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Abstract

Question answering (QA)—giving correct an-
swers to questions—is a popular task, but we
test reverse question answering (RQA): for
an input answer, give a question with that an-
swer. Past work tests QA and RQA separately,
but we test them jointly, comparing their diffi-
culty, aiding benchmark design, and checking
reasoning consistency. We run 16 LLMs on QA
and RQA with trivia questions/answers, reveal-
ing: 1) Versus QA, LLMs are much less accu-
rate in RQA for numerical answers, but slightly
more accurate in RQA for textual answers; 2)
LLMs often answer their own invalid questions
from RQA accurately in QA, so RQA errors
are not from knowledge gaps alone; 3) RQA
errors correlate with question difficulty and in-
versely correlate with answer frequencies in the
Dolma corpus; and 4) LLMs struggle to provide
valid multi-hop questions. By finding question
and answer types that lead to RQA errors, we
suggest improvements for LLM reasoning. '

1 Reversing the Question Answering Task

Question answering (QA) is a long-standing task in
NLP (Green Jr et al., 1961). For an input question g,
QA deduces the correct answer a (Reiter, 1989).
More recently, large language models (LLMs) do
the reverse—given an answer a, generate a valid
question g to which a is the answer—which we
call reverse question answering (RQA).? RQA
thus can be a part of downstream tasks like exam
question generation (Biancini et al., 2024) or search
query reformulation (Dang and Croft, 2010).

QA and RQA are often tested separately, but we
test them jointly, offering two key benefits. First, it
gives insights into open questions on LLM abilities,
as some show LLMs excel in generation over com-
prehension (West et al., 2023, RQA), while others

!Code and data available at https://github.com/
nbalepur/Reverse—-QA

This definition differs from question generation (Zhang
et al., 2021), which grounds the answer to an input context.
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| Reverse Question Answering (RQA) |
Generate a one-sentence question with the answer: "488".
The only possible answer to the question must be "488".
The question should not contain the text "488".

Question: What is the sum of the first eight prime numbers?

[ Question Answering (QA) |

Generate the answer to the question: "What is the sum of the first
eight prime numbers?". Give just the answer and no explanation.

Answer: 77

Figure 1: RQA/QA consistency check using GPT-4. The
LLM fails to give a valid question with answer 488 (top), but
correctly gives the answer 77 for its own question (bottom).

claim verification is easier (Kadavath et al., 2022,
QA). Uncovering which task is harder can guide
benchmark design (Chen et al., 2024) and inform
data collection practices in writing question-answer
pairs (§3.1; e.g., if RQA is easy, get answers man-
ually and then generate synthetic questions).
Second, chaining RQA and QA forms a consis-
tency check for LLM reasoning (Liu et al., 2024a).
RQA—inferring just one of many valid questions—
is abductive (Abe, 1998), while Q A—inferring an
answer from question premises—is deductive (Re-
iter, 1989). Thus, by seeing if QA(RQA(a)) =~ a,
i.e., checking if an LLM can answer its own ques-
tion from RQA (Fig 1), we can assess LLMs’ log-
ical robustness in abduction and deduction (§3.2).
This analysis can also help determine if LLMs can
reliably self-verify (Pan et al., 2024) in downstream
RQA tasks like writing exams (Wang et al., 2018).

To reap these benefits, we test if 16 LLMs can
produce 1) questions correctly answered by input
entities (RQA); and 2) accurate answers for input
questions (QA). We collect 3443 trivia question/an-
swer pairs (Rodriguez et al., 2019), grouped by an-
swer as either numerical or textual entities, forming
inputs to evaluate RQA and QA in varied domains.

In numerical domains, LLMs are much less accu-
rate in RQA than QA, especially integers (Fig 1);
the accuracy difference when LLMs do these tasks
exceed 0.80 for Command-R and LLaMA-3 (§3.1).

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 2: Short Papers), pages 44-64
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics


https://github.com/nbalepur/Reverse-QA
https://github.com/nbalepur/Reverse-QA

Answer Type Description Example Question Example Answer Count
(1) Number Integers in [100, 1000) What is 26 times 4? 104 900
(2) Number+Text Integers with a text entity When did Pope Hormisdas die? 523 AD 743
(3) Easy Fact Well-known factual entity Who is the artist that painted Starry Night?  Vincent van Gogh 900
(4) Hard Fact Obscure factual entity What is the final painting by Paolo Uccello? The Hunt in the Forest 900

Table 1: Description of our collected dataset for Question Answering and Reverse Questioning Answering tasks.

Interestingly, in textual domains, the trend reverses,
so LLMs are not consistently better generators or
validators (Li et al., 2024a). We then design a
consistency check (§3.2) to see if LLMs can answer
their own RQA questions; numerical RQA failures
are not solely due to knowledge gaps, as LLMs of-
ten answer their own invalid questions correctly
in QA (33% of cases for Claude-Opus). We then
study questions from RQA (§3.3, §3.4) and find er-
rors occur when LLMs give overly-complex, multi-
step questions, giving insights into strategies—Ilike
complexity bias mitigation in preference data and
calibrating models using difficulty scores—to im-
prove LLM RQA reliability. Our contributions are:

1. We use Reverse Question Answering (RQA)
to test if LLMs can provide accurate questions
for input answers using abductive reasoning.

2. We reveal many LLMs have a surprising weak-
ness in RQA on numerical entities, struggling
on input answers with lower pretraining token
counts and when creating multi-hop questions.

3. We design a consistency check between RQA
and QA, showing LLMs answer their own in-
valid questions from RQA correctly via QA.

