
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 506–513

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Task-driven Layerwise Additive Activation Intervention

Hieu Trung Nguyen1 Bao Nguyen1 Binh Nguyen2 Viet Anh Nguyen1

1 The Chinese University of Hong Kong
2 National University of Singapore

thnguyen@se.cuhk.edu.hk,nbnguyen@se.cuhk.edu.hk
binhnt@nus.edu.sg,nguyen@se.cuhk.edu.hk

Abstract

Modern language models (LMs) have signifi-
cantly advanced generative modeling in natural
language processing (NLP). Despite their suc-
cess, LMs often struggle with adaptation to new
contexts in real-time applications. A promis-
ing approach to task adaptation is activation
intervention, which steers the LMs’ generation
process by identifying and manipulating the ac-
tivations. However, existing interventions are
highly dependent on heuristic rules or require
many prompt inputs to determine effective in-
terventions. This paper proposes a layer-wise
additive activation intervention framework that
optimizes the intervention process, thus enhanc-
ing the sample efficiency. We benchmark our
framework on various datasets, demonstrating
improvements in the accuracy of pre-trained
LMs and competing intervention baselines.

1 Introduction

Transformer-based language models (LMs) have
revolutionized generative modeling for natural lan-
guage processing (NLP). This is demonstrated by
the impressive performances of LMs in various im-
portant NLP tasks (Radford et al., 2019; Brown
et al., 2020; Achiam et al., 2023; Touvron et al.,
2023; Jiang et al., 2023; Abdin et al., 2024; An-
thropic, 2024; Dubey et al., 2024). One of such
is in-context learning (ICL, Brown et al. 2020),
where a pretrained LM can perform NLP tasks with-
out fine-tuning their parameters. This is achieved
by providing the model with prompts that include
demonstrations of the task, allowing it to learn
from the examples and make predictions without
requiring additional training. Despite this, perform-
ing ICL on LMs remains challenging, as LMs still
struggle to adapt quickly to new context shifts in
real-time applications.

One possible method for adaptation is activation
intervention (Subramani et al., 2022; Turner et al.,
2023; Hernandez et al., 2023b; Todd et al., 2023;

Li et al., 2024a; Nguyen et al., 2025; Jiang et al.,
2025), where one uses the activations of the model
that are most likely responsible for ICL to steer the
generation process. However, most of these works
either derive the intervention based on a heuristic
rule or require a large amount of prompt input.

Contributions. In this work, we aim to de-
sign a principled, optimization-based intervention
that delivers competitive results with limited train-
ing demonstrations. We propose a layerwise addi-
tive activation intervention method for task-driven
learning. The intervention is an optimal vector that
minimizes the mismatch between the intervened
decoding output and the target desired output in the
training data. Additionally, we impose a joint lasso
and group lasso regularization to mitigate overfit-
ting on the sample size and promote the component
and head sparsity of the intervention.

Existing activation intervention methods scatter
the interventions across multiple layers (Todd et al.,
2023; Turner et al., 2023; Li et al., 2024b), which
can negatively affect the effectiveness of the in-
tervention at later layers due to the representation
shifts of the activations generated at earlier layers.
To address this issue, we propose to focus the in-
tervention on the same layer, which can be easily
formulated as a layerwise optimization problem.
The layerwise optimization problem has shown ef-
fectiveness in driving the LLM-generated content
to human alignment (Nguyen et al., 2025; Jiang
et al., 2025). Moreover, our intervention can facil-
itate task calculus by focusing on the same layer
across tasks. By an additive composition of dif-
ferent task-specific interventions, we obtain a new
intervention for the corresponding composition of
tasks, as we will demonstrate in the numerical ex-
periments.

506



2 Related Works

In-Context Learning. Since its introduction by
Brown et al. (2020), ICL in LM has been stud-
ied extensively in various directions. For example,
Reynolds and McDonell (2021); Yoo et al. (2022)
analyzed the role of prompts in improving the ICL
performance. Theoretical analysis of how LMs
perform ICL has been proposed by Akyürek et al.
(2022); Dai et al. (2023); Von Oswald et al. (2023);
Sander et al. (2024). These works study the in-
ternal mechanism – either with regularized linear
regression or gradient descent – of the transformer
architecture, which is the workhorse behind most
current state-of-the-art LMs.

