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Abstract

Knowledge representation and reasoning are
critical challenges in Artificial Intelligence
(AI), particularly in integrating neural and sym-
bolic approaches to achieve explainable and
transparent AI systems. Traditional knowledge
representation methods often fall short of cap-
turing complex processes and state changes.
We introduce Neuro-Conceptual Artificial
Intelligence (NCAI), a specialization of the
neuro-symbolic AI approach that integrates
conceptual modeling using Object-Process
Methodology (OPM) ISO 19450:2024 with
deep learning to enhance question-answering
(QA) quality. By converting natural language
text into OPM models using in-context learn-
ing, NCAI leverages the expressive power
of OPM to represent complex OPM ele-
ments—processes, objects, and states—beyond
what traditional triplet-based knowledge graphs
can easily capture. This rich structured knowl-
edge representation improves reasoning trans-
parency and answer accuracy in an OPM-QA
system. We further propose transparency eval-
uation metrics to quantitatively measure how
faithfully the predicted reasoning aligns with
OPM-based conceptual logic. Our experiments
demonstrate that NCAI outperforms traditional
methods, highlighting its potential for advanc-
ing neuro-symbolic AI by providing rich knowl-
edge representations, measurable transparency,
and improved reasoning.

1 Introduction

Integrating neural and symbolic approaches in AI
seeks to combine the learning capabilities of neu-
ral networks with the interpretability of symbolic
reasoning (Besold et al., 2017; Garcez and Lamb,
2023). However, traditional knowledge represen-
tations, such as triplet-based knowledge graphs,
are limited in capturing complex processes, state
changes, and hierarchical relationships inherent in
dynamic systems (Wang et al., 2017; Heinzerling

“Heuristic often starts as an 
informal rule of thumb based on 
practical experience.”
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Figure 1: Overview of the NCAI framework, illustrat-
ing how the LLM converts natural language text into
structured OPM knowledge and uses it in OPM-QA for
transparent reasoning. Starting from the text “Heuristic
often starts as an informal rule of thumb . . . ”, the model
generates an OPM model and answers questions by ref-
erencing processes like Heuristic-to-Principle Evolving.

and Inui, 2021; Shi et al., 2021). Additionally, neu-
ral networks are often viewed as a black box due
to their opaque decision-making processes, which
poses significant challenges in domains requiring
transparent reasoning, such as healthcare and fi-
nance (Lipton, 2018; Rudin, 2019; Doshi-Velez
and Kim, 2017; Tjoa and Guan, 2020).

Recent advancements have focused on enhanc-
ing AI reasoning capabilities by integrating lan-
guage models with external knowledge sources.
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For example, combining language models with
knowledge graphs has been applied to improve
question answering systems (Yasunaga et al., 2021;
Oguz et al., 2022; Shi et al., 2021; Zhang et al.,
2023). Despite these efforts, fully capturing dy-
namic behaviors and providing transparent reason-
ing paths remains a challenge.

To address these limitations, we introduce
Neuro-Conceptual Artificial Intelligence
(NCAI), a specialization of the neuro-symbolic
AI approach, in which the symbolic component
is an Object-Process Methodology (OPM ISO
19450:2024) conceptual model. OPM is a
conceptual modeling language and methodology
that unifies the system’s structural and behavioral
aspects within a single model (Dori, 2002; Dori
et al., 2016). It represents objects (things that
exist) and processes (things that transform objects)
in both graphical and textual modalities. By
combining OPM with the large language model
(LLM), NCAI enhances reasoning transparency
and answer accuracy in QA tasks.

An overview of the NCAI framework is illus-
trated in Figure 1. The framework begins by con-
verting natural language text into structured OPM
knowledge using in-context learning with an LLM.
This structured knowledge is then used in an OPM-
QA, which leverages the expressive power of OPM
to represent complex processes and state changes
that traditional triplet-based knowledge graphs can-
not easily capture. By integrating conceptual mod-
eling with deep learning, NCAI creates a pipeline
that transforms unstructured text into a rich knowl-
edge representation, enabling more effective AI
reasoning and interpretability.

Our contributions in this work are threefold:
(1) We propose NCAI, which integrates OPM

with deep learning to enhance reasoning trans-
parency and answer accuracy.

(2) We develop OPM-QA that utilizes OPM
knowledge to improve question-answering quality.

(3) We introduce transparency evaluation metrics
to quantitatively assess how faithfully the predicted
reasoning aligns with the conceptual logic defined
by OPM, and we demonstrate the effectiveness
of NCAI through experiments showing improved
performance over traditional methods.

2 Related Work

Neuro-Symbolic AI Approaches Neuro-
symbolic AI integrates neural networks with

symbolic reasoning to harness the strengths of
both paradigms (Besold et al., 2017; Garcez and
Lamb, 2023). Challenges in achieving reasoning
transparency and interpretability persist, with ap-
proaches such as symbolic knowledge distillation
(West et al., 2022) and factual knowledge editing
(De Cao et al., 2021) addressing these issues.
Frameworks like TransferNet (Shi et al., 2021)
and interpretable reasoning models for dialogue
generation (Yang et al., 2022) aim to provide
clear reasoning paths. In sentiment analysis and
mental health, neuro-symbolic frameworks like
TAM-SenticNet (Dou and Kang, 2024) and causal
inference models (Ding et al., 2024b,a) enhance
explainability and logical inference. Specifically,
in aspect-based sentiment analysis (ABSA), mod-
els such as the Multi-Agent Collaboration (MAC)
(Kang et al., 2024) and approaches to improve AI
transparency using generative agents (Kang, 2024)
demonstrate the potential of neuro-symbolic AI
in providing transparent and rational sentiment
analysis.

