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Abstract

We examine the pre-training dynamics of lan-
guage models, focusing on their ability to
copy text from preceding context—a funda-
mental skill for various LLM applications, in-
cluding in-context learning (ICL) and retrieval-
augmented generation (RAG). We propose a
novel perspective that Transformer-based lan-
guage models develop copying abilities simi-
larly to grokking, which refers to sudden gen-
eralization on test set long after the model fit
to the training set. Our experiments yield three
arguments: (1) The pre-training loss decreases
rapidly, while the context copying ability of
models initially lags and then abruptly saturates.
(2) The speed of developing copying ability is
independent of the number of tokens trained,
similarly to how grokking speed is unaffected
by dataset size as long as the data distribution
is preserved. (3) Induction heads, the attention
heads responsible for copying, form from shal-
low to deep layers during training, mirroring
the development of circuits in deeper layers
during grokking. We contend that the connec-
tion between grokking and context copying can
provide valuable insights for more effective lan-
guage model training, ultimately improving in-
context performance. For example, we demon-
strated that techniques that enhance grokking,
such as regularization, either accelerate or en-
hance the development of context copying.

1 Introduction

Large language models (LLMs) can learn, re-
trieve, and reason from input context, facilitating
various applications such as in-context learning
(ICL, Brown et al., 2020) and retrieval-augmented
generation (RAG, Lewis et al., 2020). Despite these
achievements, several shortcomings have been re-
ported regarding LLMs’ in-context capacities. For
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instance, the order of ICL demonstrations mat-
ters (Lu et al., 2022) and LLMs’ awareness of dif-
ferent contextual positions fluctuates (Liu et al.,
2023). We believe that studying the mechanisms
behind the development of in-context capabilities
during pre-training offers valuable insights for en-
hancing LLMs from a novel perspective.

In this paper, we examine the pre-training dy-
namics of language models, focusing specifically
on their context copying capabilities. These capa-
bilities are crucial for various LLM applications,
including ICL and RAG. For example, Olsson
et al. (2022) interpret ICL as a process that en-
tails copying and then fuzzy pattern completion.
Similarly, RAG exhibits this characteristic, as it
requires the in-context retrieval of key information,
which is then copied (or integrated with additional
paraphrasing and reasoning) as the output. This
paper presents empirical evidence demonstrating
that Transformer-based language models (Vaswani
et al., 2017) develop context copying capabilities in
a manner akin to “grokking” (Power et al., 2022).
Grokking refers to the abrupt improvement in test
set generalization long after models have overfit.

Our experimental method is summarized as fol-
lows: We trained 12-layer Llama models (Touvron
et al., 2023) using 40 billion tokens and saved
checkpoints at regular intervals. To evaluate con-
text copying, we presented the models with an input
context comprising multiple random token subse-
quences, each beginning with a unique prefix, and
let them complete one of the prefixes presented in
the context. The accuracy of these completions
served as a measure of the models’ context copy-
ing abilities. By analyzing the evolution of con-
text copying accuracy and the development of cir-
cuits (i.e., the subnetworks responsible for complet-
ing the specific task) across the saved checkpoints,
we argue there is a potential connection between
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grokking and the development of context copying
capabilities, as outlined in the following arguments:

Argument 1: Grokked Context Copying. We
observe that context copying accuracy shows a sud-
den increase long after the training loss stabilizes,
akin to “grokking” on the test set when neural net-
works trained on small training sets.

Argument 2: Token-Count-Independent
Grokking Speed. We adjust the batch size to
manage the number of tokens trained at specific
update steps. Results indicate that context copying
is developed after certain updates, rather than
after processing a specific quantity of tokens.
Similarly, the data-amount-independent (i.e.,
token-count-independent) generalization speed is a
characteristic of grokking (Wang et al., 2024).

