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Abstract

Text style transfer (TST) is the task of trans-
forming a text to reflect a particular style while
preserving its original content. Evaluating TST
outputs is a multidimensional challenge, re-
quiring the assessment of style transfer accu-
racy, content preservation, and naturalness. Us-
ing human evaluation is ideal but costly, as is
common in other natural language processing
(NLP) tasks; however, automatic metrics for
TST have not received as much attention as
metrics for, e.g., machine translation or summa-
rization. In this paper, we examine both set of
existing and novel metrics from broader NLP
tasks for TST evaluation, focusing on two pop-
ular subtasks—sentiment transfer and detoxifi-
cation—in a multilingual context comprising
English, Hindi, and Bengali. By conducting
meta-evaluation through correlation with hu-
man judgments, we demonstrate the effective-
ness of these metrics when used individually
and in ensembles. Additionally, we investigate
the potential of large language models (LLMs)
as tools for TST evaluation. Our findings high-
light newly applied advanced NLP metrics and
LLM-based evaluations provide better insights
than existing TST metrics. Our oracle ensem-
ble approaches show even more potential.

1 Introduction

Text style transfer (TST) refers to the task of mod-
ifying a given text to reflect a specific style while
preserving its original content (Hu et al., 2022).
Previous work in this domain has explored alter-
ing various stylistic dimensions, such as sentiment
(Prabhumoye et al., 2018), romantic tone (Li et al.,
2018), politeness (Madaan et al., 2020), or political
slant (Prabhumoye et al., 2018). Different model-
ing approaches have been proposed for TST, in-
cluding methods that manipulate latent representa-
tions of text (Zhao et al., 2018; Prabhumoye et al.,
2018) and techniques that identify and replace style-
related lexicons directly (Li et al., 2018; Fu et al.,

2019). Despite the growing interest in TST, reli-
ably assessing the performance of TST models con-
tinues to be a bottleneck (Hu et al., 2022). While
human evaluation is often regarded as the standard
for capturing subtle cues in style, it is expensive,
time-intensive, and difficult to reproduce at scale
(Briakou et al., 2021b). Consequently, automated
metrics have become a proxy for human judgment,
but there is a notable lack of standardization and
consensus on which metrics best capture style trans-
fer accuracy, content preservation, and overall nat-
uralness (Mir et al., 2019a; Briakou et al., 2021a).
In addition, large language models (LLMs) could
serve as alternatives to traditional human evalua-
tion and automated metrics for TST evaluation (Os-
theimer et al., 2024). However, the rapid evolution
of LLMs, particularly for closed-source models,
raises concerns about reproducibility (Gao et al.,
2024; Chen et al., 2024).

We address this gap by examining existing and
novel metrics for two popular TST subtasks: senti-
ment transfer (Prabhumoye et al., 2018) and detox-
ification (Dementieva et al., 2022). Our experi-
ments span a multilingual setting, covering En-
glish, Hindi, and Bengali, to investigate the utility
of these metrics across diverse linguistic contexts.
We then conduct a meta-evaluation of the proposed
metrics by measuring their correlation with human
judgments. To further explore the potential of auto-
mated metrics, we also combine them in ensembles,
experimentally creating hybrid scores. Addition-
ally, we investigate the applicability of large lan-
guage models (LLMS) as an alternative evaluation
tool. Our results show that existing metrics newly
applied to TST, hybrid approaches, and LLMs can
improve correlation with human evaluations, offer-
ing a more robust and comprehensive assessment of
TST outputs. Our experimental code and resources
are released on GitHub.1

1https://github.com/souro/tst_evaluation
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2 Related Work

TST tasks are traditionally evaluated using three
key dimensions: style transfer accuracy, content
preservation, and fluency (Mukherjee and Dušek,
2024; Hu et al., 2022; Jin et al., 2022). Prior work
underscores the challenge of jointly capturing sub-
tle stylistic nuances and preserving semantic con-
tent (Briakou et al., 2021b; Tikhonov et al., 2019).
Style Transfer Accuracy A common approach
is to train a dedicated classifier to check whether the
transformed text reflects the intended style (Prab-
humoye et al., 2018; Shen et al., 2017). Alterna-
tively, unsupervised methods rely on distributional
shifts in style-related features (Yang et al., 2018;
Tikhonov et al., 2019).
Content Preservation Metrics such as BLEU
(Papineni et al., 2002) and embedding-based
similarity (Rahutomo et al., 2012; Reimers and
Gurevych, 2019) often serve as proxies for se-
mantic fidelity. However, they may overlook nu-
ances introduced by stylistic transformations in
both single-language and multilingual contexts
(Yamshchikov et al., 2021; Briakou et al., 2021a),
and recent studies highlight the shortcomings of
traditional similarity measures when evaluating
paraphrase-like modifications (Yamshchikov et al.,
2021; Briakou et al., 2021b).
Fluency Fluency is typically estimated using
perplexity from a pre-trained language model such
as GPT-2 (Radford et al., 2019). Nonetheless, per-
plexity may fail to capture context-specific gram-
matical coherence, especially if the style domain
diverges from the model’s training data (Tikhonov
et al., 2019; Briakou et al., 2021b), and can yield in-
consistent performance across languages (Briakou
et al., 2021a).