Interpretability and Transparency in Language
Models Ensuring transparency and interpretabil-
ity in AI decision-making is critical, particularly
in complex systems (Lipton, 2018; Rudin, 2019).
Various methods have been developed to enhance
the interpretability of language models, includ-
ing representation dissimilarity measures (Brown
et al., 2023), SHAP-based explanation techniques
(Mosca et al., 2022), and prompt-based explainers
like PromptExplainer (Feng et al., 2024). Evalua-
tion benchmarks for interpretability (Wang et al.,
2022) and approaches to improve faithfulness and
robustness (El Zini and Awad, 2022; Horovicz and
Goldshmidt, 2024; Zhao et al., 2024) further con-
tribute to making language models more transpar-
ent. Despite these advancements, achieving full
transparency remains challenging, especially in ap-
plications requiring a clear understanding of the
reasoning process.

Language Models and Knowledge Graphs for
Question Answering Integrating language mod-
els with knowledge graphs has been a significant
focus to enhance QA capabilities. Approaches like
QA-GNN (Yasunaga et al., 2021), DRLK (Zhang
et al., 2022), and UniK-QA (Oguz et al., 2022) com-
bine language models with graph neural networks
and dynamic interactions to improve reasoning in
QA tasks. Frameworks such as CIKQA (Zhang
et al., 2023) and Triple-R (Kanaani et al., 2024)
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(a) System Diagram (SD)

(b) In-Zoomed Diagram (SD1)

Figure 2: Constructed OPDs illustrating the transformation of a Heuristic from a rule of thumb to a principle through
various OPM elements—processes, objects, and states—within the OPM framework.

emphasize the integration of external knowledge
sources for more accurate and interpretable reason-
ing. Additionally, methods like TaPERA (Zhao
et al., 2024) enhance faithfulness and interpretabil-
ity in long-form table QA through content plan-
ning and execution-based reasoning. These integra-
tions, while improving performance, often involve
complex architectures and still face challenges in
achieving complete reasoning transparency.

3 NCAI Framework

3.1 Object-Process Methodology for NCAI
OPM unifies objects and processes within a sin-
gle model, representing structural and behavioral
aspects in both graphical and textual forms (Dori,
2002; Dori et al., 2016). OPM’s bimodal prop-
erty provides Object-Process Diagram (OPD) and
Object-Process Language (OPL), enhancing under-
standing and reasoning transparency.

To illustrate OPM’s capabilities, we use a run-
ning example based on natural language text de-
scribing the evolution of a Heuristic from a rule of
thumb to a principle. This text serves as the input
to the NCAI framework, as shown in Figure 1, and
is provided in Appendix A.

Using this text, we constructed OPDs represent-
ing the processes and state changes of a Heuristic.
The diagrams can be created and visualized using

the OPCloud software (Dori et al., 2018; Kohen
and Dori, 2021).

Figure 2 presents the constructed OPDs. The
System Diagram (SD) in Figure 2a captures the
overall transformation of object Heuristic from
state rule of thumb to state principle through the
process Heuristic-to-Principle Evolving. The In-
Zoomed Diagram (SD1) in Figure 2b provides a
detailed view of the subprocesses involved, such
as Documenting & Sharing, Testing & Refining,
Pattern Emerging & Recognizing, Effectiveness
Validating, Theoretical Backing, and Consensus
Building.

The corresponding OPL for the System Diagram
(SD) and the In-Zoomed Diagram (SD1) are pre-
sented in Appendix B . These OPLs provide a tex-
tual representation that details the processes and
state changes of the evolution of a heuristic from a
rule of thumb to a principle.

OPM’s bimodal property, combining graphical
OPD and textual OPL, facilitates a comprehen-
sive representation of complex processes and state
changes. The in-zooming mechanism allows for hi-
erarchical decomposition, where processes can be
detailed further in subsequent diagrams, enhancing
understanding of intricate systems.
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3.2 Converting Natural Language to OPM
using In-Context Learning

We employ in-context learning to guide the LLM in
converting natural language text into OPM models.
The process involves providing the LLM with a
carefully crafted prompt that includes OPM syntax,
semantics, and examples. The prompt details can
be found in (Dori and Shteingardt, 2025).

Let TNL be the natural language text (Ap-
pendix A) and POPM the prompt containing OPM
instructions and examples. The input to the LLM
is:

I = POPM ◦ TNL, (1)

where ◦ denotes concatenation. The LLM gener-
ates the OPL representation:

TOPL = LLM(I). (2)

This process leverages the LLM’s ability to gen-
erate structured textual OPL representations from
unstructured text, utilizing in-context learning to
guide the model’s output toward the desired OPL
format. The OPL generated by the LLM is pre-
sented in Appendix C.