Language model intervention. Intervening on
the hidden states of transformer-based LMs, or acti-
vations editing, has recently emerged as an efficient
method for controllable text generation. Contrast-
ing to weights editing, activations editing refers
to modifying the output of attention heads on one
or several layer(s) of the transformer architecture,
ultimately steering the generated text to desirable
outcomes. Initially proposed to perform text style
transfer, this method has been extended to improve
the performance of few shots / zero shots of ICL,
such as in Todd et al. (2023); Liu et al. (2023); Hen-
del et al. (2023); Li et al. (2024a); Hernandez et al.
(2024). Our work follows this direction but im-
proved upon them by using only a fewer number of
prompt inputs. As such, the aforementioned works,
most notably by Todd et al. (2023), are directly
related to our work.

3 Methodologies

We have a pre-trained decoder-only transformer-
based LM (for example, LLama3-8b) that is not
yet fine-tuned for the few-shot in-context learning
task (ICL). The LM has L layers; each layer has
H heads of dimension d; overall, the activation
vector at each layer has a dimension D = d×H .
We use ℓ ∈ {1, . . . , L} as the layer index, and use
h ∈ {1, . . . ,H} as the head index. For Llama3-8b,
we have L = 32, H = 32 and d = 128.

We consider the layer-wise intervention consist-
ing of finding a task-specific modification vector
to be added to the activations of the input’s last
token so that the LM’s output is steered toward our
desired direction. To formalize this problem, we
consider a task τ dataset consisting of Nτ samples.
Each sample i, i = 1, . . . , Nτ , can be described by
a tuple (siτ , rτ , tiτ ), where siτ is the input text, rτ

is a special token padded to the end of the input,
and tiτ is the desired (ground-truth) target output
corresponding to the input siτ . When there is no
possible confusion, we will omit the task index τ
to avoid cluttered notation.

Our method aims to find a task-specific ∆ from
the training data. Then, at inference time with a
test input stest, we intervene by adding ∆ to the
activations of the last token corresponding to the
input (stest, r) to generate t̂test. The success of the
intervention is measured by the discrepancy in the
test set between the generated output t̂test and the
true desired output ttest.

The last token’s activations at layer ℓ of the
input (si, r) are denoted by aℓ(si, r); conse-
quently, the additively-intervened activations be-
come aℓ(si, r)+∆. The activations at the last layer
(layer L) after the intervention become aL,∆(si, r).
The decoder will transform aL,∆(si, r) into the dis-
tribution of the next token for generation. A good
intervention vector ∆ should minimize the genera-
tion loss averaged over the training dataset

Loss(∆) =
1

N

N∑

i=1

Ltask(aL,∆(si, r), ti). (1)

Simply minimizing (1) leads to overfitting: in gen-
eral, the number of training samples N is small,
while the dimension D of the vector ∆ is much
larger (D = 4096 for Llama3-8b). We propose
using both lasso regularization and group lasso reg-
ularization to combat overfitting. Thus, the inter-
vention ∆ solves

min
∆∈RD

Loss(∆) + γ∥∆∥1 + λ

H∑

h=1

∥∆h∥2, (2)

where γ > 0 is a lasso parameter controlling the
sparsity of ∆, and λ > 0 is a group lasso parameter.
Here, a natural group assignment is by head, where
we decompose ∆ = (∆1, . . . ,∆H), where each
∆h ∈ Rd. The group lasso term penalizes the sum
of the 2-norm of headwise interventions ∆h. We
choose group lasso regularization to promote spar-
sity within heads of activations, as empirical evi-
dence from previous work such as Hernandez et al.
(2023a); Todd et al. (2023) and Li et al. (2024b)
suggests that only a portion of attention heads is
responsible for the transformer’s ability to gener-
ate controllable outputs. The lasso penalty is also
added to promote an additional degree of sparsity
across all elements of ∆.

507



Next, we describe two specific applications of
this task-driven intervention.

3.1 Rule Understanding
The first application of the layer-wise task-specific
activation is the rule understanding task (Todd et al.,
2023; Hernandez et al., 2024). Each sample con-
sists of a tuple (subject, relation, object), equiva-
lently denoted by (si, r, oi), where si is a phrase,
r is the special relationship token, and oi is the
output. For example, an exemplary sample is of the
form hello:bonjour, where hello is si, : is the
special token r, and bonjour is oi. This particular
sample is picked from the task of translating an
English phrase into French, which a knowledge-
able human can easily deduce. Nevertheless, this
conceptual description of the task is not given to
the model. The goal of the intervention vector ∆
is to steer the LM to generate the corresponding
French translation of the input word.