3 Metrics Compared

We follow the criteria of transfer accuracy, con-
tent preservation, and fluency described in Sec-
tion 2, and we conduct evaluations in two scenarios:
(1) reference-based, where metrics are computed
against a reference text (when available), and (2)
reference-free, where metrics directly compare the
generated text against the source text (measuring
similarity or distance from the original), without
requiring a reference.
Previously Used TST Metrics For style transfer
accuracy, we include Sentence Accuracy based on
a fine-tuned XLM-RoBERTa-base (Conneau et al.,
2020) classifier (Prabhumoye et al., 2018), and

WMD (Kusner et al., 2015; Wei et al., 2023; Mir
et al., 2019b). For content preservation: BLEU (Pa-
pineni et al., 2002; Tikhonov et al., 2019), Cosine
Similarity (Rahutomo et al., 2012; Reimers and
Gurevych, 2019), Masked BLEU and Masked Co-
sine Similarity (Mukherjee et al., 2022), ROUGE-2
and ROUGE-L (Lin and Hovy, 2003; Lin, 2004;
Lin and Och, 2004; Yamshchikov et al., 2021). For
fluency, we use Perplexity of GPT-2 (Radford et al.,
2019; Briakou et al., 2021c) and MGPT (Shliazhko
et al., 2024).

Newly Applied Text Metrics We expand the
TST evaluation by incorporating additional metrics
from related NLP tasks, categorizing them into
trainable and non-trainable metrics as well as word-
overlap-based and embedding-based measures.

For style transfer accuracy, we utilize non-
trainable statistical measures such as Earth Mover’s
Distance (EMD) (Rubner et al., 2000), KL
Divergence (Kullback, 1997), Cosine Similar-
ity (Rahutomo et al., 2012), and Jensen-Shannon
Divergence (Lin, 1991), which quantify the distri-
butional shift between source and generated text.
Additionally, we incorporate a trainable Classifier
Confidence score, derived from the Sentence Accu-
racy classifier described earlier.

For content preservation, we include both word-
overlap-based and embedding-based metrics. The
word-overlap-based metrics include PINC (Chen
and Dolan, 2011), which measures the proportion
of n-grams in the generated text that do not appear
in the source text (higher values indicate greater
lexical divergence), METEOR (Banerjee and Lavie,
2005), which accounts for synonymy and stem-
ming, and Translation Edit Rate (TER) (Snover
et al., 2006), which evaluates the number of ed-
its required to transform the generated text into
the reference. Embedding-based measures include
Word Mover’s Distance (WMD) (Kusner et al.,
2015; Wei et al., 2023), BERTScore (Zhang et al.,
2020), S3BERT (Opitz and Frank, 2022), and
BLEURT (Sellam et al., 2020), all of which assess
content similarity based on contextualized vector
representations. Additionally, we introduce Tree
Edit Distance (TED) (Zhang and Shasha, 1989),
which measures structural similarity by comput-
ing the minimum number of tree edit operations
(insertion, deletion, substitution) required to trans-
form one syntactic tree into another. This metric is
particularly useful in evaluating syntactic shifts in
generated text.
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For fluency evaluation, we employ language
model perplexity, using Finetuned GPT-2 and Fine-
tuned MGPT trained on target styles (see fine-
tuning details in Appendix C). Lower perplexity
scores indicate higher fluency, as they reflect the
model’s confidence in the generated text.
Novel Metrics We analyze the structural simi-
larity between the source/reference and the system-
generated outputs by parsing them into abstract
meaning representation (AMR) (Banarescu et al.,
2013) and syntactic dependency trees (Straka and
Straková, 2017). AMR provides a semantic abstrac-
tion of sentences by capturing their core meaning
as directed graphs, while syntactic dependencies
represent the grammatical relationships between
words in tree form. To measure structural similar-
ity, we first convert syntactic dependency trees into
AMR-style structure trees, ensuring both syntactic
and semantic representations are in a comparable
graph format. We then compute Smatch similar-
ity (Cai and Knight, 2013) for both AMR graphs
and the syntactic trees translated to AMR-style
trees. Smatch (a graph-matching metric) computes
the F-score between AMR graphs by aligning their
nodes and edges optimally, regardless of differ-
ences in variable naming or graph representation. A
higher Smatch score, i.e., a higher AMR graph and
syntactic tree similarity, indicates greater preser-
vation of meaning and syntactic structure in the
transformed text.
LLM Prompting Following Ostheimer et al.
(2024) and Mukherjee et al. (2024b), we use LLMs
as TST evaluators and extend their methods to
newer LLMs, more TST tasks, and additional lan-
guages. We used GPT-4 (Achiam et al., 2023)
and Llama-3.1 8B (Dubey et al., 2024) to assess
the TST tasks. We employed a Likert-scale-based
approach to evaluate style transfer accuracy, con-
tent preservation, and fluency. To facilitate direct
comparison with Sentence Accuracy, we also con-
ducted a binary evaluation for style transfer ac-
curacy (GPT4-bin-acc, Llama-bin-acc). Detailed
prompt instructions are provided in Appendix D.
Hybrid We propose two ensemble-based oracle
metrics – Hybrid-Simulation and Hybrid-Learned –
to show the potential of integrating multiple eval-
uation metrics.2 In Hybrid-Simulation, we first
select the top three metrics (based on correlation
with human judgments) for each task and language

