
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 18–32

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

ChaI-TeA: A Benchmark for Evaluating Autocompletion of Interactions
with LLM-based Chatbots

Shani Goren1*,2 Oren Kalinsky1 Tomer Stav1 Yuri Rapoport1 Yaron Fairstein1

Ram Yazdi1 Nachshon Cohen1 Alexander Libov1 Guy Kushilevitz1

1Amazon Research 2Technion - Israel institute of technology

{shani.goren, orenkalinsky, yyfairstein}@gmail.com
{alibov, stavt, rtu, ramyazdi, nachshon, guyk}@amazon.com

Abstract

The rise of LLMs has deflected a growing por-
tion of human-computer interactions towards
LLM-based chatbots. The remarkable abilities
of these models allow users to interact using
long, diverse natural language text covering
a wide range of topics and styles. Phrasing
these messages is a time and effort consum-
ing task, calling for an autocomplete solution
to assist users. We present ChaI-TeA: Chat
Interaction Autocomplete; An autocomplete
evaluation framework for LLM-based chatbot
interactions. The framework includes a formal
definition of the task, coupled with suitable
datasets and metrics. We use the framework
to evaluate 9 models on the defined auto com-
pletion task, finding that while current off-the-
shelf models perform fairly, there is still much
room for improvement, mainly in ranking of
the generated suggestions. We provide insights
for practitioners working on this task and open
new research directions for researchers in the
field. We release our framework1, to serve as a
foundation for future research.

1 Introduction

Large Language Models (LLMs) have revolution-
ized many NLP applications (Brown et al., 2020).
A prominent example is automatic chatbots; what
used to be confined, topic-specific applications of-
ten requiring the user to use restricted language
or choose from a closed list of interaction options,
have been transformed. These applications, pow-
ered by LLMs, are now one-stop-shops success-
fully communicating in unbounded natural lan-
guage while acting as experts on a wide variety of
topics (Achiam et al., 2023; Anil et al., 2023). Due
to their remarkable abilities, LLM-based chatbots
differ significantly from prior human-computer
communication methods. Interactions with these

*This project was done during an internship at Amazon.
1https://github.com/amazon-science/

ChaiTea-chat-interaction-autocomplete

History

Current turn

Completion
Suggestions

<|prompter|> Which two colors do I
need to mix to create the color
green?
<|assistant|> Green can be created
by mixing the colors blue and
yellow.

<|prompter|> Thanks. And which two

• colors create
• colors do I need to mix to create
• colors can create brown?
• would form orange?

Figure 1: The chatbot interaction autocompletion task.
Given the conversation history and the current turn’s
prefix, task is to suggest suitable completions.

chatbots are usually long, unique and cover a large
range of topics and language styles, using unstruc-
tured natural language. Due to this nature, users
invest much time and thought in communicating
their needs to the chatbot, calling for solutions to
reduce their effort (Lehmann and Buschek, 2021).

AutoComplete (AC) methods have been shown
to be effective in saving users’ time and reducing
their cognitive load in many different use-cases,
suggesting that such a solution might be of value
for the LLM-chatbot interaction use-case as well.
The popular query autocomplete scenario (Cai
et al., 2016) focuses on search queries. Classic solu-
tions often rely on recurrence, making them irrele-
vant for the long unique natural language text found
in chatbot interactions (Lehmann and Buschek,
2021). Later solutions include generative models
(Sordoni et al., 2015; Park and Chiba, 2017), but
still focus on short semi-structured queries. Code
autocomplete (Liang et al., 2024) deals with struc-
tured language, and often relies on the ability to
run the code and check its output in order to eval-
uate solutions. Lastly, email (human-human) in-
teractions (Chen et al., 2019), which bear a closer
resemblance to human-chatbot interactions due to
their natural language communication, also differ
in several key aspects. These include the number

18

mailto:shani.goren@gmail.com
mailto:orenkalinsky@gmail.com
mailto:Yyfairstein@gmail.com
mailto:alibov@amazon.com
mailto:stavt@amazon.com
mailto:rtu@amazon.com
mailto:ramyazdi@amazon.com
mailto:nachshon@amazon.com
mailto:guyk@amazon.com
https://github.com/amazon-science/ChaiTea-chat-interaction-autocomplete
https://github.com/amazon-science/ChaiTea-chat-interaction-autocomplete

of participants and their roles, the more formal
writing style of emails and the nature of the topics
discussed. In broader terms, human-human tex-
tual interactions (e.g., emails, but also texts from
other kinds of messaging platforms) differ from
human-chatbot interactions in the fact that human-
chatbot interactions involve a human and a model-
based assistant, making them more instructional
and knowledge-seeking. For example, the prompts

“Give me the latest updates of the war in Ukraine as
of the 31st of January.” and “Write a web scraping
program in python capable of ...” are taken from the
OASST dataset used in this work to demonstrate
typical examples for a human-chatbot interaction,
which are highly unlikely to be found in a human-
human messaging platform.

In this paper, we introduce the task of autocom-
pleting user interactions with LLM-based chat-
bots. We present ChaI-TeA: Chat Interaction
Autocomplete; A framework for evaluating auto-
complete solutions for LLM-based chatbot inter-
actions. It includes a formal definition of the task,
suitable datasets tailored for autocomplete, suitable
metrics, and baseline results. We go on to high-
light some valuable insights. First, we explore how
performance can be traded off for lower latency,
a key factor in autocomplete solutions. Second,
we show that models can exploit distant history to
suggest completions. Third, it is beneficial to en-
able completions of various lengths (as opposed to
only single words or full turns). We highlight a key
factor in improving these solutions: we find that
models tend to generate completion suggestions
well, but are not as good at ranking these generated
suggestions. Given that users can ingest a small
amount of suggestions at each turn, ranking is an
important component in an offered solution. There-
fore, we advocate for future research in the field to
focus on this aspect.

