 personal private 0.72 0.73
126 smooth shiny 0.64 0.73
127 worried frightened 0.55 0.73
128 possible likely 0.69 0.73
129 knowing caring 0.61 0.73
130 dangerous fatal 0.57 0.73
131 good excellent 0.53 0.73
132 third half 0.73 0.72
133 bent broken 0.72 0.50
134 reasonable high 0.72 0.52
135 different inferior 0.42 0.72
136 black all 0.72 0.57
137 interesting true 0.71 0.69
138 unpleasant dangerous 0.71 0.47
139 active aggressive 0.62 0.71
140 surprised frightened 0.52 0.71
141 general any 0.71 0.57
142 white all 0.71 0.56
143 bright warm 0.70 0.71
144 artistic scientific 0.70 0.59
145 smooth glossy 0.38 0.70
146 some black 0.58 0.70
147 possible any 0.70 0.61
148 easy pleasant 0.51 0.70

Table 5: All adjective pairs obtained from the ngram-based filtering in Sec. 2.3. Candidates for scale are marked in
boldface.
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Abstract

Frame semantics provides an explanation for
how we make use of conceptual frames, which
encapsulate background knowledge and asso-
ciations, to more completely understand the
meanings of words within a context. Unfor-
tunately, FrameNet, the only widely available
implementation of frame semantics, is limited
in both scale and coverage. Therefore, we in-
troduce a novel mechanism for generating task-
specific frames using large language models
(LLMs), which we call Generative FrameNet.
We demonstrate its effectiveness on a task that
is highly relevant in the current landscape of
LLMs: the interpretable storage and retrieval
of factual information. Specifically, Genera-
tive Frames enable the extension of Retrieval-
Augmented Generation (RAG), providing an
interpretable framework for reducing inaccu-
racies in LLMs. We conduct experiments to
demonstrate the effectiveness of this method
both in terms of retrieval effectiveness as well
as the relevance of the automatically gener-
ated frames and frame relations. Expert anal-
ysis shows that Generative Frames capture a
more suitable level of semantic specificity than
the frames from FrameNet. Thus, Generative
Frames capture a notion of frame semantics that
is closer to Fillmore’s originally intended def-
inition, and offer potential for providing data-
driven insights into Frame Semantics theory.
Our results also show that this novel mecha-
nism of Frame Semantic-based interpretable
retrieval improves RAG for question answer-
ing with LLMs—outperforming a GPT-4 based
baseline by up to 8 points. We provide open
access to our data, including prompts and Gen-
erative FrameNet.1

1 Introduction, Motivation and Context

Frame semantics (Fillmore et al., 2006) is a lin-
guistic theory that emphasizes understanding word

1https://github.com/H-TayyarMadabushi/
Generative-FrameNet

meanings through the semantic and conceptual
“frames” or “schemas” within which they operate.
This theory is exemplified by FrameNet, a manu-
ally curated dataset of frames designed to repre-
sent commonly occurring concepts (Baker et al.,
1998; Ruppenhofer, 2006).2 Although FrameNet
has been touted for its utility in improving tasks
such as textual entailment, it has also been crit-
icized for its limited coverage and for being too
abstract to effectively support many downstream
applications (e.g., Burchardt et al. (2009)). In this
work, we propose a novel mechanism for generat-
ing domain-specific frames at the appropriate level
of abstraction for a given downstream task. We
refer to this approach and the resultant frames as
Generative FrameNet.

We focus on the downstream task of retrieving
relevant facts to answer specific questions. We
demonstrate a method for generating more contex-
tually relevant frames that retain their utility in the
evolving landscape of LLMs, which have the inher-
ent tendency to generate plausible sounding, yet
inaccurate output. This phenomenon, referred to as
“hallucinations,” has been a significant stumbling
block in broad deployment of LLMs in applications
requiring accuracy (Ji et al., 2023). Hallucinations
themselves are not limited to factual inaccuracies,
and include other modes of failure.

The capabilities of LLMs typically improve with
an increase in their “size,” which is a combination
of a model’s parameters and the size of the pre-
training corpus. Until recently, this was seen by
some as being evidence that further scaling would
eventually address the shortcomings of LLMs, in-
cluding hallucinations. For example, LLMs were
claimed to develop “emergent abilities”: specif-
ically, it was believed that LLMs, when scaled
to several billion parameters developed capabili-
ties including those required to solve tasks involv-

2https://framenet.icsi.berkeley.edu/
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ing reasoning in humans, thus indicative that the
LLMs were developing reasoning skills (Wei et al.,
2022b). More recent work, however, has shown
that this is not the case and that LLMs instead de-
velop a single capability, which they leverage to
solve tasks (Lu et al., 2023). This capability, called
“in-context learning,” is, roughly put, the ability of
models to solve a particular task based on a few
examples provided in the prompt (Brown et al.,
2020; Chowdhery et al., 2023). Lu et al. (2023)
further suggest that the process of instructional fine-
tuning LLMs to understand instructions (Wei et al.,
2022a), enables models to leverage the same “in-
context” abilities even in the absence of examples.
This finding indicates that further scaling, while
providing improved instruction following abilities,
will not grant models the broader capacity for gen-
eral reasoning.