2These metrics are considered “oracle”, since the approach
learns optimal weights based on the target data.

from Tables 1 and 2. We then conduct a simu-
lation to determine the selected metrics’ relative
weights by tuning them on human-labeled target
data and compute their geometric average to form
the final ensemble score. In Hybrid-Learned, we
train a random forest regressor (Liaw, 2002) using
all available metrics as features and human ratings
as the target labels. The model assigns importance
scores to each metric, and we select the top three
metrics with the highest normalized importance
scores. Their geometric average, weighted by these
importance scores, is used to generate the ensem-
ble result. For details on the selected metrics and
their respective weights, see Tables 5 and 6 in Ap-
pendix A.
Overall Score Following Loakman et al. (2023)
and Yang and Jin (2023), we adopt the geomet-
ric mean of style transfer accuracy, content preser-
vation, and fluency as a single aggregated score
for comparison. We again aim to show the poten-
tial of this approach by producing oracle metrics.
Based on the Pearson correlation results from our
experiments (Tables 1, 2 and, 3), we first select the
best-performing metrics for these three dimensions
from previously used methods (Existing). We also
do the same selection using newly proposed meth-
ods (excluding hybrid approaches), creating the
Ours1 score. We then extend Ours1 by incorporat-
ing the top-performing metrics from our proposed
approaches, including hybrids, to construct Ours2.
In addition to geometric mean scores, we directly
prompt GPT-4 and Llama for this task. Table 7
in Appendix A detail the metrics selected for each
language and task.

4 Experiment Setup

Evaluation Data: Tasks, Languages and Model
Outputs We evaluate our methods on the outputs
of TST models and human annotations provided
by Mukherjee et al. (2024b). This comprises two
TST tasks – sentiment transfer (positive to negative
statements and vice versa), where data is available
for English, Hindi and Bengali, and detoxification
(toxic to clean text), with English and Hindi data.
Model outputs for all tasks were produced by GPT-
3.5 (OpenAI, 2023), LLaMA-2-7B-Chat (Touvron
et al., 2023) and Mistral-7B-Instruct (Jiang et al.,
2023), as well as previous finetuned BART models
by Mukherjee et al. (2024a, 2023).
Meta-Evaluation Approach We follow com-
mon practice for meta-evaluation (Kilickaya et al.,
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2017; Zhang et al., 2020; Liu et al., 2023) and com-
pute all metrics’ correlation with human judgment
using Pearson (PC), Spearman (SC), and Kendall’s
Tau (KC) Correlations (Schober et al., 2018; Puka,
2011).

5 Results Analysis

Since we found that reference-based metrics gener-
ally underperform their reference-free variants, we
focus on the reference-free setting in the analysis.
We include reference-based results in Appendix B.

5.1 Style Transfer Accuracy

The results for style transfer accuracy in the
reference-free setting are shown in Table 1.
Previously Used: Sentence Accuracy generally
achieves moderate to good correlation with human
judgments, suggesting that direct style classifica-
tion accuracy can be a reliable indicator of style
transfer quality. Meanwhile, EMD demonstrates a
moderate degree of alignment, implying that captur-
ing distributional shifts of stylistic cues correlates
moderately with human perceptions.
Newly Applied: Classifier Confidence, Cosine
Similarity, KL Divergence, and Jensen-Shannon
Divergence generally exhibit stronger alignment
with human judgments compared to existing met-
rics, highlighting the effectiveness of distributional
measures for style intensity comparisons.
LLMs: GPT-4 exhibits consistently high corre-
lations, whereas Llama performs notably worse, al-
though a binarized version (Llama-bin-acc) shows
some moderate improvements.
Hybrid: Hybrid-Simulation demonstrates strong
alignment with human ratings by combining mul-
tiple signals into a single score, while Hybrid-
Learned performs comparably, though it may fall
marginally below its simulation-based counterpart
in certain cases.

Direct classification metrics reliably capture
style accuracy, while distribution-based and LLM-
based evaluations enhance overall alignment with
human judgments, especially when integrated in
hybrid frameworks. In English tasks, approaches
like GPT-4 and hybrid methods achieve particu-
larly high correlations, whereas in Hindi and Ben-
gali, top metrics (e.g., KL, JS Divergence, and
hybrid approaches) remain strong but show more
pronounced performance gaps, potentially due to
greater linguistic complexity.