2 Task Definition

The chatbot interaction completion task focuses on
completing user turns in user-chatbot interactions.
Similarly to (Chitnis et al., 2024), we model it as a
sequential task; completions are suggested at each
typing step (i.e., after a user types a character).
Formally, at each step t, an autocomplete solution
(denoted by AC) is given a context C containing
all previous conversation turns, originating from
both the user and the chatbot, and the prefix of the
current user turn denoted as pt. The autocomplete

OpenAssistant ShareGPT
Train Test Train Test*

Conversations 5,144 277 88,259 1,190
Messages 22,749 1,182 317,536 1,494
Prefixes 536,215 26,394 16,801,251 22,323

Table 1: Dataset Statistics. *Since ShareGPT does
not include a test split, we randomly sampled one of
comparable size to the OASST test set.

solution should then return a set of k completions,
ct1 , ..., ctk , possibly of varying lengths.

Each completion step can be described as:
AC(C, pt) = {ct1 , ct2 , ..., ctk}

After receiving the set of completions, the user
can either accept a completion or continue typing.
If a completion cti is accepted, the prefix is updated
such that pt+1 = pt + cti . Then, whether the user
selected a completion or continued typing, a new
completion step is initiated, until reaching the end
of the user’s turn. A single completion step is
illustrated in Figure 1, and full turns completions
can be found in the Appendix in Table 6.

3 Experimentation

3.1 Datasets

Open Assistant (OASST) (Köpf et al., 2024) is
a human-annotated assistant conversation corpus.
ShareGPT2 contains user-LLM-chatbots conver-
sations collected by the ShareGPT API.

To curate the data for our task, we take all En-
glish conversations and for each user-turn extract
all possible prefixes and pair each with the entire
conversation history up to that point as its context.
The suffix of the original prompt is the ground truth
completion. Table 1 summarizes the statistics of
the datasets used in our experiments.

3.2 Metrics

As solutions are allowed to propose k completions
at each step, metrics evaluate the performance tak-
ing k into account, denoted as @k.

As we are looking to form a benchmark, we
turn to metrics that can be computed offline. We
remark that ideally, we would also like to measure
the user’s saved time or reduced cognitive load but
doing so would require running some experiment
or user study for each new proposed solution.

For simplicity, we simulate acceptances (i.e., is
one of the proposed completions accepted by the

2https://sharegpt.com/, dataset version that was used:
anon8231489123ShareGPT_Vicuna_unfiltered

19

https://sharegpt.com/

user?) using exact match comparison to the ground
truth user turn.

Saved typing. Inspired by code completion met-
rics (Jiang et al., 2024), our goal is to save the
user typing effort. Therefore, we seek a metric
that quantifies the portion of the text completed by
the AC solution. While simply dividing the length
of the accepted text by the length of the full turn
would achieve this, this metric would not consider
the number of acceptances needed to generate the
accepted text. To demonstrate this issue, consider
two different solutions successfully completing the
full turn; the first solution does this by completing
single words one by one, while the other completes
the entire turn in its first attempt. The naïve metric
would score the two solutions the same, although
it’s clear we should prefer the second solution. To
mitigate this issue, we propose the following met-
ric:

saved@k =
len(accepted_text)− #acceptances

len(full_turn)− 1

where len(x) is the number of characters in string
x. No acceptances during the user’s turn lead to a
score of 0% while a single acceptance completing
the full turn leads to a score of 100%.

Latency. Latency is a critical factor that cannot
be overlooked when assessing AC solutions. Even
if the completions are perfect, they are rendered
useless if the user proceeds to type before receiving
the suggestions. We report the mean and the 90th

percentile (p90) of the inference time.

3.3 Autocomplete Solutions
As our task resembles the language modeling task,
a called-for solution is utilizing LMs. This allows
us to experiment with a wide variety of models
ranging in size, latency and quality, while avoiding
extremely large LLMs as their latency is not fea-
sible for this task3. Our evaluation encompassed
a diverse set of popular LMs: Mistral-7B (Jiang
et al., 2023), Gemma-7B (Mesnard et al., 2024),
Phi-3-mini (Abdin et al., 2024), GPT-2-XL (Rad-
ford et al., 2018), Mamba (Gu and Dao, 2023), and
SmolLm4. We also evaluate instruct-tuned variants
of these models whenever one is available (Zephyr,
Gemma)5. Inference was performed on a single

3Generating completion suggestions with a 70B LLM
takes on average 6 seconds.

4https://huggingface.co/blog/smollm
5The lack of published instruct-tuning datasets for some

models prevents us from confirming the absence of data leak-
age. Still, our observations did not reveal any abnormal results.

NVIDIA A10G GPU, taking 150 hours in total.
To generate k completions from the LMs, we

adopt the following procedure: we provide the
model with the full context concatenated with the
prompt prefix. We then use the model to generate
nc completions sampled with temperature 1.0, stop-
ping when reaching EOS or after nt tokens. Since
completions can vary in length, each word-prefix
of a completion can also be considered as a stan-
dalone completion. Hence, this process generates
up to nc × nt completion candidates. Finally, we
choose the k suggestions to present to the user by
ranking the completions based on their perplexity
score, computed using the LM probabilities:

PPL(w1, w2, . . . , wn) = e
− 1

n

n∑
i
log p(wi|w1,...,wi−1)

3.4 Initiating Suggestion Generation
Suggesting completions after each character has
some downsides compared to suggesting only at
an end of a word. First, as the average length of
an English word is more than 4 characters, the
computational cost more than quadruples6. Sec-
ond, it has been shown that when typing, users
tend to pause much longer between words than be-
tween same-word characters (Conijn, 2020). This
allows more room to suggest completions between
words. Third, LLMs are known to under-perform
on character level tasks, since most tokenizers only
use character level tokens as a fallback7 (Shin and
Kaneko, 2024).

To compare how frequently character level sug-
gestions are accepted compared to word level sug-
gestions, we also tracked acceptance rate: the per-
centage of completion steps that ended in an accep-
tance.

