
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 55–65

April 30 - May 1, 2025 ©2025 Association for Computational Linguistics

Towards Codec-LM Co-design for Neural Codec Language Models

Shih-Lun Wu∗ 1, 2 Aakash Lahoti 1, 3 Arjun Desai 1 Karan Goel 1

Chris Donahue† 3 Albert Gu† 1, 3

1 Cartesia AI 2 MIT 3 CMU
∗ Work done during internship at Cartesia AI † Co-senior author Correspondence: slseanwu@mit.edu

Abstract

Neural codec language models (or codec LMs)
are emerging as a powerful framework for au-
dio generation tasks like text-to-speech (TTS).
These models leverage advancements in lan-
guage modeling and residual vector quantiza-
tion (RVQ)-based audio codecs, which com-
press audios into discrete codes for LMs to
process. Despite the close interdependence of
codecs and LMs in these systems, research on
codecs and LMs has largely remained siloed. In
this work, we propose three techniques for bet-
ter codec-LM co-design: (i) a frame-wise codec
encoder that improves both LM log-likelihood
and end-to-end TTS metrics, (ii) LM codebook
level dropout, a method to efficiently navigate
a portion of the codec-LM design space by
training a single LM, and (iii) increased codec
frame duration, which we show can accelerate
inference while maintaining end-to-end perfor-
mance. Our experiments demonstrate that com-
bining all three co-design techniques results in
doubled inference speed, and improvements in
intelligibility, audio quality, and speaker con-
trol in TTS relative to a siloed baseline.

1 Introduction

Neural codec language models (or codec LMs)
(van den Oord et al., 2017; Wu et al., 2024) have
recently emerged as a prominent framework for
text-to-speech (TTS) (Tan et al., 2021; Wang et al.,
2023; Yang et al., 2024) and general audio genera-
tion tasks (van den Oord et al., 2016; Copet et al.,
2023; Borsos et al., 2023; Yang et al., 2024), replac-
ing autoregressive methods that model continuous
raw waveforms (van den Oord et al., 2016; Kalch-
brenner et al., 2018; Goel et al., 2022). The success
of codec LMs can be attributed to improvements
in the architecture, scaling, and efficiency of lan-
guage models (LMs) (Vaswani et al., 2017; Brown
et al., 2020; Dao et al., 2022; Gu and Dao, 2023),
as well as increasingly high-fidelity convolutional

audio codecs that employ the residual vector quan-
tization (RVQ) technique (Zeghidour et al., 2021;
Défossez et al., 2023; Kumar et al., 2023), bridg-
ing continuous-domain audio generation tasks with
LM methods that model discrete tokens.

Although the codec and the LM are closely cou-
pled, they represent relatively isolated research ar-
eas. Research on codecs (Zeghidour et al., 2021;
Défossez et al., 2023; Kumar et al., 2023; Ahn et al.,
2024) primarily focuses on achieving higher com-
pression rates (i.e., lower bandwidths) while main-
taining reconstruction quality. Conversely, research
on codec-based LMs (Borsos et al., 2023; Wang
et al., 2023; Copet et al., 2023; Yang et al., 2024)
typically treats the codec as a fixed module and
explores how to best model the codec tokens. (We
defer more detailed Related Work to Appendix A.)
While the design space of codecs and LMs com-
bined is too large to explore exhaustively, consider-
ing each in isolation may be suboptimal when the
goal is to improve the end-to-end performance.

In this work, we aim to break the isolation and
uncover co-design principles between the codec
and the LM. We identify several aspects that play
a key role in the interactions between the two, and
substantially impact the end-to-end generation qual-
ity and/or efficiency. Leveraging these co-design in-
sights, we propose actionable interventions which
can improve the performance and efficiency (both
at training and inference) of end-to-end audio gen-
eration systems. Our technical contributions are:

• Considering the different impacts of receptive
field overlaps in the RVQ codec encoder and
decoder, we introduce a framewise codec en-
coder (Sec. 3.1), which encodes each frame (i.e.,
non-overlapping chunks in input audio) indepen-
dently. We find that this leads to improvements
in the LM log-likelihood (>8% higher), and all
end-to-end TTS metrics (Table 1).

• Observing that the end-to-end generation per-

55

mailto:slseanwu@mit.edu

Codec
Encoder

Codec
Decoder

Audio LM

Codec
Decoder

RVQ Codec-LM System Proposal 1: Framewise Codes

Framewise
Codec Encoder

Proposal 2: LM Codebook Level Dropout

Audio LMCodec
Decoder

Proposal 3:
Longer Code Frame Duration

Framewise
Codec Encoder

Codec
Decoder

Audio LM
…

…

“ how are you? ”

“ how are you? ”

speaker
&

transcript

RVQ
codes

generated audio

(delayed)
RVQ

codes

reconstructed audio

original audio

Q’ = 2 Q’ = 3 Q’ = 1

better
LM loss &
TTS metrics

compute-efficient
(at training) to find
best # of levels (Q’)

faster inference w/
comparable TTS metrics

Figure 1: Overview of an RVQ-based codec-LM system for TTS (left), our contributions (right, Proposals 1, 2 &
3), and associated benefits. (Shaded triangles are receptive fields per code frame.)

formance is heavily influenced by number of
RVQ codebook levels modeled by the LM, we
propose LM codebook level dropout (Sec. 3.2),
which allows practitioners to efficiently tune this
salient hyperparameter of the codec-LM design
space in a single LM training run (Fig. 2).