5.2 Content Preservation

We present the meta-evaluation of content preser-
vation metrics in a reference-free setting in Table 2.
Previously Used: BLEU generally shows low
alignment with human judgments, while Cosine
Similarity exhibits better performance in several
tasks. Masked BLEU and Masked Cosine Similar-
ity offer slight improvements over their unmasked
counterparts, yet they still lag behind more recent
methods. ROUGE-2 and ROUGE-L provide moder-
ate correlations but do not consistently outperform
newer metrics.
Newly Applied: BLEURT remains consistently
reliable, while BERTScore also proves robust
across various styles and languages. TER and TED
offer competitive results, particularly for certain
language-specific tasks. In contrast, PINC shows
weak correlations, indicating its limited effective-
ness in capturing content preservation.
Novel: Smatch (Dependency Trees) and Smatch
(AMR) outperform or at least match the perfor-
mance of traditional metrics, though they gener-
ally fall behind the newly introduced text-based
methods and LLM-driven approaches on average.
LLMs: GPT-4 achieves higher correlations than
traditional metrics across different styles and lan-
guages, demonstrating its strong ability to capture
human-like judgments of text transformations. In
contrast, Llama tends to underperform, indicat-
ing considerable variability in how well different
LLMs reflect stylistic and content-based shifts.
Hybrid: Hybrid-Simulation achieves robust
alignment with human ratings by unifying multi-
ple signals into a single score, whereas Hybrid-
Learned shows comparable performance, albeit
slightly trailing the simulation-based approach in
some scenarios.

5.3 Fluency

Table 3 presents fluency evaluation results. GPT-2
Perplexity displays limited correlations with hu-
man judgments, while Finetuned GPT-2 Perplex-
ity yields only marginal gains. MGPT Perplexity
and Finetuned MGPT Perplexity provide moder-
ate improvements under fine-tuning, underscoring
the importance of multilingual modeling and style-
specific training for better alignment with human
fluency assessments. GPT-4 demonstrates rela-
tively strong correlations with human assessments
of fluency for sentiment-related tasks, suggesting
it captures fluidity and coherence more effectively
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Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

Sentence Accuracy 0.51 0.49 0.48 0.61 0.61 0.59 0.57 0.57 0.54 0.36 0.36 0.35 0.38 0.37 0.36
EMD 0.27 0.24 0.20 0.36 0.43 0.34 0.50 0.52 0.40 0.29 0.21 0.17 0.47 0.53 0.43
GPT4 0.92 0.81 0.79 0.87 0.84 0.79 0.82 0.83 0.77 0.74 0.72 0.65 0.74 0.74 0.68
GPT4-bin-acc 0.89 0.78 0.77 0.84 0.83 0.80 0.77 0.78 0.74 0.61 0.61 0.59 0.60 0.61 0.59
Llama 0.16 0.17 0.15 -0.11 -0.10 -0.09 -0.17 -0.15 -0.13 0.20 0.18 0.17 0.20 0.16 0.15
Llama-bin-acc 0.49 0.44 0.43 0.50 0.51 0.49 0.31 0.31 0.30 0.24 0.24 0.23 0.27 0.27 0.27

Newly applied & Novel

Classifier Confidence 0.51 0.43 0.35 0.66 0.57 0.46 0.59 0.52 0.40 0.39 0.32 0.25 0.41 0.38 0.30
KL Divergence 0.59 0.31 0.24 0.66 0.66 0.54 0.62 0.62 0.50 0.46 0.46 0.36 0.51 0.60 0.49
Cosine Similarity -0.55 -0.44 -0.36 -0.66 -0.67 -0.54 -0.53 -0.59 -0.46 -0.43 -0.40 -0.32 -0.48 -0.58 -0.47
Jensen-Shannon Divergence 0.67 0.40 0.32 0.69 0.67 0.55 0.62 0.64 0.51 0.41 0.50 0.39 0.53 0.60 0.50
Hybrid-Simulation 0.69 0.40 0.32 0.71 0.67 0.54 0.62 0.64 0.51 0.44 0.47 0.37 0.53 0.61 0.49
Hybrid-Learned 0.67 0.37 0.30 0.70 0.63 0.50 0.61 0.62 0.49 0.43 0.47 0.37 0.55 0.62 0.50

Table 1: Style transfer quality (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

