
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 75–81

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Local Prompt Optimization

Yash Jain Vishal Chowdhary

Microsoft

Abstract

In recent years, the use of prompts to guide
the output of Large Language Models have in-
creased dramatically. However, even the best of
experts struggle to choose the correct words to
stitch up a prompt for the desired task. To solve
this, LLM driven prompt optimization emerged
as an important problem. Existing prompt opti-
mization methods optimize a prompt globally,
where in all the prompt tokens have to be opti-
mized over a large vocabulary while solving a
complex task. The large optimization space
(tokens) leads to insufficient guidance for a
better prompt. In this work, we introduce Lo-
cal Prompt Optimization (LPO) that integrates
with any general automatic prompt engineering
method. We identify the optimization tokens
in a prompt and nudge the LLM to focus only
on those tokens in its optimization step. We ob-
serve remarkable performance improvements
on Math Reasoning (GSM8k and MultiArith)
and BIG-bench Hard benchmarks across var-
ious automatic prompt engineering methods.
Further, we show that LPO converges to the
optimal prompt faster than global methods.

1 Introduction

Large Language Models (LLMs) are everywhere.
LLMs are automating all the tasks that required spe-
cialized models a few years ago (Dubey et al., 2024;
OpenAI, 2023). The easiest and cheapest way to
control an LLM’s output is to do prompt engineer-
ing (Zhou et al., 2023a; Zhao et al., 2021; Yang
et al., 2023; Lu et al., 2022). Unfortunately, writing
a prompt is extremely tricky (Pryzant et al., 2022).
Although the prompts are in English, the choice
of words that effectively have the same meaning
makes a huge difference in the prompt’s perfor-
mance on a task (Kojima et al., 2022; Wei et al.,
2022; Amatriain, 2024). Furthermore, an LLM is
inherently biased towards its own vocabulary, mak-
ing the task even more challenging. Thus, LLMs

Prompt  
Candidates

Evaluation
Prompt
Proposal

Best Prompt

Local
Optimization

Prompt: Let’s think step-by-step

Edit tokens think: Let’s
step-by-step

Identify tokens for
optimization

Prompt: Let's

 step by
step.

evaluate
whether the argument is
logically valid by checking
if the conclusion follows
from the premises

Traditional Global
Optimization

Figure 1: Local Prompt Optimization integrated in a
general automatic prompt engineering framework.

are used to modify prompts in a process called
Prompt Optimization (Zhou et al., 2023a).

Prompt optimization techniques follow a two-
step process as shown in Fig. 1. First, the prompt is
validated against a training set where the incorrect
predictions are identified. Optionally, a feedback
step is added where a natural language feedback,
termed ‘textual gradients’, is obtained by query-
ing the LLM (Ye et al., 2024; Tang et al., 2024).
Finally, the prompt is optimized using the textual
gradients (incorrect examples or natural language
feedback) to obtain an optimized prompt. The cy-
cle is repeated for a fixed number of steps.

Traditional prompt optimization techniques
(Pryzant et al., 2023; Zhou et al., 2023b; Ye et al.,
2024; Tang et al., 2024) optimize prompts globally
,i.e., mutate all tokens in the prompt. However, op-
timizing all the tokens in a prompt while searching
over the vocabulary to solve a complex problem,
makes the prompt optimization very challenging.
Further, for many production applications, it is de-
sirable to optimize only subsections of the prompt
while keeping the other parts static. Doing so re-
quires us to limit the scope of the ‘prompt proposal’
on subsection of the prompt, hence, the need of Lo-

75

cal Prompt Optimization (LPO). Thus, we reduce
the optimization space (tokens) for the LLM to sim-
plify the problem and control the edit direction of
a prompt.

In this work, we evaluate the efficacy and pitfalls
of doing local prompt optimization compared to
global prompt optimization. We incorporate local
optimization in three automatic prompt optimiza-
tion algorithms and evaluate on GSM8k (Cobbe
et al., 2021), MultiArith (Roy and Roth, 2015), and
BIG-bench hard (Suzgun et al., 2023) benchmarks.
We highlight that local optimization leads to faster
convergence of optimal prompt while improving
prompt performance. Finally, we test local opti-
mization on a real-world application by evaluating
it on a production prompt.

2 Background and Method

In this section, we will describe a general frame-
work of automatic prompt engineering (Zhou et al.,
2023a) and highlight the gap in the framework.
Building on this, we will introduce local prompt
optimization.

2.1 Automatic Prompt Engineering
Given a dataset D = (x, y), a prompt engineering
system aims to find a prompt p∗ that maximizes the
score on an evaluator function f . Specifically,

p∗ = argmax
p

∑

(x,y)∈D
f(Mtask(x; p), y) (1)

where Mtask(x; p) is the output generated by
the task model Mtask when conditioning on the
prompt p.