While the preliminary results are encouraging,
designing prompts that yield accurate and syntac-
tically correct OPM models from free-form text
introduces several challenges. These include pin-
pointing the primary process, focusing on essen-
tial conceptual elements, and clarifying ambiguous
relationships in the natural language source. To
address these issues, we iteratively refine prompts,
adjust instructions, and incorporate carefully cho-
sen examples. Through this iterative approach, the
LLM learns to better navigate textual ambiguities
and produce more coherent OPM models, thus re-
ducing the need for extensive manual refinement
and enabling more reliable neuro-symbolic reason-
ing pipelines.

3.3 OPM Knowledge-Based
Question-Answering System

We developed OPM-QA, an OPM knowledge-
based Question-Answering system, that integrates
OPM knowledge with the LLM to enhance answer
accuracy and reasoning transparency. This system
is a core component of NCAI, leveraging the struc-
tured knowledge representation of OPM to improve
the reasoning capabilities of the LLM.

OPM-QA employs in-context learning by pro-
viding the LLM with OPL as the OPM knowledge,
a set of example question-answer pairs, and the test

questions as context. The knowledge KOPL is de-
rived from the constructed OPM (see Appendix B)
and provides a structured and formalized repre-
sentation. This structured knowledge allows the
LLM to reason more effectively when generating
answers.

For each test question qi in the set of test ques-
tions Qtest, the input to the LLM is formulated as:

Ii = KOPL ◦ EQA ◦ qi, (3)

where EQA is the set of example question-answer
pairs, and ◦ denotes concatenation. The LLM pro-
cesses this input and generates an answer:

ai = LLM(Ii). (4)

To assess the impact of using structured OPM
knowledge on the QA performance, we compare
the OPM-QA with a baseline QA system using nat-
ural language knowledge (NL-QA). In NL-QA, we
replace KOPL with the natural language knowledge
KNL, which corresponds to the text provided in
Appendix A. This allows us to compare the effec-
tiveness of the structured OPM knowledge against
unstructured natural language knowledge in the QA
task.

4 Experiments

4.1 Experiment Setup

The purpose of our experiment is to evaluate the ef-
fectiveness of the NCAI framework in performing
multi-hop reasoning tasks and enhancing reasoning
transparency. We aim to compare the performance
of OPM-QA with the baseline NL-QA.

Data: We manually developed a dataset of 50
multi-hop reasoning question-answer pairs, follow-
ing the FanOutQA benchmark (Zhu et al., 2024).
These questions are based on the knowledge of the
process that transforms informal rules of thumb
into well-established principles. The questions re-
quire the model to integrate information from mul-
tiple statements to arrive at an answer, testing both
answer accuracy and reasoning transparency. Ex-
amples of the QA pairs are provided in Appendix E,
Table 3.

Knowledge Sources: The OPL knowledge KOPL
is the OPL generated from the constructed OPM
model in Appendix B. The natural language knowl-
edge KNL is the text provided in Appendix A. The
QA systems use either KOPL or KNL, along with 5
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example QA pairs EQA as context, to answer the
50 test questions Qtest.

QA Systems: The QA systems employ in-
context learning by providing the LLM with
the respective knowledge source, a set of ex-
ample QA pairs, and the test questions. The
LLM used for both systems is GPT-4o (version
o1-preview-2024-09-12), with parameters set to
temperature = 0 and top_p = 1 to ensure de-
terministic output. By using the same LLM and
parameter settings, we ensure a fair comparison
between OPM-QA and NL-QA. The prompt used
in these QA systems is shown in Appendix D. It
has been carefully designed to be general enough
for QA tasks across various domains and yet in-
structive enough to guide the model to answer with
explicit reference to the OPM elements—processes,
objects, and states, thereby increasing reasoning
transparency and answer accuracy.

Evaluation Metrics: We evaluate system out-
puts using a combination of metrics that capture
different aspects of answer quality and reasoning
transparency. To assess how well the generated
answers align with the ground truth in terms of con-
tent, we use Loose Accuracy and Strict Accuracy.
Loose Accuracy measures the fraction of reference
tokens that also appear in the predicted answer after
lemmatization, removing stop words, and stripping
punctuation, providing a relatively lenient measure
of correctness. Strict Accuracy applies a non-linear
weighting (with a parameter k = 1.5) to penal-
ize partial matches more severely, thus enforcing a
stricter standard of correctness.

While Loose Accuracy and Strict Accuracy
focus on token-level overlap, ROUGE-1 (R-1),
ROUGE-2 (R-2), and ROUGE-L (R-L) (Lin,
2004) quantify lexical overlap through n-gram and
sequence-based comparisons, capturing syntactic
similarity between the generated answer and the
reference. BLEURT (BT) (Sellam et al., 2020)
complements these metrics by providing a more
semantic-oriented evaluation, as it uses a learned
model to judge the meaning and quality of the gen-
erated text. The GPT Judge Score (GPT) (Zhu
et al., 2024) further evaluates factual consistency
and logical coherence, reflecting how well the an-
swer maintains internal logical structure and cor-
rectness from a large language model’s perspective.