Results on the OpenAssistant validation set
(nc = 5, nt = 20) show that mid-word sugges-
tions degrade the acceptance rate by ∼ 60% while
only slightly improving saved@k by ∼ 3.2%. In-
terestingly, Mamba, which uses a character-level
tokenizer, behaves similarly to the other models.
Full details of this experiment are reported in Ap-
pendix A. We conclude that mid-word suggestions

6While using caching techniques can help mitigate some
of the required compute, we observe (e.g., in Fig. 7) that
token generation requires a considerable computation time,
that cannot be mitigated using caching.

7For example, [DOG] is a token in most tokenizers, but
given the prefix "I love my pet d", the model will likely use the
character level token for [D], and the tokens [OG] or [O][G]
are unlikely to be generated, since the model probably didn’t
encounter this token sequence during training.

20

https://huggingface.co/blog/smollm

1 2 3 5 10 20 50 100
k

15

20

25

30

35

40

45
M

ea
n

sa
ve

d@
k

Phi-3 (3.8B)
Mistral-7B
Gemma-7B
Zephyr-7B
Mamba-2.8B-Zephyr

SmolLM-1.7B
Gemma-7B-INS
Mamba-2.8B
GPT2-XL (1.6B)
Average

Figure 2: saved@k on OASST for varying k values.

are rarely accepted, and do not justify their draw-
backs. Additional efforts are needed to make mid-
word suggestions effective, which we leave for fu-
ture work. For the remainder of this paper, com-
pletion suggestions are provided only at the end of
a word. Consequently, throughout the rest of our
experiments we observed that acceptance rate@k
is highly correlated with saved@k. Therefore, we
exclude acceptance rate results from the main paper
and present it in the appendices.

3.5 Benchmarking ChaI-TeA

We benchmark all models described in Section 3.3
on both curated datasets (Section 3.1). Results on
OASST for varying k values are shown in Figure
2. We consider k values up to 100, which encom-
passes all generated completions (at most, nc×nt),
to show the potential given a perfect ranking so-
lution. While current models are able to perform
fairly on this task – saving the user the typing of
up to 45% of the characters – there is still much
room for improvement. There is a noticeably large
performance gap between small, realistic, k values
and larger values, suggesting that while in many
cases models are able to generate the correct com-
pletion, their ranking of completions is far from
perfect. In line with prior work (Manakul et al.,
2023; Ren et al., 2023; Fadeeva et al., 2024), we
conclude that perplexity is insufficient for confi-
dence ranking. Full benchmark results on OASST
and ShareGPT can be found in Appendix B.

Finally, we observe that further improvement
can be gained by fine-tuning models on the AC
task. Detailed results are presented in Appendix C.

4 Further Analysis

Latency-Performance Trade-Off. Given the prac-
tical importance of latency in AC solutions, we
explore how performance can be traded off for re-
duced latency. To illustrate this trade-off, we varied
the previously mentioned hyperparameters nc and
nt, as well as the context length given to the model.
We capped the conversation history concatenated
with the turn prefix at different lengths, to deter-
mine whether giving the model access to the entire
conversation context is both helpful and worthy of
the extra latency costs.

Suggestions are offered between words, meaning
that once the user begins typing the next word they
become irrelevant. Hence, we find it appropriate to
use the mean time between typed words – 718 ms,
reported by (Conijn, 2020) – as a benchmark.

Results per latency budget, presented in Table
2, show that it is preferable to generate more com-
pletions, while reducing the number of generated
tokens and context length. Also, additional context
is beneficial, suggesting that information useful for
autocomplete can sometimes be found far before
the end of the prefix. Results on all configurations
are reported in the appendix in Table 9.

Latency Best Configuration saved@100 Latency
Budget (ms) nc nt Hist. Len p90 (ms)
< 150 5 3 50 23.45 148
< 300 5 5 250 38.32 275
< 450 5 3 1000 41.10 388
< 600 5 5 1000 44.08 451
< 750 5 5 1000 44.08 451
> 750 5 10 Full 45.75 974

Table 2: Latency-Performance Trade-Off. Mistral-
7B evaluated on the OASST test set. nc ∈ {3, 4, 5},
nt ∈ {3, 5, 10, 20}, and context length len(C) ∈
{50, 250, 1000, Full} (measured in characters). In to-
tal, 48 hyper-parameter configurations were evaluated.
For each latency budget, we report the configuration
with the highest saved@100 score that fits the budget.

Varying completion lengths. A common prac-
tice for autocomplete practitioners wanting to sim-
plify their methods is restricting completions to sin-
gle words. The other end of this scale, also widely
used, is allowing only full completions- completing
until the end of the query/function/sentence. To this
end, we compare completions of varying lengths to
single word and full sentence completions to check
whether allowing any-length completions improves
quality. Average results across all models are pre-
sented In Table 3 (Full results can be found in Table

21

8). saved@k metric improves for k = 100 when
allowing suggestions of varying length, indicating
this can improve the user’s typing experience. The
fact that this is not the case for the lower k values
indicates, once more, that the ranking method we
use (the model’s perplexity) is far from ideal.

saved@1 saved@3 saved@100
Single Word 24.10 / 22.28 31.97 / 28.63 33.12 / 29.52
Full 12.30 / 10.44 15.91 / 13.29 16.47 / 13.70
Partial 23.43 / 22.03 31.21 / 28.85 41.27 / 36.77

Table 3: Average scores of partial completions vs single
word and full sentences. OpenAssistant / ShareGPT.

Characteristics of completions. We observe
that different models are able to generate diverse
suggestions of different lengths. Completion sug-
gestions offered by the different models are pre-
sented in Table 7. When looking at accepted com-
pletions, we see that while most acceptances are
single word completions (60%− 70%), the models
are able to generate longer acceptances; more than
15% span over 3 words or longer. The lengths of
acceptances are presented in Figure 8.

5 Conclusions

In this work, we showcase the task of autocomplet-
ing user interactions with LLM-based chat-bots.
We formally define the task and design an eval-
uation framework, and use it to test 9 different
models. Results show that while LMs are able to
perform fairly, there is room for a tailored solution
to improve upon them, especially in the ranking of
completion candidates. We show that models can
exploit distant history, that enabling completions
of different lengths is beneficial and that reducing
latency for this task should be done by reducing
context length and length of completions as op-
posed to generating less completions. We hope our
framework will encourage further work in this area,
which we believe holds great potential value for
users across various LLM chat-bot applications.

