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Abstract

Dialect adapters that improve the performance
of LLMs for NLU tasks on certain soci-
olects/dialects/national varieties (‘dialects’ for
the sake of brevity) have been reported for en-
coder models. In this paper, we extend the idea
of dialect adapters to decoder models in our ar-
chitecture called LORDD. Using MD-3, a pub-
licly available dataset of word game-playing
conversations between dialectal speakers, our
task is Target Word Prediction (TWP) from a
masked conversation. LORDD combines task
adapters and dialect adapters where the latter
employ contrastive learning on pseudo-parallel
conversations from MD-3. Our experiments on
Indian English and Nigerian English conversa-
tions with two models (MISTRAL and GEMMA)
demonstrate that LORDD outperforms four
baselines on TWP. Additionally, it significantly
reduces the performance gap with American
English, narrowing it to 12% and 5.8% for
word similarity, and 25% and 4.5% for accu-
racy, respectively. The focused contribution
of LORDD is in its promise for dialect adapta-
tion of decoder models using TWP, a simplified
version of the commonly used next-word pre-
diction task.

1 Introduction

Dialect adaptation of language models refers to
approaches that improve their performance for dif-
ferent dialects of a language (Joshi et al., 2025).
Past work proposes dialect adaptation for encoder
models (Held et al., 2023; Xiao et al., 2023) or
encoder-decoder models (Liu et al., 2023). This
paper extends it to decoder models, via a novel ar-
chitecture called Low-Rank Dialect robustness for
Decoder Models (LORDD). To demonstrate the ef-
fectiveness of LORDD, we use MD-3 (Eisenstein
et al., 2023), a dataset of manually transcribed di-
alectal dialogues between speakers of either Indian
English (en-IN) or Nigerian English (en-NG) or US
English (en-US) playing the word-guessing game

Figure 1: Illustrative example of Target Word Prediction
on an en-IN conversation. The inaccurate output from
the in-dialect fine-tuned model (left) is corrected by the
model trained using LORDD (right).

of taboo1. We select MD-3 conversations where the
guesser correctly identifies the target word/phrase
(‘target word’ for the sake of brevity) and mask
the target word (using [MASK]; as shown in Fig-
ure 1). Our task then is to predict the target word
in a masked conversation, i.e., target word predic-
tion (TWP). TWP represents a simplified version of
next-word generation utilised by decoder models.
Since decoder models are adept in tasks involving
causal language modeling, TWP is a reasonable
task choice. Upon observing that the TWP per-
formances for en-IN and en-NG are lower than
those of en-US, the objective of LORDD is to
improve the TWP performances for en-IN and
en-NG. LORDD employs a combination of two
LoRA-based (Hu et al., 2022) adapters. The first
is a task-specific adapter that uses instruction fine-
tuning (Wei et al., 2022) on an augmented set of en-
US and en-IN/en-NG conversations. The second
is a dialect adapter that uses contrastive learning
on a pseudo-parallel corpus between en-US and

1In a game of taboo, a describer must get a guesser to
guess a target word without using a set of words known as
taboo words.
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en-IN/en-NG conversations about a specific target
word. We release the code for training LORDD
adapters on Github.

Our work is novel in two ways: (A) LORDD is
the first methodology for dialect adaptation of de-
coder models, and outperforms one in-dialect and
three cross-dialect baselines, (B) We leverage an ex-
isting dataset MD-3 to create a pseudo-parallel cor-
pus of natural dialectal conversations, as opposed to
past work that relies on synthetically transformed
dialectal corpora.

2 Architecture of LORDD

The architecture of LORDD employs two
parameter-efficient adapters: task adapter and di-
alect adapter, as shown in Figure 2.

2.1 Task Adapter
We define x and t as lists of tokens in the masked
conversation and the target word respectively. For
a batched input of N pairs of masked conversations
and corresponding target words, we train the task
adapters to output the correct target word using
maximum likelihood estimation – a standard learn-
ing objective for causal language modeling (Jain
et al., 2023).