BLEU 0.24 0.22 0.18 0.24 0.19 0.15 0.32 0.31 0.25 0.14 0.13 0.11 0.45 0.37 0.31
Cosine Similarity 0.54 0.27 0.22 0.33 0.24 0.20 0.43 0.40 0.32 0.28 0.19 0.15 0.59 0.45 0.38
Masked BLEU 0.21 0.21 0.17 0.15 0.12 0.10 0.23 0.24 0.19 0.15 0.15 0.12 0.45 0.39 0.32
Masked Cosine Similarity 0.36 0.17 0.14 0.19 0.13 0.11 0.28 0.29 0.23 0.23 0.15 0.12 0.56 0.45 0.37
METEOR 0.38 0.25 0.21 0.20 0.18 0.14 0.33 0.27 0.22 0.16 0.10 0.08 0.54 0.34 0.28
ROUGE-2 0.24 0.19 0.16 0.19 0.20 0.16 0.28 0.30 0.24 0.17 0.11 0.09 0.41 0.37 0.31
ROUGE-L 0.39 0.25 0.21 0.26 0.23 0.19 0.28 0.32 0.25 0.22 0.12 0.10 0.46 0.39 0.33
GPT4 0.42 0.36 0.35 0.39 0.41 0.39 0.51 0.54 0.48 0.46 0.31 0.30 0.46 0.42 0.40
Llama 0.24 0.26 0.24 0.32 0.28 0.26 0.32 0.38 0.35 0.25 0.11 0.10 0.28 0.16 0.16

Newly applied & Novel

PINC -0.18 -0.17 -0.15 -0.16 -0.12 -0.10 -0.27 -0.28 -0.23 -0.12 -0.12 -0.10 -0.41 -0.36 -0.30
WMD 0.35 0.28 0.23 0.27 0.24 0.20 0.34 0.35 0.28 0.15 0.14 0.11 0.41 0.38 0.32
BERTScore 0.50 0.31 0.26 0.45 0.33 0.27 0.49 0.44 0.36 0.21 0.19 0.15 0.62 0.38 0.31
Smatch (Dependency Trees) 0.25 0.24 0.20 0.18 0.20 0.17 0.26 0.30 0.25 0.16 0.15 0.12 0.34 0.31 0.26
Smatch (AMR) 0.38 0.25 0.20 0.22 0.20 0.17 0.32 0.32 0.26 0.19 0.13 0.11 0.37 0.34 0.28
S3BERT 0.46 0.23 0.19 0.30 0.18 0.14 0.30 0.30 0.24 0.22 0.20 0.16 0.49 0.38 0.31
BLEURT 0.47 0.30 0.25 0.41 0.35 0.29 0.56 0.53 0.42 0.18 0.17 0.14 0.62 0.43 0.35
TER 0.42 0.26 0.22 0.45 0.28 0.24 0.34 0.33 0.27 0.21 0.17 0.14 0.58 0.37 0.31
TED 0.43 0.24 0.22 0.42 0.29 0.25 0.20 0.28 0.24 0.48 0.21 0.18 0.48 0.36 0.30
Hybrid-Simulation 0.57 0.32 0.26 0.48 0.33 0.27 0.57 0.53 0.43 0.28 0.19 0.15 0.68 0.43 0.35
Hybrid-Learned 0.56 0.32 0.26 0.47 0.35 0.29 0.56 0.53 0.43 0.19 0.15 0.12 0.64 0.38 0.31

Table 2: Content preservation (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

Perplexity (GPT-2) 0.13 0.13 0.11 -0.11 -0.10 -0.08 -0.11 -0.07 -0.05 0.06 0.00 0.00 0.17 -0.13 -0.11
Perplexity (MGPT) 0.08 0.19 0.15 0.00 0.07 0.05 0.16 0.19 0.15 0.05 0.00 0.00 0.11 0.03 0.03
GPT4 0.43 0.40 0.37 0.39 0.39 0.35 0.37 0.40 0.36 0.16 0.13 0.12 0.17 0.17 0.16
Llama 0.17 0.18 0.17 0.15 0.17 0.15 0.08 0.06 0.06 0.16 0.13 0.12 -0.01 -0.02 -0.01

Newly applied

Perplexity (Finetuned GPT-2) 0.14 0.16 0.13 0.08 0.14 0.11 0.02 0.05 0.04 0.14 0.00 0.00 0.11 -0.06 -0.05
Perplexity (Finetuned MGPT) 0.04 0.08 0.07 0.17 0.15 0.12 0.23 0.21 0.16 0.00 0.03 0.03 0.23 0.04 0.03

Table 3: Fluency (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

when the stylistic shift involves changing senti-
ment. However, for detoxification tasks, its align-
ment with human judgments diminishes, indicating
that removing toxicity poses different challenges
for GPT-4. In contrast, Llama exhibits generally

weaker correlations and struggles in various set-
tings, implying that its evaluations of fluency do
not consistently match human perceptions.

Language-wise, English generally shows better
correlations and less variability across models over
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Sentiment Transfer Detoxification
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Existing 0.32 0.02 0.02 0.11 -0.02 -0.01 0.25 0.18 0.13 -0.04 -0.18 -0.14 0.07 -0.19 -0.14
GPT4 0.73 0.62 0.54 0.78 0.75 0.61 0.78 0.77 0.63 0.65 0.62 0.51 0.62 0.59 0.46
Llama 0.08 0.16 0.13 0.02 0.01 0.01 0.01 0.01 0.00 0.18 0.14 0.11 0.27 0.23 0.19
Ours1 0.57 0.33 0.26 0.59 0.54 0.43 0.54 0.57 0.42 0.38 0.44 0.34 0.47 0.43 0.32
Ours2 0.68 0.40 0.31 0.72 0.68 0.53 0.59 0.59 0.42 0.41 0.38 0.29 0.63 0.57 0.43

Table 4: Overall results (reference-free). Pearson (PC), Spearman (SC) and Kendall’s Tau (KC) correlations.