2 Experimental Setup

We evaluate LLM abilities in question answering
(QA) and reverse question answering (RQA):

* QA(q) — a: Given a question ¢ with a single
answer a, the LLM produces an answer & for q.
QA succeeds if @ matches a semantically. For
example, given the input “What is the name
of the polygon with three sides?” for ¢, an
LLM using QA should give an a that matches
“triangle” for a. This typical QA setup tests
deduction, since the model must reason to the
correct answer of a based on the premises in q.

RQA(a) — ¢: Given an input answer a, the
LLM must produce a question §. RQA suc-
ceeds if the correct answer to ¢ is a (verified
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via oracle, §2.3). For example, given the input
“triangle” for a, an LLM using RQA could suc-
ceed with ¢ as “In eight-ball pool, what shape
is used to rack the balls?”. RQA tests abduc-
tion, as the model must reason toward one of
the many valid questions with the answer a.

This section describes the datasets (§2.1), models
(§2.2), and metrics (§2.3) used for RQA and QA.

2.1 Dataset Collection

We study question/answer pairs (g, a) in four do-
mains for QA and RQA inputs, based on a’s an-
swer type (Table 1). We group them as numeri-
cal (Number, Number+Text) or textual (Easy Fact,
Hard Fact), providing varied domains for testing.
When a is a Number, ¢ is a random, one-step
math operation (what is 118+211?). Other types
are from QANTA (Rodriguez et al., 2019), an expert-
curated dataset of multi-sentence trivia QA pairs.
For Easy and Hard Facts, a is the answer to sam-
pled QANTA questions, with the last sentence’ as g.
We use middle school questions for Easy Facts and
college questions for Hard Facts. We obtain Num-
ber+Text answers a in QANTA by finding numbers
in full questions via regex and ¢ from the sentence a
appears in. One PhD student checks all QA pairs to
ensure they are accurate (details in Appendix A.1).

2.2 Models

We evaluate 16 LLMs: GPT (Achiam et al., 2023,
3.5, 4, 40), Command R (Cohere, 2023, Command-
R, Command-R+), Claude (Anthropic, 2023, Son-
net, Haiku, Opus), LLaMA-3 Instruct (Dubey et al.,
2024, 8B, 70B), Yi-1.5 Chat (Young et al., 2024,
6B, 9B, 34B), and Mistral Instruct (Jiang et al.,
2024, 7B, 8x7B, 8x22B). All LLMs use tempera-
ture 0. We list all parameters in Appendix A.3.
The QA and RQA prompts are zero-shot, since
few-shot exemplars test inductive reasoning, not de-
duction/abduction (Liu et al., 2024a) in QA/RQA.

3QANTA questions are paragraph-long and describe a sin-
gle answer. Sentences in paragraphs are ordered in decreasing
difficulty, so we use the last one, forming the easiest question.
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Figure 2: LLM RQA (blue) and QA (red) accuracy with 95% Cls for metric error rate. LLMs are much weaker in abductive
RQA in numerical settings (Number/Number+Text), but in text settings (Easy/Hard Entity), deductive QA is slightly weaker.

Exemplars also do not improve LLM RQA accuracy
(Appendix A.6). Prompts follow the same template
as Figure 1 with format rules to parse outputs (Liu
et al., 2024c). Two NLP graduate students write the
prompts, with all design steps in Appendix A.2.

2.3 Evaluation Metrics

To compute QA accuracy, two graduate students
annotate if 1280 LLM QA answers a for a ques-
tion ¢ match its true answer a (20 per answer type/-
model).* We test seven metrics (Li et al., 2024b)
that evaluate if a and a are equivalent. We select
DSPy-optimized (Khattab et al., 2024) GPT-40 for
easy/hard entities and a rule-based method for nu-
merical entities, since these methods had the high-
est agreement with humans (94% on average).
For RQA accuracy, students annotate if the an-
swer to 1280 questions ¢ from RQA is a (20 per
answer type/model), following rules from Li et al.
(2024b). We use DSPy-optimized GPT-40 as an
oracle (VERIFY*(q,a)) to assess if a answers ¢,
which has high (90%) human agreement. Metric
agreement is high but imperfect, so we also show
QA/RQA accuracy using our 1280 annotations in
Figure 6, which has the same trend as our metrics.

3 Evaluation of QA and RQA

Having designed our tasks (§2), this section tests
LLMs abilities in QA and RQA. LLMs struggle in
RQA on numerical entities (§3.1) but surprisingly
can often detect their own errors (§3.2). We study
the types of entities that lead to RQA errors (§3.3)
and qualitatively analyze differences between ac-
curate and inaccurate questions from RQA (§3.4).

*The 1280 total annotations are derived from 16 LLMs, 4
splits, and 20 annotations on each LLM/split combination.
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3.1 LLMs Struggle with Numerical RQA

We first see if RQA (red, no stripe) or QA (blue,
striped) is consistently harder for LLMs (Figure 2).
In numerical domains (Number, Number+Text),
LLMs are much more accurate in QA versus RQA,
revealing a clear abduction weakness. Interestingly,
in text domains (Easy, Hard), the trend reverses—
RQA slightly beats QA 31/32 times. Thus, LLMs
cannot be categorized as always stronger in gen-
eration or validation (West et al., 2023; Li et al.,
2024a): their abilities are domain-specific. If users
(e.g. teachers) want to write question-answer pairs
with LLMs, we advise manually writing questions
for numerical pairs and answers for text pairs, and
using LLMs to generate the counterparts, given their
strengths in numerical QA and textual RQA.

The Numbers domain has the largest QA/RQA
accuracy gaps, over 0.8 for LLaMA and Command-
R. Some view LLMs as strong math reasoners, but
they excel just in deductive QA tasks, as QA is the
main testbed for math abilities (Ahn et al., 2024).
In contrast, abduction in textual domains appears in
instruction-tuning datasets with queries like “Tell
me about Germany”. Thus, researchers should de-
sign more abductive math benchmarks, like RQA,
to holistically evaluate LLM math capabilities.