The fact that LLMs are not likely to develop the
ability to reason has profound implications to work
on improving them, including to mitigating halluci-
nations. It implies that we must explore alternative
approaches. This is especially the case when it
comes to factual hallucinations as the ‘parametric
memory’ in LLMs is orders of magnitude smaller
than the pre-training data (Ji et al., 2023). As such,
they must necessarily use some method of com-
pressing their pre-training data. Without the ability
to distinguish between the information that is rele-
vant and what is not relevant in their pre-training
data, their method of compression defaults to be
the memorisation of frequent information. Less
frequently occurring facts are not explicitly stored
and instead the model has access to only statistical
approximations. Given that the exact information
stored is not explicit and also different for models
of different scale and training regimes, the only way
to get around hallucination is to explicitly provide
LLMs with all but the most common information.

The most effective method of providing such
information, and therefore mitigating factual in-
accuracies to date has been Retrieval Augmented
Generation (RAG), which involves the inclusion
of relevant information to the prompt (Lewis et al.,
2020). However, RAG comes with its own short-
comings. The retrieval of information relevant to
answering a query is not straightforward (Gao et al.,
2024). While LLMs can handle some noise in the
retrieved context provided, a dramatic increase in
noise unsurprisingly leads to deteriorating perfor-
mance of models. This problem becomes even
more important when the query requires reasoning

over multiple facts, each of which are progressively
semantically further from the query. Overall, be-
cause logically connected information is not always
semantically similar, existing keyword and distri-
butional similarity based search and information
retrieval (IR) systems are poorly suited for the spe-
cific IR requirements of LLMs (Fleischer et al.,
2024). Existing methods of dealing with this prob-
lem in IR are not interpretable, and the deep neural
methods relying on embeddings introduce another
opaque mechanism, making failures difficult to di-
agnose and fix. Given this context, this work makes
the following contributions:

1. We propose a novel mechanism of generating
relevant frames at the level of abstraction re-
quired for specific problems using LLMs that
we call Generative FrameNet.

2. We show the effectiveness of these frames on
the task of retrieving relevant information for
answering questions that remains extremely
relevant even in the context of LLMs.

3. We additionally demonstrate, through a man-
ual expert evaluation, the quality and rel-
evance of these frames, showing that our
method has the potential to provide data-
driven resources and insights for the theory of
Frame Semantics.

The rest of this paper is organised as follows: §2
provides an overview of Frame Semantics, and §3
provides an overview of our use of Frame Seman-
tics for retrieval. We then demonstrate the short-
comings of an existing Frame Semantic resource,
FrameNet (§4), before detailing our methods of
generating and using custom frames for indexing
facts in §5. §6 present our results including the ef-
fectiveness of our methods in addition to a manual
analysis of the frame resource we create, before
concluding in §7.

2 Frame Semantics

Frame semantics (Fillmore et al., 2006) is a theory
of linguistics that emphasises that the meanings
of words are best understood by the semantic and
conceptual “frames” or “schemas” within which
they function. As Fillmore puts it, “words rep-
resent categorisations of experience, and each of
these categories is underlain by a motivating situa-
tion occurring against a background of knowledge
and experience” (Fillmore et al., 2006, 373-374).
A frame is the cognitive structure or background
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against which the meaning of a word is defined and
understood. Frames organise knowledge based on
typical situations, actions, or common experiences.

A frame influences how the meanings of words
are interpreted in different contexts. This facili-
tates basic word sense distinctions such as river
“bank” and financial “bank”, but also nuanced in-
terpretations of words such as “guilty” in everyday
or religious contexts as opposed to legal contexts.
Additionally, when a word invokes a frame, it also
invokes related concepts within that frame. For
example, the word “sell” invokes a commercial
transaction frame involving a seller, a buyer, an
item being sold, and a price. Thus, the frame helps
to predict and explain the use of other related words
and the roles they play within the same context.

3 Frame Semantic Retrieval

This section provides an overview of Frame Seman-
tic Retrieval, our proposed mechanism of storing
and indexing factual information to aid effective
retrieval.

3.1 Development & Evaluation Data

In evaluating our mechanism of retrieval, we make
use of Entailment Bank (Dalvi et al., 2021), which
comprises science questions from school years 4 to
6, along with relevant facts and “entailment trees”.

Question How might eruptions affect plants?

Associated
“Factoids”

F1: eruptions emit lava;
F2: eruptions produce ash clouds;
F3: plants have green leaves;
F4: plant producers die without sunlight;
F5: ash clouds block sunlight.

Inference
Steps

F2 + F5 implies I1: eruptions block sun-
light;
F4 + I1 implies I2: eruptions can cause
plants to die.

Answer eruptions can cause plants to die.

Table 1: Example question from Entailment Bank and
associated factoids. LLMs find it significantly easier to
generate the required entailment trees when presented
with all relevant facts, demonstrating the continued rele-
vance of effective and interpretable IR.

Consider Table 1, which presents an example from
the Entailment Bank dataset. The original task
involves building an entailment tree—a tree con-
sisting of inference steps—and consists of three
sub-tasks at different levels of difficulty:
Task 1 presents the model with all relevant facts

and requires the construction of the entailment tree;
Task 2 requires the model to perform the same task,
but with 15 to 25 distractor facts included;
Task 3 involves first extracting the relevant facts
before constructing the entailment tree.
The authors find that even a relatively small model,
T5-11B (Raffel et al., 2020), can perform relatively
well on Tasks 1 and 2, when fine-tuned. Task 3,
they find, is much harder, highlighting the impor-
tance of efficient retrieval (see Dalvi et al. (2021)
for details).