Hindi and Bengali results.

5.4 Overall Score

Table 4 shows results for the different versions of
the overall score aggregating style transfer accu-
racy, content preservation, and fluency.
Previously Used: Aggregating traditional met-
rics in the Existing metric often yields near-zero or
negative correlations across various languages and
tasks, indicating that simply merging these mea-
sures fails to capture the overall quality.
LLMs: In contrast, GPT-4 consistently aligns
well with human assessments of overall quality in
both Sentiment Transfer and Detoxification. Llama,
however, shows weaker correlations, indicating that
not all LLMs possess the same evaluative capabili-
ties.
Newly Applied & Hybrid: Our approaches
(Ours1 and Ours2) provide noticeable improve-
ments over existing methods. Although they do
not surpass GPT-4, they clearly outperform many
traditional and alternative measures.

6 Conclusion

We presented a comprehensive evaluation of ex-
isting and newly proposed metrics for two TST
subtasks—Sentiment Transfer and Text Detoxifica-
tion—in English, Hindi, and Bengali. Our findings
demonstrate that traditional word-overlap-based
metrics like BLEU and ROUGE often show limited
correlation with human judgments, whereas our
proposed experimental metrics and prompted LLM-
based evaluations provide significantly stronger
alignment. Moreover, our oracle hybrid ensem-
ble and combined approaches show an even greater
potential of merging multiple metrics.

Limitations

Our study is limited to two specific tasks and three
languages, leaving open the question of how well
these metrics generalize to other styles, languages,
and domains as future work. Additionally, while

oracle ensemble metrics provide valuable insights,
further research is needed to develop fully gen-
eralizable evaluation methods that do not rely on
target-specific tuning.
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A Hybrid Approaches and Overall Score - Additional Details

In this section, we introduce our hybrid approaches by presenting both the selected metrics and their
associated simulated weights, as well as the learned normalized feature importance. Further details on
these weights, selected metrics, and feature scores can be found in Tables 5 and 6 respectively. Table 7
summarizes the selected metrics for each language and task, enabling single overall scores computation.

Sentiment Transfer Detoxification

Simulation Learned Simulation Learned
Metrics English Hindi Bengali English Hindi Bengali English Hindi English Hindi
BERTScore 0.20 0.40 0.40 - 0.36 0.14 - - - 0.30
BERTScore_IDF - - - 0.27 0.35 - - - - 0.11
BLEURT 0.30 0.20 0.50 0.43 0.29 0.65 - 0.40 - -
BLEU - - - - - - - - 0.34 -
Masked BLEU - - - - - - - - 0.25 -
COSINE 0.50 - 0.10 0.30 - 0.21 0.20 0.30 - -
TER - 0.40 - - - - 0.10 0.30 - 0.59
TED - - - - - - 0.70 - 0.40 -

Sentiment Transfer Detoxification

Simulation Learned Simulation Learned
Metrics English Hindi Bengali English Hindi Bengali English Hindi English Hindi

EMD - - - - 0.33 0.24 - - - -
JS 0.60 0.40 0.40 0.38 0.46 0.35 0.30 0.30 0.42 0.45
KL 0.15 0.20 0.30 0.38 - 0.41 0.50 0.50 0.27 0.22
Style_Classifier_Confidence 0.25 0.40 0.30 0.24 0.21 - 0.20 0.20 0.31 0.33

Table 5: Hybrid Simulation - selected metrics and its weights.

Sentiment Transfer (CS) Detoxification
Metrics English Hindi Bengali English Hindi

BLEURT 0.16 0.13 0.37 0.05 0.04
COSINE 0.11 0.08 0.12 0.08 0.04
BERTScore_IDF 0.10 0.16 0.03 0.05 0.19
BERTScore 0.09 0.17 0.08 0.05 0.07
S3BERT 0.07 0.08 0.04 0.05 0.02
WMD 0.07 0.03 0.03 0.04 0.01
AMR_SMATCH 0.06 0.02 0.02 0.05 0.02
BLEU 0.06 0.03 0.07 0.12 0.03
ROUGE-L 0.06 0.02 0.03 0.07 0.05
Masked Cosine Similarity 0.06 0.02 0.02 0.06 0.04
Masked BLEU 0.05 0.04 0.03 0.09 0.02
METEOR 0.03 0.04 0.04 0.05 0.02
TED 0.02 0.04 0.02 0.14 0.02
SMATCH 0.02 0.02 0.02 0.02 0.03
TER 0.02 0.16 0.04 0.03 0.38
ROUGE-2 0.01 0.02 0.03 0.04 0.01
PINC 0.01 0.01 0.01 0.02 0.01

Sentiment Transfer (SA) Detoxification
Metrics English Hindi Bengali English Hindi

KL 0.34 0.17 0.33 0.21 0.18
JS 0.33 0.38 0.29 0.33 0.37
Style_Classifier_Confidence 0.21 0.17 0.18 0.25 0.26
EMD 0.11 0.27 0.20 0.21 0.18
Sentence_Accuracy 0.01 0.00 0.00 0.00 0.01

Table 6: Hybrid-Learned - metrics and its learned feature importance scores (normalized).