A general automatic prompt engineering system
has three parts: Prompt Initialization, Prompt Pro-
posal, and Search Procedure.

(1) Prompt Initialization: An initial prompt is
provided to an automatic prompt system that needs
to be optimized. Prompt Initialization can be done
by a manual human-written instruction or it can be
few shot examples from the dataset D (Zhao et al.,
2021).

(2) Prompt Proposal: In this step new prompt
generation takes place. At any timestep t, a new
set of prompts p(t+1) are generated from a set of
candidate prompts pt. A proposal LLM Mproposal

is used to propose new prompts, grounded on ‘tex-
tual gradients’ gt obtained on the current prompt
pt. These ‘textual gradients’ consists of a meta

prompt along with additional information which
vary between automatic prompt engineering tech-
niques. These include incorrect examples (Zhou
et al., 2023b), or a natural language LLM feedback
of the incorrect examples (Pryzant et al., 2023) to
a combination of both along with previous prompts
p(t−1) and their scores (Ye et al., 2024).

p(t+1) = Mproposal(p
t, gt). (2)

However, the edits in prompt p(t) can take place
anywhere inside the prompt including complete re-
writing the prompt at every timestep causing slow
update towards the optimal prompt. Further, it does
not provide any control required in a typical pro-
duction prompt engineering where a professional
would want prompt edits to take place within a
specific scope of the prompt. Thus, the global op-
timization leads to slow prompt convergence and
provides no control over direction of prompt opti-
mization.

(3) Search: Finally, among the candidate
prompts across all timesteps p0 ∪ p1 ∪ ... ∪ pt, a
subset of the best performing prompts are retained
and the process is repeated.

2.2 Local Prompt Optimization
The basic function of ‘textual gradients‘ gt is to
inform how the optimization process (gradient val-
ues) should adjust according to model’s perfor-
mance (Tang et al., 2024). However, it does not
specify where the optimization should take place or
analogously in deep learning on which parameters
should the gradient descent should take place. We
incorporate this intuition of parameter selection to
reduce the optimization space through local prompt
optimization.

Following the intuition of Chain-of-Thought
logic (Wei et al., 2022), we first identify the po-
tential tokens in the prompts which are responsible
for incorrect predictions by adding an instruction in
the meta-prompt before the Prompt Proposal step
as depicted in Fig. 1. We use <edit> tags to high-
light the edit tokens, the meta-instruction is shown
in Fig. 2. The goal is to identify tokens within the
prompt that the proposal LLM Mproposal should
optimize.

Once the prompt edit tokens are identified, we
proceed with the Prompt Proposal step. The in-
struction ‘Reply with the new instruction
without the <edit>, </edit> tags.’ is pro-
vided to Mproposal to output the updated prompt

76

p(t+1). Tab 1 shows the complete prompt evolution
with local and global optimization.

First, identify the scope of tokens within the
prompt where edits should take place.
Prompt edits include adding, deleting or
modifying tokens.
Mark the scope of the prompt that needs editing
by putting <edit>, </edit> tags.
You can have multiple <edit> tags and each <edit>
tag should not entail more than 5 words.
Do not cover the whole sentence with multiple
<edit> tags.
Reply with the prompt with <edit>, </edit> tags.
Do not include any other text.

Figure 2: Illustration of the Prompt for identifying po-
tential optimization tokens.

3 Experiments

The goal of this section is to highlight the efficacy
of local optimization over existing global optimiza-
tion across different automatic prompt engineering
methods.

3.1 Datasets

Following PE2 (Ye et al., 2024) closely, we perform
evaluation on three set of tasks varying in their
objectives and domain. We use the same train-dev-
test split as provided by (Ye et al., 2024).

(1) BIG-bench Hard or BBH (Suzgun et al.,
2023) is a set of 23 tasks (27 subtasks) which can
be categorized as algorithmic, natural language
understanding, world knowledge, and multlingual
reasoning tasks.

(2) Math Reasoning consists of two datasets
MultiArith (Roy and Roth, 2015) and GSM8K
(Cobbe et al., 2021). Both contains grade school
math problems requiring 2 to 8 steps of algebraic
reasoning to reach the final answer.

(3) Production Prompt is an internal classifica-
tion prompt, developed to orchestrate the correct
tool for further LLM calls. The prompt would take
in a user query and would identify the ‘intent’ of
the query. It would then output a function call with
appropriate arguments. It has been developed by in-
domain experts and is 8k tokens long. The prompt
contains sections of skill definitions, specific clas-
sification instruction, safety instructions and so on,
making it an ideal candidate for evaluation.