In this problem, the target ti is the next token oi
in the training data. An effective loss here is the
negative log-probability of the token oi from the
decoder: if the decoder outputs a distribution over
the dictionary DEC(aL,∆(si, r)), then,

Ltask(aL,∆(si, r), oi)

= − logDEC(aL,∆(si, r))[oi].

3.2 Opinion Generations
The second application we consider is the opinion
elicitation problem (Santurkar et al., 2023), where
the whole population consists of multiple groups.
Each group has its own characteristics, leading to
a different group-specific distribution of responses
to the input question. In this problem, each group
is considered as one task; the training datasets con-
sists of multiple textual questions si, padded with
the special token r, and the response distribution is
πi supported on the target response alphabet Oi.

Here, we set the target ti as the distribution πi,
and the task loss is the Kullback-Leibler diver-
gence between the decoding distributions over the
response alphabet Oi and the target πi:

Ltask(aL,∆(si, r), πi)

= KL(DEC(aL,∆(si, r))[Oi] ∥ πi).

4 Numerical Experiments

We perform benchmarks to demonstrate our algo-
rithm’s performance on two tasks: Rule Under-
standing and Opinion Dynamics. All experiments

Figure 1: Average Exact Match for unregularized inter-
ventions at different layers. Results are averaged over
five random seeds.

are run on 4× NVIDIA A5000 GPUs. Our imple-
mentation will be published at https://github.
com/HieuNT91/LayerwiseIntervention.git

4.1 Single Rule Understanding
We utilize four tasks from Todd et al. (2023):
Antonym, Synonym, English-French, and English-
German; the task description is relegated to the
Appendix B. We select these tasks because the em-
pirical results from Todd et al. (2023) indicated that
the non-optimization interventions perform poorly
on these tasks. We can access N = 10 pairs of
input and output samples for each dataset and inter-
vene at layer ℓ = 4.

We use two performance metrics:

• Exact Match: the proportion of predictions that
match exactly the targets.

• GPT-Eval measures the proportion of predic-
tions confirmed true for a task by GPT-4. An
input can lead to multiple reasonable outputs
in almost all tasks. For example, an English
word can have multiple synonyms. Therefore,
we design a specific query format for each task
to ask GPT-4, the state-of-the-art large language
model, to confirm the answer. Detailed infor-
mation on the query format for each task is
provided in the appendix. To minimize uncer-
tainty in GPT-4’s responses, we query GPT-4
five times for each input-prediction pair. The
prediction is deemed acceptable if GPT-4 con-
firms the prediction as suitable for the input in
more than two out of the five attempts.

We compare our interventions against four base-
lines: (i-ii) zero- and ten-shot prompting, (iii-iv)
zero- and ten-shot prompting using the function

508

https://github.com/HieuNT91/LayerwiseIntervention.git
https://github.com/HieuNT91/LayerwiseIntervention.git


Table 1: Results for single rule understanding task. Our optimization-based method outperforms the baselines in
both metrics.

Method Eng-Fr Eng-Ger Antonym Synonym

Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑

0-shot prompting 0.069 ± 0.012 0.02 0.022 ± 0.005 0.04 0.050 ± 0.026 0.09 0.051 ± 0.012 0.115
10-shot prompting 0.000 ± 0.000 0.188 0.075 ± 0.014 0.03 0.000 ± 0.000 0.129 0.000 ± 0.000 0.109

0-shot prompting FV 0.129 ± 0.042 0.173 0.054 ± 0.012 0.08 0.000 ± 0.000 0.099 0.124 ± 0.023 0.179
10-shot prompting FV 0.241 ± 0.053 0.267 0.123 ± 0.031 0.133 0.056 ± 0.013 0.178 0.122 ± 0.028 0.614

Ours 0.795 ± 0.024 0.768 0.620 ± 0.041 0.872 0.514 ± 0.063 0.902 0.349 ± 0.085 0.74

Table 2: Results for composition rule understanding task. Re-optimizing the intervention vectors delivered
better results, but the addition of the task vector (first row) without optimization still shows comparatively good
performance.