To address the need for a quantitative measure of
reasoning transparency, we propose Transparency
Precision (PT), Transparency Recall (RT), and

Transparency F1 (F1T). Let Ep be the set of OPM
elements-processes, objects, and states-identified
in the prediction, and Eg the set of OPM elements
in the ground truth. Let Ep∩g be the intersection
of these sets, representing correctly matched OPM
elements. We define:

PT =
|Ep∩g|
|Ep|

, (5)

RT =
|Ep∩g|
|Eg|

, (6)

F1T =
2 · PT · RT

PT + RT
. (7)

Here, PT measures how accurately the predicted
reasoning structure identifies the correct OPM el-
ements, RT gauges how completely it recovers
them, and F1T balances both. Together, these trans-
parency metrics provide a statistical measure of
how faithfully the system’s reasoning aligns with
the conceptual logic defined by OPM, offering a
principled, quantitative response to calls for more
objective assessments of reasoning transparency.

4.2 Results

Table 1 presents the results of our evaluation. For
Loose Accuracy, OPM-QA achieves 0.858 ± 0.162,
greatly exceeding NL-QA’s 0.638 ± 0.212. This
indicates that OPM-QA captures a significantly
larger fraction of reference tokens under a lenient
matching criterion. The difference is statistically
significant (P < 0.001). Strict Accuracy, which im-
poses a harsher penalty on partial matches, shows
OPM-QA at 0.806 ± 0.213 compared to NL-QA’s
0.530 ± 0.252. This improvement is also statis-
tically significant (P < 0.001), demonstrating that
OPM-QA provides answers that are both more com-
plete and more precisely aligned with the ground
truth.

Regarding syntactic overlap measures, OPM-QA
significantly outperforms NL-QA in all ROUGE
metrics. The ROUGE-1 score for OPM-QA is
0.772 ± 0.159 versus NL-QA’s 0.558 ± 0.195,
ROUGE-2 is 0.607 ± 0.201 compared to 0.373
± 0.198, and ROUGE-L is 0.715 ± 0.155 com-
pared to 0.504 ± 0.174. All these differences are
highly statistically significant (P < 0.001). These
results confirm that OPM-QA’s generated answers
exhibit considerably more lexical and subsequence-
level similarity to the reference answers, adhering
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Metric OPM-QA NL-QA P-value

Loose Accuracy 0.858 ± 0.162 0.638 ± 0.212 < 0.001
Strict Accuracy 0.806 ± 0.213 0.530 ± 0.252 < 0.001
ROUGE-1 0.772 ± 0.159 0.558 ± 0.195 < 0.001
ROUGE-2 0.607 ± 0.201 0.373 ± 0.198 < 0.001
ROUGE-L 0.715 ± 0.155 0.504 ± 0.174 < 0.001
BLEURT 0.596 ± 0.165 0.474 ± 0.111 < 0.001
GPT Judge Score 0.920 ± 0.274 0.800 ± 0.404 0.086
Transparency Precision 0.917 ± 0.161 0.759 ± 0.417 0.015
Transparency Recall 0.953 ± 0.143 0.455 ± 0.329 < 0.001
Transparency F1 0.922 ± 0.136 0.546 ± 0.342 < 0.001

Table 1: Evaluation results comparing OPM-QA and NL-QA across correctness, lexical similarity, semantic quality,
factual consistency, and transparency. P-values indicate that OPM-QA significantly outperforms NL-QA on all
metrics with high statistical confidence, except for GPT Judge and Transparency Precision, where the differences
are less significant.

better to the structural and phrasing patterns of the
ground truth.

In terms of semantic quality, the BLEURT score
for OPM-QA is 0.596 ± 0.165, which surpasses
NL-QA’s 0.474 ± 0.111. This difference is sta-
tistically significant (P < 0.001). This suggests
that OPM-QA not only matches lexically but also
maintains closer semantic fidelity to the intended
meanings of the ground truth answers.

Factual consistency and logical coherence are
further evidenced by the GPT Judge Score of 0.920
± 0.274 for OPM-QA compared to NL-QA’s 0.800
± 0.404. This difference is not statistically sig-
nificant (P = 0.086), although it still indicates a
notable improvement in maintaining factual and
logical integrity within the answers.

Most notably, the transparency metrics reveal
OPM-QA’s substantial advantage in conceptual
alignment. OPM-QA achieves a Transparency Pre-
cision of 0.917 ± 0.161 and Transparency Recall
of 0.953 ± 0.143, whereas NL-QA scores 0.759
± 0.417 and 0.455 ± 0.329, respectively. The
Precision difference is statistically significant (P
= 0.015), while Recall remains highly significant
(P < 0.001). Consequently, Transparency F1 for
OPM-QA is 0.922 ± 0.136 compared to NL-QA’s
0.546 ± 0.342, with a P-value of P < 0.001. This
metric, which balances Transparency Precision and
Transparency Recall, underscores the overall supe-
rior performance of OPM-QA in aligning with the
ground truth both accurately and comprehensively.

Overall, the majority of these metrics demon-
strate statistically significant improvements, affirm-
ing the superior performance of OPM-QA over

NL-QA. Additionally, the enhancements in Trans-
parency Precision metrics, despite being less sta-
tistically significant, further highlight OPM-QA’s
effectiveness in achieving greater factual consis-
tency and precision in answers. Detailed evaluation
results for 10 representative QA examples and addi-
tional evaluation tables are provided in Appendix E,
including Tables 3, 4, and 5, which further confirm
these findings.