Initial Prompt Let’s think step by step.

Global Optimization

Optimum

Ensure all given initial values and specific contexts
(e.g., rounding rules, phrase interpretation) are con-
sidered, and explain the arithmetic operations logi-
cally and clearly, step-by-step.

Local Optimization

Identifying edit
Let’s <edit> think </edit> <edit> step by step
</edit>.

Optimum
Let’s carefully read and clearly understand the prob-
lem. Next, let’s think through each step and verify
each calculation carefully.

Table 1: MultiArith prompts found by comparing tra-
ditional global optimization approach against our pro-
posed local optimization.

3.2 Prompt Optimization methods

For fair comparison, we select three representative
prompt optimization techniques and modify their
global optimization step with our local optimiza-
tion step as explained in Sec. 2 and Fig. 1. (1) APE
(Zhou et al., 2023b) leverages LLMs to come up
with variants of the input prompt, given few exam-
ples and then select the best performing prompt.
An improved variant of APE called Iterative APE,
repeats this process a few times to get a better opti-
mized prompt. We use Iterative APE for compari-
son in the paper. (2) APO (Pryzant et al., 2023) is
builds over Iterative APE and adds an incorrect pre-
diction feedback in its prompt optimization process.
This feedback is often termed as ‘textual gradients’
and is used to make edits in correct direction on the
candidate prompt. APO is named as ProTeGi in
their recent draft. (3) PE2 (Ye et al., 2024) further
innovates in the ‘textual gradients’ and make them
rich by adding old prompt and their feedback his-
tory to guide the edit process. They also limit the
number of edits in the prompt.

3.3 Implementation Details

Across all experiments, we consistently use
gpt-3.5-turbo as the task solving model and
gpt-4o as the prompt optimizer. The remaining
design details follow those of PE2 (Ye et al., 2024).
We limit the search budget to 3 optimization steps,
using a beam size of 4 and generating 4 prompts
at each step. Further, we initialize the prompts for
BBH and Math Reasoning datasets with the stan-
dard prompt “Let’s think step by step” (Kojima
et al., 2022; Wei et al., 2022). We keep the hyperpa-
rameters for all the prompt optimization methods
same across global and local optimization.

77

APE APO PE2

0

1

2

3

4

5
O

pt
im

al
 P

ro
m

pt
 T

im
es

te
p

Global Opt.
Local Opt.

(a) Optimal Prompt Timestep in the 27 subtasks
of BBH benchmark. Local Opt. achieves faster
convergence.

APE APO PE2
52

54

56

58

60

62

64

(A
ve

ra
ge

) A
cc

ur
ac

y

+1.7%

+3.2%

+2.1%

Global Opt.
Local Opt.

(b) Average Accuracy on BBH. Local Opt. con-
sistently outperforms global opt. across various
methods.

Production Prompt
80

85

90

95

(A
ve

ra
ge

) A
cc

ur
ac

y

+6.0%

Global Opt.
Local Opt.

(c) Production Prompt
performance after em-
ploying local opt.

Figure 3: Experiments on BBH and Production Prompt, showcasing LPO benefits in both performance and efficiency.

Method LPO GSM8k (↑) MultiArith (↑) # steps (↓)

APE
- 77.7 93.2 2.5
✓ 78.0 96.2 4

APO
- 77.7 96.0 4
✓ 79.7 97.5 2

PE2
- 78.7 97.0 2.5
✓ 80.6 97.5 2

Table 2: Results of Local Prompt Optimization (LPO)
on Math Reasoning benchmark.

4 Results and Analysis

Local Prompt Optimization improves existing
automatic prompting techniques. We evaluate
APE, APO and PE2 algorithms with and without
Local Optimization on GSM8K and MultiArith
datasets as depicted in Tab. 2. We observe that
Local Prompt Optimization is able to improve
prompts for Math Reasoning tasks by an average
of 1.5% while decreasing the number of optimiza-
tion steps required. Additionally, we demonstrate
the wide applicability of Local optimization on
BIG-bench Hard benchmark (27 subtasks). In
Fig. 3b, we show that local optimization supports
various automatic prompting techniques over a
large variety of tasks. We outperform traditional
global optimization approach by an average of
2.3% across methods. We hypothesize that since
Local Optimization reduces the optimization to-
kens for the proposal LLM Mproposal and intro-
duces a Chain-of-Thought approach in the opti-
mization step, Mproposal is able to more efficiently
solve the task and provide better prompt outputs.