LTask = − 1
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1, . . . ,x
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i−1] denotes the subse-

quence before xj
i and | · | is the number of tokens.

2.2 Dialect Adapter
To train the dialect adapter, we use a pseudo-
parallel corpus between en-US and en-IN/en-NG
conversations. This corpus consists of both positive
and negative pairs of masked conversations. We
consider a masked conversation pair as a positive
example if both conversations pertain to the same
target word, and a negative example if they pertain
to a different target word. We then perform con-
trastive learning between the frozen representation
of the masked en-US conversation ([MASK]US)
and the trainable representation of the masked en-
IN/en-NG conversation ([MASK]X), using cosine
embedding loss. This allows the adapters to learn
from both positive and negative examples present
in the pseudo-parallel corpus.

LDial =

{
1 - sim([MASK]US, [MASK]X); y = 1
max (0, sim([MASK]US, [MASK]X) - d); y = -1

Here, X represents dialect in focus (either en-IN
or en-NG), sim(·) calculates the cosine similarity,
‘d’ is the margin, and ‘y’ is the label (1 for a positive
example, and -1 otherwise).

In contrast to the task adapter, the dialect adapter
is trained to output standard dialect representations
for an input text. Hence, LORDD stacks the task
adapter on top of the dialect adapter (as shown in
Figure 2), allowing the models to predict the target
word as required for TWP.

3 Experiment Setup

We experiment with two open-weight de-
coder models namely, Mistral-7B-Instruct-v0.2
(MISTRAL; Jiang et al., 2023) and Gemma2-9B-
Instruct (GEMMA; Gemma Team, 2024). LORDD
is trained as follows:

• The task adapter is trained by fine-tuning the
model for 20 epochs, with a batch size of 32,
Paged 8-bit AdamW (Dettmers et al., 2022)
as the optimiser and learning rate of 2e-4.

• To train the dialect adapter, we perform con-
trastive learning for 10 epochs, with a batch
size of 8, AdamW as the optimiser, a learning
rate of 2e-5, and a margin of 0.25.

We inject adapter matrices at all linear layers,
as recommended by Dettmers et al. (2023). Train-
ing either adapter for a single experiment takes
approx. 25 minutes on an A100 GPU. We compare

Subset Train Valid Test

en-US 62 41 311
en-IN 31 21 160
en-NG 38 25 194
IN-MV 57 39 296
NG-MV 57 39 296
IN-TR 25 17 132

Table 1: Data statistics.

LORDD with one in-dialect and three cross-dialect
baselines. The in-dialect baseline involves fine-
tuning a model on the training set of en-IN/en-NG.
The cross-dialect baselines are:

en-US Fine-tune the model on train set of en-US.

IN-MV/NG-MV We use Multi-VALUE (Ziems
et al., 2023) to transform en-US conversations into
en-IN. IN-MV is fine-tuned on these synthetically
created conversations.
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Figure 2: Architecture of LORDD.

IN-TR We prompt GPT-4 Turbo (OpenAI, 2024)
to transform en-IN by removing dialectal informa-
tion, resulting in IN-TR, and use it to fine-tune a
model.
Note: We do not perform similar transformations
on the en-NG subset due to the high API pricing at
the time of writing.

We consider the in-dialect fine-tuned model as
a strong baseline, while cross-dialect models are
weak baselines. We compare all baselines and
LORDD with in-dialect fine-tuned models on en-
US conversations, which serves as our skyline re-
sult.

||Corpus Samples Positive Negative

en-US || en-IN 144 11 133
en-US || en-NG 168 13 155
en-US || IN-MV 197 97 100
en-US || NG-MV 197 97 100
en-IN || IN-TR 142 42 100

Table 2: Data statistics of the pseudo-parallel corpus.

Tables 1 and 2 report the statistics of the
extended MD-3 dataset and the pseudo-parallel
corpus respectively. Additional details including
prompt used to create TR-IN and corpus examples
are in Appendix A. All evaluations are on the test
set of the en-IN or en-NG subsets for the base-
lines and LORDD, and on the test set of the en-US
dataset for the skyline. We report two metrics:
(a) Similarity (average cosine similarity between
the Sentence-BERT (Reimers and Gurevych, 2019)
embeddings of the reference and generated target
word); and (b) Accuracy (the proportion of con-
versations where the model generates the correct
target word).