Limitations

Exact Match. We use exact-match to simulate
acceptances. While this is standard practice in au-
tocomplete works, it may not fully represent real-
world scenarios in which a user might accept a
completion even if it’s not the exact wording they
were thinking of. Although some works use genera-
tion metrics like BLEU or ROUGE to simulate full
sentence acceptances, these metrics fail to capture

semantic similarity between partial completion sug-
gestions and ground truths, making them a prob-
lematic solution because even a very high score
may not represent an accept and vice versa. More-
over, it is a non-trivial task to infer what a user will
accept after semantic partial matches since the text
diverged from the ground truth. We evaluated using
the Claude3-Sonnet model to determine whether a
suggestion should be accepted or not and discov-
ered this to be a very challenging task. Thus, we
leave it for future work.

Datasets. Both datasets used have one signifi-
cant limitation: they where collected without the
presence of an autocomplete solution. It is possible
that users alter their behavior when completion sug-
gestions are presented to them. If this is true, it will
not be reflected in our framework. We note that
taking this into account is far from trivial, because
even if data is collected in the presence of some
autocomplete solution, this data will be biased to-
wards the specific solution used in the collection
process, giving an unfair advantage when judging
solutions similar to it.

Word-level completions. Most of the results
presented in this paper assume completions are
only suggested at the end of words. While this
is possible to achieve in a real-world scenario, it
would require some component assessing whether
an end of a word is reached or not. This solution
will have to run online, and in short latency. Since
our experiments are run offline, the full turn was
available for us and we could simply check when
the end of a word was reached.

22

References

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Fei Cai, Maarten De Rijke, et al. 2016. A survey
of query auto completion in information retrieval.
Foundations and Trends® in Information Retrieval,
10(4):273–363.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2287–2295.

Rohan Chitnis, Shentao Yang, and Alborz Geramifard.
2024. Sequential decision-making for inline text
autocomplete. arXiv preprint arXiv:2403.15502.

Rianne Conijn. 2020. The Keys to Writing: A writing an-
alytics approach to studying writing processes using
keystroke logging. Ph.D. thesis, Tilburg University,
University of Antwerp.

Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem
Shelmanov, Sergey Petrakov, Haonan Li, Hamdy
Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexan-
der Panchenko, Timothy Baldwin, Preslav Nakov,
and Maxim Panov. 2024. Fact-checking the output
of large language models via token-level uncertainty
quantification. CoRR, abs/2403.04696.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. CoRR,
abs/2312.00752.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Nick Jiang, Anshul Ramachandran, Mehul Raheja, and
Michael Li. 2024. Codium.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richárd Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

Florian Lehmann and Daniel Buschek. 2021. Examin-
ing autocompletion as a basic concept for interaction
with generative ai. i-com, 19(3):251–264.

Jenny T Liang, Chenyang Yang, and Brad A Myers.
2024. A large-scale survey on the usability of ai
programming assistants: Successes and challenges.

23

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2403.04696
https://doi.org/10.48550/ARXIV.2403.04696
https://doi.org/10.48550/ARXIV.2403.04696
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.48550/ARXIV.2312.00752
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
"https://codeium.com/blog/golden-metrics-characters-per-opportunity-percentage-code-written"

In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1–13.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9004–9017. Association for Computational
Linguistics.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In Proceed-
ings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 1189–1192.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mo-
hammad Saleh, Balaji Lakshminarayanan, and Pe-
ter J. Liu. 2023. Out-of-distribution detection and
selective generation for conditional language models.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Andrew Shin and Kunitake Kaneko. 2024. Large lan-
guage models lack understanding of character com-
position of words. CoRR, abs/2405.11357.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-Yun
Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In
proceedings of the 24th ACM international on con-
ference on information and knowledge management,
pages 553–562.

Mistr
al-7

B

Zephyr-7
B

Gem
ma-7

B

Gem
ma-7

B-IN
S

Phi-3 (3
.8B)

Mam
ba-2

.8B
0

10

20

30

40

M
ea

n
sa

ve
d@

k m
ax

word
char

Figure 3: saved@k comparison between solutions sug-
gesting completions after words and characters.

A Character vs Word level completions

In this section we detail our comparison between
suggesting completions after each character com-
pared to doing so only at the end of words. We
consider kmax, i.e., all generated completions (at
most, nc × nt). While this scenario is not realistic,
since for the best configuration it means presenting
the user with 100 completion options, it shows the
potential each solution has with a perfect ranking
solution. We start with saved@k. Issuing sugges-
tions after each character is expected to improve
this metric compared to issuing suggestions after
each word. This is due to the fact that this met-
ric does not penalize on unaccepted suggestions.
Therefore if every mid-word suggestion is ignored
by the user, the metric will remain unchanged. If
some mid-word suggestion are accepted, the metric
is expected to rise. In Figure 3 we show results on
saved@kmax. Indeed, the metric is improved when
suggesting after each character, but the difference
is minor (on average across models, 3.2%). We
note that even for Mamba, which uses a character-
based tokenizer, the difference is very small. Next,
we compare the same solutions on acceptance rate.
Results in Figure 4 show that acceptance rate for
the solutions suggesting only at end of words is
much higher (on average, ∼ 130% improvement),
suggesting that the mid-word suggestions are rarely
accepted.