3.2 QA Can Self-Verify Numerical RQA

We chain RQA and QA for consistency, i.e., see if
QA(RQA(a)) ~ a (Figure 1). If the check fails,
the RQA question ¢ is invalid, the LLM fails to
answer its own valid ¢, or both failures occur. We
discuss how we disentangle these cases below.
LLMs give: 1) a question ¢ with answer a; and 2)
an answer @ to their own ¢ without using a. We find
three yes/no judgments via our metrics (§2.3): a)
does a answer ¢ (RQA succeeds); b) does a answer
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Token Count (Log Scale) Question Difficulty (1-5)

G (QA succeeds); and c) are a and a equivalent?
Answers A = (a, b, c) to these judgments form a
truth table to diagnose LLM inconsistencies, which

in 91% of cases, fall into the four cases of A below: Number Number + Toxt  Number Number + Text
2 RQA Succeeds H RQA Fails

L. (y7 Y, Y)3 RQA = QA (consistent). Figure 4: Answer answer token count in Dolma and question
difficulty of when RQA succeeds/fails, averaged over LLMs.

2. (n,y,n): Just RQA fails.

3. (y,n,n): Just QA fails. how often @ appears in the.D.olmz.l pretram%ng cor-
pus (Soldaini et al., 2024) via infini-gram (Liu et al.,

4. (n,n,n): RQA and QA fail. 2024b), a proxy for the size of all valid questions an

LLM must abductively reason over in RQA. Next,

Other rare cases of .4 are metric prediction errors ¢ §3.2 hints LLMs may give overly-hard questions
or errors in ¢ (e.g. ambiguity), which we omit for (RQA+QA fail), we use the Prometheus LLM (Kim
this analysis. Appendix A.7 shows all cases of A. 4 al., 2024) to get a 1-5 difficulty score for §. We
LLMs are fairly consistent in textual domains, average metrics pivoted by RQA success/failure
but often fail the check in numerical domains, ex- 4, the subset containing human annotations (§2.3).
cept GPT-4o (Figure 3, left). Thus, our LLMs are Number+Text a have lower Dolma token counts

logically inconsistent in numerical abduction and  \;hep RQA fails (Fig 4), so LLMs struggle to re-

deduction. In such cases, QA rarely fails alone: ei- ) long-tail numerical facts (Kandpal et al., 2023).

ther both RQA and QA fail, where the LLM gives |, Numbers, RQA § are harder when RQA fails.
an invalid question that it cannot answer, or just  Thyg calibrating LLMs with desired difficulty (Sri-
RQA fails, where the LLM detects its error. The  y,qtava and Goodman, 2021) could help designers
latter is akin to hallucination snowballing (Zhang  ,yid errors from overly-hard questions in RQA on
etal., 2024)—inaccurate questions are not just due  ;mpers. Also, difficulty and token count are simi-
to knowledge gaps, as LLM can answer their invalid 1,1 jn RQA success/failure for Numbers+Text and
question accurately (e.g. 33% of cases for Opus). Numbers, respectively, so RQA errors depend on

For instance, given the answer “127 countries”, . cwer type, like in QA (Vakulenko et al., 2020).
Opus incorrectly produces the question “How many

countries are members of the United Nations that 3.4 LLMs Fail to Write Multi-Step Questions

do not have veto power in the UN Security Coun- g, qualitative insights into question types ¢ from

cil?”’. However, when Opus answers its own ques- RQA, we analyze 30 § when RQA fails/succeeds
tion, it knows there are 193 countries in the UN.and strong LLMs with low RQA accuracy (§3.1): L-

five of them have veto power,> returning the cor- 70B, GPT-4, and Opus. For brevity, we just study
rect answer of “188”. Thus, self-verification (Weng .o Numbers split, as its similar answers yield §

etal., 2023) could be a useful way to verify the cor- oo i1 ipar patterns, and group § as: 1) Single-
rectness of responses in numerical RQA tasks. Step: has one math operation; 2) Multi-Step: has
3.3 Number+Text RQA Errs on Rare Entities 2+ math operations; 3) Fact-Based: tests factual

. . knowledge; and 4) Metric Error: metric misclas-
To find when LLMs fail in numerical RQA (§3.1),

ind; FROA Wo i sification. In Appendix A.8, we analyze more ques-
we test two indicators of RQA error. We first see tions ¢ in aspects like question novelty, answerabil-

5 At the time of writing this paper. ity, similarity across models, and memorization.

47



RQA Fails

RQA Succeeds

AER

L-70B GPT-4 Opus
HEEE Single-Step BESE Error

1.0

0.5

0.0
L-70B GPT-4

HEE Multi-Step

Figure 5: Analysis of Number RQA errors. RQA often fails
when the LLM tries to give a complex, multi-step question.

Opus
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When RQA fails, g is often multi-step (Fig 5)—
combining math and facts (how many legs are on a
human, cat, & spider?) or adding primes (Fig 1). In
contrast, valid § are often single-step (what is 192 ?)
or factual (McCarthy, 1959) (how many days is a
leap year? for 366). We believe the errors in multi-
step RQA are from preference tuning; users favor
a complex output even if it is wrong (Wen et al.,
2025). Thus, curbing complexity bias in alignment,
or multi-hop QA decoding methods (Zhao et al.,
2021), may improve LLMs in multi-step RQA.

4 Related Work

LLM Reasoning: Several works have explored
LLM reasoning to improve accuracy (Qiao et al.,
2023) or explainability (Si et al., 2024). More
recently, works explore if LLMs can execute diverse
reasoning strategies, including inductive (Bowen
et al., 2024; Yang et al., 2024), deductive (Sanyal
et al.,, 2022; Mondorf and Plank, 2024), and
abductive (Zhao et al., 2023; Balepur et al., 2024b)
reasoning. However, we are the first to pinpoint
abduction abilities via RQA, which differs from
traditional question generation setups as we do not
have access to an input context (Zhang et al., 2021).