4 Evaluation

Our results address three questions: (a) What is the
current gap in the task performance between en-US
and en-IN/en-NG?; (b) How well does LORDD
help bridge the gap?; (c) How essential is each
component in LORDD to bridge the gap?

Table 3 compares the performance of LORDD
with the baselines and the skyline. On the similarity
and accuracy, LORDD achieves average scores of
59.9 and 35.7, respectively, when evaluated on en-
IN, and 63.5 and 41.9, respectively, when evaluated
on en-NG. On average, LORDD improves on the
performances of the en-IN in-dialect baseline by
13.4% on similarity and 28.1% on accuracy. Simi-
larly, it improves on the en-NG in-dialect baseline
by 11.4% on similarity and 33.8% on accuracy.

As expected, the skyline achieves the highest
performance for the task. However, LORDD sig-
nificantly narrows the initial performance gaps. For
en-IN, the gap in similarity is reduced from 27.3%
to 12%, and the gap in accuracy is reduced from
64.7% to 25%. For en-NG, the gap in similarity
is reduced from 17.9% to 5.8%, and the gap in
accuracy is reduced from 43.1% to 4.5%.

Table 4 shows the results from an ablation
study that evaluates both adapters in LORDD. We
compare LORDD with three variants: (a) the di-
alect adapter trained on other parallel corpora, (b)
LORDD without the dialect adapter, within which
we also compare, (c) the task adapters trained on
other augmented data. Compared to LORDD, all
other variants report a degradation in their perfor-
mances. Training the dialect adapter on synthetic
parallel corpora (en-US || IN-MV, en-IN || IN-TR
and en-US || NG-MV) results in degradation rang-
ing from 1.0 to 2.3 on similarity and 2.5 to 4.8
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Method Training Data
MISTRAL GEMMA µ

Similarity Accuracy Similarity Accuracy Similarity Accuracy

Skyline en-US 64.7 44.3 69.7 45.3 (0.0) 67.2 (27.3) (0.0) 44.8 (64.7)

(a) Tested on en-IN

In-dialect baseline en-IN 51.0 24.4 54.6 30.0 (27.3) 52.8 (0.0) (64.7) 27.2 (0.0)

Cross-dialect baseline
en-US 54.6 25.6 61.3 35.0 58.0 30.3
IN-MV 52.4 24.4 58.2 30.0 55.3 27.2
IN-TR 50.4 24.3 53.0 26.9 52.7 25.6

LORDD en-US + en-IN 55.9 30.0 63.9 41.3 (12.0) 59.9 (13.4) (25.0) 35.7 (28.1)

(b) Tested on en-NG

In-dialect baseline en-NG 53.0 27.2 60.9 35.3 (17.9) 57.0 (0.0) (43.1) 31.3 (0.0)

Cross-dialect baseline
en-US 58.9 31.4 62.8 40.7 60.9 36.1

NG-MV 55.7 28.4 61.4 38.6 58.9 33.5
LORDD en-US + en-NG 62.4 40.5 64.5 43.2 (5.8) 63.5 (11.4) (4.5) 41.9 (33.8)

Table 3: Performance comparison between the skyline, baselines and LORDD on TWP. For each model, we report
Similarity and Accuracy when tested on (a) en-IN and (b) en-NG. µ is the average of the metrics across both
evaluation models. LORDD (represented in bold) improves the performance on all baselines. The percentage
improvement over the in-dialect baseline and the percentage degradation compared to the skyline are shown in
(number) and (number) respectively.

