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Abstract

The abundance of medical records holds great
promise for enhancing healthcare and advanc-
ing biomedical research. However, due to pri-
vacy constraints, access to such data is typi-
cally limited to internal use. Recent studies
have attempted to overcome this challenge by
generating synthetic data through Causal Lan-
guage Modelling. Yet, this approach often fails
to ensure patient anonymity and offers limited
control over output diversity—unless additional
computational cost is introduced. In response,
we propose a method for generating synthetic
free-text medical records based on Masked Lan-
guage Modelling. Our approach retains key
medical details while introducing variability
in the generated texts and reducing the risk
of patient re-identification. With a relatively
lightweight architecture of approximately 120
million parameters, the system ensures low in-
ference costs. Experimental results show that
our method produces high-quality synthetic
data, achieving a HIPAA-compliant PHI recall
of 96% and a re-identification risk of only 3.5%.
Furthermore, downstream evaluations reveal
that models trained on the synthetic data per-
form comparably to those trained on real-world
data. Our trained models are publicly available
on Github as SYNDEIDMLM (at https://
github.com/SamySam0/SynDeidMLM) (mean-
ing synthetic and de-identified data generation
using MLM).

1 Introduction

The widespread adoption of electronic medical
record (EMR) systems has led to the accumula-
tion of substantial volumes of patient data, offering
considerable opportunities to improve healthcare
delivery and biomedical research (Beam and Ko-
hane, 2018; Shah et al., 2018). However, access
to such data is heavily restricted due to privacy
concerns, aiming to safeguard patients’ personal
information (Price and Cohen, 2019). One promis-
ing alternative is the use of synthetic data, which

allows the generation of documents—such as dis-
charge summaries—that retain medically relevant
information while reducing privacy risks. This ap-
proach enables broader data sharing for purposes
like healthcare system testing (Tucker et al., 2020),
medical training (Li et al., 2024), and the develop-
ment of artificial intelligence tools (Belkadi et al.,
2023).

Much of the previous work on synthetic medi-
cal text generation has primarily relied on Causal
Language Modelling (CLM), with comparatively
limited attention paid to Masked Language Mod-
elling (MLM). While CLM approaches have shown
promise in replicating the statistical patterns of
real-world clinical data, they present several chal-
lenges—specifically, ensuring privacy protection,
managing diversity in generated texts, and mitigat-
ing the computational cost of generation.

Recent findings by Micheletti et al. (2024)
demonstrate that Masked Language Modelling can
perform on par with Causal Language Modelling
across a wide range of synthetic generation tasks,
while offering greater flexibility in controlling con-
textual information. Building on these insights,
this paper introduces a system designed to generate
synthetic English-language medical texts—such as
discharge notes, admission records, and doctor-to-
doctor communications—using Masked Language
Modelling. The system integrates a cutting-edge
de-identification tool capable of automatically de-
tecting protected health information (Radhakrish-
nan et al., 2023), thereby removing the need for
manual pre-processing. It also incorporates two
named entity recognition (NER) models to help
retain essential clinical information and strike a
balance between diversity and fidelity in the gen-
erated output. Importantly, the system is based on
an encoder-only, non-autoregressive architecture,
significantly reducing both its size and inference
cost. The code will be released for public access.
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2 Related Work

In their recent study, Yan et al. (2024) proposed a
Generative Adversarial Network (GAN) to produce
synthetic electronic health records. While effective
in some respects, their method struggled to man-
age the similarity between synthetic and original
data and failed to accurately capture temporal de-
pendencies within medical histories. Building on
similar techniques, Kasthurirathne et al. (2021) pre-
sented a system for generating synthetic medical
records with a low risk of re-identification. De-
spite encouraging results, the authors noted that
limited diversity in the generated samples reduced
their usefulness for tasks like oversampling. They
also assumed that synthetic generation alone suf-
ficiently mitigates re-identification risk, signalling
the continued need for explicit de-identification
mechanisms. In one of the most recent contribu-
tions to synthetic medical data research, Falis et al.
(2024) assessed GPT-3.5’s ability to generate dis-
charge summaries. Their findings revealed that
GPT-3.5 often closely reproduced input concepts,
thereby heightening the risk of re-identification.
Additionally, the generated texts were often unnatu-
ral, omitting key medical details while introducing
irrelevant or misleading information. Clinicians
involved in the evaluation acknowledged the pres-
ence of correct content but highlighted weaknesses
in narrative structure, variety, and supporting de-
tails. Another concern raised was the model’s lack
of data governance, as it is not maintained by the in-
stitution that owns the original data. Taken together,
these studies highlight common challenges in syn-
thetic medical text generation: persistent privacy
concerns and limited control over output variabil-
ity. In response, our work advocates for the use
of Masked Language Modelling, which offers en-
hanced control over the content being generated
while reducing privacy risks and maintaining lower
computational costs.