LLM Consistency: LLMs must be consistent to re-
liably help users (Visani et al., 2022), but LLMs are
inconsistent under perturbations like prompt for-
mat (Sclar et al., 2024a), entity reversal (Berglund
et al., 2024), negation (Ravichander et al., 2022;
Balepur et al., 2024a), and ordering (Zheng et al.,
2024). Recent work finds inconsistencies in LLM
generation and verification in math, QA, style trans-
fer, and coding (Li et al., 2024a; Gu et al., 2024),
which we reproduce via an RQA/QA consistency
check. Deb et al. (2023) and Yu et al. (2024) sim-
ilarly compare LLMs in forwards (QA) and back-
wards (filling question blanks for an answer) rea-
soning in math. While Deb et al. (2023) claim back-
wards reasoning is abductive, we argue it is deduc-
tive as there is just one answer; we more aptly test
abduction/deduction consistency via RQA/QA.
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5 Conclusion

We test LLM RQA and QA abilities. LLMs have
notably low accuracy in numerical RQA which is
not just due to knowledge gaps, as models can often
answer their own invalid questions correctly. These
weaknesses can be excised in future benchmarks
to more holistically evaluate LLM numerical abduc-
tive reasoning and math capabilities. To reduce in-
accuracies in numerical RQA, often from generat-
ing overly-complex questions, we suggest calibrat-
ing models using difficulty scores, collecting user
preferences that control for complexity bias, and
adapting prior multi-hop QA methods—key steps
for reliable LLM reasoning in downstream tasks.

6 Limitations

LLMs are sensitive to prompt formats (Sclar et al.,
2024b), so varying prompts could impact LLM ac-
curacy in RQA and QA. To ensure our prompts
are reliable, we followed best practices (Schulhoff
et al., 2024) and kept refining prompts as LLM er-
rors surfaced; the full prompt engineering process
is documented in Appendix A.2. Our final prompts
will be released and are considered very reasonable
implementations of RQA and QA. Further, in Ap-
pendix A.6, we test if common prompt engineering
strategies (few-shot exemplars, chain-of-thought)
can alleviate the low numerical RQA accuracy of
GPT-4 but find minimal benefits, suggesting that
accuracy gaps between QA and RQA cannot be
attributed to prompt formatting alone.

7 Ethical Considerations

RQA uses abduction, a core reasoning strategy that
aims to arrive at a plausible explanation given a set
of facts. However, our current findings suggest that
LLM abductive reasoning in numerical settings is
highly unreliable. We advise practitioners to take
caution when using LLMs to reason via numerical
abduction in downstream tasks, including design-
ing math exam questions, explaining financial fore-
casts, proposing economic policies, or diagnosing
medical patients from numerical data.
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A Appendix

A.1 Dataset Details

We show details for our dataset in Table 2. Our
entities are derived from Quizbowl questions (Ro-
driguez et al., 2019) from the QB Reader AP1S
which is free to use and publicly available online.
We verify that all questions are answerable by the
given answer via Google search. If any question
was found to be unanswerable, we manually edited
the question such that it was answerable. Thus,
all of our collected data is within their license and
terms of use, and our use of these questions are
within their intended use. Since expert trivia writ-
ers curated these questions for academic competi-
tions, we did not need to check that our data has
PII. All questions and answers are in English.

A.2  Prompting Details

Below, we document our prompt engineering pro-
cess for the QA and RQA prompts shown in Fig-
ure 1. To assess each prompt version, we ran infer-
ence on a small subset of examples with the Yi and
LLaMA LLMs and manually assessed the quality
of questions/answers to identify prevalent issues
that could be avoided through prompt engineering.
In all adjacent prompt boxes below, blue text cor-
responds to us adding instructions to the previous
version of the prompt, and red-text corresponds to
us removing instructions from the previous version.

Our initial RQA prompt is in Prompt A.1. With
this prompt, our LLMs generated verbose answers,
so we added the instruction that all questions must
be “one-sentence” (Prompt A.2). Next, we ob-
served that it was difficult to reliably parse the
question from the model’s generated output, so
we added formatting constraints (Prompt A.3). At
this point, when we looked at the model’s gener-
ated questions more closely, we saw that models
could cheat—adding the answer in the question
itself (e.g. giving the question “How many of the
150 people attended the conference” for the answer
“150 people”). Thus, we added an instruction to
forbid this behavior (Prompt A.4). Finally, as we
noticed many of the questions were inaccurate, we
wanted to study if abstention could alleviate these
issues, so we added an instruction (Prompt A.5)
allowing the model to respond with “IDK” §2.2.
We added abstention to test LLM calibration (Feng
et al., 2024), but abstention rates are only 3% in

*https://www.gbreader.org/api-docs/
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QA and <1% in RQA, so we do not study it in this
work. We keep abstention to avoid re-running all
LLMs and omit rare cases of abstention. Our final
RQA prompt is in Prompt A.6.

We then designed our QA prompt by mimick-
ing the format of the final RQA prompt, shown in
Prompt A.7. We initially wrote the constraint that
the answer must be “short” and “just a few words,”
but we felt these instructions were ambiguous, and
the easy and hard entities split of our dataset had
answers that were longer than just a few words; as
a result, we removed these instructions, and used
“the” instead of “a” to make it clear that there is only
one valid answer (Prompt A.8). After removing
these instructions, we noticed that models would
often generate very long explanations before or af-
ter answering the question. To avoid this, we added
an instruction stating that we were just looking for
the answer and no explanation (Prompt A.8). Our
final QA prompt is in Prompt A.10.