• As codec frame duration is inversely propor-
tional to LM sequence length, we show that us-
ing longer frame durations (Sec. 3.3), while
tuning other codec hyperparameters accordingly,
can accelerate end-to-end TTS inference, and
preserve TTS metrics (Table 2).
A schematic diagram of our end-to-end audio

generation system and proposed techniques can
be found in Fig. 1. Our experiments are based
on a streamable (i.e., causal) variant of the DAC
codec (Kumar et al., 2023), and we implement our
changes (i.e., framewise encoder, and longer frame
duration) without altering its architecture. We then
train Delay-pattern LMs (Copet et al., 2023) for
TTS, where LM codebook level dropout is applied,
on the RVQ codes from our codecs. We finally
demonstrate that combining all three co-design
techniques doubles the end-to-end TTS inference
speeds while improving all end-to-end TTS metrics
(Table 3) concerning intelligibility, audio quality,
and speaker control.

We open source our implementation of the
framewise and causal DAC (Kumar et al., 2023)
codecs at https://github.com/slSeanWU/
descript-audio-codec/tree/main.

2 Technical Background

Residual vector quantization (RVQ)-based au-
dio codecs. An RVQ-based audio codec com-
presses a continuous waveform w ∈ RTfs , where

T is the duration (in seconds) and fs is the sampling
rate (in Hz) of the waveform, into discrete codes
x ∈ VTfx×Q. Here, V := {1, 2, . . . , |V|} repre-
sents the codebook, fx (typically much smaller than
fs) is the frame rate (in Hz) of the codec, and Q is
the number of codebook levels used to represent
each frame. We also call downsampling rate of the
codec, i.e., fs/fx, the frame size (an integer num-
ber of audio samples) and 1/fx the frame duration
(in seconds). The term residual refers to how the
Q codebook levels are structured to progressively
refine the quantization (Zeghidour et al., 2021).
Let the unquantized representation (i.e., the codec
encoder output) for the i-th frame be denoted by
h
(1)
i ∈ RD, where D is the codec encoder’s output

dimension. The RVQ process works iteratively for
each level q ∈ {1, . . . , Q} on a frame-by-frame
basis, quantizing the residual information from pre-
ceding levels using a level-wise learned codebook
C(q) : V → RD. The operations at each level are:

xi,q := argmin
x̃∈V

∥h(q)
i − C(q)(x̃)∥22 (1)

h
(q+1)
i := h

(q)
i − C(q)(xi,q) , (2)

where xi,q ∈ V is an element in the code sequence
x, and C(q)(xi,q) ∈ RD is the quantized represen-
tation corresponding to xi,q. The level-wise quan-
tized representations are summed frame-by-frame,
i.e.,

∑Q
q C(q)(xi,q); ∀i ∈ {1, . . . ,Tfx}, and sent to

the decoder to reconstruct the original waveform.
Typically, during RVQ codec training, quantizer

dropout (Zeghidour et al., 2021; Kumar et al., 2023)
is applied, which sometimes performs Eqn. (1) and
(2) for Qtrunc < Q levels. This enables the codec
to encode and reconstruct audio waveforms at all
Q possible RVQ level counts.

56

https://github.com/slSeanWU/descript-audio-codec/tree/main
https://github.com/slSeanWU/descript-audio-codec/tree/main

Language modeling with Delay pattern of RVQ
codes. We can construct an end-to-end audio gen-
erative model by training an LM on the RVQ codes
x ∈ VTfx×Q′

, where Q′ ∈ {1, . . . , Q} is a sub-
set of the RVQ levels to model. To model such
2D-structured codes, we adopt the Delay pattern
proposed in (Copet et al., 2023), which makes
a good tradeoff between the efficiency and effi-
cacy of modeling the RVQ codes x. Instead of
naively flattening x to a sequence of Tfx ×Q′ el-
ements, it shifts the q-th level of x to the right
by q positions, creating a shifted code sequence
x(delay) ∈ V(Tfx+Q′−1)×Q′

, where each frame is
x

(delay)
t := [xt−q+1, q]

Q′
q=1. Then, the LM models:

p(x) = p(x(delay)) :=

Tfx+Q′−1∏

t=1

p(x
(delay)
t | x(delay)

<t) ,

(3)
predicting the elements in each frame x

(delay)
t in

parallel. Though omitted in Eqn. (3), the LM is
typically trained with conditions y expected from
the user, e.g., text transcripts and speaker charac-
teristics. Bringing all components together, our
codec-LM audio generation system models:

p(w,x | y) := p(w | x)︸ ︷︷ ︸
learned by codec

· p(x | y)︸ ︷︷ ︸
learned by LM

, (4)

where conditional independence between wave-
form w and user inputs y is assumed given codes x.
We note that p(w | x) is typically a deterministic
mapping parameterized by the RVQ codec decoder.

3 Method

3.1 Codes with non-overlapping receptive
fields (Framewise codec encoder)

Most common RVQ audio codecs (Zeghidour et al.,
2021; Défossez et al., 2023; Kumar et al., 2023)
set the stride size of each 1D convolutional layer to
be smaller than the filter size. This way the neigh-
boring outputs (along the time dimension) have
overlapping receptive fields. When we consider the
entire codec encoder, where multiple convolutional
layers are stacked, this overlapping property at each
layer causes the receptive field of each code frame
xt to overlap with those of preceding code frames
[xt−k, . . . ,xt−1], assuming the codec is causal.1

A similar property also holds in the codec decoder,
i.e., each sample in the reconstructed waveform ŵ
is influenced by multiple code frames.

1For example, for the architecture of DAC (Kumar et al.,
2023), the extent of overlap is k = 8.

