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Abstract

Large Language Models (LLMs) based on self-
attention circuits are able to perform, at infer-
ence time, novel reasoning tasks, but the mech-
anisms inside the models are currently not fully
understood. We assume that LLMs are able to
generalize abstract patterns from the input and
form an internal symbolic internal representa-
tion of the content. In this paper, we study this
by analyzing the performance of small LLM
models trained with sequences of instantiations
of abstract sequential symbolic patterns or tem-
plates. It is shown that even a model with two
layers is able to learn an abstract template and
use it to generate correct output representing
the pattern. This can be seen as a form of sym-
bolic inference taking place inside the network.
In this paper, we call the emergent mechanism
abstraction head. Identifying mechanisms of
symbolic reasoning in a neural network can
help to find new ways to merge symbolic and
neural processing.

1 Introduction

Recognizing abstract patterns is a fundamental abil-
ity that humans have, allowing them to generalize
from a few instances and make inferences on un-
seen scenarios. LLMs seem to be able to perform
similar reasoning tasks and even exceed human per-
formance in some cases (Biever, 2023). Symbolic
machine reasoning systems have a long history
(Turing, 1950; Berkeley, 1959; Wiener, 1965) but
the emergence of the capability in current machine
learning systems is not fully understood. Large
transformers (Vaswani et al., 2017) and state-space
models (Gu and Dao, 2024) exhibit intriguing emer-
gent properties. Extremely large models appear
capable of executing tasks like in-context learning
(Brown et al., 2020) and chain-of-thought reason-
ing, which are not directly derivable from their
training data. The reasoning abilities of LLMs with
tabular, non-text data have been illustrated recently,
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as noted in (Jiang et al., 2024). Furthermore, the
reasoning prowess of LLMs has been highlighted
in robotic control (Zeng et al., 2023), autonomous
vehicle navigation (Chen et al., 2023), and the pro-
cessing of IoT sensor data (An et al., 2024).

The mechanistic interpretability of large lan-
guage models (LLMs) remains a highly active field
of research, with numerous recent theories about
how specific behaviors manifest in such extensive
models (Wei et al., 2022; Nichani et al., 2024;
Allen-Zhu and Li, 2024; Huang et al., 2023). This
line of research is driven by the common under-
standing that current LLMs are computationally
extremely expensive and environmentally unsus-
tainable, for most use cases, and still from their
theoretical capacity (Harmai et al., 2024). The cur-
rent methods for the minimization of the models,
e.g., using distillation techniques, produce only
relatively small gains (Xu et al., 2024). A better
understanding of the mechanisms can help to im-
prove the design of LLM architectures and training
paradigms.

The induction head mechanism is considered
a key factor behind in-context learning, enabling
a language model to identify a recurring pattern
from its input and either replicate it in the output
or merge it with previously stored knowledge (Ols-
son et al., 2022). Other theories explaining the
emergence of certain behaviors in large language
models include the concept of task-vectors (Hendel
et al., 2023; Akyiirek et al., 2023) and Bayesian
inference occurring during the model’s inference
phase (Xie et al., 2022).

In this paper, we investigate the ability of small
transformer models to recognize, learn, and gener-
alize abstract sequential symbolic patterns, or tem-
plates. A template refers to an abstract sequential
symbolic pattern that follows a defined structure
but can be instantiated with different symbolic ele-
ments. For example, the template ABCABCAB
represents a repeated sequence where A, B, and C'
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are symbolic placeholders that can take on specific
values. Templates represent the underlying struc-
ture of patterns, allowing us to explore whether
models can learn these abstract patterns and gen-
eralize to new instances that the model has never
seen, such as ABAC ABAC, that follow similar
structural rules. These templates can be instanti-
ated into specific sequences,such as 12312312 or
45645645, by assigning values to the placehold-
ers. Understanding whether models can generalize
across unseen instantiations and solve such patterns
dynamically during inference is in the focus of this
work.

Furthermore, we aim to determine whether a
model can recognize such instantiations in-context,
that is, whether it can recognize the symbolic map-
pings during inference without retraining and by us-
ing this understanding to solve new instances of the
same abstract template. This ability would indicate
that the model is not only learning patterns from its
training data but also reasoning dynamically based
on the input it encounters during inference.