3.2 Frame Semantics for Information
Indexing and Retrial

Overall, these results reinforce our earlier points:
retrieval is non-trivial and improving retrieval has
the potential to significantly boost model perfor-
mance. In the example presented above, using
search terms derived just from the question (e.g.,
“eruption”) including more complex combinations
(e.g., “eruption and plants”) may not effectively
retrieve relevant information. Additionally, if the
search terms are too broad, it can cause the retrieval
of a significant number of irrelevant facts. Both the
lack of relevant facts and a large number of unre-
lated facts can hinder the model’s performance.

Fillmore’s Frame Semantics theory posits that
when the question of Table 1 is presented to an En-
glish speaker, the question would evoke a volcanic
eruption frame and a plant life frame, including
the frame elements of those frames. We contend
that frame structures facilitate capturing the level
of specificity found in the associated factoids, i.e.
frame elements such as “lava, ash, plants, sunlight,”
and the level of specificity needed to reason about
such questions. Triggering such frames activates
the elements, priming speakers to reason about the
question using the relevant concepts (e.g., Bodner
and Masson (2003)). Thus, this work is motivated
by the hypothesis that we can significantly narrow
the search space if we index facts—stored as plain
text—according to the frames they invoke and use
the frames associated with the question along with
the relations between frames to retrieve relevant
facts. To test our hypothesis, we focus our experi-
ments on the retrieval of relevant facts.

Importantly, using frames associated with ques-
tions and relevant factoids, along with frame re-
lations, offers an inherently interpretable method
of indexing and retrieval. This approach also has
the added benefit of enabling easy updates to fast-
changing information.
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3.3 Task: Relevant Fact Retrieval

Our choice of the specific task is motivated by our
earlier observation that LLMs can perform reason-
ably well at answering complex questions when
provided with relevant facts alongside some distrac-
tors. However, as described in the previous section,
the retrieval of these relevant facts poses a signifi-
cant challenge. Therefore, we focus on the task of
retrieving relevant factoids for answering questions
in Entailment Bank. Specifically, we focus on the
information extraction subtask required in Task 3
described in §3.1. Notice that the effective retrieval
of facts would simplify Task 3 to Task 2, the task
of building entailment trees given the relevant facts
and some distractors. Given how effective T5-11B
(which by current standards consists of relatively
few parameters) is on Task 2, simplifying Task 3 to
Task 2 provides a template for solving tasks based
exclusively on retrieved facts, which would in turn
help with the mitigation of factual hallucinations in
LLMs. We slightly modify Task 3 by constructing
the corpus of facts that we extract from using all
the facts required by any question across the rele-
vant data split, instead of the complete text book
corpus which is harder to process. This limitation
is not a significant drawback, as we can always add
more facts if needed. We have chosen not to do so
currently due to cost constraints, but this could be
addressed in the future by leveraging open LLMs.
Regardless, we evaluate Frame Semantic retrieval
and the baselines on exactly the same set of ques-
tions and facts to ensure a fair comparison to past
work (Dalvi et al., 2021). All experiments are run
on the complete Entailment Bank test set consisting
of 340 questions and 1,109 corresponding factoids.

3.4 Empirical Evaluation Metrics

Given the nature of our task, we select Recall@k
as our evaluation metric. The average length of
entailment trees in the Entailment Bank dataset is
7.6 with very few having more than 10. Given
that Task 2 (described previously in §3.1) includes
between 15 and 25 distractors, we test our meth-
ods using Recall@k for k ∈ 35, 40, 45. Success
in this setting will demonstrate that our retrieval
mechanism can effectively simplify Task 3, which
requires retrieval from the entire corpus, into the
simpler Task 2, which involves building entailment
trees based on relevant facts and a few distractors.

3.5 Baselines

We use two different baselines, against which we
compare the effectiveness of Frame Semantic in-
dexing and retrieval. We briefly test a third base-
line using frames from FrameNet, but find it to be
particularly ill-suited for this task (for a manual
comparison of Generative Frames and FrameNet
frames in this context, see §4.1). Consequently, we
discontinue further exploration. The first baseline
a simple keyword match baseline and is chosen
due to our emphasis on interpretability and ease
of correction. Since Frame Semantic retrieval im-
plicitly provides interpretability, we choose a base-
line that is similarly transparent. We first generate
search terms by feeding the relevant question to
RAKE (Rose et al., 2010), a tool for effectively
extracting search terms. We then perform a sim-
ple string match to extract all factoids that con-
tain the keywords. The second baseline we use is
not directly comparable as it is not interpretable.
This consists of using an LLM to generate relevant
search terms. Both baselines can be boosted using
several techniques. However, we choose not to test
these methods, as the purpose of this study is not
create a mechanism that outperforms existing meth-
ods, but to establish the feasibility of the Frame
Semantic indexing and retrieval process which has
the advantages of being interpretable and based on
cognitive linguistic theory.