If we reason about the frame-level overlaps, it
is intuitive that they benefit the decoder, as the
mutual information between multiple code frames
can be leveraged for improved reconstruction. On
the other hand, whether these overlaps are advanta-
geous on the encoder side is less clear. They may
provide the opportunity for the codec to pack in-
formation in high-complexity waveform segments
(e.g., fast speech with frequent intonation changes)
into neighboring code frames corresponding to low-
information segments (e.g., silence), hence improv-
ing audio reconstruction. However, this could be
detrimental for the downstream LM as each code
frame may hold varying amounts of (confounding)
information from preceding frames.

Therefore, we propose a setup where the codes
are encoded framewise, i.e., each code frame xt

has a receptive field covering only fs/fx wave-
form samples, without overlapping with other code
frames. Operationally, this is achieved by re-
shaping the waveform (i.e., the inital input to the
codec encoder) from (B,Tfs, 1), where the di-
mensions represent (batch, sequence, channels),
to (BTfx, fs/fx, 1). Since the downsampling rate
of the entire encoder is precisely fs/fx, the final
encoder output is of shape (BTfx, 1, D), which we
then reshape back to (B,Tfx, D) before quantiza-
tion as in normal codecs with frame-level overlaps.
Note that no architectural changes are required.

This setup with encoder-framewise and decoder-
overlapping receptive fields retains desirable prop-
erties such as leveraging mutual information be-
tween code frames for reconstruction, Also, the
information unique to each frame of waveform sam-
ples is encoded distinctly into one code frame, in-
stead of spilling over multiple code frames, which
we anticipate might benefit the downstream LM.

3.2 LM Codebook level dropout (CL drop)
Here we propose a novel method designed to in-
crease the efficiency of hyperparameter tuning for
the number of codec RVQ levels Q′ used when
training the downstream LM. The choice of the
hyperparameter Q′ can have a substantial impact
on the end-to-end audio generation performance of
the codec LM system. While increasing Q′ mono-
tonically improves codec audio reconstruction due
to a wider information bottleneck, its impact on the
combined codec LM system is ambiguous. Using
too low of a Q′ value in the LM could result in
poor audio quality, while using too high of a value
could be detrimental as modeling finer-grained lev-

57

Framewise Enc. ? Codec Recons. Text-to-Speech Uncond. Music

Codec setting Mel-L1↓ NLL↓ WER↓ NISQA↑ Spk. sim.↑ NLL↓ FAD↓
Causal ✗ .846 5.46±.00 4.12±.35 4.35±.01 80.2±.1 6.06±.01 18.7±1.2

Proposed ✓ .873 4.97±.02 3.71±.19 4.37±.02 80.7±.2 5.16±.00 17.1±0.8

Table 1: Codec encoder receptive field settings vs. end-to-end TTS & music generation performance. Our proposed
framewise codec encoder (Sec. 3.1) consistently beats the commonly used streamable setting (i.e., Causal) both on
LM likelihood (cf. NLL) and all end-to-end metrics. Stdev over 5 runs follow ±.

els may: (i) present information that is too stochas-
tic for the LM to process effectively, or (ii) shift
the LM’s capacity away from the coarser-grained
levels which contain more crucial structural or se-
mantic information about the audio.2

However, naively training O(Q) LMs to tune Q′

is computationally expensive. Thus, we propose
codebook level dropout (CL drop), which trains
just a single LM that allows evaluation/inference at
all possible level counts up to Q, analogous to the
quantizer dropout method used to train the codec.
To perform CL drop, we first define a dropout distri-
bution P(q) over the all levels q ∈ {1, . . . , Q}, and
then during LM training, we truncate inputs x(delay)

along the level dimension according to P(q). The
LM’s training objective can hence be written as:

min
θ

E(x,y)∼D,Q′∼P(q)

[
− log pθ

(
x

(delay)
:, :Q′ | y

)]

(5)
where D is the LM training set with paired con-
ditions y and RVQ codes x for the desired audio,
and θ is the set of the LM’s trainable parameters.

For CL drop to be effective in determining the
best Q′, its end-to-end performance profile across
different level counts should closely mirror the
trends without CL drop (i.e., the ‘end-to-end TTS’
curve in Fig. 3). Intuitively, the choice of P(q) is
critical in preserving the trends, as it governs how
much the LM’s focus is shifted toward the lower
(coarser-grained) levels.3

3.3 Navigating other codec hyperparameters
In addition to the number of RVQ levels (Q),
there are two additional hyperparameters that af-
fect the compression factor of the codec: (i) the
codec’s frame duration (1/fx), and (ii) the code-
book size (|V|). The bitrate of the codec, equal to
Qfx log2(|V|) bits per second, is a function of these
three factors and directly impacts the reconstruc-
tion quality. In siloed codec design, these three fac-
tors can be traded off freely to optimize for higher

2Experiments on the impact Q′ are in Appendix B.
3Experiments on different P(q)’s are in Appendix D.

reconstruction quality at some fixed bitrate. How-
ever, in a co-design context, the LM’s behavior can
be impacted by different tradeoffs even when the
codec’s bitrate is kept fixed.

Here we make several observations about frame
duration and codebook size respectively in the con-
text of codec-LM co-design. From Eqn. (3), we
can observe that the Delay LM sequence length
is inversely proportional to frame duration. Thus,
increasing it by a factor of two can roughly halve
sequence length, resulting in efficiency gains and
reduced inference latency. (Note that either |V|
or Q should be increased accordingly to preserve
audio quality.)