Method Training Data ||Corpus
MISTRAL GEMMA µ

Similarity Accuracy Similarity Accuracy Similarity Accuracy

(a) Tested on en-IN

LORDD en-US + en-IN en-US || en-IN 55.9 30.0 63.9 41.3 59.9 35.7

↔ ||Corpus
en-US + en-IN en-US || IN-MV 55.6 28.1 62.0 37.5 58.8 (1.1) 32.8 (2.9)

en-US + en-IN en-IN || IN-TR 54.9 27.5 62.8 38.8 58.9 (1.0) 33.2 (2.5)

−LDial

en-US + en-IN
Not Used

54.4 26.9 62.3 37.5 58.4 (1.5) 32.2 (3.5)

en-IN + IN-MV 51.6 23.1 57.1 31.9 54.4 (5.5) 27.5 (8.2)

en-IN + IN-TR 44.8 18.1 57.5 28.8 51.2 (8.7) 23.5 (12.2)

(b) Tested on en-NG

LORDD en-US + en-NG en-US || en-NG 62.4 40.5 64.5 43.2 63.5 41.9
↔ ||Corpus en-US + en-NG en-US || NG-MV 60.4 35.6 61.9 38.5 61.2 (2.3) 37.1 (4.8)

−LDial
en-US + en-NG

Not Used
61.3 39.7 62.4 38.1 61.9 (1.6) 38.9 (3.0)

en-IN + NG-MV 58.6 33.6 60.7 33.1 59.7 (3.8) 33.4 (8.5)

Table 4: Ablation on LORDD based on parallel corpus (↔ ||Corpus), dialect adapter (LDial) and data augmentation.
For each model, we report Similarity and Accuracy when tested on (a) en-IN and (b) en-NG. The best performance
is shown in bold. µ is the average of the metrics across both models. The degradation on the ablations compared to
LORDD is shown in (number).

on accuracy. Removing the dialect adapter results
in a further degradation ranging from 1.5 to 8.7
on similarity and 3.0 to 12.2 on accuracy. The
worst-performing variants are the models that only
train the task adapter on synthetically augmented
data (en-US + IN-MV, en-IN + IN-TR and en-IN
+ NG-MV). While the degraded performances of
these models show the importance of the dialect
adapter, the lower performances on variants involv-
ing synthetic conversations further solidify the use
of natural conversations in LORDD. We provide
additional results, such as ablations on proportion

of conversations in augmented data, in Appendix B.

Finally, we manually analyse erroneous en-IN
instances from LORDD, and categorise them into
types of en-IN dialect features given by Lange
(2012) and Demszky et al. (2021). Figure 3 shows
that EXTRANEOUS ARTICLE (“It’s a one word”)
is the most common feature associated with these
conversations. The definitions of all identified di-
alect features with examples are in Table 5.
Note: We do not perform error analysis for en-NG
instances due to lack of similar labelled features
for the dialect.

11



Figure 3: Percentage count of dialect features in erro-
neous instances from LORDD.

5 Related Work

Language technologies need to be equitable to
dialects/sociolects/national varieties (Joshi et al.,
2025; Blodgett et al., 2020). Dialect adaptation
involves strategies to improve the performance of
non-mainstream dialects. These strategies range
from introducing dialectal information at the pre-
training phase (Sun et al., 2023) to adapter-based
approaches. Adapters are explored to be viable
and efficient in improving dialect robustness (Liu
et al., 2023) or cross-lingual transfer (Pfeiffer et al.,
2020). In particular, we derive from this line
of work by training a low-rank dialect adapter
like Xiao et al. (2023) using a contrastive learn-
ing objective like Held et al. (2023). While past
approaches adapt encoder models, we distinguish
ourselves by proposing LORDD as an architec-
ture to adapt decoder models. Similarly, past work
uses frameworks like VALUE (Ziems et al., 2022)
and Multi-VALUE (Ziems et al., 2023) to create
synthetic dialectal variants of standard US English
benchmarks. In contrast, we use a pseudo-parallel
corpus of naturally occurring dialectal conversa-
tions from MD-3 (Eisenstein et al., 2023). Our task
of target word prediction is closely similar to Cha-
lamalasetti et al. (2023), who generate word game
conversations using LLMs and evaluate their ability
to predict the target word. Target word prediction
is also utilised by Srirag et al. (2025), who eval-
uate dialect-robustness of language models using
masked MD-3 conversations. Finally, our cross-
dialect baselines on corpora created using Multi-
VALUE and GPT-4 discuss the shortcomings of
synthetic datasets for dialect adaptation for dia-
logues, as also noted in Faisal et al. (2024).