4 FrameNet

Prior to the introduction of Generative Frames, cre-
ated using LLMs (§5), we explore the effectiveness
of FrameNet, an existing online database based
on Frame Semantics, for the task at hand. The
goal of FrameNet is to catalogue English words
and their associated semantic frames, defining the
various roles and relations in a frame and illustrat-
ing these with example sentences. Each “frame” in
FrameNet captures a specific type of event, relation,
or entity and the roles associated with it.

FrameNet is the product of years of manual ef-
fort. Unfortunately, the 1200 frames of FrameNet
remain limited to the domains of annotated data and
do not have broad coverage of all the frames that a
single speaker would build up over a lifetime of ex-
perience. Indeed, such a coverage goal is ludicrous
given the time and expense of manually construct-
ing FrameNet. This challenge motivated our data-
driven generation of semantic frames, which we
will describe in §5.1. Nonetheless, to clearly justify
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our choice to leverage Generative Frames in lieu of
the existing FrameNet, we evaluate both FrameNet
and our generated frames for suitability as an exter-
nal knowledge base in our RAG approach.

4.1 Manual Frame Evaluation

We randomly sampled a set of questions from
Entailment Bank such that we had five non-
overlapping samples totaling 29 lines (questions
and factoids) each. These 29 lines included 5 ques-
tions and the related supporting factoids for that
question; questions were included for coherency
but only factoids were annotated, as having the rel-
evant frames for each factoid should provide the
relevant factoids for the question, as described in
§3. Each sample was used for a manual annotation
and evaluation task designed to examine the cover-
age of FrameNet as well as the semantic granularity
of any relevant frames. We report full annotation
procedures and details in Appendix A; here we
briefly summarize the tasks and FrameNet results.
These tasks were repeated for the same samples
with our Generative Frames as well; the results for
that evaluation are reported in Section 6.1.

The first task, presented to two annotators, evalu-
ates and provides judgments on the semantic gran-
ularity of the frames assigned by an automatic
FrameNet tagger (Chanin, 2023) to one Entailment
Bank sample. The frames are assigned in order
of the detection of triggers for that frame in that
sentence. For example:
Entailment Bank Factoid: gases released during the
use of fossil fuels causes global warming.
Tagged Frames: USING, CAUSATION

For each frame assigned, the annotators assign a
value from 1-3, where 1 indicates that the frame
is too general to be useful in capturing the most
salient concepts of the instance, 2 is a useful level
of specificity, and 3 is too specific to capture the
salient concepts invoked by the instance.

The second task, presented to the same two an-
notators, asks each annotator to assign up to two
FrameNet frames to another Entailment Bank sam-
ple. In addition, for each instance, the annotator
responds to a question as to whether the potentially
applicable frames are too similar, and therefore
can’t be distinguished as to which is a better fit,
and a separate question as to whether the resource
lacks adequate coverage for capturing the seman-
tics of the instance.

4.2 FrameNet: Manual Evaluation Results

The first task exploring the granularity of the
frames demonstrated that the vast majority of
frames tagged were too general to be useful (17
out of 25 annotation instances had modal values
of “1: too general” across the frames assigned to
that instance). Consider the example above: The
USING frame was found to be too general by both
annotators while the CAUSATION frame was found
to be too general by one but of a useful granularity
by the other annotator. These frames are triggered
by the lexical items “use” and “causes” respectively.
As the matrix verb, “cause” is certainly more cen-
tral to an understanding of the factoid, but both are
general concepts that can be applied to a range of
sentences from many different conceptual domains.

The second task exploring the coverage of
FrameNet demonstrated that it lacks coverage for
the semantic domains of the Entailment Bank data;
i.e. the natural world. Both annotators found
that FrameNet lacked sufficient frame coverage for
about 80% of the 24 factoid instances in the sample.
Our Inter-Annotator Agreement (IAA) calculations
for both tasks are presented in Appendix A.3.

Overall, our manual evaluation of FrameNet
shows that, despite the immense value in the care-
fully curated resource, there are still broad swaths
of domains such as the natural world that lack suit-
able coverage in FrameNet. Although frames can
be triggered by and assigned to our data, these
frames are too general to effectively capture the se-
mantics of the domain in order to support reasoning
and answering questions about it. This motivates
the data-driven, semi-automatic development of a
novel Frame Semantic resource, described next.

5 Frame Semantic Generation: Methods
and Qualitative Analysis

In this section, we detail the methods used for
frame generation, Frame Semantic indexing, and re-
trieval. Table 2 exemplifies all stages of the method-
ology. Given that one objective is to maintain in-
terpretability and to potentially provide data-driven
insights to the theory of Frame Semantics, we per-
form a qualitative analysis of the outputs of each
of the stages. An empirical evaluation of the effec-
tiveness of these methods is presented in §6.2.