On the other hand, increasing the codebook size
|V| may have mixed impacts on the LM. On the pos-
itive side, assuming the frame duration and bitrate
are controlled, using a larger codebook (and hence
fewer RVQ levels) reduces the extent of packing
information from multiple (i.e., Q′) code frames
into one Delay LM timestep x

(delay)
t . However, in-

creasing only |V| while holding Q constant leads to
an exponential growth in the LM’s vocabulary size
(and embedding parameters) relative to a linear in-
crease in bitrate. This growth can inflate the LM’s
memory footprint and introduce potential modeling
challenges. Thus, while our CL drop technique can
efficiently find the best Q′ given a fixed |V|, finding
the optimal |V| still requires trial and error.

4 Experiments and Discussion

We first conduct experiments specifically for each
proposed technique (i.e., Sec 3.1, 3.2, and 3.3) to
elucidate their individual effects, and finally com-
bine them to show their collective benefits. We
use word error rate (WER), NISQA (Mittag et al.,
2021), and cosine similarity of speaker embed-
dings (Jung et al., 2022) to evaluate the intelligi-
bility, audio quality, and speaker control of end-
to-end TTS generations. For music generation, we
use Fréchet audio distance (FAD) (Kilgour et al.,
2019) to capture overall quality. More experimen-
tal setups are deferred to Appendix C.

58

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.04

0.06

0.08

0.10
WER ()

w/ CL drop
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

3.00

3.25

3.50

3.75

4.00

4.25
NISQA ()

w/ CL drop
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.65

0.70

0.75

0.80

Speaker Similarity ()

w/ CL drop
w/o CL drop

Figure 2: Number of RVQ codebook levels used by LM vs. end-to-end TTS metrics. Training one LM with
codebook level dropout (‘CL drop’, Sec. 3.2) leads to performance trends that closely follow training Q = 12
LMs w/o CL drop at each Q′ ∈ {1, . . . , 12}. Note that practitioners can then train a second LM at the found optimal
level count w/o CL drop for best possible performance. Shaded bands represent stdev over 3 runs.

Codec Config Codec Recons. Text-to-Speech Efficiency

Frame dur. log2(|V|) Q′ Rel. bitrate Mel-L1↓ WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑
11ms 10 9 1.00× .873 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.00×
11ms 15 6 1.00× .874 3.73 ±.28 4.33 ±.01 80.4 ±.1 1.01×
22ms 10 16 0.89× .888 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.94×
22ms 15 11 0.92× .876 3.55 ±.36 4.33 ±.01 79.3 ±.1 2.00×
44ms 10 32 0.89× .875 6.73 4.14 76.7 3.20×
44ms 15 20 0.83× .871 4.53 3.65 73.2 3.77×

Table 2: Effects of using longer frame durations (Sec. 3.3), holding audio reconstruction quality approximately
constant by varying codebook size |V| and/or # of RVQ levels Q′. We measure the actual inference time (LM
& codec decoding combined) over 50 samples with batch size 1 and treat the first row as the baseline for the
‘Inf. speedup’ column. In general, using a 2× frame duration (22ms) strikes best balance between performance and
efficiency. Stdev over 5 runs follow ±. First row is the default configuration inherited from DAC.

Framewise codec encoder. Table 1 presents a
comparison of audio reconstruction and down-
stream TTS (and music) generation performance
with and without the use of our proposed frame-
wise codec encoder. Here, we adopt the default
DAC (Kumar et al., 2023) codec configurations.4

Our framewise codec encoder setting outperforms
the default streamable causal setting consistently,
both on LM likelihood (>8% lower NLL) and all
end-to-end TTS and music generation metrics.
Notably, it is slightly worse on Mel-L1, underscor-
ing the fact that better audio reconstruction does
not always translate to better end-to-end per-
formance. Due to its advantage, we conduct all
subsequent experiments with framewise codec en-
coders, unless otherwise specified.

LM codebook level dropout (CL drop). Results
of training the LM with codebook level dropout
(see Sec. 3.2) are presented in Fig. 2. To exam-
ine how end-to-end performance evolves in the
higher-bitrate regime, we use 15-bit codebooks
(log2(|V|) = 15) and codebook levels Q = 12 for

4Frame duration (1/fx) = 11ms; number of RVQ levels
(Q and Q′) = 9; codebook size per level (|V|) = 210.

the codec.5 We experiment with various dropout
distributions P(q) (see App. D for details) and con-
clude that it is best to train at the full level count
(i.e., 12 in this case) for 90% of the steps and uni-
formly distribute the remaining 10% to all lower
level counts. The curves in Fig. 2 show that training
a single LM with CL drop produces a performance
profile closely aligned with training 12 separate
LMs without CL drop. This demonstrates that CL
drop is a reliable method for practitioners to
efficiently optimize for the level count Q′ with
significantly reduced training compute. Besides,
the curves also show that WER, which focuses
on (coarser) word-level information, reaches the
best early at 3∼4 levels, while NISQA and speaker
similarity, which are tied more closely to the fine-
grained details, peak at around 9 levels. Though dif-
ferent metrics behave differently w.r.t. level count,
we find that choosing the best level count based
on FAD (shown in Fig. 3, which uses the same
codec as here and would suggest using 9 levels)
achieves a balanced performance between all
the TTS metrics we consider.

5amounting to a max bitrate that is 2× that of official DAC.