3 System Design

The system architecture, illustrated in Fig-
ure 1, is designed to generate synthetic medical
records—including discharge summaries, admis-
sion notes, and clinician correspondence—through
a two-stage pipeline: a Masker and a Mask-Filling
System. The Masker identifies which parts of the
text should be hidden or retained, outputting a par-
tially masked version of the original text. The
Mask-Filling System then replaces the masked sec-

tions with context-aware content, producing one or
more synthetic variants of the original record.

3.1 The Masker

The Masker operates in three sequential stages:
I) De-identification. The initial step involves de-
tecting Protected Health Information (PHI) using
Philter (Norgeot et al., 2020), a rule-based tool
that relies on regular expressions to extract six
PHI categories: DATE, ID, NAME, CONTACT,
AGE, and LOCATION. According to the authors,
Philter achieves high recall scores—99.46% on
the UCSF dataset and 99.92% on the i2b2 2014
dataset. To our knowledge, it is the first certified
de-identification system that enables the release of
clinical notes for nonhuman-subject research, ex-
empt from further IRB approval during the time
period outlined by Radhakrishnan et al.. II) Med-
ical Entity Recognition. In the second stage, a
medical named entity recognition (NER) model
identifies essential clinical terms that should re-
main unmasked in the synthetic output. For this,
we fine-tuned a pre-trained Stanza model1 on the
i2b2-2010 dataset to extract three categories of en-
tities: PROBLEM, TEST, and TREATMENT. This
model achieved an F1 score of 88.13% on the test
set. The system is also adaptable—users can sub-
stitute the model to target other entity types (e.g.
medication names or dosages), and control the de-
gree of masking applied to each entity class. III)
Part-of-Speech Tagging. The final phase involves
part-of-speech (POS) tagging using Stanza’s POS
tagger. Based on user-specified ratios, a subset of
the tagged tokens is randomly masked to influence
the diversity of the synthetic output. For instance,
a setting like NOUN: 0.7, VERB: 0.5 would ran-
domly mask 70% of nouns and 50% of verbs, while
leaving other word types untouched.

3.2 The Mask-Filling System

Once the Masker has produced masked letters, the
Mask-Filling System reconstructs them into syn-
thetic texts using a masked language model (MLM)
and a replacement algorithm. I) MLM Model.
The MLM is an encoder-based model that pre-
dicts context-sensitive replacements for masked
tokens by generating a probability distribution over
possible vocabulary items. In our system, we em-
ploy Bio_ClinicalBERT—a version of BioBERT
(Lee et al., 2020) fine-tuned on clinical texts from

1stanfordnlp.github.io/stanza/available_biomed_models.html
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Figure 1: SYNDEIDMLM System Design: Masker and Mask-Filling two steps.

MIMIC III (Johnson et al., 2016). We further
trained this model on a set of 790 clinical letters
described in Section 4.1. While we did not com-
pare it with alternative models, we encourage fu-
ture research to explore different baselines. II)
Mask-Filling Algorithm. This module prepares
the masked input for the MLM model and chooses
suitable replacements for each masked segment
based on the model’s predictions. We compare two
strategies:

• Simultaneous Chunk Filling: In this approach,
masked text is processed in chunks. Each
chunk is passed through the MLM to gen-
erate probabilities for the masked elements.
Replacements can be selected deterministi-
cally (using the highest probability term) or
stochastically (by sampling from the distribu-
tion). While stochastic replacement enhances
variation, it may also reduce fidelity by adding
noise.

• Iterative Mask Filling (Kesgin and Amasyali,
2023): This method processes one masked en-
tity at a time within a defined context window.
As each masked token is resolved, it is re-
placed in the text, whereas upcoming masked
items remain untouched until processed. This
allows the model to focus on a specific context,
improving generation quality and encourag-
ing output diversity. Replacements, like in
the previous approach, can be selected either
deterministically or stochastically.