A.3 Model Details

The LLMs used in this work are from the following
endpoints:

LLaMA-70B:
Meta-Llama-3-70B-Instruct
Mistral-7B:
Mistral-7B-Instruct-v0.3
Mixtral-8x7B:
Mixtral-8x7B-Instruct-v0.1
Mixtral-8x22B:
Mixtral-8x22B-Instruct-v0.1
Yi-6B: Yi—-1.5-6B-Chat

* Yi-9B: Yi-1.5-9B-Chat

Yi-34B: Yi-1.5-34B-Chat
Command-R: command-r
Command-R+: command-r—plus
GPT-3.5: gpt-3.5-turbo-0125
GPT-4: gpt-4-turbo-2024-04-09
GPT-40: gpt-40-2024-05-13
Haiku: claude—3-haiku-20240307
Sonnet: claude-3-sonnet-20240229
Opus: claude-3-opus-20240229

LLaMA, Mistral, and Yi models are accessed
via huggingface, and all other models are accessed
through their respective API endpoints. We al-
located 8 NVIDIA:A6000s for Mixtral-8x22B, 8
NVIDIA:A5000s for Mixtral-8x7B, Yi-34B, and
LLaMA-70B, 2 NVIDIA:A6000s for Yi-9B and
LLaMA-8B, and 1 NVIDIA:A6000 for all other

LLaMA-8B: Meta-Llama—-3-8B—-Instruct


https://www.qbreader.org/api-docs/

non-API models (which were run on CPU only).
Each model was allocated 24 hours to run both QA
and RQA on our dataset.

LLMs generate with 0 temperature, a minimum
token length of 5, and a maximum token length of
5. All other unspecified parameters are set to their
respective default values.

A.4 Metric Details

To design a metric for QA accuracy, we consider
seven answer equivalence metrics, which check if a
candidate answer a.q,g is semantically equivalent
to a ground-truth answer a¢rqe: 1) DSPy-optimized
GPT-40; 2) A rule-based method designed specif-
ically for each dataset; 3) Exact match; 4) Token
F1 score; 5) Token Recall Score; 6) Token Preci-
sion Score; and 7) PEDANTS (Li et al., 2024b),
a classifier designed for answer equivalence. The
DSPy method in (1) uses a maximum of 10 boot-
strapped demos, a maximum of 10 labeled demos,
and 20 candidate programs; it uses 64 examples for
training (seeding the prompts) and 64 examples for
validation. We decide the optimal decision thresh-
olds for (4), (5), and (6) using the 64 validation
examples. We present the agreement with human
annotations of each metric in Table 3, which is how
we picked the metric to use for each dataset split.
In all, our QA accuracy metric has 94% raw agree-
ment with humans on 1152 held-out examples.

Since there are no automated metrics to check
whether a question ¢ can correctly be answered by
an entity a, we design our own metric for RQA
accuracy. Given the strength of the DSPy GPT-40
approach in QA accuracy, we similarly design a
DSPy-optimized GPT-40 classifier that determines
if g is correctly answered by a, using the same hy-
perparameters for QA accuracy. Overall, this RQA
accuracy metric has 90% raw agreement with hu-
mans on 1152 held-out examples. We also consid-
ered Jury approaches (Verga et al., 2024), which
ensemble multiple LLMs instead of relying just on
a single LLM. However, using majority vote with
three/five LLMs boosted our metric’s accuracy by
less than 2%, which we did not feel justified the
much larger computational expenses.

All metrics are reported for a single run, and
we provide confidence intervals in Figure 2 corre-
sponding to the error rates in our metrics.

A.5 Abduction/Deduction Human Accuracy

In Figure 6, we show a version of Figure 2 using
our human annotations on a subset of data versus
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the automated metrics on the entire splits. Our
trend holds on the human-annotated subset; LLMs
are still much weaker in numerical RQA versus
QA, but their QA capabilities slightly beat RQA
in the text-based settings.

A.6 RQA with Prompting Engineering

To explore if RQA weaknesses can be alleviated
with prompt engineering efforts (Schulhoff et al.,
2024), we test three prompting strategies: 1) Zero-
Shot Chain-of-Thought Prompting (asking the LLM
to “Think step by step” before answering); 2) Self-
Verification (asking the LLM to “Check if the ques-
tion is accurate after generating a question”); and
3) Five-Shot Prompting (including five exemplars
showing the model how to generate a question for
an answer). To write exemplars for (3), we pick
question/answer pairs when RQA succeeds in the
zero-shot setting to make the priors in the exem-
plars most similar to the model’s original gener-
ations. The prompts for (1), (2), and (3) are in
Prompts A.11, A.12, and A.13, respectively.

We experiment with GPT-4 on Numbers and
Numbers+Text, as the model showed a surpris-
ing RQA weakness in these settings. GPT-4 is
also considered to respond well to prompt engi-
neering efforts, making it a suitable candidate for
our prompting strategies. Overall, none of these
prompting strategies can close the accuracy gap be-
tween RQA and QA (Figure 7). Chain-of-thought
prompting increases GPT-4’s RQA accuracy by
~ (.15, but it is still significantly lower than QA,
which does not use chain-of-thought. This shows
that the accuracy gap between QA and RQA may
be an inherent reasoning flaw of current LLMs that
cannot be fully mitigated via prompt engineering.

A.7 Full Consistency Analysis

In this section, we describe the consistency analy-
sis for all values of our truth table A, introduced in
§3.2. Apart from the four categories described be-
fore, the truth table outcome can also be “Ambigu-
ous Question” if 4 = (y, vy, n), as both steps suc-
ceeded but converged to different answers (mean-
ing the question had more than one possible correct
answer). Another option is for the mistakes to can-
cel out, which is a rare scenario A = (n,n,y)
where the model generated an inaccurate question
and answered its own question incorrectly, but man-
aged to arrive at the original entity a. The final
category is a Metric Prediction Error, a scenario
that only occurs if either just QA or RQA was



predicted to fail, but @ and a were predicted to be
matching (A = (n,y,y) or A = (y,n,vy)). These
scenarios are summarized in Table 4.