59

Proposals Codec Config Text-to-Speech Metrics Efficiency

#1 #2 #3 Frame dur. log2(|V|) Q′ : Q WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑
✗ ✗ ✗ 11ms 10 9 : 9 4.12 ±.35 4.35 ±.01 80.2 ±.1 1.00×
✓ ✗ ✗ 11ms 10 9 : 9 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.01×
✓ ✗ ✓ 22ms 10 16:16 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.95×
✓ ✓ ✓ 22ms 10 14:16 3.86 ±.19 4.43 ±.01 80.8 ±.2 2.01×

Table 3: Combined improvements from using multiple proposed techniques—#1: Framewise codec encoder; #2:
CL drop; #3: Longer frame duration. Q′ denotes the # of levels the LM is trained with for end-to-end TTS, while
Q denotes the RVQ codec’s full # of levels. We italicize the second best setting for each metric. Compared to
the baseline using a causal codec (1st row), applying all of our proposed techniques (last row) improves both the
efficiency and all end-to-end TTS metrics.

Longer frame duration. Table 2 displays
the effects of using longer frame durations
({1×, 2×, 4×} that of default DAC), and wider
codebooks (210 (default) or 215 codewords per
level). Here, we use the number of levels Q′ (in
this set of experiments, Q′ = Q) as a variable to
roughly control for audio reconstruction quality
(i.e., Mel-L1). In general, using a 22ms frame
duration (i.e., 2× that of default DAC) preserves
or improves TTS performance and enjoys a 2×
inference speedup at the same time. Increasing
the frame duration to 44ms leads to substantially
worse TTS metrics despite further efficiency gains.
However, whether to increase the codebook size
|V| from the default 210 to accommodate longer
frame durations remains unclear (better on WER,
worse on other metrics), warranting a more fine-
grained exploration (e.g., a dense sweep over 10-
to 15-bit codebooks) in future work.

Combining all techniques. Table 3 illustrates
the cumulative impact of progressively integrating
our proposed techniques. In the last row, we ap-
ply LM codebook level dropout to a (22ms, 10-bit,
16-level) codec, identifying the optimal level count
Q′ = 14 using FAD on end-to-end TTS. Com-
paring the streamable baseline (1st row) and the
final model with all our techniques (last row), we
achieve substantial improvements across all end-to-
end TTS metrics, while doubling inference speed.

Future work. Our work may be extended to:
(i) study the theory of why framewise compressed
representations improve language modeling, (ii) de-
velop RVQ codecs that have flexibility also in code-
book size and frame duration such that our LM
codebook level dropout can be applied to multiple
key hyperparameters altogether, and (iii) uncover
the scaling properties (Hoffmann et al., 2022) of
the optimal codec settings w.r.t. larger models and
more training data.

References
Andrea Agostinelli, Timo I Denk, Zalán Borsos,

Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco
Tagliasacchi, et al. 2023. MusicLM: Generating mu-
sic from text. arXiv preprint arXiv:2301.11325.

Sunghwan Ahn, Beom Jun Woo, Min Hyun Han,
Chanyeong Moon, and Nam Soo Kim. 2024.
HILCodec: High fidelity and lightweight neural au-
dio codec. arXiv preprint arXiv:2405.04752.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alas-
tair Porter, and Xavier Serra. 2019. The MTG-
Jamendo dataset for automatic music tagging. In
Proc. Workshop on Machine Learning for Music Dis-
covery (ML4MD).

Zalán Borsos, Raphaël Marinier, Damien Vincent,
Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grang-
ier, Marco Tagliasacchi, et al. 2023. AudioLM: a
language modeling approach to audio generation.
IEEE/ACM Trans. on Audio, Speech, and Language
Processing (T-ASLP).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. Advances in
Neural Information Processing Systems (NeurIPS).

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng
Chiu, James Qin, Ruoming Pang, and Yonghui Wu.
2021. W2v-bert: Combining contrastive learning
and masked language modeling for self-supervised
speech pre-training. In Proc. Automatic Speech
Recognition and Understanding Workshop (ASRU).

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. 2023. Simple and controllable music gen-
eration. Advances in Neural Information Processing
Systems (NeurIPS).

60

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems
(NeurIPS).

Tri Dao and Albert Gu. 2024. Transformers are SSMs:
Generalized models and efficient algorithms through
structured state space duality. In Proc. Int. Conf. on
Machine Learning (ICML).

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst,
and Xavier Bresson. 2017. FMA: A dataset for music
analysis. In Proc. Int. Soc. for Music Information
Retrieval Conf. (ISMIR).

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2023. High fidelity neural audio compres-
sion. Transactions on Machine Learning Research
(TMLR).

Alexandre Défossez, Laurent Mazaré, Manu Orsini,
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard
Grave, and Neil Zeghidour. 2024. Moshi: a speech-
text foundation model for real-time dialogue. Tech-
nical report, Kyutai.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. NAACL.

Chris Donahue, Julian McAuley, and Miller Puckette.
2019. Adversarial audio synthesis. In Proc. Int. Conf.
on Learning Representations (ICLR).

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R Channing Moore,
Manoj Plakal, and Marvin Ritter. 2017. Audio set:
An ontology and human-labeled dataset for audio
events. In Proc. Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP).

Karan Goel, Albert Gu, Chris Donahue, and Christopher
Ré. 2022. It’s raw! audio generation with state-space
models. In Proc. Int. Conf. on Machine Learning
(ICML).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in Neural Information
Processing Systems (NeurIPS).

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Ali Hatamizadeh and Jan Kautz. 2024. Mambavision:
A hybrid mamba-transformer vision backbone. arXiv
preprint arXiv:2407.08083.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis,
Jort F Gemmeke, Aren Jansen, R Channing Moore,
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Sey-
bold, et al. 2017. CNN architectures for large-scale

audio classification. In Proc. Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Trans. on Audio, Speech,
and Language Processing (T-ASLP).