4 Experimental Setup

This section presents the dataset used to train and
evaluate the MLM model, alongside the four sys-
tem variants assessed in our experiments.

4.1 Datasets

The experiments are conducted using the i2b2
2014 shared task dataset for PHI de-identification
(Stubbs and Uzuner, 2015; Stubbs et al., 2015),
which includes 1,304 English clinical documents
from 296 diabetic patients. These records comprise
various note types such as discharge summaries,
admission notes, and inter-physician communica-
tions. The dataset is pre-split into 790 training
samples and 514 test samples. This resource offers
a wide range of clinical scenarios and treatment
contexts, making it well-suited for generating di-
verse synthetic outputs. All entries are annotated
with HIPAA-compliant PHI labels. Furthermore,
the dataset includes additional PHI sub-categories
to reinforce privacy protection. The categories of
annotations are Name, Profession, Location, Age,
Contact, and IDs. Among these categories, only the
following align with the official HIPAA-PHI defi-
nitions: NAME-PATIENT, LOCATION-STREET,
LOCATION-CITY, LOCATION-ZIP, LOCATION-
ORGANIZATION, AGE, DATE, CONTACT-
PHONE, CONTACT-FAX, CONTACT-EMAIL,
along with all sub-categories under ID.

4.2 Hyperparameters Tuning

The main parameters for system optimisation are
the learning rate of the MLM model, the train-
ing batch size, the PHI’s masking proportion, and
the overall masking probability. We evaluate each
instance using perplexity as it reflects the MLM
model’s confidence. We divided the data set into
80% and 20% for training and validation and re-
trained the model using the full data when the best
parameter set is selected.
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4.3 System Instances

We evaluated four system variants differing in
masking ratios and mask-filling strategies:

• System_S_0.5 and System_S_0.7: Both use
Simultaneous Chunk Filling with stochastic
sampling, mask all PHI, and retain all med-
ical entities. They differ in lexical diversity,
masking 50% and 70% of NOUNS, VERBS,
and ADJECTIVES, respectively.

• System_I_0.7 and System_I_0.9: These use
Iterative Mask Filling with stochastic replace-
ment, also masking all PHI while keeping
medical entities. They apply 70% and 90%
masking, respectively, for increased diversity.

The selected masking ratios are based on insights
from Micheletti et al. (2024) but can be customised
depending on the intended use case.

4.4 Evaluation Metrics

Our evaluation focuses on three main criteria: simi-
larity to real data, utility, and privacy. Lexical simi-
larity measures how well synthetic data reflects the
structure and meaning of real text using ROUGE,
BERTScore, and readability metrics (FRE2, FKG3,
SMOG). It captures information retention, meaning
preservation, and diversity, as well as how easy the
text is to read. Data utility evaluates the effective-
ness of synthetic data in training machine learning
models. We assess this via a downstream NER task,
comparing performance against models trained on
real data (Belkadi et al., 2025; Micheletti et al.,
2024). Data privacy is assessed by computing
the F1 score for PHI removal (based on annotated
HIPAA-PHI labels) and estimating re-identification
risk.

5 Experiments and Results

5.1 Lexical Similarity Evaluation against
References

The ROUGE and BERTScore results for the four
system configurations are presented in Table 1. As
expected, higher masking ratios tend to lower both
ROUGE and BERTScore metrics, due to the in-
creased noise introduced during generation. This
confirms the trade-off between diversity and con-
tent fidelity, as previously discussed in Section 3.

2Flesch Reading Ease
3Flesch-Kincaid Grade

Additionally, systems that utilise iterative mask
filling consistently outperform those using simul-
taneous filling in terms of lexical similarity to
the original text. For instance, with a mask-
ing ratio of 0.7, the iterative approach achieves
ROUGE scores that are over 3 points higher and
BERTScore improvements exceeding 0.3. This em-
phasises the benefit of iterative replacement, where
each masked term is filled in using richer contex-
tual information—either from unmasked or previ-
ously generated tokens—thereby reducing ambi-
guity. Moreover, even at a high masking ratio of
0.9, iterative systems exhibit a relatively small drop
in BERTScore (0.04), whereas ROUGE scores de-
cline more significantly (by 4 points). This indi-
cates that although the surface wording may deviate
more from the original, the core meaning is largely
preserved.