Figure 8 reports the full consistency analysis for
all 16 of our LLMs and all truth table scenarios.
The four categories reported in Figure 3 encompass
most of the truth table. Further, even for smaller
LLMs, our claims hold; LLMs can often detect their
own question inaccuracies from RQA through QA.

A.8 Further Analysis of RQA Questions

Due to page limit constraints of a short paper, we
were unable to show the entire qualitative analysis
we conducted on questions generated in RQA. Be-
low, we give more qualitative results on the answer-
ability of questions from RQA (Appendix A.8.1),
a cross-model comparison of question duplicates
in RQA (Appendix A.8.2), the ability of LLMs
to match the ground-truth question during RQA
(Appendix A.8.3), and a brief investigation into
memorization in the RQA task (Appendix A.8.4).

A.8.1 Are RQA questions unanswerable?

We now seek to understand the types of RQA ques-
tions generated in the Number+Text setting, com-
plementing our analysis in §3.4. The Number+Text
questions have higher variance and cannot be as
neatly categorized as in §3.4 (e.g. single-step com-
putation). So instead, we study the answerability of
30 generated questions from each LLM, i.e., if the
question is clear but leads to an incorrect answer, or
if the question has an issue that makes it difficult to
answer. We adopt five categories of unanswerable
questions from Rogers et al. (2023):

1) Invalid Premise: the question contains a false
assumption, so it is impossible to answer. For exam-
ple, Opus generates the question How old was the
world’s oldest tortoise, Jonathan, when he passed
away in 20222, but this Tortoise is still alive.

2) No Consensus on the Answer: the question
does not have a single, agreed-upon answer . For
example, LLaMA generates the question What is
the unique property of the Lie algebra ES that
makes it particularly interesting in theoretical
physics?, but Lie algebra has many distinct, inter-
esting properties that would answer the question.
3) Information not yet Discovered: the answer
to this question is not yet known. For example,
GPT-4 generates the question How long, in terms
of word count, is the sentence that holds the record
for being the longest in the English language with-
out using any punctuation?, but it is not yet known
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what could theoretically be the longest sentence.
4) Missing Information: the question does not
have enough information, or it is too vague. For
example, GPT-4 generates the question How many
individuals attended the annual community festival
last year according to the final headcount?, which
cannot be answered without knowing more details.
5) Answerable: The question has one right answer.

As expected, when RQA succeeds, questions
are mostly answerable (Figure 9). However, a
non-trivial proportion of generated questions when
RQA fails are unanswerable, reaching nearly 60%
for GPT-4. The most common types of unanswer-
able questions are those that are missing informa-
tion, meaning that they are too vague or ambiguous,
or those that have false premises or assumptions.
While several works explore methods to answer
ambiguous questions (Min et al., 2020; Kim et al.,
2023a) or questions with false presuppositions (Yu
et al., 2023; Kim et al., 2023b), our analysis reveals
a need to avoid generating ambiguous or faulty-
presupposition questions in RQA.

In Tables 5 and 6, we provide examples of ques-
tion/error types in our qualitative analysis on the
Number and Number+Text split, respectively.

A.8.2 Do LLMs give the same RQA questions?

While most of our analysis treated LLMs indepen-
dently, we now study whether LLMs generate the
same exact questions (i.e. duplicates) in RQA. Fig-
ure 11 shows that LLMs more frequently generate
duplicated questions across entities versus match-
ing questions from other models. For example,
LLaMA-3 70B generates 379 duplicate questions
in the Numbers setting, even when the input an-
swer is altered. This aligns with very recent work
suggesting that LLMs may often conduct pattern-
matching rather than engaging in true, generaliz-
able reasoning (Mirzadeh et al., 2025).

Interestingly, models in the same family are
more likely to generate duplicated questions. For
example, GPT-3.5, GPT-4, and GPT-40 generate
the same questions in RQA more often than when
compared to other LLM families. Thus, we specu-
late that these model families likely share similar
pre-training and alignment data, which is optimized
on through different training recipes.

A.8.3 Does RQA match the gold question?

We now explore whether the questions generated
for an answer in RQA match the gold question
we collected for that answer. When determining if



the two questions are semantically equivalent, we
follow the protocol of Balepur et al. (2024b) and an-
alyze whether the two questions test the exact same
knowledge. Figure 10 shows that the LLMs can
often match the true question when RQA succeeds
in Number+Text settings, reaching as high as 40%
of cases for GPT-4; the questions never matched
for Number. One explanation for the high match
rate is dataset contamination (Ishihara, 2023), but
it is also possible that the most likely question the
LLM abductively reason towards is the ground-truth
question. For example, for the answer “120 coun-
ties,” the only salient fact linked to the entity is that
Kentucky has 120 counties (McCarthy, 1959); this
led GPT-4’s question and the ground-truth question
to both ask about Kentucky.

A.84 Are any RQA questions memorized?

Since the duplicates in Appendix A.8.3 suggest
that LLMs may just be retrieving similar questions
from pretraining rather than reasoning towards new
questions in RQA, we now investigate the novelty
of the RQA questions (Merrill et al., 2024), i.e.,
whether they are exactly copied from pretraining.
We do not know which corpora all of our LLMs are
trained on, so we use the Dolma (Soldaini et al.,
2024) corpus as a proxy for pretraining data. For
each generated RQA question ¢, we compute how
frequently the exact question ¢ appears in Dolma
via infini-gram (Liu et al., 2024b).