The mechanism of retrieving information based
on Frame Semantics consists of three distinct tasks:
frame identification, duplicate testing, and frame
relation identification. The first step of the frame
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Task Prompt Output Example

Frame Identification

During pre-processing,
facts are indexed by the
the frames they invoke

During inference,
relevant facts are ex-
tracted based on frames
invoked by the question
and additional frames
that are related

What is the single/two most important frame,
based on the theory of Frame Semantics, rel-
evant for answering the question/fact below.
Do not include frames about answering ques-
tions or reasoning, that is implied. Do not in-
clude frames which are metaphorical. Ensure
the the name of the frame is as descriptive
as possible. Output a single frame and join
words in the frame by underscores. Output
nothing but the name of the frame.
Question 1: How does the appearance of a
constellation change during the night?
Answer 1: celestial_motion
. . .
Problem:
Question Problem: <QUESTION>
Answer Problem:

Input Question: Tides, such as those along
the coast of Massachusetts, are caused by
gravitational attractions acting on Earth.
Why is the gravitational attraction of the
Moon a greater factor in determining tides
than the gravitational attraction of the much
larger Sun?
Output Frame: GRAVITA-
TIONAL_INFLUENCE

Check if the new frame
must be added to the
frame set

Used during infer-
ence

The following question has been tagged with
the single frame listed. Is this frame signif-
icantly different from existing frames listed
and should it be added as a new frame? Re-
spond with True if it is significantly differ-
ent otherwise False. Respond with True and
False only.
Example Question: From Earth, the Sun ap-
pears brighter than any other star because the
Sun is the
Example Tagged Frame:proximity
Example Existing Frames 2: CELES-
TIAL_MOTION
Example Answer: True
. . .
Question Problem: <INPUT QUESTION>
Tagged Frame Problem: <INPUT NEW
FRAME>
Existing Frames Problem: <INPUT EXIST-
ING FRAME>
Answer Problem:

Input Question: Melinda learned that days
in some seasons have more daylight hours
than in other seasons. Which season receives
the most hours of sunlight in the Northern
Hemisphere?
Input Frame Assigned: SEA-
SONAL_VARIATION_IN_DAYLIGHT
Input List of Existing Frames:
DAYLIGHT_VARIATION, SEA-
SONAL_ADAPTATION, SEA-
SONAL_BEHAVIOR, SEASONAL_CHANGE,
SEASONAL_VARIATION
Output (Add SEA-
SONAL_VARIATION_IN_DAYLIGHT to
Frame Set?): False
Action Taken: Question tagged with DAY-
LIGHT_VARIATION

Identifying Frame
Relations

Used during infer-
ence

Listed below is a single frame relevant to a
question. List those frames which are most
likely to be associated with the facts required
to answer this question. These frames are
based on the theory of Frame Semantics.
Do not include frames about answering
questions or reasoning, that is implied. Do
not include frames which are metaphorical.
[. . . ]
Example Question 1: Stars are organized
into patterns called constellations. One
constellation is named Leo. Which statement
best explains why Leo appears in different
areas of the sky throughout the year?
Example Question Frame: CELES-
TIAL_MOTION
Example Output Frames: CON-
STELLATION_CLASSIFICATION,
STAR_CLASSIFICATION, CELES-
TIAL_MOTION
Problem Question : <QUESTION>
Problem Question Frame : <FRAME>
Problem Output Frames:

Input Question: Which measurement is best
expressed in light-years?
Input Question Frame: DIS-
TANCE_IN_ASTRONOMY
Output set of Frames Related to Question
Frame: CELESTIAL_DISTANCE, ASTRO-
NOMICAL_UNIT, SPATIAL_MEASUREMENT

Table 2: Prompts and associated outputs for each step in frame based indexing and retrieval. Terms enclosed in
<brackets> represent placeholders and . . . represent up to 5 similar in-context examples that are substituted with the
actual examples, question or frame during inference. See text (Section 5) for detailed description of each of the
steps.
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identification task is a pre-processing step, which
involves creating relevant frames where required,
and indexing all relevant factoids based on be-
tween two and four of the most prominent frames
that they invoke (See Row 1 of Table 2). After
pre-processing, at inference time, the single most
important frame associated with the question (the
question frame, also depicted in Row 1 of Table 2)
is identified.

The second task is to check for duplicate frames:
in order to ensure that newly generated frames are
not too similar to existing frames, we perform a du-
plication test, also using GPT-4, depicted in Row 2
of Table 2. This duplication test involves retrieving
the five most semantically similar frames (using
SentenceBERT based vector similarity) from the
previously generated set and prompting GPT-4 to
either (a) determine if the new frame should be
added or (b) decide if one of the existing frames is
sufficient, selecting the most appropriate one.

The third task is to identify frame relations. We
identify frames associated with the question frame,
which are likely to be associated with factoids rele-
vant to answering the original question, but sepa-
rated by one or more logical steps (frame relations,
depicted in Row 3 of Table 2). We conduct the du-
plication test for the related frames as well before
introducing them to our Generative Frames.

The complete prompts are made openly avail-
able on our project site. In all cases, we prompt
GPT-4 (OpenAI et al., 2024) using a temperature
of 0 to ensure reproducible results. Overall, this
method allows us to use an LLM to generate can-
didate frames and to match these with previously
generated frames, thus allowing us to build a frame
based index of factoids that we use for retrieval
through similarly generated frames associated with
questions during inference.

This method supports two key functions: (a) gen-
erating frames associated with a given text, and (b)
identifying frame relations at a single level of sepa-
ration. While further traversal through additional
levels of frame relations is technically possible, we
opted against this due to the potential for noise.
Future work will focus on developing a more struc-
tured and hierarchical frame architecture, which
could allow traversal beyond a single step while
maintaining precision. In the next two sections,
we provide greater details on the frame and frame
relation identification steps.