B Full Benchmark Results

The full results are reported in Table 4. For each
model mentioned in Section 3.3, we report results
for two hyper parameter combinations: best is a ver-

24

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://openreview.net/forum?id=kJUS5nD0vPB
https://openreview.net/forum?id=kJUS5nD0vPB
https://doi.org/10.48550/ARXIV.2405.11357
https://doi.org/10.48550/ARXIV.2405.11357
https://doi.org/10.48550/ARXIV.2405.11357

Mistr
al-7

B

Zephyr-7
B

Gem
ma-7

B

Gem
ma-7

B-IN
S

Phi-3 (3
.8B)

Mam
ba-2

.8B
0

10

20

30

40

M
ea

n
Ac

ce
pt

an
ce

 R
at

e@
k m

ax
word
char

Figure 4: acceptance rate comparison between solutions
suggesting completions after words and characters.

sion aimed at optimizing the quality (nc = 5, nt =
20), while fast is a version aimed at optimizing the
latency (nc = 1, nt = 5). A full hyper parameter
study can be found in Appendix D. We report on
both datasets presented in Section 3.1 for different
k values. Further analysis of the effect of k can
also be found in Appendix D.

Results on k@1 and k@3, representing realistic
scenarios where the user is presented a single or
3 completion suggestions, demonstrate that while
current models are able to perform fairly on this
task – reaching acceptance rate of up to ∼ 37.5%,
and saving the user the typing of up to ∼ 34.5%
of the characters – there is still much room for
improvement. kmax shows results considering all
generated completions (at most, nc × nt). While
this scenario is not realistic, since for the best con-
figuration it means presenting the user with 100
completion options, it shows the potential each so-
lution has with a perfect ranking solution. The
large gap between the kmax results and the results
with smaller k values suggests that perplexity may
be insufficient for ranking. This is in line with
prior work (Manakul et al., 2023; Ren et al., 2023;
Fadeeva et al., 2024).

As for comparing the different models, the best
performing model is Gemma-7B, which is also the
model with the longest latency. Phi-3 stands out
as well, with performance surpassing most of the
other models, although they are larger in size and
slower in latency. This result is consistent with
its performance on other benchmarks compared
to other models included in our evaluation (Abdin
et al., 2024). When comparing instruct models to
their corresponding base models, instruct models

mostly performed worse. This is likely due to the
fact that the language modeling objective of the
pretraining phase is closer to our task than the ob-
jective of the alignment phase.

Finally, our best vs fast hyper parameter combi-
nations are indeed able to offer a trade-off between
latency and performance. On average, fast is able
to save ∼ 75% of the latency compared to best,
while best performs ∼ 30% better on kmax and
∼ 4− 8% better on the realistic k scenarios.

Results on ShareGPT for varying k values, com-
plementing Figures 2 and 6 in section 3.5 are shown
in Figure 5.

C Fine-tuning Models to Improve AC

We observe that fine-tuning models can offer fur-
ther improvement upon the corresponding pre-
trained models. We fine-tuned Mistral-7B and
Zephyr-7B on the OASST train set using LoRA
(Hu et al., 2021), with the following hyperparam-
eters (Mistral / Zephyr, respectively): learning
rate 1.4e−4/2.4e−4, epochs 0.40/0.25, batch size
16/16. In Table 5 we report an average increase
of 4.19% and 10.93% in the saved@k metric for
Mistral-7B and Zephyr-7B, respectively.

D Hyper Parameter Study

The auto completion method we use, extracting
completion suggestions for language models, has
two hyper parameters, nc and nt, as detailed in
Section 3.3.
In Figure 7, we show results on different values
for the two parameters. In each figure, one of the
parameters is fixed and the other is varied.

We also report results on different values of k
in Figures 6 (acceptance rate) and 2 (saved@k).
This parameter decides how many suggestions are
shown to the user. While a higher value is guaran-
teed to increase the performance metrics, it may
also incur slower latency and a cognitive cost for
the user, and therefore for very high values it is
unrealistic.

25

k = 1 k = 3 kmax Latency (ms)
saved@1 acc. rate@1 saved@3 acc. rate@3 saved@k acc. rate@k mean p90

Mistral-7B best 25.97 / 24.67 32.23 / 32.32 34.66 / 32.76 37.65 / 38.35 44.86 / 41.04 50.56 / 49.33 834 / 1479 1288 / 2485
fast 26.23 / 24.32 32.46 / 31.94 33.29 / 30.75 36.13 / 36.19 35.02 / 32.12 38.02 / 37.84 201 / 356 313 / 588

Zephyr-7B best 24.01 / 23.47 29.81 / 30.22 31.06 / 29.89 32.91 / 34.31 44.00 / 40.85 47.91 / 47.65 870 / 1520 1313 / 2512
fast 24.63 / 23.39 30.81 / 30.48 31.28 / 29.16 34.03 / 34.30 33.49 / 31.02 36.62 / 36.63 214 / 368 320 / 589

Gemma-7B best 25.80 / 24.84 32.34 / 32.71 34.66 / 32.91 37.72 / 38.93 44.75 / 41.02 50.02 / 49.44 961 / 1587 1423 / 3032
fast 25.62 / 23.77 32.48 / 31.57 32.55 / 29.89 35.64 / 35.61 34.25 / 31.44 37.93 / 37.67 239 / 412 358 / 684

Gemma-7B-INS best 22.08 / 21.65 28.33 / 28.72 28.13 / 27.32 30.83 / 31.78 38.94 / 35.67 41.81 / 41.24 837 / 1522 1355 / 2981
fast 22.41 / 21.29 29.14 / 28.70 28.29 / 26.50 31.61 / 31.72 30.39 / 28.13 34.27 / 33.99 245 / 421 358 / 702

Phi-3 (3.8B) best 26.07 / 24.18 32.07 / 31.25 34.42 / 31.83 36.76 / 36.99 45.18 / 39.91 50.81 / 47.84 510 / 879 786 / 1466
fast 26.13 / 23.25 32.26 / 30.39 33.21 / 29.60 35.91 / 34.95 34.82 / 30.92 37.98 / 36.70 117 / 208 185 / 344

Mamba-2.8B best 22.36 / 21.66 29.44 / 29.28 29.94 / 28.76 34.96 / 34.86 37.94 / 35.82 45.44 / 44.53 433 / 779 689 / 1306
fast 21.81 / 20.92 28.57 / 28.20 28.00 / 26.66 31.79 / 31.94 29.56 / 28.02 33.83 / 33.76 105 / 186 166 / 306