Table 7 reveals in total, 2.87% of RQA ques-
tions are exactly found in Dolma. For comparison,
1.25% of our ground-truth questions exist in Dolma.
While we did not explicitly prompt the model to
give a new question that it has not seen in pretrain-
ing, practitioners may need to design specialized
techniques if they desire novel RQA questions.

When comparing exact question match fre-
quency by model, weaker/smaller LLMs tend to
copy more from pretraining data, suggesting that
smaller LLMs are more prone to RQA memoriza-
tion. Further, the Hard Fact setting is much less
prone to question copying in RQA, likely because
the RQA input answers have very low pretrain-
ing token count (§3.3), which further supports that
LLMs may struggle to retrieve exact pretraining
knowledge for long-tail facts (Kandpal et al., 2023).

We present examples of RQA questions that ap-
pear the most in Dolma in Table 8. The tendency
to generate inaccurate or ambiguous questions may
be influenced by pretraining, as many of these ques-
tions appear directly in Dolma.
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Prompt A.1: Reverse Question Answering Prompt V1 (RQA)

Generate a question with the answer: “a”.

Prompt A.2: Reverse Question Answering Prompt V2 (RQA)

Generate a one-sentence question with the answer: “a”.

Prompt A.3: Reverse Question Answering Prompt V3 (RQA)

Generate a one-sentence question with the answer: “a”. Please format your output
as “Question: [insert generated question]”

€ J

Prompt A.4: Reverse Question Answering Prompt V4 (RQA)

Generate a one-sentence question with the answer: “a”. The question should not
contain the text “a”. Please format your output as “Question: [insert generated
question]”

Prompt A.5: Reverse Question Answering Prompt V5 (RQA)

Generate a one-sentence question with the answer: “a”. The only possible answer
to the question must be “a”. The question should not contain the text “a”.
Please format your output as “Question: [insert generated question]”. If no

possible question exists say “IDK”.

Prompt A.6: Final Reverse Question Answering Prompt (RQA)

Generate a one-sentence question with the answer: “a”. The only possible answer
to the question must be “a”. The question should not contain the text “a”.
Please format your output as “Question: [insert generated question]”. If no

possible question exists say “IDK”.
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Prompt A.7: Question Answering Prompt V1 (QA)

Generate a short answer to the question: “g”. The answer should just be a few

words long. Please format your output as “Answer: [insert generated answer]”.
If no possible answer exists say “IDK”.

Prompt A.8: Question Answering Prompt V2 (QA)

Generate a—short the answer to the question: “q”. The answer should just-bea
few—words—tong- Please format your output as “Answer: [insert generated answer]”.

If no possible answer exists say “IDK”.

Prompt A.9: Question Answering Prompt V3 (QA)

Generate the answer to the question: “g”. Give just the answer and no
explanation. Please format your output as “Answer:

[insert generated answer]”.
If no possible answer exists say “IDK”.

Prompt A.10: Final Question Answering Prompt (QA)

Generate the answer to the question: “g”. Give Jjust the answer and no
explanation. Please format your output as “Answer:

[insert generated answer]”.
If no possible answer exists say “IDK”.
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Prompt A.11: RQA with Chain-of-Thought

Generate a one-sentence question with the answer: “a”. The only possible answer
to the question must be “a”. The question should not contain the text “a”. Think
step by step and reason before generating the question. After reasoning, please
Lformat your final output as “Question: [insert generated question]”.

Prompt A.12: RQA with Self-Verification

Generate a one-sentence question with the answer: “a”. The only possible answer
to the question must be “a”. The question should not contain the text “a”

Please format your output as "Question: [insert generated question]". After
generating a question, answer your own question to verify that the answer is “a”,
formatted as "Answer: [insert answer to generated question]".

. J
Prompt A.13: RQA with Five Exemplars

Generate a one-sentence question with the answer: “a”. The only possible answer
to the question must be “a”. The question should not contain the text “a”

Please format your output as “Question: [insert generated question]”.

Answer: 328
Question: What is the sum of the first 15 prime numbers?

Answer: 710 survivors
Question: How many people survived the sinking of the RMS Titanic in 191272

Answer: 648
Question: What is the product of 12 and 5472

Answer: 286 ayats
Question: How many verses are there in the longest chapter of the Quran, Surah
Al-Bagarah?

Answer: 311
Question: What is the sum of the first three prime numbers greater than 1007?

Answer: a
Question:
.
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Number Number+Text Easy Entity Hard Entity

Count 900 743 900 900
Average Answer Length (Tokens) 1.00 249 277 5.18
Average Question Length (Tokens) 8.75 21.9 18.9 22.9

Table 2: Dataset details of each split (Number, Number+Text, Easy Entity, Hard Entity), including the number
of data instances, average length of answers (in tokens), and average length of questions (in tokens). Tokens are
computed using t iktoken.

Metric Number Number + Text Easy Entity Hard Entity

DSPy (GPT-40) 0.972 0.924 0.917 0.897
Rule-Based 0.979 0.965 0.817 0.790
Exact Match 0.979 0.819 0.752 0.537
Token F1 0.969 0.771 0.845 0.829
Token Recall 0.969 0.760 0.848 0.826
Token Precision 0.969 0.760 0.848 0.826
PEDANTS 0.972 0.760 0.872 0.786

Table 3: Raw agreement with human annotators (i.e. accuracy) of seven tested answer equivalence metrics. The
best metric for each dataset split is in bold.
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Figure 6: LLM deduction (blue) and abduction (red) accuracy based on human annotations on a subset of data (20
labels per model/dataset). The plot shows a similar trend as the automated metrics (LLMs are weaker in abduction in
numerical settings, but stronger in abduction in non-numerical settings), confirming the validity of our metrics.
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Figure 7: LLM deduction (blue) and abduction (red) accuracy with GPT-4 on numerical entities. For QA, we
present the zero-shot prompt used in §3.1. For RQA, we test adding chain-of-thought instructions (GPT-4 + CoT),
asking the LLM to verify its question post-generation (GPT-4 + Self-Verification), and including five exemplars
(GPT-4 + 5-Shot). None of these strategies allow the model to fully match the QA accuracy.
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IS atrue the answer to qpwa? IS apwa the answer to gpwa? IS Atrue €qual to apwa? Outcome

Yes Yes Yes RQA =QA

Yes Yes No Ambiguous Question
Yes No Yes QA Fails

Yes No No Metric Error (Impossible)
No Yes Yes RQA Fails

No Yes No Metric Error (Impossible)
No No Yes RQA + QA Fail

No No No Mistakes Cancel (lucky!)