5.1 Frame Identification

There are two difficulties in identifying the frames
associated with facts or questions. The first is the
necessity to define a complete set of frames, and
the second is the linking of these frames to the rel-
evant fact or question. In addition to our manual
evaluation of FrameNet (§4.1), we conducted ex-
ploratory experiments using FrameNet as a defini-
tive source of all frames, which we used to compare
against facts and questions from Entailment Bank;
we showed that FrameNet is inadequate for our re-
search purpose for two reasons. First, FrameNet’s
focus on ‘trigger’ words to identify frames is prob-
lematic. This emphasis on individual trigger words,
likely influenced by the tools available at the time
of FrameNet’s inception, overlooks the fact that a
sentence, as a whole, might invoke a frame that
is difficult to identify through trigger words alone,
which themselves can be challenging to extract
within sentences. Second, as mentioned in our
manual evaluation findings, the frames available
within FrameNet cover a limited set of domains,
which overlap minimally with the frames that are
appropriate for the Entailment Bank dataset.

To address these issues, we bootstrap the cre-
ation of frames using an LLM, specifically GPT-4.
We prompt GPT-4 to generate frames relevant to
the input fact or question, allowing us to organi-
cally expand our set of frames. We use in-context
examples, selected from the training set, to enable
the model to better output relevant frames. This
process involves initially prompting the model to
generate frames without in-context examples for
facts and questions in the training set one at a time.
From these outputs, we identify outputs deemed
relevant and of sufficient quality and use them as
in-context examples to refine the model’s perfor-
mance. These in-context examples are made avail-
able alongside the data released with this work.

We start with an empty ‘frame set’ and itera-
tively generate frames associated with facts and
questions. For each fact or question, the frames
output by GPT-4 are compared with the existing
frames previously generated (or none in the initial
instances). This duplication test is also done with
the help of GPT-4. We first extract 5 frames, whose
frame names are most semantically similar to that
of the newly generated frame. This is done using
Sentence BERT (Reimers and Gurevych, 2019),
an effective semantic similarity metric that orig-
inally relied on BERT (Devlin et al., 2019), but
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now makes use of custom contextual embeddings.
We then prompt GPT-4 to determine if the newly
generated frame must be added to the frame set.

As an example, GPT-4, when prompted to gen-
erate frames related to the Entailment Bank factoid
“the gravitational pull of the sun on earth’s oceans
causes the tides,” might generate GRAVITATIONAL

INFLUENCE and TIDAL MOVEMENT. These frames
are compared against the existing frames and the
frame GRAVITATIONAL INFLUENCE might be re-
placed by the similar frame GRAVITATIONAL AT-
TRACTION already in our frame set. If a similar
frame is not found, the original frame is added to
the frame set. This same process is then used to
generate frames associated with questions. We find
that GPT-4 is a poor judge of identifying frames
which are truly different form those already in the
frame set. Thus, we always augment the origi-
nal set of frames with five existing frames whose
names are most semantically similar to the original.
See also Table 2 for more examples.

5.2 Frame Relations

We call the overlap between the frames invoked by
a question and those invoked by the facts necessary
for answering that question a first-order overlap.
This first-order overlap isn’t sufficient for extract-
ing all facts relevant to answering a question. As
such, we require a means of identifying relations
between frames, so we can expand the set of rele-
vant frames, as a proxy for the reasoning process.

Instead of importing definitions of frame re-
lations, for example from FrameNet, we gener-
ate these relations using a data-driven approach.
Specifically, we extract questions and associated
facts from the training data. We then assign frames
to both the questions and the facts using the meth-
ods described previously. The frames associated
with the questions and the corresponding facts are
assumed to hold a latent relation, which we use
to generate similar frame relations at the time of
answering questions. This is done by prompting
GPT-4 with the relevant question and the frame
associated with the frame and requiring GPT-4 to
generate frames relevant to answering the ques-
tion. While these relations are currently simplistic,
we believe that iteratively refining them with in-
put from linguists can make them more nuanced.
Row three of Table 2 presents the prompt and an
example output of this step.

6 Results

6.1 Qualitative Analysis & Evaluation

A qualitative analysis of resultant frames and frame
relations demonstrates the effectiveness of this
method. Table 2 presents some of the frames and
frame relations automatically generated using the
methods described above. The results are far from
perfect, but are interesting from the perspectives
of the diversity and adaptability they present. We
note that these results are achieved though prompt-
ing alone. Given that LLMs, such as GPT-4, are
unlikely to be designed to solve tasks such as this,
it is not surprising that there is much room for im-
provement, although the results demonstrate the
feasibility of this method. To robustly evaluate the
quality of the frames and compare to FrameNet,
we conduct the same two manual evaluation tasks
described in §4.1, except this time we use our set
of 941 Generative Frames resulting from the data-
driven process described in §5.

The first evaluation task examines the semantic
granularity of the frame assigned to a factoid in
the same Entailment Bank sample evaluated for
FrameNet (see §4.1 and Appendix A.1). Annota-
tors supply a 1-3 value judgment on each Genera-
tive Frame automatically assigned in the process
of our pipeline, where 1 indicates that a frame is
too general, 2 indicates that a frame is of a useful
granularity for reasoning about the question, and 3
is too specific. When using our Generative Frames,
the majority were found to be of a useful granular-
ity for capturing the semantics of the factoid (15
of 24 annotation instances, 63%, had modal values
of “2: useful” across the frames assigned to that
instance). In comparison to FrameNet, for which 0
frames were thought to be too specific, 2 of the in-
stances received modal values of “3: too specific”.
Only one instance had a modal value of “1: too
general”, although 5 instances were tied for modal
values of 1 or 2.