Mamba-2.8B-Zephyr best 23.20 / 22.09 29.69 / 29.37 30.73 / 28.84 33.86 / 34.11 41.98 / 37.95 47.29 / 45.85 450 / 793 696 / 1300
fast 23.24 / 21.72 29.68 / 29.01 29.54 / 27.32 32.53 / 32.47 31.64 / 28.91 35.16 / 34.45 112 / 191 168 / 308

SmolLM-1.7B best 22.44 / 21.81 29.59 / 29.40 30.31 / 28.92 34.80 / 35.38 39.26 / 35.82 46.10 / 44.57 249 / 422 374 / 696
fast 22.45 / 21.03 29.19 / 28.41 28.92 / 27.00 32.55 / 32.66 30.57 / 28.51 34.56 / 34.36 57 / 100 84 / 167

GPT2-XL (1.6B) best 19.67 / 12.06 26.59 / 16.91 26.96 / 15.84 31.94 / 20.26 34.13 / 19.80 41.37 / 25.79 265 / 453 397 / 833
fast 19.58 / 11.43 25.96 / 15.94 25.31 / 14.72 29.28 / 18.34 26.84 / 15.63 31.31 / 19.65 62 / 107 96 / 180

Average best 23.43 / 22.03 30.10 / 29.26 31.21 / 28.85 34.79 / 34.31 41.27 / 36.77 47.00 / 44.49 640 / 1105 983 / 1922
fast 23.00 / 21.01 29.53 / 28.12 29.42 / 26.61 32.74 / 31.80 31.20 / 28.08 34.93 / 33.66 160 / 275 239 / 452

Table 4: Results comparing the performance and of the 9 evaluated models on both metrics for k = 1, 3, kmax, with
best and fast configurations, each with mean and p90 latency. In each cell we report the results for both datasets:
OpenAssistant / ShareGPT. For each metric and k, the winner is marked in bold and the second best is underlined.

1 2 3 5 10 20 50 100
k

15

20

25

30

35

40

45

M
ea

n
sa

ve
d@

k

1 2 3 5 10 20 50 100
k

15

20

25

30

35

40

45

50

M
ea

n
Ac

ce
pt

an
ce

 R
at

e@
k

Mistral-7B
Zephyr-7B
Gemma-7B

Gemma-7B-INS
Phi-3 (3.8B)
SmolLM-1.7B

Mamba-2.8B
Mamba-2.8B-Zephyr

GPT2-XL (1.6B)
Average

Figure 5: saved@k and acc. rate@k on ShareGPT for varying k values.

Mistral-7B Zephyr-7B
Pretrained Finetuned Improvement (%) Pretrained Finetuned Improvement (%)

saved@1 25.99 27.12 + 4.37 24.03 26.94 + 12.10
acc. rate@1 32.22 33.60 + 4.29 29.80 33.26 + 11.61

saved@3 34.68 35.98 + 3.74 31.08 35.63 + 14.62
acc. rate@3 37.64 38.59 + 2.54 32.91 38.23 + 16.17

saved@kmax 44.89 46.89 + 4.46 44.03 46.70 + 6.06
acc. rate@kmax 50.56 52.10 + 3.05 47.91 52.39 + 9.35

Table 5: saved@k results of Mistral and Zephyr before and after fine-tuning.

26

Interaction saved@kmax

(%)

<|prompter|> Do you have any information about the Commodore 64? 18.75

<|prompter|> What is the Sun?
<|assistant|> The Sun is a star, a massive celestial body that converts matter into energy. It is the largest
object in the solar system and is at its center; the gravitational field it exerts pulls the Earth, and all
other planets and objects in the solar system, causing them to orbit it. The Sun produces energy by
fusing hydrogen atoms in its core, producing helium. This continuous nuclear reaction emits tremendous
amounts of energy, which is released as solar radiation. This radiation reaches the Earth and provides
most of the energy needed to sustain life.
<|prompter|> Can you tell me more about suns from other solar systems?

83.02

<|prompter|> Hi. Could you please tell me how I can get rid of bad breath? 59.38

<|prompter|> Can you tell me a bit about what has gone into your creation?
<|assistant|> My creation took over a month and the process of gathering data is still ongoing. I am
becoming a larger assistant that is Open-Source.
<|prompter|> Do you have any way of keeping stats on how much data you’ve consumed or how long your
training has taken?
<|assistant|> Yes but the public release of that information is pending review and validation.
<|prompter|> Here are 10 more question: What kind of neural network architecture was used to create
you?

42.19

<|prompter|> I would like you to create some regex to find out if the first number in a set of numbers and
letters is a one. For example, in “1 month, 2 days, and 3 hours” the selected text would be "1."

72.22

<|prompter|> Write an "about us" paragraph for the website of a design company. The paragraph should
contain information on the different services and strengths of the company. It is written in a serious
tone and shouldn’t feature any technical terms that customers could be confused about.

34.38

Table 6: Full interaction examples with corresponding saved@k scores of randomly drawn prefixes from the
OpenAssistant validation set. Completions were generated using Mistral-7B, with nc = 5, nt = 20. The existing
prefix including the context is colored gray. Accepted text is colored green with each acceptance underlined
separately. Accepted text is colored green, and each accepted segment is separately underlined. If no suggestion
was accepted, the text typed by the user is colored black.