Feature Example

EXTRANEOUS ARTICLE you can combine the both the words
LACK OF INVERSION IN WH-QUESTIONS what we can see in the rivers?

LEFT DISLOCATION If we have a five sides, what do we call that?
ARTICLE OMISSION I’ll explain you (the) second word
OBJECT FRONTING some towers type it will be

FOCUS only I’m trying to explain that only
NON-INITIAL EXISTENTIAL brand names also there

MASS NOUNS AS COUNT NOUNS How the womens will be?
INVARIANT TAG put them on some type of wire no?

Table 5: Dialect features identified in erroneously la-
belled en-IN conversations with the corresponding ex-
amples.

6 Conclusion

This paper focused on a simplistic causal language
modeling task, called target word prediction, us-
ing masked game-playing conversations between
two dialectal speakers of English (en-US, en-IN
and en-NG). The task was to predict the target
word from a masked conversation. From our initial
experiments with fine-tuned decoder models, the
in-dialect baseline (en-IN and en-NG) reported a
performance degradation on TWP, when compared
with the skyline (en-US). To address the gap in the
case of en-IN and en-NG, we proposed LORDD
as a novel architecture using low-rank adapters.
LORDD extends past work in dialect adaptation for
encoder models to decoder models by employing
contrastive learning via a pseudo-parallel corpus
of real conversations. LORDD outperformed one
in-dialect baseline and three cross-dialect baselines,
while also bridging the gap with the skyline to 12%
(down from 27.3%) and 25% (down from 64.7%)
on similarity and accuracy respectively for en-IN.
For en-NG, the gap is reduced to 5.8% (down from
17.9%) on similarity and 4.5% (down from 43.1%)
on accuracy. Through ablation tests on LORDD,
we validated the effectiveness of its components.

Although TWP works with a restricted dataset
and utilises turn-based dialogue, LORDD sets up
the promise for dialect adaptation of decoder mod-
els. Our error analysis also highlights the scope
for future improvement. A potential future work
is to evaluate LORDD on other causal language
modeling tasks, including seq2seq tasks, and other
dialects. Similarly, an extension to LORDD would
eliminate the requirement of naturally occurring
conversations in multiple dialects.

Limitations

While previous approaches have proposed dialect
adapters as task-agnostic, our study does not make
the same claim. We use target word prediction as
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the task of predicting the last word of a conversa-
tion which was the word that the described was
attempting to convey to the guesser. This task is
a simplistic version of causal language modeling.
However, we do not verify that LORDD works for
causal language modeling because there is no suit-
able parallel dataset of turn-aligned conversations,
to the best of our knowledge. Held et al. (2023)
use bottleneck adapters based on their ability for
cross-lingual transfer, but we do not explore these
types of adapters due to the lack of support for our
choice of models at the time of writing the paper.
The choice of en-IN and en-NG as the dialects of
interest is solely based on the availability of the
dataset.

Ethics Statement

We use a publicly available dataset of conversations
consisting of human players engaged in a game of
taboo. The topics discussed in the dataset are fairly
general and are unlikely to cause distress. One
of the authors of the paper performed the error
analysis. The synthetic conversation created using
GPT-4 may contain biased output, arising due to
the properties of the model. We do not expect any
reasonably significant risks arising as a result of
the project.
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A Dataset Construction

Table 6 describes the example conversations from en-IN and en-US subsets along with their respective
transformed IN-TR and IN-MV conversations. We utilise the following prompt used in the evaluation
study by Srirag et al. (2025) to create IN-TR.

‘Normalise the conversation. Remove all exaggerations and dialectal information. Return a
neutral response.’