The second task evaluates the coverage of the
frame resource (Appendix A.2). The same two
annotators were tasked with assigning up to two
Generative Frames to the same sample previously
evaluated for FrameNet (§4.1). Additionally, the
annotators responded to one question as to whether
the potentially applicable frames are too similar,
and one question as to whether the resource lacks
adequate coverage. Given that our frames were
generated to capture the Entailment Bank data, it
is unsurprising that the two annotators agreed that
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the resource had adequate coverage for 100% of
the instances in the sample. Although our Gener-
ative Frames lack a search or annotation interface
parallel to what was used during FrameNet anno-
tation (instead annotators were simply presented
with a long text list of all Generative Frames along
with definitions and frame elements), the annota-
tors agreed upon at least one of the assigned frames
in 83% of 24 instances. This agreement is much
higher than for FrameNet, which was 63%. This
demonstrates that while it can be difficult to agree
upon a triggered frame when the frames are very
general (as in FrameNet), annotators tend to agree
upon the triggered frame when it is of a more pre-
cise granularity in capturing the semantics of the
factoid.

Overall, our evaluation shows that the Genera-
tive Frames have high coverage of our domain, and
that coverage involves frames that are of a useful
granularity for capturing the salient semantics of
factoids, facilitating reasoning about the questions
to which those factoids relate.

6.2 Empirical Evaluation

Recall@
RAKE
Search
(Baseline 1)

GPT-4
Search
(Baseline 2)

Frame
Semantic
Retrieval
(our method)

@35 0.330 0.385 0.439
@40 0.333 0.390 0.464
@45 0.338 0.396 0.473

Table 3: Recall@k between 35 and 45 comparing
Frame Semantic retrieval to search based retrieval where
the search terms are generated using a traditional key-
word based method (RAKE) and using GPT-4. It is
notable that Frame Semantic retrieval performs signif-
icantly better than both baselines across all selected
values of k.

We present an empirical evaluation of the Frame
Semantic retrieval methods described above. We
compare the performance of Frame Semantic re-
trieval to the two search-based baselines described
in Section 3.5. We present the results in Table
3. Overall, we find that Frame Semantic retrieval
outperforms both the simple search-based base-
line, as well as the baseline where search terms
are generated using GPT-4, by a significant margin.
Recall that we test our methods using Recall@k
for k ∈ 35, 40, 45 to take into account the fact
that this allows us to demonstrate that our retrieval
mechanism can effectively simplify Task 3, which
requires retrieval from the entire corpus, into Task
2, which involves building entailment trees based

on relevant facts and a few distractors. Our re-
sults show that we do effectively narrow down the
search space and demonstrates the feasibility of
frame-based indexing.

Frame semantic indexing and retrieval has sig-
nificant advantages—each stage can be improved
by fine-tuning LLMs for the specific purpose. Most
importantly, the transparent nature of this process,
which outputs frames at each stage, allows for the
analysis and ‘debugging’ of each stage.

7 Conclusions and Future Work

This work presents a novel mechanism of gener-
ating relevant frames of the appropriate level of
abstraction for any domain. We demonstrate the
use of these frames in the challenging task of inter-
pretable IR. Our qualitative manual evaluation and
empirical evaluation demonstrate that our hypothe-
sis, that we can effectively narrow the search space
by indexing facts according the the frames they in-
voke along with related frames via frame relations,
is supported. Thus, this work demonstrates the
feasibility and effectiveness of this method in both
retrieval and the automatic generation of frames
which, when scaled to multiple tasks, also has the
potential to provide data-driven insights to the the-
ory of Frame Semantics.

In future work, we will create models that are
fine-tuned for each of the tasks within this ap-
proach: frame generation, identification and frame
relation identification. This approach is feasible, as
the necessary training data can be bootstrapped us-
ing in-context examples and manual quality checks.
We will also extend this work to multiple tasks. We
emphasise that this work also provides a template
for effectively integrating cognitive linguistics and
LLM research, benefiting both fields.

Limitations

Our experiments are based on a single task in a
specific domain. As a proof of concept of a novel
method that is based on cognitive linguistic theory,
these experiments are effective in showcasing the
feasibility of this method. However, demonstrating
the effectiveness of this method on multiple tasks
is required for a more rigorous test, which we leave
to future work. Additionally, our experiments, how-
ever, do not extend to testing LLMs for reduced
hallucinations; prior work implies that improved
retrieval will indeed lead to reduced hallucinations,
but it is left to future work to rigorously test this.
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A Manual Annotation & Evaluation
Details

A.1 Evaluation Task 1: Granularity of the
Frame Resource

Our first task explores the semantic granularity
of the frames in FrameNet with respect to the
Entailment Bank subject matter, which largely
relates to phenomena of the natural world. We
leverage the automatic FrameNet tagger of Chanin
(2023) to assign FrameNet frames to each sentence
of our sample; resulting in 1-4 frames assigned to
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each sentence. The frames are assigned in order
of the detection of triggers for that frame in that
sentence.