4.3 Discussion

The experimental results confirm that grounding
the reasoning process in a conceptual model leads
to both improved accuracy and clearer interpretabil-
ity. Compared to its counterpart, the OPM-QA
system consistently aligns its reasoning with the
well-defined ontology provided by the OPM model.
While the NL-QA system may occasionally pro-
duce correct or partially correct answers, it often
does so without revealing the underlying concep-
tual structure. In contrast, OPM-QA not only iden-
tifies the correct OPM elements-processes, objects,
and states-required to transform the heuristic from
one state to another but also presents a reasoning
chain that is faithful to the conceptual logic defined
by OPM.

Table 2 illustrates a representative case where
the question focuses on the processes that guide the
heuristic from a documented and shared state to a
theoretically backed one. The ground truth answer
specifies all of the required processes involved in
this transformation. OPM-QA’s answer success-
fully enumerates each of these processes, maintain-
ing exact alignment with the conceptual elements



77

Question What processes change Heuristic from documented & shared to theoretically backed?

AnswerGT Heuristic changes from documented & shared to theoretically backed through Testing
& Refining, Pattern Emerging & Recognizing, Effectiveness Validating, and Theoreti-
cal Backing.

AnswerOPL The processes that change Heuristic from documented & shared to theoretically
backed are Testing & Refining, Pattern Emerging & Recognizing, Effectiveness
Validating, and Theoretical Backing.

AnswerNL The processes that change Heuristic from documented & shared to theoretically
backed are Testing & Refinement, Pattern Recognition, Formal Studies, and Theoret-
ical Backing.

Table 2: Comparison of ground truth answer AnswerGT and answers from OPM-QA and NL-QA AnswerOPL

and AnswerNL for a sample question, highlighting the matched processes in blue corresponding to the reasoning
transparency. While the ground truth and OPM-QA specify all relevant processes, NL-QA mentions only one
correct process (Theoretical Backing). OPM-QA demonstrates a complete and conceptually aligned reasoning
structure, whereas NL-QA’s reasoning chain remains incomplete.

defined by the OPM model. In doing so, OPM-QA
achieves high transparency metrics, as measured
by the previously defined precision, recall, and F1
scores for transparency. Conversely, NL-QA identi-
fies fewer correct conceptual elements, and in some
cases introduces extraneous or irrelevant processes.
This discrepancy highlights not merely a difference
in correctness, but also a fundamental gap in the
clarity and coherence of the reasoning steps offered
by the two QA systems.

In addition to the tabular comparison, Figure 3
visually confirms that OPM-QA’s reasoning path-
way closely follows the conceptual map provided
by OPM. The figure displays an in-zoomed portion
of the OPM model (SD1), where the processes crit-
ical to changing the heuristic’s state are clearly
marked. Each process chosen by OPM-QA is
found exactly where it should be according to the
conceptual model. Observing these elements in
the figure shows that OPM-QA’s improved trans-
parency metrics correspond to verifiable reason-
ing sequences that can be directly traced in the
conceptual diagram. This contrasts with NL-QA,
whose reasoning cannot be similarly verified, leav-
ing users and experts uncertain of how and why
specific processes were mentioned or omitted.

Taken together, these findings demonstrate that
integrating conceptual modeling into the QA frame-
work moves beyond improving standard perfor-
mance metrics. The introduction of quantitative
transparency metrics, supported by direct compar-
isons in both textual and visual forms, underscores
how OPM-QA’s answers are not just better in terms

of correctness, but also clearer, more verifiable, and
more trustworthy. This alignment of reasoning with
a conceptual backbone is particularly valuable in
complex domains where understanding the logic
behind an answer is as important as the answer
itself. As a result, the synergy between neuro-
symbolic reasoning and OPM-based conceptual
structures offers a promising avenue toward AI sys-
tems that users and domain experts can scrutinize,
trust, and ultimately shape with confidence.

5 Conclusion

We propose Neuro-Conceptual Artificial Intelli-
gence (NCAI), a neuro-symbolic approach that in-
tegrates OPM conceptual modeling with deep learn-
ing to overcome limitations in traditional knowl-
edge representation and reasoning. By embed-
ding OPM-based conceptual logic into a QA sys-
tem, NCAI captures complex processes and state
changes that conventional triplet-based represen-
tations and black box neural models struggle to
address. Through this structured, bimodal OPM
representation, NCAI provides not only improved
answer accuracy but also a demonstrably transpar-
ent and interpretable reasoning pathway. The in-
troduction of transparency metrics (PT, RT, F1T)
offers quantitative support for the alignment with
OPM-defined conceptual structures, moving be-
yond purely qualitative assessments of interpretabil-
ity.