Our experiments demonstrate that small trans-
former models with two or three layers can success-
fully solve the task of abstract pattern matching,
whereas single-layer models fail to solve the ab-
stract task, which aligns with the theory of single-
layer models inability to perform the induction
head task (Sanford et al., 2024). Additionally, we
observed the emergence of an abstraction head. We
define an abstraction head as an attention mecha-
nism in transformer models that attends to previ-
ous instantiations of a pattern in an abstract man-
ner, identifying the structural relationships between
symbolic placeholders, and using this information
to perform pattern matching on unseen instances
with a similar abstract structure.

The identification of the mechanisms of sym-
bolic reasoning emerging in the training of neural
networks can help to build new types of neuro-
symbolic processing paradigms. Moreover, it may
also help to train neural networks with an internal
visible symbolic reasoning mechanism. The recent
survey by Bhuyan et al. (2024) gives a taxonomy
of different neurosymbolic systems. The explicit
training of abstraction head configurations could
be seen as novel way to implement Type 6 neuro-
symbolic systems in their taxonomy.
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2 Methodology

To achieve our primary objective of understanding
how LLMs perform on abstract sequential sym-
bolic patterns, we designed a controlled experi-
mental setup involving synthetic datasets of tem-
plates and their instantiations. To generate the data,
we define abstract patterns of length eight using
three symbolic variables: A, B, and C'. For exam-
ple, consider the abstract pattern ABCABCAB.
By assigning specific values to A, B, and C, we
generate different instantiations of the same tem-
plate such as 12312312, 45645645, 78978978, and
15915915.

We generated all possible permutations of length
8, resulting in 6561 patterns. During this process,
we observed that some patterns did not include all
three variables, such as the pattern ACACAC AC
which only contains variables A and C, leav-
ing out B. To ensure uniformity, we excluded
such patterns, requiring that all three variables
are present. Additionally, we excluded patterns
where the last token appeared only once at the
end (e.g. ABABABAC), as the last digit in each
pattern serves as an evaluation metric in our ex-
perimental setup. To avoid duplication, we also
treated patterns that are equivalent after instantia-
tion as duplicates. For example, ABCABCAB
and ACBACBAC were considered the same pat-
tern and only one was used. This resulted in 1,806
unique patterns, which we split into 80% for train-
ing and 20% for testing to evaluate whether the
models can learn new abstract patterns they have
never encountered before from context.

After generating the abstract patterns, the next
step is to concretize them using instantiations. This
is achieved by generating all possible unique com-
binations of variables A, B, and C, ensuring that
each variable is different. Per pattern, we obtain
504 different instantiations.

To prepare the data for training and evaluation,
we combined every four instantiation in each input
sequence, where every instance should represent
the same abstract pattern. This choice ensures that
the model is exposed to different representations
of the same abstract structure, providing sufficient
context for generalization. Furthermore, it ensures
that the model is exposed to at least one instantia-
tion of a pattern early in the sequence, before gen-
eralizing on the rest of the input sequence, which is
a crucial pattern in determining the model’s ability
of learning during inference time. For instance, the



abstract pattern ABC' ABC'AB could produce the
following input sequence:

[12312312(45645645|78978978|15915915]

To further test the model’s ability, we added the
unique values of the variables of each instantiation
at the end of the input sequence. Since the variables
A, B and C are abstract, we added the variables
in the order they appeared first, without arranging
them according to the abstract pattern. For ex-
ample, for the pattern ACCABBAC, we append
AC B at the end, instead of ABC, which reflects
what appears first in the instantiation rather than the
abstract pattern itself. Finally, the previous input
sequence example would be altered to look as fol-
lows: [12312312]45645645|78978978|15915915
123]456|789|159]

In a complementary experiment, we tested the
model by placing the variables A, B, and C at
the beginning of the input sequence. This experi-
ment exposed the model to the variables first before
requiring it to perform the pattern matching task.
For instance, the input sequence mentioned earlier
would be tweaked to be: [123]|456|789|159|
12312312|45645645|78978978|15915915]