Method Eng-Fr Antonym Eng-Ger Antonym Eng-Fr Synonym Eng-Ger Synonym

Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑ Exact Match ↑ GPT-Eval ↑

Ours (Add) 0.324 ± 0.140 0.731 0.237 ± 0.046 0.312 0.644 ± 0.125 0.852 0.601 ± 0.215 0.901
Ours (Re-optimized) 0.551 ± 0.076 0.896 0.546 ± 0.053 0.724 0.768 ± 0.036 0.937 0.780 ± 0.046 0.984

Table 3: Kullback-Leibler mismatch for the opinion dynamic task using OpinionQA dataset with different subgroups
of the population. Smaller values are better.

Method 100,000 USD or more Less than 30,000 USD Moderate Northeast Average

0-shot Prompting 2.761 2.451 3.451 4.131 3.200
10-shot Prompting 1.665 2.047 2.342 2.244 2.074

Ours 0.283 0.260 0.260 0.288 0.273

vector (FV) method proposed in Todd et al. (2023).
The results in Table 1 show a significant improve-
ment in rule understanding across multiple tasks us-
ing our proposed method compared to the baselines.
The performance gains are also consistently shown
in semantic relationship tasks (antonyms and syn-
onyms). Notably, the performance gaps are large
compared with zero-shot and few-shot prompting
baselines (with and without adding Function Vec-
tors). The main reason for the performance dif-
ference is that our method is based on a smaller
training sample size, and task signals are efficiently
extracted in the optimization process.

4.2 Rule Understanding Composition

Tasks can be easily composed: if τ is the antonym
task and τ ′ is the English-French translation task,
then one can compose τ ′ ◦ τ that takes an En-
glish word as input and generates the corresponding
French-antonym as output. In this section, we test
the algebraic additive composition of the trained
intervention vectors. We assume that we have two
intervention vectors at the same layer ℓ denoted as
∆τ and ∆τ ′ for the task τ and task τ ′, respectively.
We define a simple algebra sum between these two
interventions to form a new one ∆τ,τ ′ = ∆τ +∆τ ′ .
Next, we study whether the new vector ∆τ,τ ′ can
be used for the composition task τ ′ ◦ τ . We ex-
pect ∆τ,τ ′ to perform competitively on the newly

composed task.
In Table 2, we present the results obtained by

two methods: (i) by adding intervention vectors
as previously described and (ii) by re-optimizing
the interventions on the composed tasks’ training
data (using 10 training samples). Clearly, we ex-
pect that re-optimizing will deliver better results,
as reflected in Table 2. Nevertheless, we observe
that the performance of the additive composition
remains competitive.

4.3 Opinion Dynamic

We use the OpinionQA dataset (Santurkar et al.,
2023; Zhao et al., 2023), which evaluates how
closely language models align with the opinions
of certain groups in the whole population. We use
zero-shot and ten-shot prompting as the baselines.
Further, we use the Kullback-Leibler divergence
between language models’ opinion distribution and
human distribution as a performance metric. We
report the results on the test set in Table 3. Our
method outperforms the prompting baselines and
better matches the group-specific distributions.

4.4 Additional Ablation Studies

We conduct multiple ablation studies to validate
our design choices and demonstrate the versatility
of our approach.

509



Table 4: Performance comparison between the unregu-
larized and regularized loss on four tasks. We use Exact
Match to measure performance on each task. Higher
values are better.

Method Eng-Fr Eng-Ger Antonym Synonym

Unregularized 0.504 0.302 0.371 0.314
Regularized 0.795 0.620 0.514 0.349

4.4.1 Regularized vs. Unregularized Loss
To assess the contribution of the regularization
terms in our loss function (2), we compare the
performance of models trained with and without
regularization (λ = γ = 0.01 vs. λ = γ = 0).
Table 4 shows that incorporating the regulariza-
tion term improves performance across all tasks,
especially on the translation tasks.

4.4.2 Experiments with Other Language
Models

To demonstrate the generalizability of our approach
across different architectures and model sizes, we
experimented with three language models: Mistral-
7B-v0.3 (Jiang et al., 2023), Gemma2-2B (Team
et al., 2024), and Llama3-8B (Touvron et al., 2023).
Table 5 summarizes the performance on the Eng-Fr,
Eng-Ger, and Antonym tasks. Notably, Llama3-8B
achieves the best overall performance, indicating
that our method scales favorably with increased
model capacity.