These observations are further supported by find-
ings in Table 2, where lexical variations between
real and synthetic datasets are assessed through
word overlap comparisons. Overall, all system
configurations were capable of striking a balance
between variation and content retention. The re-
sults illustrate a clear diversity–fidelity trade-off,
which can be fine-tuned by adjusting the masking
ratio and choice of mask-filling strategy, offering
flexibility for different downstream tasks.

5.2 Readability Evaluation against References

As shown in Table 3, the synthetic medical letters
generally exhibit higher readability scores com-
pared to their original counterparts. This improve-
ment is more pronounced at higher masking ratios,
likely because the MLM model tends to substitute
masked terms with simpler and more frequently
used vocabulary. When comparing the different
system configurations, there is no single system
that consistently outperforms the others in terms
of readability. This outcome is beneficial, as it
suggests that users have the freedom to adjust the
balance between fidelity and diversity without neg-
atively impacting the readability of the generated

RGE1 RGE2 RGE-L BERTS
Sys_S_0.5 0.861 0.760 0.852 0.729
Sys_S_0.7 0.828 0.703 0.815 0.674
Sys_I_0.7 0.852 0.732 0.841 0.706
Sys_I_0.9 0.826 0.686 0.811 0.668

Table 1: Lexical similarities of the generated synthetic
letters against references on the testing dataset.
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Top 5 Top 20 Top 50 Top 100
System_S_0.5 3.848 15.593 38.420 78.670
System_S_0.7 3.601 14.607 35.971 73.695
System_I_0.7 3.712 15.095 37.233 76.093
System_I_0.9 3.537 14.551 35.510 72.298

Table 2: Average number of overlap between the top 5,
20, 50 and 100 words identified across the real and syn-
thetic datasets, without stopwords. Additional results
on lexical similarities.

FRE FKG SMOG
System_S_0.5 64.024 7.647 10.823
System_S_0.7 65.091 7.466 10.696
System_I_0.7 63.792 7.707 10.878
System_I_0.9 64.294 7.636 10.832
References 61.597 8.06 11.067

Table 3: Readability scores of the generated synthetic
letters against references on the testing dataset.

text.

5.3 Data Utility Evaluation
We investigate how effectively the synthetic data
replicates key characteristics of real clinical text.
To do so, we compare the performance of a medical
NER model trained on synthetic data to that of a
model trained on real data.

5.3.1 Downstream NER Task
For this task, the original test set is divided into
new training and testing subsets. The real clini-
cal letters are first passed through our system to
generate synthetic equivalents. Both the real and
synthetic texts are then processed using SciSpacy4

(en_ner_bc5cdr_md), a named entity recognition
model trained on the BC5CDR dataset, which
achieves an F1 score of 0.84. This model iden-
tifies entities related to DISEASE and CHEMICAL
terms. The extracted entities from the original and
synthetic datasets are then used to create two dis-
tinct training sets. One SpaCy5 model is trained
using entities derived from the real data, while the
other is trained on those extracted from the syn-
thetic data. Both SpaCy models are then evalu-
ated on the same test split. To study the effect of
data augmentation, the experiment is repeated with
twice as many synthetic letters generated per real
letter. It is worth noting that while SciSpacy may
introduce some errors during entity extraction, we
assume these errors affect both the real and syn-
thetic data consistently, preserving the fairness of

4https://allenai.github.io/scispacy/
5https://spacy.io/

Precision Recall F1
System_S_0.5 0.842 0.792 0.816
System_S_0.7 0.851 0.797 0.823

x1 System_I_0.7 0.831 0.812 0.821
System_I_0.9 0.846 0.810 0.827
System_S_0.5 0.844 0.800 0.821
System_S_0.7 0.850 0.805 0.828

x2 System_I_0.7 0.838 0.819 0.829
System_I_0.9 0.855 0.819 0.836
References 0.86 0.824 0.842

Table 4: Average Precision, Recall and F1 score for two
labels (DISEASE and CHEMICAL) using Synthetic
data ×1, ×2 and Real data, on the testing dataset.

the comparison.

5.3.2 Results of Downstream Task
The outcomes of the downstream evaluation are
presented in Table 4. All system configurations
performed on par with models trained using real
data. Notably, systems with higher masking ra-
tios achieved better F1 scores, likely due to the
increased variability in the synthetic data, which
may have provided SpaCy with a richer training set.
In addition, when the volume of synthetic data was
doubled, the F1 score rose to 0.836—just 0.006
below the performance of the model trained on
authentic data.