3 Models

To evaluate the ability of small LLM models to gen-
eralize and learn abstract patterns, we experiment
with several transformer (Vaswani et al., 2017) ar-
chitectures, designed to test the models capabilities.
The primary task for training these models is auto-
regressive sequence prediction (Brown et al., 2020).
In this setup, the model predicts the n;, token based
on the n-1 previous tokens, using them as context
to predict the next output. As for the main experi-
ment, we focus on experimenting with models with
one, two, and three layers consisting of eight, four
and two attention heads, respectively. Meanwhile,
we focus on the 2-layer, 4-head architecture for the
second experiment. The hidden size dimension is
set to 128 across all architectures, and each model
includes a single feed-forward layer. Absolute po-
sitional embeddings are used to encode positional
information in the input sequences. In this paper,
we used the python library X-transformer to build
the transformers(Wang, 2024) . As for the train-
ing, the models were trained on a batch size of 64
using Adam’s optimizer (Kingma and Ba, 2017),
publicly available in PyTorch with a learning rate
of 1 x 1073 for a total of 100,000 steps.
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4 Evaluation

To assess the ability of the models to generalize
and learn new patterns, we designed two evalua-
tion tasks for the main experiment: the last token
prediction and variable matching. Accuracy is the
primary evaluation metric for both tasks. For the
last token prediction task, accuracy measures the
proportion of correct predictions for the last digit in
the 4th instantiation. For example, given the input:

[12312312]45645645|78978978|15915915]

the model predicts the bolded final token (5). This
task evaluates whether the model can correctly rec-
ognize the structure of abstract patterns and gen-
eralize to the final token over the unseen abstract
patterns in the test set. The second task evaluates
the model’s ability to match variable mappings in
the sequence. Given the previous input sequence,
the model should predict that the next set of tokens
should be: [1,2,3|4,5,6|,7,8,9|1,5,9], and the
proportion of those variables predicted correctly
over the test set, represents the second task of vari-
able matching. We will also look briefly at the
training loss to compare the overall performance of
the models.

For the complementary experiment, we focus on
measuring the accuracy of the second, third, and
fourth instantiations, since the model would have
seen both the variables and one instantiation, allow-
ing it to generalize on the rest of the instantiations.

5 Results

In this section, we present the results of training the
models on instantiations based on abstract patterns,
and testing them on the instantiations of the ab-
stract patterns in the test set, which the model has
not been exposed to. We will include the training
loss of the models, in addition to the last token pre-
diction and variable matching metrics. In addition,
we visualize specific attention heads based on their
importance and contribution to solving the tasks.

5.1 3-Layers&2-Head

Figure 1 shows the training loss for different runs
of the 3-Layer, 2-head model. Although all models
converge to the same training loss( 0.68), different
runs exhibit different behaviors. For instance, we
notice bumps emerging in the training loss. Specifi-
cally, the model represented in green experiences a
bump that occurs after approximately 15,000 steps,
and the model represented in pink, where a similar
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Figure 1: Training loss of five different runs of the 3-
Layer, 2-Head model
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Figure 2: Accuracy of the variable matching task of five
different runs of the 3-Layer, 2-Head model

bump occurs after approximately 70,000 steps. We
can also see a correspondence between the number
of steps where the bumps occur, and the number of
steps before the sudden rise in the last digit accu-
racy shown in Figure 3 for both models represented
in green and pink. Figure 3 also shows that not all
models achieve perfect accuracy, with two models
reaching an accuracy of approximately 0.98. Mean-
while, Figure 2 shows that all models successfully
complete the variable matching task, achieving an
accuracy of approximately 1.0 across all runs.

To further evaluate the performance of the 3-
layer, 2-head model, we showcase an example
from the test set, highlighting how one of the
runs(represented in gray) solves the pattern.
Predicted pattern by the 312h Model:

[7331331317642576714975689817
96315951317162719581935]

Correct pattern:

[3311773716622776719955889819
93355951317162719581935]