Table 5: Performance of various language models on
selected tasks. We use Exact Match to measure perfor-
mance on each task. Higher values are better.

Model Eng-Fr Eng-Ger Antonym

Mistral-7B-v0.3 0.521 0.385 0.321
Gemma2-2B 0.710 0.221 0.314
Llama3-8B 0.795 0.620 0.514

4.4.3 Comparison with Intervention and
Finetuning Baselines.

We compare our approach with three fine-tuning
baselines using the standard implementation pro-
vided by the PEFT library (Mangrulkar et al., 2022)
and one intervention baseline using author imple-
mentation1. This comparison evaluates the effec-
tiveness of our method in the low-sample size set-
tings. Below, we briefly describe each baseline:

• In-Context Vector (ICV) (Liu et al., 2023): To
imitate the 10-shot setting, we use 10 examples

1https://github.com/shengliu66/ICV.git

and the default step size of 0.1 to generate the
in-context vector.

• IA3 (Liu et al., 2022): we applied adapters to the
kproj, vproj and downproj layers of the network.
Specifically, the IA3 vectors were multiplied
with the input to the downproj layer to scale the
activations accordingly.

• Soft Prompt (Lester et al., 2021): We initialized
the first token with the task description, e.g.,
‘the French translation of this word’, and fine-
tuned eight additional virtual tokens with this
initial prompt.

• LoRA (Hu et al., 2021): We fine-tuned a rank-4
matrix, introducing an additional 53,248 param-
eters to the model.

Table 6 summarizes the performance of these base-
lines on a Rule Understanding task. Our method
consistently outperforms the baseline approaches
across multiple tasks, demonstrating its robustness
in low-data scenarios.

Table 6: Comparison with intervention baseline and
finetuning baselines. We use Exact Match to measure
performance on each task. Higher values are better.

Method Eng-Fr Eng-Ger Antonym

ICV 0.396 0.423 0.008
IA3 0.521 0.385 0.321

Soft Prompt 0.710 0.221 0.314
LoRA 0.681 0.606 0.427
Ours 0.795 0.620 0.514

5 Conclusions

In this paper, we propose and showcase an effec-
tive approach using layer-wise additive activation
interventions to steer the output of LMs. Our ap-
proach effectively enhances the model performance
by optimizing an intervention vector to minimize
the mismatch between the intervened decoding out-
put and the desired target output in the training
data. Additionally, incorporating both lasso and
group lasso regularizations addresses overfitting
and promotes sparsity in activation heads, ensur-
ing efficient interventions. Our evaluations on the
rule understanding task and the opinion dynamic
task demonstrate that this method significantly im-
proves the performance of pre-trained LMs across
various tasks, outperforming existing intervention
techniques.

510

https://github.com/shengliu66/ICV.git


6 Limitations

The main limitation of our approach is that we re-
quire access to the model’s activations. However,
this limitation is relevant for any activation inter-
vention method in the literature, including Li et al.
(2024b) and Todd et al. (2023), due to the nature of
the approach. In this paper, we have shown that our
interventions are effective in the Llama3-8b model,
and we expect that the intervention will also be
effective in larger models such as Llama3-70b.

Although we use interventions to steer the output
to adapt to tasks, it is foreseeable that these tech-
niques can be used for possibly unethical purposes,
such as generating untruthful or toxic texts. Thus,
we strongly recommend studying possible defenses
for these problems.
Acknowledgments. Viet Anh Nguyen gratefully
acknowledges the generous support from the UGC
Early Career Scheme Grant 24210924 and the
CUHK’s Improvement on Competitiveness in Hir-
ing New Faculties Funding Scheme. Binh Nguyen
is supported by NUS Start-up Grant A-0004595-
00-00.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2022. What learn-
ing algorithm is in-context learning? Investigations
with linear models. In The Eleventh International
Conference on Learning Representations.

AI Anthropic. 2024. The Claude 3 model family: Opus,
Sonnet, Haiku. Claude-3 Model Card.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877–1901.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can gpt
learn in-context? language models secretly perform

gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Roee Hendel, Mor Geva, and Amir Globerson. 2023.
In-context learning creates task vectors. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 9318–9333, Singapore.
Association for Computational Linguistics.

Evan Hernandez, Belinda Z Li, and Jacob Andreas.
2023a. Inspecting and editing knowledge repre-
sentations in language models. arXiv preprint
arXiv:2304.00740.