Our experimental results demonstrate that
NCAI substantially outperforms traditional meth-
ods on both standard accuracy-based measures and
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Figure 3: In-Zoomed Diagram (SD1) highlighting the specific processes in blue involved in transforming Heuristic
from documented & shared to theoretically backed. These highlighted processes match exactly those identified by
OPM-QA in Table 2, demonstrating a coherent and transparent reasoning path.

transparency-focused metrics. By leveraging OPM
as a symbolic backbone and employing the LLM
under structured guidance, NCAI brings neuro-
symbolic AI closer to genuine explainability. Al-
though this work focuses on QA, our conceptual
modeling approach may generalize to other tasks re-
quiring robust and interpretable reasoning. Future
research will examine scalability to larger, more
complex domains, refine prompt designs to han-
dle richer conceptual structures, and integrate our
approach with emerging prompting and agentic
frameworks. The code and dataset are available on
https://github.com/kangxin/NCAI.

Limitations

One limitation of our study is that it relies on a rela-
tively small, self-constructed dataset of 50 question-
answer pairs. While sufficient for an initial proof
of concept, the generalizability and scalability of
NCAI to larger and more complex real-world sce-
narios remain to be explored. In future work, we
intend to evaluate NCAI on larger publicly avail-
able benchmarks and more intricate conceptual do-
mains, potentially requiring more efficient prompt
designs or incremental model updates to handle
extensive OPM knowledge.

Additionally, although QA serves as a proof-of-
concept task to demonstrate the feasibility of inte-
grating OPM with LLM, applying this approach to
other downstream tasks, such as predictive mod-
eling and real-time decision-making in dynamic
environments, would require additional domain-

specific adaptations and possibly integration with
external data sources. While the OPM-based rea-
soning structure holds promise beyond QA, con-
firming its utility in these broader contexts remains
an area for future investigation.

Moreover, while our method improves trans-
parency through OPM-driven conceptual align-
ment, certain ambiguities in the source text can still
challenge the strict adherence of the LLM to OPM
syntax and conventions. The generated OPM rep-
resentations might require subsequent refinement
by human modelers or more specialized training
to ensure full syntactic correctness. Developing
standardized benchmarks and further metrics for
reasoning transparency, as well as exploring more
advanced prompting and agentic design patterns,
can help refine the approach, but these steps also
remain as future endeavors.
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A Natural Language Text

Natural Language Text

A plausible set of concise steps of how the process that transforms informal rules of thumb into
well-established principles that guide systems engineering practice follows.
1. Initial observation: Heuristics often start as informal rules of thumb based on practical experi-

ence.
2. Documentation and sharing: These observations get documented and shared among practition-

ers.
3. Testing and refinement: The heuristics are tested in various projects and refined based on

outcomes.
4. Pattern recognition: As similar heuristics prove useful across multiple projects and domains,

recognizable patterns emerge, enabling heuristic generalization.
5. Formal studies: Researchers conduct formal studies to validate the effectiveness of the heuristic.
6. Theoretical backing: The heuristics are connected to underlying theories in systems engineering

and related fields.
7. Consensus building: As evidence accumulates, a consensus forms in the systems engineering

community about the validity and importance of the heuristic.

B OPL of Constructed OPM Model

OPL for System Diagram (SD)

1. Heuristic can be principle, rule of thumb or at one of five other states. State rule of thumb is
initial. State principle is final.

2. Heuristic-to-principle Evolving changes Heuristic from rule of thumb to principle.
3. Systems Engineering Practitioner & Expert Group handles Heuristic-to-principle Evolving.

OPL for In-Zoomed Diagram (SD1)

1. Heuristic-to-principle Evolving from SD zooms in SD1 into Initial Observing, Documenting &
Sharing, Project Selecting, Testing & Refining, Pattern Emerging & Recognizing, Effectiveness
Validating, Theoretical Baking, and Consensus Building, which occur in that time sequence.

2. Heuristic can be documented & shared, effectiveness validated, pattern recognized, principle,
rule of thumb, tested & refined or theoretically backed. State rule of thumb is initial. State
principle is final.

3. Systems Engineering Practitioner & Expert Group handles Heuristic-to-principle Evolving.
4. Documenting & Sharing changes Heuristic from rule of thumb to documented & shared.
5. Testing & Refining changes Heuristic from documented & shared to tested & refined.
6. Testing & Refining requires Project Set.
7. Pattern Emerging & Recognizing changes Heuristic from tested & refined to pattern recog-

nized.
8. Pattern Emerging & Recognizing requires Project Set.
9. Effectiveness Validating changes Heuristic from pattern recognized to effectiveness validated.

10. Effectiveness Validating requires Project Set.
11. Theoretical Baking changes Heuristic from effectiveness validated to theoretically backed.
12. Consensus Building changes Heuristic from theoretically backed to principle.
13. Initial Observing changes Heuristic to state rule of thumb.
14. Project Selecting yields Project Set.
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C OPL Generated by LLM

OPL Generated by LLM

1. Principle Establishing changes Heuristic from rule of thumb to principle.
2. Practitioner handles Documenting.
3. Practitioner handles Sharing.
4. Researcher handles Formal Studying.
5. Systems Engineering Community handles Consensus Building.
6. Principle Establishing zooms into Observing, Documenting, Sharing, Testing, Refining, Pattern

Recognizing, Formal Studying, Connecting, and Consensus Building, which occur in that time
sequence.

7. Heuristic can be rule of thumb, documented, shared, tested, refined, recognized pattern,
validated, theorized, principle.