Shengpeng Ji, Minghui Fang, Ziyue Jiang, Rongjie
Huang, Jialung Zuo, Shulei Wang, and Zhou Zhao.
2024. Language-Codec: Reducing the gaps between
discrete codec representation and speech language
models. arXiv preprint arXiv:2402.12208.

Jee-weon Jung, You Jin Kim, Hee-Soo Heo, Bong-Jin
Lee, Youngki Kwon, and Joon Son Chung. 2022.
Pushing the limits of raw waveform speaker recogni-
tion. In Proc. Interspeech.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb
Noury, Norman Casagrande, Edward Lockhart, Flo-
rian Stimberg, Aaron Oord, Sander Dieleman, and
Koray Kavukcuoglu. 2018. Efficient neural audio
synthesis. In Proc. Int. Conf. on Machine Learning
(ICML).

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and
Matthew Sharifi. 2019. Fréchet audio distance: A
reference-free metric for evaluating music enhance-
ment algorithms. In Proc. Interspeech.

Jaehyeon Kim, Keon Lee, Seungjun Chung, and Jae-
woong Cho. 2024. CLam-TTS: Improving neural
codec language model for zero-shot text-to-speech.
In Proc. Int. Conf. on Learning Representations
(ICLR).

Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding,
Kohei Yatabe, Nobuyuki Morioka, Michiel Bacchi-
ani, Yu Zhang, Wei Han, and Ankur Bapna. 2023.
LibriTTS-R: A restored multi-speaker text-to-speech
corpus. In Proc. Interspeech.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
HiFi-GAN: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. Advances in
Neural Information Processing Systems (NeurIPS).

Kundan Kumar, Rithesh Kumar, Thibault De Boissiere,
Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexan-
dre De Brebisson, Yoshua Bengio, and Aaron C
Courville. 2019. MelGAN: Generative adversarial
networks for conditional waveform synthesis. Ad-
vances in Neural Information Processing Systems
(NeurIPS).

61

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs,
Ishaan Kumar, and Kundan Kumar. 2023. High-
fidelity audio compression with improved RVQGAN.
Advances in Neural Information Processing Systems
(NeurIPS).

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In Proc. Int. Conf. on
Learning Representations (ICLR).

Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and
Sebastian Möller. 2021. NISQA: A deep cnn-self-
attention model for multidimensional speech quality
prediction with crowdsourced datasets. In Proc. In-
terspeech.

Gautham J Mysore. 2014. Can we automatically trans-
form speech recorded on common consumer devices
in real-world environments into professional produc-
tion quality speech?—a dataset, insights, and chal-
lenges. IEEE Signal Processing Letters.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proc. Int. Conf. on Machine Learning
(ICML).

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter,
Stylianos Ioannis Mimilakis, and Rachel Bittner.
2017. The MUSDB18 corpus for music separation.

Xu Tan, Tao Qin, Frank Soong, and Tie-Yan Liu. 2021.
A survey on neural speech synthesis. arXiv preprint
arXiv:2106.15561.

Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, Koray Kavukcuoglu,
et al. 2016. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499.

Aaron van den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. Advances in Neural
Information Processing Systems (NeurIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems (NeurIPS).

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, et al. 2024. An empirical study of
mamba-based language models. arXiv preprint
arXiv:2406.07887.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al. 2023. Neural codec
language models are zero-shot text to speech synthe-
sizers. arXiv preprint arXiv:2301.02111.

Haibin Wu, Xuanjun Chen, Yi-Cheng Lin, Kai-wei
Chang, Ho-Lam Chung, Alexander H Liu, and Hung-
yi Lee. 2024. Towards audio language modeling–an
overview. arXiv preprint arXiv:2402.13236.

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang,
Songxiang Liu, Haohan Guo, Xuankai Chang, Jia-
tong Shi, Sheng Zhao, Jiang Bian, Zhou Zhao, Xixin
Wu, and Helen M. Meng. 2024. UniAudio: Towards
universal audio generation with large language mod-
els. In Proc. Int. Conf. on Machine Learning (ICML).

Neil Zeghidour, Alejandro Luebs, Ahmed Omran,
Jan Skoglund, and Marco Tagliasacchi. 2021.
Soundstream: An end-to-end neural audio codec.
IEEE/ACM Trans. on Audio, Speech, and Language
Processing (T-ASLP).

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and
Xipeng Qiu. 2024. SpeechTokenizer: Unified speech
tokenizer for speech large language models. In Int.
Conf. on Learning Representations (ICLR).

62

A Related Work

Neural audio codecs. Compressing and quantiz-
ing long, continuous audio waveforms into shorter
discrete codes using a convolutional autoencoder
was first proposed by van den Oord et al. (2017).
Their proposed VQ-VAE method involves online
K-Means for quantizing latent representations and
a reconstruction objective on the decoder’s output.
Later, SoundStream (Zeghidour et al., 2021) in-
troduced the 2D-structured Residual Vector Quan-
tization (RVQ) to such codecs. This work also
integrated a mixture of discriminators, a technique
adoped from GAN-based audio synthesis (Goodfel-
low et al., 2014; Donahue et al., 2019; Kumar et al.,
2019; Kong et al., 2020), on top of the decoder
to enhance the perceptual quality of reconstructed
waveforms—this RVQ-GAN setup has since been a
norm for neural audio codecs. EnCodec (Défossez
et al., 2023) and DAC (Kumar et al., 2023) further
advanced the RVQ-GAN architecture with opti-
mized discriminator setup, activation function, and
(low) latent dimensionality. HILCodec (Ahn et al.,
2024) showed that layer-wise variance constraining
helps with the depth scaling of lightweight RVQ-
GAN codecs. Overall, research in neural audio
codecs has focused on achieving higher compres-
sion (i.e., lower bitrates) while maintaining audio
reconstruction quality, rather than downstream au-
dio generation, and often involved detailed archi-
tectural designs and tuning. In contrast, our work
approaches codec design from an end-to-end au-
dio generation practitioners’ perspective, exploring
codec hyperparameters that are both easily config-
urable and influential to the end-to-end system.