Local Prompt Optimization results in faster con-
vergence. We estimate the timestep where the
optimal prompt is produced over the 27 subtasks in

BIG-bench Hard benchmark. The number of iter-
ations were kept to 3 and we assign a timestep of
4 when the initialization prompt is found to be the
best performing prompt. Fig. 3a depicts the violin
curves of optimal prompt timestep. Notably, we
observe majority of tasks reaching earlier conver-
gence than global optimization approaches, saving
a lot of LLM compute and time. Global optimiza-
tion often leads to rewriting the complete prompt
from scratch for the LLM, making the task more
challenging and complex. On the other hand, we
believe reducing the optimization space through lo-
cal optimization keeps the gradient updates aligned
towards the minima.

Local Prompt Optimization can allow control
over prompt editing. Perhaps, the biggest ben-
efit of LPO is to control the scope of editing. In
the production prompt written by domain expert,
the prompt has specific sections where the differ-
ent tools are defined followed by instructions on
individual tools and their use. Using LPO, we can
specify which tool’s instruction needs to be updated
without affecting the other tools. Further, it ensures
that there is no regression in performance of the
prompt in other classes due to the optimization pro-
cess. In our evaluation, we gained a significant
jump of 6% on the production prompt as shown in
Fig. 3c.

5 Conclusion

In this work, we identify the gap in the optimiza-
tion step of the existing automatic prompt engi-
neering techniques. Traditionally, prompts are mu-
tated globally in each step. However, this global
optimization increases the task complexity as the
optimizer (LLM) has to work on a larger num-
ber of parameters (tokens) to find the optimal up-

78

date. Furthermore, many production prompts re-
quire optimizing only a section of the prompt and
not rewriting the complete prompt from scratch.
As a fix, we introduce Local Prompt Optimization
(LPO) where we identify the optimization tokens
and nudge the optimizer to focus only on those to-
kens. We observe consistent performance improve-
ments over Math Reasoning and BIG-bench Hard
benchmark. Notably, we observe that local opti-
mization searches the optimal prompt significantly
quicker than the traditional approach. Further, LPO
can be integrated well with long prompts, which are
more common in practical settings, further show-
casing the ubiquity of our method. Looking ahead,
we are optimistic about prompt optimization tech-
niques built from the perspective of local optimiza-
tion to benefit from the gains in performance and
efficiency.

6 Limitations

We believe our study has three limitations which
we believe can be overcome in future works. (1)
Multilinguality: We primarily focused on English
language as the base in this work, from prompts to
datasets to LLMs. However, we believe the ideas
introduced in the paper are extendable to other lan-
guages as well and implore the community to build
over our work. (2) Local Optimization sometimes
leads to overfitting the prompt with dev score reach-
ing close to 99%. We believe that a better search
strategy can solve this problem and hope to see fu-
ture works addressing it. (3) Closed-source models:
We have used GPT-4o as the optimizer to bench-
mark large datasets in this work. This poses a
challenge to the reproducibility of this work. How-
ever, we believe that showcasing local optimization
capabilities on proprietary models is a good signal
for both academic and industry to incorporate the
ideas in their prompt engineering methods.

References
Xavier Amatriain. 2024. Prompt design and engineer-

ing: Introduction and advanced methods. arXiv
preprint arXiv:2401.14423.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,

Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei

79

Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,

Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Reid Pryzant, Ziyi Yang, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2022. Automatic rule induction
for efficient semi-supervised learning. In Findings
of the Association for Computational Linguistics:
EMNLP 2022, pages 28–44, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

80

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.18653/v1/2022.findings-emnlp.3
https://doi.org/10.18653/v1/2022.findings-emnlp.3

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan
Lu, Yaliang Li, and Ji-Rong Wen. 2024. Unleashing
the potential of large language models as prompt op-
timizers: An analogical analysis with gradient-based
model optimizers. arXiv preprint arXiv:2402.17564.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong
Yang, Xiangpeng Wei, Zhengyuan Liu, and Jun Xie.
2023. Fantastic expressions and where to find them:
Chinese simile generation with multiple constraints.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 468–486, Toronto, Canada.
Association for Computational Linguistics.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and
Fereshte Khani. 2024. Prompt engineering a prompt
engineer. In Findings of the Association for Com-
putational Linguistics ACL 2024, pages 355–385,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International Conference on Machine Learning.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan
Wilcox, Ryan Cotterell, and Mrinmaya Sachan.
2023a. Controlled text generation with natural lan-
guage instructions. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 42602–42613. PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023b. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

81

https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.28
https://doi.org/10.18653/v1/2023.acl-long.28
https://doi.org/10.18653/v1/2024.findings-acl.21
https://doi.org/10.18653/v1/2024.findings-acl.21
https://api.semanticscholar.org/CorpusID:231979430
https://api.semanticscholar.org/CorpusID:231979430
https://proceedings.mlr.press/v202/zhou23g.html
https://proceedings.mlr.press/v202/zhou23g.html
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