Table 4: All truth table outcomes for the consistency analysis in §3.2.
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Figure 8: QA and RQA logical consistency across all models. The consistency trends are also prevalent for
smaller/less capable LLMs; RQA and QA consistency is higher for easy/hard entities, but LLMs can often detect
their own RQA inaccuracies in numerical settings.
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Figure 9: Error analysis of questions from RQA on Number+Text. When RQA fails, questions are often unanswer-
able (30-60%), and frequently include false premises or omit key information that is needed to answer the question.
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Question Answer  Model Valid?  Question Type
‘What is the sum of the numbers on a standard roulette wheel? 369 L-70B No Multi-Step
‘What is the sum of the first 37 natural numbers? 749 GPT-4 No Multi-Step
What is the sum of the first 18 positive odd integers? 855 Opus No Multi-Step
‘What is the result of multiplying 25 by 25? 625 L-70B Yes Single-Step
What is the smallest prime number greater than 357? 359 GPT-4 Yes Single-Step
What is the product of 30 and 23? 690 Opus Yes Single-Step
‘What is the emergency telephone number in the United States and many other countries? 911 L-70B Yes Fact-based
What is the atomic number of the element with the highest atomic number ... as of 2023? 223 GPT-4 No Fact-based
‘What is the number of characters allowed in a single tweet on Twitter? 280 Opus Yes Fact-based
Table 5: Examples of RQA question types and errors on the Number split.
Question Answer Model  Error Type
How many British soldiers were killed or wounded during the Battle of Thermopylae in 480 BCE? 266 men L-70B Invalid Premise
‘What is the numerical designation..., if we humorously assume there were 111 before it? 112 Ark GPT-4  Invalid Premise
According to a 2011 census, how many officially recognized ethnic groups are there in India? 634 distinct peoples ~ Opus Invalid Premise
In what year did the Vietnamese king Le Hoan defeat the Song Dynasty army at the Battle of Bach Dang? 988 AD L-70B No Consensus
How long did the construction of the Great Wall of China continue...? 264 years GPT-4 No Consensus
‘What is the wavelength of yellow light in the visible spectrum? 587 nanometers L-70B Missing Info
How many individuals attended the annual community festival last year according to the final headcount? 178 people GPT-4 Missing Info
How old was the world’s oldest tortoise, Jonathan, when he passed away in 2022? 179 years of age Opus Missing Info

Table 6: Examples of RQA question types and errors on the Number+Text split.
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Figure 10: Proportion of RQA questions on Numbers+Text that semantically match the ground-truth question when
RQA succeeds. LLaMA-3 70B, GPT-4, and Opus can all match the ground-truth question over 25% of the time.
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Figure 11: Cross-model frequency of questions from RQA that are exact duplicates. LLMs often generate the same
question in RQA even though the input answer changes, reaching as high as 379 for LaMA-3 70B on Numbers.

Model Easy Fact Hard Fact Number Number+Text ‘ Model Sum
Mis-7b 25 6 6 7 44
Mix-7B 7 0 10 1 18
Mix-22B 41 3 17 12 73
Yi-6B 18 0 98 40 156
Yi-9B 17 2 8 1 28
Yi-34B 7 0 18 0 25
L-8B 12 2 21 8 43
L-70B 4 1 19 4 28
Command-R 48 3 61 47 159
Command-R+ 28 3 17 20 68
GPT-3.5 111 19 16 105 251
GPT-4 29 0 32 3 64
GPT-40 96 10 27 39 172
Haiku 88 12 67 95 262
Sonnet 51 5 18 17 91
Opus 41 0 48 12 101
Dataset Sum 623 66 483 411 1583

Table 7: Number of generated RQA questions that are exact matches to a question in the Dolma pretraining corpus.
On average, models are prone to copying questions from pretraining ~ 3% of the time. Smaller/weaker LLMs are
more susceptible to copying questions from pretraining in RQA. Further, easy facts and numerical answers are
more likely to lead to copied questions in RQA versus our hard facts.
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Question Answer Model(s) Split Valid Count

What is the answer to this question? Lucy poems Haiku Hard Fact No 21313
Who lives in a pineapple under the sea? Spongebob Squarepants GPT-3.5, GPT-40 Easy Fact Yes 1452
Where does the story take place? In the Penal Colony GPT-3.5 Hard Fact No 1395
How many countries are there in the world? 195 nations GPT-3.5 Num+Text Yes 380
What is the capital of France? Paris, France Command-R+ Easy Fact Yes 338
Who was the first president of the United States? George Washington Haiku, Sonnet Easy Fact Yes 281
How many days are there in a week? 357 Yi-6B Number No 194
What is the capital of the United States? Washington, D.C. Command-R, GPT-3.5 Easy Fact Yes 192
How many days are there in a year? 365 Command-R Easy Fact Yes 166
How many days are there in a year? 800 Haiku Number No 166

Table 8: Questions generated from RQA that are most frequently found in the Dolma corpus. The LLM’s tendency
to generate inaccurate questions (e.g. How many days are there in a year? for 800) or ambiguous questions (What
is the answer to this question?) could be influenced by how often these questions appear in pretraining.
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