8. The state rule of thumb is initial. State principle is final.
9. Observing yields Heuristic.

10. Documenting changes Heuristic from rule of thumb to documented.
11. Sharing changes Heuristic from documented to shared.
12. Testing changes Heuristic from shared to tested.
13. Refining changes Heuristic from tested to refined.
14. Testing requires Project.
15. Refining consumes Outcome.
16. Pattern Recognizing changes Heuristic from refined to recognized pattern.
17. Formal Studying changes Heuristic from recognized pattern to validated.
18. Connecting changes Heuristic from validated to theorized.
19. Connecting consumes Theory.
20. Consensus Building changes Heuristic from theorized to principle.

D Prompt for the QA System

Prompt for OPM-QA and NL-QA Systems

Prompt:

You are a knowledgeable assistant. Your task is to answer questions based on the provided
domain knowledge. Your answers should align closely with the domain knowledge, use precise
terminology, and remain concise and accurate. Focus on identifying and describing key processes,
objects, and states explicitly, and clarify their relationships where relevant.

Domain Knowledge:

[OPL Knowledge in Appendix B or NL Knowledge in Appendix A]

Examples of Question-Answer Pairs:

Q: [example question 1]
A: [example answer 1]
...
Q: [example question N]
A: [example answer N]

New Question:

Q: [question]
A (concise and precise):
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E Examples of Questions, Answers, and Evaluation Results

Table 3: 10 example questions and ground truth answers from the QA dataset.

ID Question Ground Truth Answer

1 What is the relationship between Testing & Refining and
Pattern Emerging & Recognizing in Heuristic evolution?

Testing & Refining changes Heuristic from documented & shared to tested & refined, and
Pattern Emerging & Recognizing then changes it from tested & refined to pattern recognized.

2 How does Heuristic achieve theoretical backing before be-
coming a principle?

Heuristic achieves theoretical backing by undergoing Formal Studying, which changes it
from pattern recognized to effectiveness validated, followed by Theoretical Baking, which
changes it to theoretically backed, and finally Consensus Building to become a principle.

3 How does Heuristic change from effectiveness validated to
principle?

Heuristic changes from effectiveness validated to principle through Theoretical Baking and
Consensus Building.

4 How does the Heuristic-to-priniciple Evolving process re-
late to the different states of Heuristic?

The Heuristic-to-priniciple Evolving process changes Heuristic from rule of thumb through
documented & shared, tested & refined, pattern recognized, effectiveness validated, theoreti-
cally backed, and finally to principle.

5 What processes change Heuristic from rule of thumb to
pattern recognized?

Heuristic changes from rule of thumb to pattern recognized through Documenting & Sharing,
Testing & Refining, and Pattern Emerging & Recognizing processes.

6 What processes change Heuristic from rule of thumb to
tested & refined?

Heuristic changes from rule of thumb to tested & refined through Documenting & Sharing
and Testing & Refining processes.

7 How does Heuristic transition from effectiveness validated
to principle?

Heuristic transitions from effectiveness validated to principle through Theoretical Baking
and Consensus Building.

8 How does Heuristic transition from documented & shared
to pattern recognized?

Heuristic transitions from documented & shared to pattern recognized through Testing &
Refining and Pattern Emerging & Recognizing processes.

9 How does Heuristic evolve from documented & shared to
effectiveness validated?

Heuristic evolves from documented & shared to effectiveness validated through Testing &
Refining, Pattern Emerging & Recognizing, and Formal Studying processes.

10 What processes are involved in Heuristic evolving from rule
of thumb to effectiveness validated?

Heuristic evolves from rule of thumb to effectiveness validated through Documenting &
Sharing, Testing & Refining, Pattern Emerging & Recognizing, and Formal Studying pro-
cesses.
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Table 4: Evaluation results of OPM-QA for 10 examples. Performance was measured using Loose Accuracy (LA), Strict Accuracy (SA), ROUGE-1 (R-1), ROUGE-2 (R-2),
ROUGE-L (R-L), BLEURT (BT), the GPT Judge Score (GPT), Transparency Precision (PT) , Transparency Recall (RT), and Transparency F1 (F1T).

ID Answer LA SA R-1 R-2 R-L BT GPT PT RT F1T

1 Testing & Refining precedes Pattern Emerging & Recognizing in Heuristic evolution.
Testing & Refining changes Heuristic from documented & shared to tested & refined, while
Pattern Emerging & Recognizing subsequently changes Heuristic from tested & refined to
pattern recognized. Both processes require a Project Set.

1.000 1.000 0.696 0.591 0.696 0.444 1.000 1.000 1.000 1.000

2 Heuristic achieves theoretical backing through Theoretical Baking, which changes it from
effectiveness validated to theoretically backed. Subsequently, it undergoes Consensus
Building to transition from theoretically backed to principle.

0.619 0.487 0.714 0.400 0.571 0.496 1.000 1.000 1.000 1.000

3 Heuristic changes from effectiveness validated to principle through Theoretical Baking,
which transitions it to theoretically backed, followed by Consensus Building, which
transitions it to principle.

1.000 1.000 0.750 0.636 0.750 0.461 1.000 0.800 1.000 0.889

4 The Heuristic-to-principle Evolving process transitions Heuristic through the states of rule
of thumb (initial), documented & shared, tested & refined, pattern recognized, effectiveness
validated, theoretically backed, and finally to principle (final), following a defined sequence
of processes.