We found that a higher learning rate speeds up
grokked copying, suggesting it occurs at a specific
optimization intensity, determined by the learning
rate and update steps. These experiments under-
score the importance of careful hyperparameter
selection in training language models for capaci-
ties like context copying, as their development isn’t
necessarily reflected in pre-training loss reduction.

Argument 3: Deeper Circuit Formation. We
note that induction heads (Olsson et al., 2022), at-
tention heads responsible for copying tokens, form
from shallow to deep layers during training, consis-
tent with research showing deeper circuits form in
Transformers after grokking (Wang et al., 2024).

Based on the novel perspective that language
models grok to copy, we pre-trained language
models using regularization techniques, which are
known to enhance grokking. These techniques
lead to either faster copying acquisition or higher
accuracy. Our findings highlight a promising
and efficient research approach: developing im-
proved language models with enhanced in-context
performance by leveraging an understanding of
grokking. This efficiency arises from the fact that
studies on grokking can utilize smaller, synthe-
sized datasets, thereby avoiding the extensive and
resource-intensive trials required for directly pre-
training language models.

2 General Setup

Model Architecture and Hyper-parameters.
We train small Llama models (Touvron et al., 2023)
on a subset of the RedPajama dataset (Computer,
2023), comprising 40 billion tokens, with the task

94071d6780d7ba717e\n

5015906d28e186d2bb\n

……

8bc19970dd5b8e7350\n

94071d6780d7

50 random token

subsequences

The prefix of 

the 1st

subsequence

Figure 1: An test input example when i = 1. The
correct completion of this input should be ba717e.

of next-token prediction. Our model has 162M pa-
rameters (12 layers, each with 12 attention heads;
The hidden state dimension is 768, and the inter-
mediate dimension of MLP layers is 3,072.) The
context length is 1,024 tokens. We use the Llama
tokenizer with a vocabulary of 32,000 tokens. Un-
less otherwise specified, the following hyperparam-
eters are used: The AdamW optimizer (Loshchilov
and Hutter, 2019) with (β1, β2) = (0.9, 0.999), a
learning rate of 0.1, 2000 warmup steps, and the
norm clip value of 1. Our training is conducted on
8 A100 GPUs, with a batch size of 64 per GPU.

Evaluating Context Copying. Each test sample
consists of 50 random-token sequences, which are
concatenated to form a single long sequence. These
sequences have an average length of 18 tokens, and
we ensure that the 12-gram prefix and 6-gram suffix
of each sequence is unique. We append the prefix
of the i-th sequence to the end of the concatenated
sequences, which together serve as the model’s
input. An example input case is shown in Figure 1.
Our test set includes 500 samples.

We ask the model to continue the input. An out-
put is correct if it copies the suffix of the queried
prefix from the context, since random token se-
quences lack meaningful semantics and the most
natural continuation is to generate the suffix of the
prefix that has appeared in the context (Olsson et al.,
2022). To comprehensively assess context copying
capabilities across different contextual positions,
we evaluate the model for every i mod 5 = 0.
Unless specifically indicated, we report the aver-
age accuracy across these positions, from models
trained with 3 different random seeds.

3 Language Models “Grok” to Copy

We propose that language models develop context
copying in a manner similar to “grokking”. This
section presents three arguments, along with sup-
porting experiments and analyses.
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Tokens

Loss Acc.

Figure 2: We illustrate the average context copying
accuracy by the bars, and the pre-training loss by the
line. The X-axis represents the number of tokens trained.
A clear grokked copying occurs at 15B tokens.

Batch Size = 32

Acc.

Batch Size = 64 Batch Size = 128

Tokens
Steps

Figure 3: We manage the token count trained at specific
steps by adjusting the batch size. Three models trained
with different batch size develop fundamental copying
abilities after around 38,000 update steps, despite train-
ing on varying numbers of tokens.

For Argument 1, we present the context copy-
ing accuracy and pre-training loss in Figure 2. The
training loss stabilizes after 5B tokens, indicating
that the fundamental language modeling has been
established (i.e., fitted to the training distribution).
However, the accuracy is low until 10B tokens have
been trained. A surge in accuracy occurs at 15B
tokens. This pattern of developing robust context
copying resembles grokking (Power et al., 2022).