To understand how the model solves the prob-

&9

last_digit_accuracy

[ a4

0.8 I
0.6 ’
0.4

0.2

Ste
0 p
20k 40k 60k 80k 100k

Figure 3: Accuracy of the last digit task of five different
runs of the 3-Layer, 2-Head model
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Figure 4: Attention head responsible for abstraction in
3-Layer, 2-Head model

lem, we visualized the attention patterns of solv-
ing a test instance during inference time. Among
the six attention heads, two attention heads pro-
vided us with useful insight into how both tasks
are solved(Figures 4 and 5). Figure 4 visualizes
the abstraction of patterns, where the attention
mechanism focuses on the relationship between the
first instantiation and the last three instantiations.
Specifically, the tokens in the last three instantia-
tions, which are attending back to the first instan-
tiation to predict the next token. For example, in
the second instantiation the bolded 6 in 66227767
is attending to the bolded 3 in 33117737 in the first
instantiation. This behavior is consistent across all
three later instantiations(second, third and fourth).
Moreover, this pattern of attention is not only spe-
cific to the first token, with nearly all tokens in the
instantiations attending back to their corresponding
"abstract" next token in the first instantiation, with
the exception of the fifth position.

5.2 2-Layers&4-Head

Figure 6 shows the training loss across multiple
runs of the 2-layer, 4-head model, where we ob-
serve that only one run fails to converge to the
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Figure 5: Attention head responsible for variable match-
ing task in 3-Layer, 2-Head model
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Figure 6: Training loss of five different runs of the 2-
Layer, 4-Head model

minimum loss ( 0.68). Figure 7 shows that the
model consistently succeeds in the task of identi-
fying unique variables. Meanwhile, this is not the
case for the last-digit prediction task. Only two
runs achieved perfect accuracy, two runs achieved
near-perfect accuracy between 0.96 and 0.98, and
one run reached a maximum accuracy of 0.6.

We now present an example showing how the
model predicts an input sequence using one of the
best-performing runs (represented in purple). Pre-
dicted pattern by 214h model:

[?7333113319612976719915889811
93385951317162719581935]

Correct pattern:

[3311773716622776719955889819
93355951317162719581935]

To better understand how the model predicts
patterns, we visualize the attention mechanisms
of the two most significant heads out of the eight
available attention heads in Figures 9 and 10. In
Figure 9, most of the tokens in the second, third,
and fourth instantiations are attending back to the
first instantiation to predict the next token. For in-
stance, we observe the attention of the highlighted
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Figure 7: Accuracy of the variable matching task of five
different runs of the 2-Layer, 4-Head model
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Figure 8: Accuracy of the last digit task of five different
runs of the 2-Layer, 4-Head model

digits in the second instantiation, 6 227767 , to
the corresponding highlighted digits in the first in-
stantiation(excluding black), 33 17737. We also
observe that the attention is not always directed to
the first pattern; at times, it shifts between other
instances, such as the bolded 8 in the third instan-
tiation: 99558898 attending back to the bolded 7
in the second instantiation: 66227767, which is
abstractly the next token. Figure 10 shows the at-
tention mechanism used to solve the second task of
matching the variables, where we observe that the
attendance was on the correct next token, eleven
out of twelve times.

5.3 1-Layer&8-Head

Figure 11 shows the training loss across four runs
of the 1-layer, 8-head model, where all the runs
fail to converge to the minimum training loss. This
failure is reflected in Figure 13, which shows that
the model is unable to solve the last digit prediction
task. Thus, we do not present any examples of the
model’s predictions. In contrast, Figure 12 shows
that all runs successfully performed the variable
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Figure 9: Attention head responsible for abstraction in
2-Layer,4-Head model

Attention Heads Visualization: Layer 1, Head 4

wi

Query

5398597267135955339989885599767722667377113

Figure 10: Attention head responsible for the variable
matching task in 2-Layer, 4-Head model

matching task.

54 2-Layer&4-Head(Experiment 2)

Another experiment involved appending the vari-
ables at the beginning of the sequence, followed
by the instantiations of the pattern. As shown in
Figure 15, all models eventually converge to per-
fect accuracy. Figure 16 shows the attention head
responsible for abstraction in this task, where the
second, third, and fourth instantiations attend back
to the first instantiation.

6 Discussion

This section analyzes the results presented in the
previous section, focusing on the model’s perfor-
mance on the training loss and the accuracy metrics
we defined, attention mechanisms, and the models’
ability to generalize on abstract patterns during in-
ference time.