27

Prefix: "<|prompter|> Who would win a chess match between Keanu Reeves and Audrey Hepburn? <|assistant|> In a purely physical
fight, Audrey would likely win. Keanu is renowned for being a very nice guy, I doubt he would hit a woman. Audrey grew up
in an era when women had to be serious badasses to get by. She’d kick him in the nuts before he had time to say ’Vaya con
Dios, Brah’ <|prompter|> No,"

Ground Truth: "I mean the board game chess!"
Mistral I mean a chess match. I mean a chess I mean
Zephyr I meant a chess match. I meant a chess that’s not what I meant.
Phi I I’m I’m asking for a chess match,
Mamba I mean I mean in a I
GPT2 Keanu I seriously, which of these men would win

in a
Prefix: "<|prompter|> Hello, what education should I take at university? What are important"
Ground Truth: "things to consider when making the choice?"
Mistral things to criteria in choosing a criteria in choosing a future profession

and university?
Zephyr skills to skills educations in the future?
Phi skills to learn? classes to take in order to become a skills to develop?
Mamba courses? courses to courses to study
GPT2 book titles to read? subjects subjects and should I
Prefix: "<|prompter|> How do I code pong in python. <|assistant|> Pong is a classic game that can be coded in Python using the

pygame library. To get started, you’ll need to install the pygame library. You can do this by running the command "pip install
pygame" in your terminal. Once you have the library installed, you can create a new file and start coding. You’ll need to
create a window, draw the paddles, and create the ball. You’ll also need to create the logic for the game, such as the ball
bouncing off the paddles and the score keeping. Finally, you’ll need to create the game loop that will keep the game running
until the player wins or loses. With some practice and patience, you should be able to code a basic version of Pong in Python.
<|prompter|> Start writing code. Use pygame and make the window default to full screen and be resizable. There should be 2
modes,"

Ground Truth: "against computer and against human, these should be selected when a new game is created."
Mistral single player and multiplayer. single player and single player
Zephyr single player single player and single
Phi one where the ball bounces off the one where the ball bounces off easy and hard.
Mamba one for the ball and one for the paddle. one for the ball and one for the one for the ball and one for
GPT2 fullscreen and windowed. windowed and full screen. fullscreen and
Prefix: "<|prompter|> write a inspirational monologue script from a spartan general telling his army that despite the impossible nature

of their fight, that it is still worth fighting. do not directly reference sparta or the fight, but"
Ground Truth: "focus more on the concept of the indomitable human spirit and the will to keep fighting no matter the cost."
Mistral it can be inferred it can be inferred (or outright stated) that

the
it can be inferred (or outright stated) that

Zephyr rather speak in general terms about
perseverance

rather rather speak in general terms about

Phi focus on themes of unity, courage,
and

focus on themes of focus on themes of unity, courage, and the

Mamba the gist is the same make a general instead the spirit of bravery and honor.
GPT2 do reference the instead do reference
Prefix: "<|prompter|> What are some unique, creative, and efficient ways to decorate and make the most of a small apartment space

while still ensuring a comfortable living environment? Are there any particular design styles or techniques that are especially
well-suited for small spaces, and what are the pros and cons of each approach? Are there any furniture pieces or items that are
particularly useful for maximizing space and comfort in a small apartment, and what are"

Ground Truth: "some tips for choosing and arranging these items in a functional and aesthetically pleasing way?"
Mistral some tips for choosing the right some some tips for choosing the right pieces for
Zephyr their benefits and drawbacks? some tips for arranging and organizing

these items in a
some tips for

Phi their benefits and drawbacks? some examples of these items? some examples of
Mamba the pros and cons of the pros and cons the pros and
GPT2 their pros and cons? their pros and their pros

Table 7: Comparison of top 3 suggested completions of different LLMs, on prefixes randomly drawn from the
OpenAssistant validation set. Completions were generated with nc = 5, nt = 20.

28

k = 1 k = 3 kmax

saved@1 acc. rate@1 saved@3 acc. rate@3 saved@k acc. rate@k
Mistral-7B Single Word 26.00 / 24.65 42.42 / 41.75 34.70 / 31.67 54.01 / 51.88 36.02 / 32.80 55.86 / 53.48

EOS 15.35 / 13.73 12.60 / 12.84 19.47 / 16.81 16.00 / 15.71 19.87 / 17.17 16.33 / 16.08
Partial 25.97 / 24.67 32.23 / 32.32 34.66 / 32.76 37.65 / 38.35 44.86 / 41.04 50.56 / 49.33

Zephyr-7B Single Word 25.63 / 24.31 41.76 / 40.57 33.89 / 31.43 52.87 / 50.80 35.00 / 32.65 54.43 / 52.56
EOS 11.95 / 10.73 9.53 / 10.06 15.85 / 13.61 12.46 / 12.51 16.91 / 14.37 13.35 / 13.26
Partial 24.01 / 23.47 29.81 / 30.22 31.06 / 29.89 32.91 / 34.31 44.00 / 40.85 47.91 / 47.65

Gemma-7B Single Word 25.93 / 24.53 42.64 / 41.70 34.28 / 31.75 53.76 / 51.87 35.49 / 32.77 55.39 / 53.29
EOS 15.54 / 13.78 12.64 / 12.95 19.23 / 17.04 15.56 / 15.91 19.67 / 17.51 15.96 / 16.37
Partial 25.80 / 24.84 32.34 / 32.71 34.66 / 32.91 37.72 / 38.93 44.75 / 41.02 50.02 / 49.44

Gemma-7B-INS Single Word 23.85 / 22.51 39.57 / 38.32 30.62 / 28.21 48.10 / 46.20 31.40 / 28.62 49.20 / 46.84
EOS 11.54 / 10.20 9.41 / 9.68 15.34 / 13.19 12.30 / 12.29 16.31 / 13.70 13.06 / 12.76
Partial 22.08 / 21.65 28.33 / 28.72 28.13 / 27.32 30.83 / 31.78 38.94 / 35.67 41.81 / 41.24

Phi-3 (3.8B) Single Word 26.04 / 24.12 42.06 / 40.55 34.73 / 31.17 53.90 / 50.62 36.18 / 32.20 55.96 / 52.22
EOS 15.54 / 12.58 12.57 / 11.89 19.42 / 15.38 15.64 / 14.47 19.77 / 15.67 15.98 / 14.78
Partial 26.07 / 24.18 32.07 / 31.25 34.42 / 31.83 36.76 / 36.99 45.18 / 39.91 50.81 / 47.84

Mamba-2.8B Single Word 22.19 / 21.79 37.52 / 37.42 29.72 / 28.34 48.07 / 47.05 31.04 / 29.25 49.85 / 48.36
EOS 12.92 / 11.18 10.90 / 10.54 15.79 / 13.68 13.34 / 12.82 16.05 / 13.91 13.62 / 13.04
Partial 22.36 / 21.66 29.44 / 29.28 29.94 / 28.76 34.96 / 34.86 37.94 / 35.82 45.44 / 44.53