LM-based end-to-end audio generation. Au-
toregressive modeling of compressed discrete
codes for audio waveforms was first proposed
alongside VQ-VAE (van den Oord et al., 2017).
AudioLM (Borsos et al., 2023) introduced a hierar-
chical LM approach that first generates semantic to-
kens (Hsu et al., 2021; Chung et al., 2021), derived
from BERT-like pretraining (Devlin et al., 2019)
on audio data, followed by RVQ codes (or acoustic
tokens), resulting in better long-term coherence in
generated audios. To navigate the efficiency-quality
tradeoff given an RVQ codec, VALL-E (Wang
et al., 2023) proposed non-autoregressive model-
ing for all RVQ levels except the coarsest one, and
MusicGen (Copet et al., 2023) introduced the De-
lay pattern, dramatically shortening the sequence
length while preserving key autoregressive depen-

dencies. UniAudio (Yang et al., 2024) unified tok-
enization schemes for text, phonemes, audio, and
symbolic music to build an LM for a wide range
of audio generation tasks. Despite these advance-
ments, all aforementioned work treated the audio
codec, which is upstream from the LM, as a fixed
component, leaving out the potential gains from a
co-design between the codec and the LM.

Co-design of audio codecs and LMs. Compared
to the two previously discussed areas, designing
codecs with the goal of improving end-to-end au-
dio generations is a relatively nascent direction.
SpeechTokenizer (Zhang et al., 2024) proposed to
distill information in semantic tokens (Hsu et al.,
2021) into the first (coarsest) level of the RVQ
codec, alleviating the need of using two LMs (Bor-
sos et al., 2023; Agostinelli et al., 2023) in tandem
for semantic and acoustic RVQ tokens. Moshi (Dé-
fossez et al., 2024), a work conducted concurrently
with ours, adopted this technique and used a causal
codec setup to enable low-latency, streamable real-
time voice conversations. Language-Codec (Ji
et al., 2024) proposed to arrange the RVQ levels
in a first-parallel, then-sequential fashion to dis-
tribute information more evenly among the RVQ
levels. While the methods above improved the la-
tency and/or quality of end-to-end generations, they
focused on single, and highly specific, modifica-
tions to the codec. Meanwhile, our work investi-
gate the downstream impact of multiple general
RVQ codec hyperparameters in combination, paint-
ing a more complete picture for end-to-end system
practitioners.

B Impact of RVQ levels on reconstruction
vs. on end-to-end generation

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.7

0.8

0.9

1.0

1.1

1.2

M
el

 sp
ec

tra
l L

1
di

st
 (

) audio reconstruction (codec)
end-to-end TTS (codec + LM)

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ec

he
t a

ud
io

 d
ist

 (
)

Figure 3: Impacts of # of codebook levels Q′ are differ-
ent on codec-only audio reconstruction vs. end-to-end
TTS involving both the codec and the LM. (frame dura-
tion 1/fx = 11ms; codebook size |V| = 215.)

We train a single RVQ codec on speech data

63

with Q = 12 levels and train 12 LMs for text-
to-speech (TTS) using each possible value of
Q′ ∈ {1, . . . , 12}. In Fig. 3, we first plot the codec
audio reconstruction performance as measured by
Mel-spectral L1 distance. We also plot the end-to-
end codec LM system performance as measured
by Fréchet audio distance (FAD) (Kilgour et al.,
2019), an end-to-end metric for audio generation.
We observe that end-to-end performance improves
as the number of levels increases towards a global
minima at 9 levels and deteriorates afterwards, as
opposed to the monotonically improving curve of
audio reconstruction.

C Experimental Setup

Datasets for codec. For TTS, we collect 1.7K
hours of YouTube podcast data in-house to train
the codec. For music experiments, we use the
medium version of FMA dataset (Defferrard et al.,
2017) containing 200 hours of multitrack music.
To evaluate audio reconstruction of our codecs,
we follow DAC (Kumar et al., 2023) and cre-
ate a dataset of 3K 10-second audios comprising
speech (Mysore, 2014), music (Rafii et al., 2017)
and general sounds (Gemmeke et al., 2017) (1K
each).

Datasets for LM. For TTS, we use the 550-hour
LibriTTS-R (Koizumi et al., 2023) for LM training,
and its test-clean split (8 hours, 4.7K samples) for
evaluation. For unconditional music generation,
we train our LMs on 1.5K hours of multitrack mu-
sic from MTG-Jamendo dataset (Bogdanov et al.,
2019). We exclude examples with vocals using
the associated metadata, and and hold out 1.5K
examples for evaluation.

Codec model specifics. We utilize the open-
source code of DAC (Kumar et al., 2023) and
implement our changes on top. Our codecs have
76∼84M non-codebook parameters due to various
frame durations. We train our codecs for 300K
steps with an effective batch size of 75 seconds of
audio. We use the AdamW (Loshchilov and Hut-
ter, 2018) optimizer with 10−4 initial learning rate
and exponential decay. The training process takes
about 25 hours on 4 NVidia H100 (80G) GPUs.