5.4 Data Privacy Evaluation

To assess privacy preservation, we first mea-
sure the system’s de-identification perfor-
mance—specifically, how accurately the Masker
detects all PHI instances in the test dataset. The
Masker achieves a recall of 0.92 when consid-
ering all PHI categories, including additional
sub-categories, and a recall of 0.96 when focusing
solely on standard HIPAA-defined PHI types. Next,
we assess the risk of re-identification, which refers
to the likelihood that the MLM model inadvertently
restores masked PHI entities. This step is crucial
for safeguarding the privacy of individuals whose
data contributed to model training. The results
show that the model reintroduced PHI terms
spanning more than two tokens at a very low rate
of 0.035. In addition, we conducted a longest
common substring analysis between original and
synthetic texts for PHI segments. The overlap
rates were minimal: 0.098 for substrings of 3
or more tokens, 0.020 for 5 or more, and just
0.009 for 7 or more. These findings demonstrate
the system’s strong performance in reliably
removing HIPAA-sensitive information, while also
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maintaining a very low risk of re-identification.

6 Conclusion

In this work, we proposed a system using masked
language models to generate synthetic clinical text,
addressing challenges of data scarcity and pri-
vacy. The system includes a Masker (with de-
identification, medical NER, and POS tagging) and
a Mask-Filling module (supporting both simulta-
neous and iterative strategies). Key findings show
that: (1) The system produces diverse yet clinically
meaningful text, (2) Offers control over diversity
and fidelity without reducing readability, (3) Per-
forms well in downstream NER tasks—comparable
to real data, (4) Ensures strong privacy protection
(HIPAA-PHI recall of 0.96; re-ID risk of 0.035).
The full system, SYNDEIDMLM, is available at
https://github.com/SamySam0/SynDeidMLM.

Limitations and Future Work

Through close examination of the generated
synthetic samples, we identified certain limita-
tions—particularly with consistently reproducing
temporal details and ensuring alignment with the
original context. In some cases, maintaining logi-
cal coherence between related elements (e.g., ref-
erencing two names in the same scenario) proves
difficult when the necessary context is outside the
model’s generation window. To address these is-
sues, future work could incorporate a logic-based
module for handling temporal data, which would
enhance temporal consistency and further reduce
re-identification risks. Another promising direction
would be to supply the MLM model with the type
of entity being replaced, which could increase the
accuracy of PHI substitution and improve overall
generation quality.

Regarding the masked language model itself, fu-
ture research might explore the use of larger lan-
guage models guided by prompt-based instructions
to handle mask-filling. This strategy would specifi-
cally focus on the generation task, enabling a more
in-depth comparison between Causal Language
Models (CLMs) and Masked Language Models
(MLMs) in terms of their ability to control fidelity
and diversity in synthetic data. In such a setup, the
Masker would remain unchanged, while the MLM
and its mask-filling mechanism would be replaced
by a CLM and a prompt-driven approach.

It is also important to acknowledge that our find-
ings may have limited generalisability, as the ex-

periments were conducted on a single dataset due
to computational constraints. Future studies could
expand the evaluation by testing the system on a
wider variety of downstream tasks and datasets.
For example, applying the system to specialised
medical domains like radiology or oncology would
be valuable. This would require replacing the cur-
rent NER model with a more domain-specific one
(e.g., Stanza Radiology or Stanza Bionlp13cg) to
accurately extract relevant information. Such adap-
tation would likely necessitate re-evaluating mask-
ing strategies for both the NER component and the
POS tagger to optimise performance.

We recognise that, at this stage, no alternative
biomedical language models were assessed be-
yond Bio_ClinicalBERT. Nonetheless, future work
should provide a more comprehensive rationale for
selecting this model, including a comparative dis-
cussion of its strengths relative to other state-of-the-
art options. A similar consideration applies to the
use of Stanza for both NER and POS tagging tasks.
In our readability evaluation, we reported that the
synthetic letters appear easier to read than the orig-
inals, based solely on quantitative evaluation met-
rics. However, it is important to acknowledge the
limitations of these metrics. Human evaluation will
be necessary to more thoroughly assess the con-
textual appropriateness, narrative flow, and clinical
usefulness of the generated content.
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