Mamba-2.8B-Zephyr Single Word 24.55 / 22.81 40.22 / 38.71 32.68 / 29.46 51.48 / 48.54 33.74 / 30.51 52.93 / 50.04
EOS 12.21 / 10.47 9.90 / 9.59 15.41 / 12.72 12.42 / 11.64 15.92 / 13.05 12.87 / 12.03
Partial 23.20 / 22.09 29.69 / 29.37 30.73 / 28.84 33.86 / 34.11 41.98 / 37.95 47.29 / 45.85

SmolLM-1.7B Single Word 22.93 / 21.90 38.52 / 37.56 30.81 / 28.22 49.20 / 46.97 31.91 / 29.00 50.70 / 48.11
EOS 13.17 / 11.82 10.91 / 11.31 16.14 / 14.08 13.27 / 13.45 16.51 / 14.45 13.57 / 13.83
Partial 22.44 / 21.81 29.59 / 29.40 30.31 / 28.92 34.80 / 35.38 39.26 / 35.82 46.10 / 44.57

GPT2-XL (1.6B) Single Word 20.07 / 12.13 34.16 / 21.09 26.72 / 15.74 43.65 / 26.81 27.94 / 16.22 45.33 / 27.58
EOS 11.38 / 5.85 9.52 / 5.47 13.56 / 7.00 11.37 / 6.61 13.77 / 7.08 11.58 / 6.72
Partial 19.67 / 12.06 26.59 / 16.91 26.96 / 15.84 31.94 / 20.26 34.13 / 19.80 41.37 / 25.79

Average Single Word 24.10 / 22.28 40.06 / 38.04 31.97 / 28.63 50.76 / 47.28 33.12 / 29.52 52.34 / 48.57
EOS 12.30 / 10.44 10.04 / 9.82 15.91 / 13.29 12.94 / 12.41 16.47 / 13.70 13.42 / 12.82
Partial 23.43 / 22.03 30.10 / 29.26 31.21 / 28.85 34.79 / 34.31 41.27 / 36.77 47.00 / 44.49

Table 8: Scores of partial completions vs single word and full sentence baselines. OpenAssistant/ShareGPT.

29

nc nt Hist. Len saved@100 Latency p90 (ms) nc nt Hist. Len saved@100 Latency p90 (ms)
5 10 Full 45.75 974 3 10 1000 38.56 520
5 20 Full 45.60 1287 5 5 250 38.32 275
5 5 Full 45.00 815 4 10 250 37.46 419
5 20 1000 44.32 947 3 3 Full 37.35 468
5 5 1000 44.08 451 3 3 1000 37.33 278
5 10 1000 43.43 614 4 20 250 36.58 752
4 20 Full 43.13 1137 5 3 250 36.42 216
4 10 Full 43.02 843 4 5 250 36.25 254
4 10 1000 42.52 569 4 3 250 34.14 184
4 20 1000 42.40 885 3 20 250 33.99 732
5 3 Full 42.28 742 3 10 250 33.37 405
4 5 Full 41.81 673 3 5 250 33.26 241
5 20 500 41.45 828 5 20 100 32.59 732
5 3 1000 41.10 388 3 3 250 32.13 171
4 5 1000 40.85 399 5 5 50 25.35 219
3 10 Full 40.44 695 5 20 50 25.21 729
3 20 Full 40.35 991 5 10 50 24.95 393
4 3 Full 39.67 602 5 3 50 23.45 148
3 20 1000 39.59 818 4 10 50 23.01 389
3 5 Full 39.57 526 4 20 50 22.94 723
5 20 250 39.47 776 4 5 50 22.67 216
5 10 250 38.80 435 4 3 50 22.07 147
4 3 1000 38.76 330 3 10 50 21.02 385
3 5 1000 38.59 348 3 20 50 20.90 717

Table 9: Latency-Performance Trade-Off. Full results for all configurations, complementing Table 2 in section
4. Mistral-7b evaluated on the OASST test set. nc ∈ {3, 4, 5}, nt ∈ {3, 5, 10, 20}, and context length len(C) ∈
{50, 250, 1000, Full} (measured in characters). In total, 48 hyper-parameter configurations were evaluated. Results
are sorted by their saved@100 score.

30

1 2 3 5 10 20 50 100
k

15

20

25

30

35

40

45

50

M
ea

n
Ac

ce
pt

an
ce

 R
at

e@
k

(%
)

Mistral-7B
Gemma-7B
Zephyr-7B
Phi-3 (3.8B)
Mamba-2.8B-Zephyr

SmolLM-1.7B
Mamba-2.8B
Gemma-7B-INS
GPT2-XL (1.6B)
Average

Figure 6: acc. rate@k on OASST for varying k values.

300 400 500 600 700 800
Mean Latency (ms)

36

38

40

42

44

46

sa
ve

d@
k m

ax

nc=1

nc=2

nc=3

nc=4

nt=3

nt=5 nt=10
nt=15

nt=20
nc=5

nt=20
nc=5

Figure 7: Hyper parameter study (nc and nt). For
each line, one of the parameters is fixed and the other is
varied. Results are shown on the OASST dataset using
the best configuration and the Mistral model.

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Acceptance Length (Characters)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
ce

pt
an

ce
s (

%
)

OpenAssistant

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Acceptance Length (Characters)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
ShareGPT

1 2 3 4 5 6
Acceptance Length (Words)

0

10

20

30

40

50

60

70

Ac
ce

pt
an

ce
s (

%
)

1 2 3 4 5 6
Acceptance Length (Words)

0

10

20

30

40

50

60

70

Mamba-2.8B-Zephyr
SmolLM-1.7B
Phi-3 (3.8B)

Gemma-7B-INS
Mamba-2.8B

Zephyr-7B
Gemma-7B

GPT2-XL (1.6B)
Mistral-7B

Figure 8: Lengths of accepted completions for k = 100.

32