6.1 3-Layer&2-Head

Referring back to Figure 1, we previously noted
that all models converged to a training loss of ap-
proximately 0.68 which we assume to be the low-
est achievable loss for this task. This limitation
is caused by the model’s lack of knowledge about
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Figure 11: Training loss of four runs of the 1-Layer,
8-Heads model
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Figure 12: Accuracy of the variable matching task of
five different runs of the 1-Layer, 8-Head model

the abstract pattern and the specific values of the
variables A ,B and C' which it only learns during
inference, relying on a trial-and-error process.

We also observed bumps in the training loss
that correspond to the sudden rise in accuracy
shown in Figure 3. We hypothesize that this
reflects a change in the models’ behavior, where
the models learns a critical strategy that allows
it to generalize over the instances in the training
set, thus improving its performance on the test
set. In Figure 3, we observed that two out of five
models did not achieve perfect accuracy but still
managed to achieve a minimum accuracy of 0.98.
Although we did not find a justification on why
it is not acting like the other three models, we
can still conclude that the 3-layer, 2-head model
succeeds in this task, as all runs can generalize and
achieve near-perfect accuracy.

6.2 The abstraction head

We now proceed to analyze the model’s predic-
tions(see 5.1) across the four instantiations to better
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Figure 13: Accuracy of the last digit in the fourth in-
stance of a pattern of four runs of the 1-Layers 8 heads
model
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Figure 14: Attention head responsible for variable
matching task in 1-Layer, 8-Head model

understand its reasoning process and generalization
capabilities. The model begins by predicting ran-
dom tokens in the first eights positions due to the
lack of prior information on the abstract pattern
and the variables. After predicting the first eight
tokens and receiving the prior context, the model
gains two pieces of information: the abstract pat-
tern is AABBCCAC and the first three unique
digits are A = 3, B = 1 and C' = 7. Using this
feedback, the model proceeds to predict the next
instance. Initially, it tried to predict that the value
of A is nine, but updates its understanding after
receiving feedback on the correct value of A. The
model then correctly predicts the value of A in
the following position based on the feedback re-
ceived, and predicts six. This process is repeated
for the next four tokens, BBCC, where the model
similarly predicts the unseen values of B and C,
refining its predictions based on the feedback re-
ceived. For the last two positions: 66227767, the
model uses its prior knowledge that the abstract
pattern is AABBCC AC' and that the values of the
variables in the second instance are A = 6, B = 2,
and C = 7 to predict the last two values correctly.
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Figure 15: Accuracy of the last three instantiations over
the test set
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Figure 16: Attention head responsible for abstracting in
2-Layer, 4-Head model

The same logic is applied to the third and fourth
instantiation. Figure 4 shows the attention mecha-
nism we assume is mainly responsible for solving
the task of abstract pattern matching. In Figure 4,
we observe that the current position in the second,
third, and fourth instantiations consistently attends
to the corresponding next position in the first in-
stantiation. For example, we mentioned previously,
the bolded 6 in 66227767 from the second instanti-
ation attends to the bolded 3 in 33117737 from the
first instantiation. This can be seen as the bolded
A in AABBCCAC attending to the next position,
represented as the bolded A in AABBCCAC. We
identify this attention head as the one responsible
for abstracting the patterns, and we refer to it as the
Abstraction Head, AH. This head seems to have
developed the ability to look back at first eight
tokens, or the first instantiation and attend to its
abstract form. This head aligns with the concept
of induction heads, particularly in its ability to per-
form pattern completion, such as [A*][B*] ... [A]
— [B], where A* =~ A and B* ~ B (Olsson et al.,
2022). However, the abstraction head we found op-
erates at a more abstract level, focusing on pattern
matching according to a template that has not been



specified to the model, and the model was able
to figure out from only instantiations of the data
about this abstract pattern. In Figure 2, we observe
that the models succeed in the variable matching
task within the first 2,000 steps. This task appears
to require no abstraction, as the models develop
a straightforward matching strategy, which is also
shown in the attention pattern shown in Figure 5.