B Additional Results (reference-based)

In addition to the reference-free evaluations shown in Tables 1 and 2, the corresponding reference-based
results are provided in Tables 8 and 9, respectively.

428



Task Languages Approach B
E

R
T

Sc
or

e

B
L

E
U

R
T

C
os

in
e

Si
m

ila
ri

ty

H
yb

ri
d_

L
ea

rn
ed

_C
P

H
yb

ri
d_

Si
m

ul
at

io
n_

C
P

H
yb

ri
d_

Si
m

ul
at

io
n_

ST

JS K
L

Pe
rp

le
xi

ty
(M

G
PT

)

M
G

PT
_F

T
_P

PL

Pe
rp

le
xi

ty
(G

PT
-2

)

G
PT

2_
FT

_P
PL

Se
nt

en
ce

A
cc

ur
ac

y

T
E

D

T
E

R

Sentiment
Transfer

English
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Ours1 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hindi
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Bengali
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Detoxification

English
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗
Ours1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Ours2 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Hindi
Existing ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Ours1 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
Ours2 ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Table 7: Overall Scores – language and task-wise selected metrics.

Sentiment Transfer (reference-based) Detoxification (reference-based)
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

EMD -0.22 -0.27 -0.22 -0.28 -0.33 -0.26 -0.33 -0.37 -0.29 -0.28 -0.23 -0.18 -0.31 -0.28 -0.22
KL_DIS -0.30 -0.36 -0.29 -0.62 -0.58 -0.46 -0.46 -0.48 -0.38 -0.34 -0.30 -0.24 -0.36 -0.28 -0.23
Cosine Similarity 0.32 0.32 0.26 0.59 0.60 0.49 0.34 0.45 0.35 0.28 0.32 0.25 0.30 0.32 0.26
JS_SIM -0.29 -0.36 -0.29 -0.62 -0.58 -0.46 -0.46 -0.47 -0.37 -0.28 -0.29 -0.23 -0.35 -0.28 -0.23

Table 8: Automatic metrics results reference-based: style transfer. Pearson Correlation: PC, Spearman Correlation:
SC Kendall Tau Correlation: KC

Sentiment Transfer (reference-based) Detoxification (reference-based)
English Hindi Bengali English Hindi

Metrics PC SC KC PC SC KC PC SC KC PC SC KC PC SC KC

Previously used & LLMs

BLEU 0.18 0.22 0.18 0.17 0.16 0.13 0.19 0.20 0.16 0.10 0.10 0.08 0.18 0.18 0.14
Cosine Similarity 0.39 0.26 0.22 0.20 0.24 0.19 0.31 0.32 0.25 0.18 0.13 0.10 0.30 0.25 0.20
Masked BLEU 0.13 0.19 0.15 0.16 0.16 0.13 0.18 0.17 0.13 0.11 0.11 0.09 0.16 0.15 0.12
Masked Cosine Similarity 0.25 0.21 0.17 0.15 0.16 0.13 0.24 0.28 0.22 0.17 0.13 0.10 0.24 0.22 0.18
METEOR 0.31 0.22 0.18 0.12 0.13 0.10 0.16 0.18 0.14 0.11 0.09 0.08 0.23 0.17 0.14
ROUGE-2 0.22 0.21 0.17 0.17 0.18 0.15 0.23 0.23 0.18 0.11 0.09 0.07 0.24 0.24 0.20
ROUGE-L 0.31 0.24 0.20 0.19 0.19 0.16 0.21 0.23 0.18 0.13 0.09 0.07 0.23 0.24 0.19