LM model specifics. Following recent validation
that a hybrid of state-space model (SSM) and at-
tention outperforms either approach alone (Waleffe
et al., 2024; Hatamizadeh and Kautz, 2024), we use
24 layers of stacked Mamba2 (Dao and Gu, 2024)

and Transformer decoder blocks (Vaswani et al.,
2017), totaling 400M non-embedding parameters.
We prepend the conditioning information for TTS
(i.e., y, which includes text transcripts and speaker
embedding) to the RVQ audio codes x(delay). The
text transcript is transformed into character embed-
dings, while the speaker embedding is extracted
using a raw waveform-based speaker recognition
model (Jung et al., 2022).

We train our LMs for 30K steps with a batch
size equivalent to 500 seconds of audio. We use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a peak learning rate of 4 × 10−4, and 10%
warmup steps followed by cosine decay. Training
takes 12 hours on 8 H100 (80G) GPUs. For infer-
ence, we use pure sampling from the LM’s output
logits.

Evaluation for audio reconstruction (codec).
We follow (Kumar et al., 2023) and compute the
L1 distance between the log-scaled Mel spectro-
grams of the original and reconstructed waveforms
to measure reconstruction at the signal level. We
abbreviate this metric as Mel-L1 hereafter.

Evaluation for end-to-end audio generation
(codec + LM). To evaluate our end-to-end TTS
system involving both the codec and the LM, we
consider the following three aspects:
• Intelligibility: Following (Wang et al., 2023),

we measure the word error rate (WER, in %)
between the given text transcript and automat-
ically transcribed text by Whisper (Radford
et al., 2023) (v3 large) model from the gener-
ated speech.

• Audio quality: We leverage NISQA (Mittag
et al., 2021) overall quality score, which is pre-
dicted by a CNN-Transformer model trained on
pairs of speech audios and human-labeled qual-
ity scores in the range of [1, 5]. NISQA has been
shown to correlate well (Pearson’s r ≥ 0.9) with
human judgments of speech audio quality.

• Speaker control: Following (Wang et al., 2023;
Kim et al., 2024), we compute the cosine similar-
ity (∈ [−1, 1], reported in %) between the given
speaker embedding and that extracted from the
generated speech, using the same speaker recog-
nition model (Jung et al., 2022).
For experiments on unconditional music gener-

ation, following (Copet et al., 2023; Agostinelli
et al., 2023), we report Fréchet audio distance

64

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.04

0.05

0.06

0.07

0.08

WER ()
w/ CL drop (90% full)
w/ CL drop (75% full)
w/ CL drop (50% full)
w/ CL drop (Uniform)
w/ CL drop (q prop)
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

3.0

3.2

3.4

3.6

3.8

4.0

4.2
NISQA ()

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.675

0.700

0.725

0.750

0.775

0.800

Speaker Similarity ()

Figure 4: Effects of using different dropout distributions, i.e., P(q), for LM codebook level dropout. The curves of
‘w/ CL drop’ settings are the closer to those of ‘w/o CL drop’ the better.

(FAD) (Kilgour et al., 2019) computed on audio em-
beddings from the VGGish (Hershey et al., 2017)
audio classification model. FAD captures how real-
istic the generations are at the dataset level (i.e., all
generations vs. all reference inputs) using feature-
wise covariances estimated from all audio embed-
dings of the generated/reference set.

D Choosing A Good P(q) for LM
Codebook Level Dropout

For LM codebook level dropout (i.e., CL drop) to
be effective in determining the optimal level count,
its performance profile w.r.t. the level count should
trend as closely as possible to that resulting from
training LMs without CL drop at every possible
number of levels. Here, we find that the choice of
dropout distribution P(q), which determines the
fraction of training steps allocated to each level
count, to be critical. We experiment with a total of
5 different P(q)’s detailed below:

• Uniform: P(q) := 1
Q ; ∀q ∈ {1, . . . , Q}, i.e.,

every level count gets equal attention.

• q-proportional (or q-prop): P(q) :=
q

Z(Q) ; ∀q ∈ {1, . . . , Q}, where the normaliza-

tion constant Z(Q) :=
∑Q

q′=1 q
′, i.e., the frac-

tion for each level count q is proportional to q.

• 50% full: P(q) := 0.5 for q = Q, and P(q) :=
1−0.5
Q−1 ; ∀q ∈ {1, . . . , Q− 1}, i.e., the full level

count Q gets 50% of the steps, and all the lower
level counts share the remaining 50% uniformly.

• 75% full: P(q) := 0.75 for q = Q, and
P(q) := 1−0.75

Q−1 ; ∀q ∈ {1, . . . , Q − 1}, which
is similar to 50% full but focuses more on the
full level count Q.

• 90% full: P(q) := 0.9 for q = Q, and P(q) :=
1−0.9
Q−1 ; ∀q ∈ {1, . . . , Q − 1}, which puts even

more focus on q = Q than 75% full.

The performance profiles resulting from these
P(q)’s are shown in Fig. 4. The NISQA (which
evalutes audio quality) and speaker similarity pro-
files suggest that 90% full is the best choice among
the five P(q)’s. Other choices all peak at relatively
lower level counts, and Uniform, which is the most
straightforward option, appears to be the worst of
the five.

The reasons behind why allocating only 10%
to lower level counts leads to metrics that track
most closely those from training separate LMs for
each level count are left for further investigation.
Our intuition is that, training with Q levels already
includes modeling all the lower levels, and hence
the LM only needs a small number of steps to adapt
to the scenarios where the finer-grained information
in higher levels is absent.

65