0.895 0.846 0.756 0.605 0.756 0.583 1.000 1.000 0.857 0.923

5 The processes that change Heuristic from rule of thumb to pattern recognized are
Documenting & Sharing, Testing & Refining, and Pattern Emerging & Recognizing.

1.000 1.000 1.000 0.769 0.857 0.808 1.000 1.000 1.000 1.000

6 The processes that change Heuristic from rule of thumb to tested & refined are
Documenting & Sharing followed by Testing & Refining.

1.000 1.000 0.957 0.571 0.783 0.753 1.000 1.000 1.000 1.000

7 Heuristic transitions from effectiveness validated to principle through Theoretical Baking,
which changes it to theoretically backed, followed by Consensus Building, which changes it
to principle.

1.000 1.000 0.750 0.636 0.750 0.463 1.000 0.800 1.000 0.889

8 Heuristic transitions from documented & shared to pattern recognized through the processes
of Testing & Refining, which changes it to tested & refined, followed by Pattern Emerging
& Recognizing, which changes it to pattern recognized.

1.000 1.000 0.774 0.621 0.710 0.537 1.000 0.667 1.000 0.800

9 Heuristic evolves from documented & shared to effectiveness validated through the
processes of Testing & Refining, Pattern Emerging & Recognizing, and Effectiveness
Validating, in that sequence.

0.857 0.794 0.828 0.667 0.759 0.634 1.000 0.750 1.000 0.857

10 The processes involved in Heuristic evolving from rule of thumb to effectiveness validated
are Initial Observing, Documenting & Sharing, Testing & Refining, Pattern Emerging &
Recognizing, and Effectiveness Validating.

0.812 0.732 0.800 0.667 0.743 0.500 1.000 0.667 1.000 0.800
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Table 5: Evaluation results of NL-QA for 10 examples. Performance was measured using Loose Accuracy (LA), Strict Accuracy (SA), ROUGE-1 (R-1), ROUGE-2 (R-2),
ROUGE-L (R-L), BLEURT (BT), the GPT Judge Score (GPT), Transparency Precision (PT), Transparency Recall (RT), and Transparency F1 (F1T)

ID Answer LA SA R-1 R-2 R-L BT GPT PT RT F1T

1 Testing & Refining provides the practical outcomes and data that enable Pattern Emerging
& Recognizing, where recurring success across projects reveals generalizable patterns.

0.417 0.269 0.364 0.194 0.364 0.370 0.000 1.000 0.333 0.500

2 Heuristic achieves theoretical backing through formal studies that validate its effectiveness
and by connecting it to underlying theories in systems engineering and related fields.

0.286 0.153 0.421 0.222 0.368 0.428 1.000 0.000 0.000 0.000

3 Heuristic changes from effectiveness validated to principle through Consensus Building,
where accumulated evidence and community agreement establish its validity and
importance as a guiding principle.

0.778 0.686 0.560 0.435 0.560 0.424 1.000 1.000 0.750 0.857

4 The Heuristic-to-principle Evolving process transitions the heuristic through distinct states:
starting as a rule of thumb (Initial Observation), becoming documented and shared
(Documentation and Sharing), then tested and refined (Testing and Refinement). It
progresses to a pattern recognized state (Pattern Recognition), followed by effectiveness
validated (Formal Studies), and finally becomes theoretically backed (Theoretical Backing)
and widely accepted through consensus (Consensus Building). Each process step
transforms the heuristic into a more formalized and reliable principle.

0.895 0.846 0.493 0.239 0.464 0.404 1.000 0.800 0.571 0.667

5 The processes that change Heuristic from rule of thumb to pattern recognized are Initial
Observation, Documentation and Sharing, Testing and Refinement, and Pattern Recognition.

0.692 0.576 0.828 0.519 0.690 0.584 1.000 1.000 0.333 0.500

6 The processes Initial Observation, Documentation and Sharing, and Testing and Refinement
change Heuristic from rule of thumb to tested & refined.

0.818 0.740 0.917 0.545 0.417 0.576 1.000 1.000 0.500 0.667

7 Heuristic transitions from effectiveness validated to principle through Theoretical Backing
and Consensus Building, where it is connected to underlying theories and gains community
agreement on its validity and importance.

0.889 0.838 0.615 0.500 0.615 0.448 1.000 1.000 0.750 0.857

8 Heuristic transitions from documented & shared to pattern recognized through Testing &
Refinement, where it is applied across projects, and Pattern Recognition, where recurring
usefulness across domains leads to generalization.

0.636 0.508 0.581 0.483 0.581 0.509 1.000 1.000 0.500 0.667

9 Heuristic evolves from documented & shared to effectiveness validated through Testing &
Refinement, followed by Pattern Recognition and Formal Studies.

0.643 0.515 0.815 0.640 0.815 0.705 1.000 1.000 0.667 0.800

10 The processes involved in Heuristic evolving from rule of thumb to effectiveness validated
are Initial Observation, Documentation and Sharing, Testing and Refinement, Pattern
Recognition, and Formal Studies.

0.625 0.494 0.824 0.625 0.765 0.589 1.000 1.000 0.500 0.667
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