6.3 2-Layer&4-Head

Regarding the training loss of multiple runs of the
2-layer, 4-head architecture, as shown in Figure 6,
we observe that four out of five runs successfully
converge to the minimum loss. We hypothesize
that the failed run is a result of undertraining and
with enough training, all models are able to reach
a near-perfect accuracy. We also observe a corre-
lation between the last digit accuracy, as shown in
Figure 8, and the training loss, specifically, the run
represented in pink, which failed to converge to the
minimum training loss, and was unable to achieve
perfect accuracy in the last digit prediction task.
Regarding the model’s prediction (see 5.2), we ob-
serve that it uses a similar approach to the 3-layer,
2-head model. Specifically, the model relies on a
trial-and-error process when the values of the vari-
ables were unknown and started to guess random
digits when it did not have any pieces of informa-
tion about the abstract pattern. We also see that one
of the attention mechanisms in the attention heads
(Figure 9) is similar to the mechanism observed in
Figure 4, specifically what we refer to as an abstrac-
tion head. However, the abstraction head in Figure
9 not only attends to the first instantiation but also
sometimes focuses on the previous instantiations
(second and third). While what causes this behav-
ior remains unclear, the model still uses a valid
approach to solve the pattern matching task. As
shown in Figure 7, all runs successfully performed
the variable matching task. Furthermore, Figure
10 reveals that the attention mechanism used for
this task is very similar to the one observed in Fig-
ure 5, suggesting that the variable matching task
is straightforward, where the model develops an
attention head that performs a simple tracking back
to the digits and predicts the correct variables.

6.4 1-Layer&S8-Head

For this architecture, we observed that 1-layer
might not be sufficient to solve the last digit pre-
diction task, as shown in Figure 13. However,
we found that a single layer can still be used to
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tackle non-abstract tasks, such as variable match-
ing, which does not require abstraction. This is
demonstrated in Figure 12. The mechanism used
for this task, shown in Figure 14, aligns with the
behavior observed in other models.

6.5 2-Layer&4Heads(Experiment 2)

The complementary experiment confirmed that 2-
layer models are capable of solving the task of
abstract pattern matching, as demonstrated in Fig-
ure 15. Additionally, we observed the emergence
of the abstraction head, illustrated in Figure 16.
However, unlike the previous task, we found that
some models were able to solve this task without
developing similar abstraction heads. This suggests
that these models may have discovered an alterna-
tive mechanism to solve the problem, which needs
further investigation in future work.

7 Conclusions

In this study, we investigated the ability of small
transformer models to recognize, learn, and gener-
alize abstract sequential symbolic patterns through
controlled experiments. We demonstrated that mod-
els with two or three layers successfully perform
this task, unlike single-layer models. A key find-
ing was the emergence of the abstraction head, an
attention mechanism that directs its focus toward
the first instantiation in an abstract manner. Our
findings on the emergence of abstraction heads pro-
vide a foundation for advancing neuro-symbolic
processing paradigms, potentially enabling the de-
velopment of new Type 6 neuro-symbolic systems
which contain symbolic processing inside a trained
neural network.

8 Limitations of the work

The results of this paper are based on a very simpli-
fied experiments based on sequences of numbers.
It is possible that the proposed abstraction mecha-
nism is not a primary mechanism in reasoning tasks
based on human language or in cases where the en-
tities have more complex relations. The study was
also limited to small transformer models with only
1-3 layers of self-attention models. It is possible
that different abstraction mechanisms emerge in
models of more layers, which may not be visible
in the experiments reported in this paper.
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A Appendix: Abstraction Heads

One aspect we explored was whether the abstrac-
tion head tends to emerge in a specific layer(e.g.
the first or the last). Figure 17 shows the visual-
ization of another successful run of the 3-Layers,
2-Head architecture. The abstraction head shown
in Figure 4 emerges in the third layer, while the
abstraction head in Figure 17, emerges in the sec-
ond layer. However, even tho attention heads tend
to appear in the last few layers, none of the ex-
periments showed an abstraction head in the first
layer. Research showed that attention heads that
extract and makes use of critical information such
as label appear in deep layers (Wang et al., 2023).
This might suggest that abstraction heads appear
in Deep Layers(i.e. layers closer to the output),
and might show that attention heads that require
abstraction(label, abstract pattern, etc.), are usually
closer to the output, even in small models, which
is a matter of further investigations.

Figure 17: Visualization of all attention heads from
another run
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