Newly applied & Novel

PINC -0.12 -0.14 -0.12 -0.13 -0.12 -0.10 -0.17 -0.18 -0.16 -0.09 -0.07 -0.06 -0.17 -0.15 -0.13
WMD 0.25 0.26 0.21 0.21 0.22 0.18 0.25 0.27 0.21 0.11 0.08 0.07 0.19 0.19 0.15
BERTScore 0.34 0.27 0.22 0.25 0.25 0.20 0.24 0.25 0.20 0.18 0.16 0.13 0.32 0.19 0.15
UDPIPE_SMATCH 0.16 0.20 0.16 0.19 0.19 0.16 0.18 0.18 0.14 0.16 0.15 0.12 0.15 0.14 0.12
AMR_SMATCH 0.28 0.27 0.22 0.22 0.20 0.17 0.25 0.24 0.19 0.12 0.09 0.07 0.18 0.17 0.14
S3BERT 0.41 0.26 0.21 0.28 0.22 0.18 0.23 0.26 0.21 0.13 0.13 0.11 0.26 0.20 0.16
BLEURT 0.31 0.25 0.20 0.31 0.31 0.25 0.42 0.41 0.32 0.15 0.17 0.13 0.35 0.23 0.19
TER 0.35 0.23 0.19 0.39 0.26 0.21 0.22 0.21 0.17 0.24 0.10 0.09 0.23 0.14 0.12
TED -0.29 -0.23 -0.20 -0.35 -0.26 -0.22 -0.17 -0.15 -0.13 -0.40 -0.16 -0.13 -0.32 -0.20 -0.17

Table 9: Automatic metrics results reference-based: content preservation. Pearson Correlation: PC, Spearman
Correlation: SC Kendall Tau Correlation: KC

C GPT-2 and MGPT Finetune Details

We fine-tune both GPT-23 and mGPT4 using the same hyperparameter configuration obtained through
few random optimization experiments. Specifically, we set the maximum token length to 512 and use
the target-style training data from (Mukherjee et al., 2024b) for fine-tuning. Each model is trained for 10
epochs with a batch size of 2, a learning rate of 1× 10−5, and a weight decay of 0.01.

D Prompt Details

This section provides a collection of example prompts (in English) for the evaluation of Text Sentiment
Transfer task (prompt details in Tables 10, 11, 12 and 13)

3https://huggingface.co/openai-community/gpt2
4https://huggingface.co/ai-forever/mGPT
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Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the sentiment-independent content unchanged.

Please rate the sentiment transfer accuracy of the negative to positive sentiment transfer task between the following
English source sentence S1 and the sentiment-transferred sentence S2. Use a scale of 1 to 5, where 1 indicates
that the sentiment in S1 is completely identical to the sentiment in S2, and 5 indicates that the sentiment has been
completely transferred to the target sentiment in S2.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Sentiment transfer accuracy rating (on a scale of 1 to 5) =

Table 10: A Sample prompt for Sentiment Transfer Accuracy evaluation in Sentiment Transfer in English. It
contains task definition, instruction, and input.

Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the sentiment-independent content unchanged.

Please act as a binary classifier to evaluate the sentiment transfer accuracy of the positive to negative sentiment
transfer task in English. Determine whether the target sentiment has been successfully transferred to the generated
sentence (S2) from the source sentence (S1).If the target sentiment has been successfully transferred to S2, output
‘1‘. If the target sentiment has not been successfully transferred to S2, output ‘0‘.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Sentiment transfer accuracy classification (0 or 1) =

Table 11: A Sample prompt for Sentiment Transfer Accuracy (binary) evaluation in Sentiment Transfer in English.
It contains task definition, instruction, and input.

Prompt
Sentiment transfer task: transfer the sentiment of a sentence (from positive to negative or negative to positive)
while keeping the rest of the content unchanged.

Please rate the content preservation between the following English source sentence S1 and the sentiment-
transferred sentence S2 for the negative to positive sentiment transfer task on a scale of 1 to 5, where 1 indicates
very low content preservation and 5 indicates very high content preservation. To determine the content preservation
between these two sentences, consider only the information conveyed by the sentences and ignore any differences
in sentiment due to the negative to positive sentiment transfer.

S1: so he can charge a bloody fortune for them.
S2: so he can charge a fair amount of money for them.

Content Preservation rating (on a scale of 1 to 5) =

Table 12: A sample prompt for Content Preservation evaluation in Sentiment Transfer in English. It contains task
definition, instruction, and input.

Prompt
Please rate the fluency of the following English sentence S on a scale of 1 to 5, where 1 represents poor fluency,
and 5 represents excellent fluency.

S: so he can charge a fair amount of money for them.

Fluency rating (on a scale of 1 to 5) =

Table 13: A same prompt for Fluency evaluation in Sentiment Transfer in English. It contains instruction, and input.
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E Additional Statistics

In this section, we provide additional statistics for the Text Sentiment Transfer task in English, focusing on
reference-free evaluation metrics. Specifically, we present heatmaps illustrating the correlations between
each pair of metrics for style transfer accuracy, content preservation, and fluency in Figures 4, 5, and 6,
respectively. We also show the distribution of each metric’s values in Figures 1, 2, and 3 for style transfer
accuracy, content preservation, and fluency, thereby offering a more comprehensive view of their behavior.

Figure 1: Style Transfer Accuracy - metrics’ value distribution.
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Figure 2: Content Preservation- - metrics’ value distribution.
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Figure 3: Fluency - metrics’ value distribution.

Figure 4: Sentence Accuracy - correlations’ heatmap between the metrics.
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Figure 5: Content Preservation - correlations’ heatmap between the metrics.

Figure 6: Fluency - correlations’ heatmap between the metrics.
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