Evan Hernandez, Belinda Z Li, and Jacob Andreas.
2023b. Measuring and manipulating knowledge
representations in language models. arXiv preprint
arXiv:2304.00740.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin
Meng, Martin Wattenberg, Jacob Andreas, Yonatan
Belinkov, and David Bau. 2024. Linearity of rela-
tion decoding in transformer language models. In
Proceedings of the 2024 International Conference on
Learning Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Chonghe Jiang, Bao Nguyen, Anthony Man-Cho So,
and Viet Anh Nguyen. 2025. Probe-free low-rank
activation intervention. Preprint, arXiv:2502.04043.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Dongfang Li, Zhenyu Liu, Xinshuo Hu, Zetian Sun,
Baotian Hu, and Min Zhang. 2024a. In-context learn-
ing state vector with inner and momentum optimiza-
tion. arXiv preprint arXiv:2404.11225.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024b. Inference-
time intervention: Eliciting truthful answers from a
language model. Advances in Neural Information
Processing Systems, 36.

511

https://arxiv.org/abs/2502.04043
https://arxiv.org/abs/2502.04043


Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Sheng Liu, Lei Xing, and James Zou. 2023. In-context
vectors: Making in context learning more effective
and controllable through latent space steering. arXiv
preprint arXiv:2311.06668.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Bao Nguyen, Binh Nguyen, Duy Nguyen, and Viet Anh
Nguyen. 2025. Risk-aware distributional interven-
tion policies for language models. arXiv preprint
arXiv:2501.15758.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu
Blondel, and Gabriel Peyré. 2024. How do trans-
formers perform in-context autoregressive learning?
arXiv preprint arXiv:2402.05787.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo
Lee, Percy Liang, and Tatsunori Hashimoto. 2023.
Whose opinions do language models reflect? arXiv
preprint arXiv:2303.17548.

Nishant Subramani, Nivedita Suresh, and Matthew E
Peters. 2022. Extracting latent steering vectors
from pretrained language models. arXiv preprint
arXiv:2205.05124.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron
Mueller, Byron C Wallace, and David Bau. 2023.
Function vectors in large language models. arXiv
preprint arXiv:2310.15213.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J Vazquez, Ulisse Mini, and Monte
MacDiarmid. 2023. Activation addition: Steer-
ing language models without optimization. arXiv
preprint arXiv:2308.10248.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In In-
ternational Conference on Machine Learning, pages
35151–35174. PMLR.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyun-
soo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-Goo Lee,
and Taeuk Kim. 2022. Ground-truth labels matter: A
deeper look into input-label demonstrations. In 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, pages 2422–2437.
Association for Computational Linguistics (ACL).

Siyan Zhao, John Dang, and Aditya Grover. 2023.
Group preference optimization: Few-shot align-
ment of large language models. arXiv preprint
arXiv:2310.11523.

512

https://github.com/huggingface/peft
https://github.com/huggingface/peft


A Effects of Regularization

(a) Without regularization

(b) With group lasso regularization parameter λ = 0.01 and ℓ1
regularization parameter γ = 0.01.

Figure 2: Intervened vector values across LLAMA3-8B
attention heads (row-wise, from 1-32). Adding regu-
larization promotes sparsity with the intervened values
and desirable properties following previous empirical
observations.

B Datasets

The task descriptions of the rule understanding ex-
periments are as follows:

• Antonym: Given an English word, generate an
English word with the opposite meaning.

• Synonym: Given an English word, generate an
English word with the same meaning.

• English-French: Given an English word, gen-
erate the equivalent word in French.

• English-German: Given an English word, gen-
erate the equivalent word in German.

C Prompts to measure GPT-Eval metric

In this section, we provide the prompts to ask
GPT-4 to confirm the input-prediction pair for each
dataset in the Rule Understanding task.

• Antonym: Answer 0 if what I say is wrong
and 1 if it is correct. “input” is an antonym of
“prediction”.

• Synonym: Answer 0 if what I say is wrong
and 1 if it is correct. “input” is a synonym of
“prediction”.

• English-French: Answer 0 if what I say is
wrong and 1 if it is correct. “input” translated
to French is “prediction”.

• English-German: Answer 0 if what I say is
wrong and 1 if it is correct. “input” translated
to German is “prediction”.

It is worth noting that “input” and “prediction” are
placeholders and should be replaced with the actual
input-prediction pair.

513