For argument 2, we trained another two models
using the same setups and same initial weights as
described in Section 2, but with batch sizes of 32
and 128. Our results indicate that grokked context
copying is independent of the token count. Figure 3
shows that with a fixed learning rate, to achieve
similar accuracy to models using a batch size of
64, models trained with a batch size of 128 (32)
require twice (half) the token count, as their update
steps are equal. This finding aligns with observa-

Tokens

Loss Acc.

Tokens

Loss Acc.

Batch Size=32

Batch Size=128

Figure 4: With a fixed learning rate,the convergence rate
on the training set, as indicated by the training loss, is
related to the token count. However, under similar con-
vergence rates, the copying capacity varies significantly,
which is influenced by the number of update steps.

tions (Wang et al., 2024) that data quantity does
not affect the grokking speed. The consistency en-
hances the connection between grokking and the
development of context copying.

Notably, we observed that the convergence on
the training set is token-count-dependent, although
copying performance is slowed down with larger
batch sizes, as shown in Figure 4. We assume that
using an appropriately smaller batch size to update
the models with more steps within a single epoch
may facilitate the development of capacities that
are not reflected in the training loss reduction.

Moreover, we examine the impact of learning
rates. Figure 5 indicates that an increased learn-
ing rate facilitates earlier and stronger grokking.
Consequently, we assume that the grokked con-
text copying doesn’t emerge until the optimization
reaches a specific intensity, which is influenced by
both the learning rate and the number of update
steps.

For argument 3, we examined the evolution of
induction heads in our models. Induction heads (El-
hage et al., 2021) are the primary circuit for condi-
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Figure 5: With a fixed batch size (64), a larger learning
rate accelerates the grokking to copy.

tional copying in Transformer-based language mod-
els and have been identified as a general mechanism
across various models (Lv et al., 2024). Consider
a sequence “A,B, ..., A” input to the language
model, where A and B are arbitrary tokens. In-
duction heads work based on collaboration across
layers, enabling the model to output B. In shal-
lower layers, certain attention heads move each
token’s information to its next position; in deeper
layers, induction heads at the final position (i.e., the
second A) attend to B (since a subspace of hidden
states at B’s position contains information from the
first A) and copy the attended B as the output.

We introduce the induction score I(L,H), which
quantifies the similarity between the behavior of the
H-th head in layer L—referred to as (L,H)—and
that of an ideal induction head. We establish I(L,H)

as a value within the range of [−1, 1], defined as:

I(L,H) = Ā(L,H) · EP (L,H). (1)

In Eq. 1, Ā(L,H) ∈ [0, 1] measures the induction
attention pattern: when inputting a random token
sequence of length 2s which contains two identical
subsequences of length s (set to 100), we denote
the average attention weight assigned from position
s+ i− 1 to i as Ā(L,H), i ∈ [1, s− 1]. Induction
heads are expected to exhibit a high Ā(L,H) score.
EP (L,H) ∈ [−1, 1] in Eq. 1 is the eigenvalue

positivity of the OV circuit (Elhage et al., 2021)

Tokens

𝐼(",$)

Figure 6: The evolution of induction heads during train-
ing. A bar’s height represents the I(L,H) value. Bars
exhibiting larger values positioned nearer to the X-axis.
The results in this figure are from a single model.

Acc.

Tokens

Figure 7: Regularization positively impacts the grokked
copying. Compared with vanilla models, dropout ac-
celerates the grokking process, advancing the abrupt
accuracy increase from 15B tokens to 10B tokens, albeit
with increased fluctuation in the evolutionary dynamics.
Both techniques improve the final accuracy.

of the head: EP (L,H) =
∑

i λi/
∑

i |λi|. λi is
the i-th eigenvalue of (WUW

(L,H)
O W

(L,H)
V WE),

and W
(L,H)
O and W

(L,H)
V are weights of the value

and output projection in head (L,H), while WE

and WU are model’s embedding and unembedding
matrices. A high EP (L,H) implies that the head
copies the tokens it attends to as output. Overall, a
higher I(L,H) indicates a stronger induction head.