Example 1:
Entailment Bank Factoid: gases released during
the use of fossil fuels causes global warming
Assigned Frames: USING, CAUSATION

The sentences and annotations were presented
to two linguist annotators who are native English
speakers trained in linguistics and semantic role
annotation schemas. In a spreadsheet, each
annotator provided a judgement on each frame
assigned. The judgement options were numerical
values 1-3 corresponding to:

1=Frames are about a high-level concept and not
helpful in summarising the question or factoid
beyond what kind of factoid/question it is
2=Frames are about the topic and helpful in
summarising the question/factoid
3=Frames are too specific to the topic at hand and
provide very little in way of generalisation
NA=The frame assigned is not applicable at all; i.e.
a tagger error

For the first task, we report the modal judgment
value (e.g., 1, 2, or 3) across all frames tagged for
that question/factoid. This gives us a broad sense
of the granularity of the frames despite the fact
that different instances have different numbers of
frames tagged. We also measure Inter-Annotator
Agreement (IAA) by computing simple agreement
in the form of the percentage of frame judgments
agreed upon across the two annotators.

A.2 Evaluation Task 2: Coverage of the
Frame Resource

The second task explores the coverage of the
Entailment Bank domain and the ability of the
two annotators to assign appropriate frames to
the second sample of questions and factoids.
Each annotator is presented with each line of the
Entailment Bank sample in a spreadsheet, and
asked to leverage the online FrameNet search
to find and assign up to 2 relevant frames. For
each annotation instance, the annotator is asked to
respond “yes,” or “no”:

Q1: The 2 frames assigned are too similar; I cannot
tell which is more appropriate

Q2: The resource lacks coverage for capturing this
question/factoid

For the first question, annotators could also re-
sponsd “NA” if only one frame was determined
to be applicable. For the second question, even if
one frame was determined to be triggered by the
question or factoid, the annotator could respond
“yes - the resource lacks coverage...” if the frame
was applicable but so general that it was not useful
in capturing the semantic domain invoked by the
instance.

For the second task, we report the percentage
of “yes” and “no” answers to each question across
all annotation instances. We report this for each
annotator with the expectation that the percentages
should be similar. We also report IAA of the frame
assignment task in the form of the percentage of
agreed upon assigned frames out of the total num-
ber of instances. Each annotation instance can be
counted as a single match if either of the up to two
assigned frames matched.

A.3 IAA Results

FrameNet, Annotation Task 1 Our Inter-
Annotator Agreement (IAA) analysis found that
the annotators agreed upon the same value for
an assigned frame in 39 out of 48 frames (again,
1-4 frames can be assigned per instance), for
an agreement percentage of about 81%. Thus,
although the task is subjective, annotators tend to
agree on the values assigned.

FrameNet, Annotation Task 2 The IAA analysis
of the second task finds that annotators agreed
upon the frame assigned (or that no applicable
frame existed) in 63% of the 24 instances. Since
annotators responded that 80% of the instances
lacked frame coverage that succinctly captured
the factoid, it is reasonable that IAA would be
somewhat low for this task.3 The disagreements
involved related frames; for example:
Example 2
Entailment Bank Factoid: Color is a kind of
property
Annotator 1 Frame: COLOR

3Our IAA is lower than the relatively high frame agreement
reported in Burchardt and Pennacchiotti (2008) of 88%, where
FrameNet frames were assigned to text instances in support
of a textual entailment task. Their frame assignment was
limited to frames evoked by certain lexical triggers assigned in
a previous step, so it is a simper task with much more limited
choices.
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Annotator 2 Frame: COLOR_QUALITIES

Generative Frames, Annotation Task 1 In
our IAA analysis of the first task, we find that
annotators agreed on the value judgement of the
automatically assigned Generative Frame in 65%
of the 71 total frames assigned (instances could
be assigned up to 4 frames). This IAA is slightly
lower than that of the FrameNet evaluation, likely
because all of the FrameNet frames were very
general, whereas the Generative Frames have a
greater range from too general to too specific.

Generative Frames, Annotation Task 2 Given
that our frames were generated to capture the En-
tailment Bank data, it is unsurprising that the two
annotators agreed that the resource had adequate
coverage for 100% of the instances in the sample.

However, the annotators did not agree upon the
extent to which the applicable frames were too
similar. One annotator only found 2 applicable
frames for 3 of the 24 instances (for all others only
one frame was assigned), and answered that the 2
frames were sufficiently distinguishable in all 3 of
those cases. The other annotator found 2 applicable
frames for 13 of the 24 instances, and answered
that in all 13 cases, the 2 frames were too similar
to distinguish. This reinforces the notion that the
frames are of a finer semantic granularity in com-
parison to FrameNet, but also demonstrates that the
annotators may have approached this task differ-
ently. While FrameNet has a nice search interface
for its frames, we currently have no such tool for
the Generative frames. Thus, one annotator may
have taken an approach of searching through our
spreadsheet listing Generative Frames until a well-
fitting frame was found and then stopping, while
the other may have searched more broadly to find
multiple frames.

The annotators agreed upon at least one of the
assigned frames in 83% of the 24 instances. This
agreement is much higher than the equivalent for
FrameNet, which was at 63%.
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