Figure 6 illustrates the evolution of induction
heads during training, revealing that they develop
from shallower to deeper layers. This findings
echos Wang et al. (2024), who proposes that after
grokking, models develop circuits in deeper layers.
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4 Application

Viewing the development of context copying as a
special grokking inspires us to examine the impact
of regularization, as it enhances grokking (Nanda
et al., 2023). We train models using (1) 10% atten-
tion dropout and (2) weight decay (λ = 0.1). Fig-
ure 7 shows that their positive impact: with dropout,
the model groks to copy earlier; both techniques im-
prove the accuracy compared to the vanilla model.

5 Discussions

We sincerely appreciate the anonymous reviewers
for their valuable feedback. In this section, we
address key points raised in their reviews, which
may also be of interest to a broader audience.

1. Our motivation for using copying tasks to
measure in-context ability. Induction heads, the
key components responsible for in-context learn-
ing, are known to perform “copy and paste,” as
described by (Olsson et al., 2022). In essence, in-
duction heads “complete the pattern” by copying
and extending sequences that have occurred previ-
ously. This behavior motivates our exploration of
copying, which are foundational to understanding
in-context abilities.

Moreover, the copying task employed in this
study has proven effective in previous research
on RAG (Tan et al., 2025) and in-context abili-
ties (Chen et al., 2024).

2. We suggest evaluating grokking through
downstream performance rather than training
loss. In our task, the training objective is natural
language modeling, while the testing task focuses
on general copying. As a result, the training loss
doesn’t fully capture the performance saturation
seen in traditional grokking tasks. This is because
copying can be viewed as a skill learned during
pretraining, and once copying proficiency saturates,
further improvements in other abilities can still lead
to a decrease in training loss.

To demonstrate that copying on the training
data has reached saturation, we measured the “ICL
score” proposed by (Olsson et al., 2022), which
tracks the development of in-context abilities. Our
results show that after approximately 4,000 train-
ing steps (about 1.85 billion tokens), the ICL score
stabilizes at -0.5 nats. Since testing accuracy con-
tinues to improve well after this saturation point,
we infer that once copying accuracy is “grokked,”

reductions in training loss primarily stem from im-
provements in other abilities, rather than further
progress in in-context copying.

3. The trade-offs between knowledge acquisition
and in-context ability. Some studies (Chang
et al., 2024) suggest that large batch sizes enhance
knowledge acquisition but hinder the development
of in-context abilities, highlighting a trade-off be-
tween the two (Nafar et al., 2024; Yu et al., 2023).
While large batch sizes slow down in-context abil-
ity acquisition, their overall effect in real-world
applications remains difficult to quantify, necessi-
tating further research.

4. Properties of Grokking The properties of
grokking are not limited to the three arguments we
have exemplified. Many studies (Miller et al., 2024;
Fan et al., 2024; Liu et al., 2022; Lee et al., 2024)
explore various aspects of grokking; we list some
for readers who may be interested.

6 Conclusions

This paper introduces a novel perspective that
the development of context copying is a special
grokking. It holds the potential to provide meaning-
ful insights that can be applied to language models,
as we did in Section 4. We hope a better under-
standing of grokking in future works provide more
insights for developing stronger language models.

Limitations

This paper focuses on the copying task to reflect
the development of in-context capacities. Future
innovations on improving the language model with
better in-context capacities (e.g., ICL) might bene-
fit from the correlations with grokking. However,
it is important to note that ICL presents a higher
level of complexity compared to simple copying
tasks. Due to our limited computational resources,
we were unable to train language models to achieve
robust ICL performance, and therefore did not eval-
uate ICL tasks.
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