The conversations are then masked by replacing the target word with the [MASK] token and pruning
the rest of the conversation, as described in the Table 7.

en-IN IN-TR

Describer: (Uh). What do you
call if we, what will be there in the
water?

Describer: (∅) What do you call
the creatures in the water?

Guesser: Fish(es) Guesser: Fish(∅).
Describer: Who will catch that? Describer: Who catches them?
Guesser: Fisherman. Guesser: Fishermen.

en-US IN-MV

Describer: Perfect. Oh! (We) earn
this. We go to our jobs.

Describer: Perfect. Oh! (∅) [are]
earn[ing] this. We [are] go[ing] to
our jobs.

Guesser: Money Guesser: Money

Table 6: Example transformations of en-IN to IN-TR, and en-US to IN-MV. We utilise GPT-4 Turbo to generate
IN-TR, and Multi-VALUE to create IN-MV. The text in parentheses refers to the omission/removal of certain filler
and exaggerated words, and the text such as this, refers to the words or sentences that were rephrased to convey
the original meaning, and the text such as [this], refers to the dialectal features added using Multi-VALUE.

Table 8 describes examples from the pseudo-parallel corpus: en-US || en-IN. The conversations in
a positive pair, while dissimilar in the syntax of the conversation, pertain to the same target word.
For example, the conversation pair labelled as ‘positive’ in the Table 8 describe the same target word–
Washing Machine. The conversation pair labelled as ‘negative’ describe different target words; the en-US
conversation describes Justin Bieber, while en-IN conversation describes Washing Machine.

B Additional Ablations

We conducted additional ablation studies on LORDD to address the following question: Can the perfor-
mance improvement of LORDD be attributed to the increased training data from data augmentation?

Table 9 compares the performance of the proposed combination of LORDD with variations that exclude
data augmentation. Training the task adapter solely on en-IN results in significantly lower performance,
with similarity scores dropping by 5.9 to 7.0 and accuracy scores decreasing by 8.2 to 9.7.

Table 10 examines the effect of varying the proportion of en-US conversations in the augmented
training data (en-US + en-IN). The best performance is observed when LORDD is trained with augmented
data containing only 50% en-US conversations. While this configuration outperforms the proposed
full-proportion combination, determining the optimal proportions is challenging and limits generalisability
across models. More particularly, Table 10 also reveals that MISTRAL is highly sensitive to such changes
in the training data composition, whereas GEMMA is more robust.

These ablation results, combined with the findings in Table 4, further reinforce our proposed methodol-
ogy. Specifically, training the task adapter on fully proportioned augmented data (en-IN + en-US) and the
dialect adapter on a parallel corpus constructed from natural conversations (en-US || en-IN) proves to be a
more effective and generalisable approach.
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Target
Word

en-IN Masked en-IN

Fisherman

Describer: Uh. What do you call if
we, what will be there in the water?

Describer: Uh. What do you call if
we, what will be there in the water?

Guesser: Fishes Guesser: Fishes
Describer: Who will catch that? Describer: Who will catch that?
Guesser: Fisherman. Guesser: [MASK]

Target
Word

en-US Masked en-US

Planet
Describer: These are hard words. um
Okay. So there’s. the Sun and the
Moon and all the rest of them.

Describer: These are hard words. um
Okay. So there’s. the Sun and the
Moon and all the rest of them.

Guesser: And all the planets? Guesser: [MASK]
(Describer: Yes.)

Table 7: Masking conversations from the extended MD-3. The text such as this represents the target word utterance
by the guesser which is masked (represented by, [MASK] in the final version of the conversation. The rest of the
original conversation is pruned as represented text in parentheses.

Label en-US en-IN

Positive
Describer: Good job. Okay. Um. How
we. How we clean our clothes.

Describer: Yeah here I got a thing
uh which most of us daily use that to
wash our clothes.

Guesser: [MASK] Guesser: [MASK]

Negative

Describer: this. What? All right all
right so.

Describer: Yeah here I got a thing
uh which most of us daily use that to
wash our clothes.

Guesser: What? Guesser: [MASK]
Describer: Uh this uh this young man.
um is a very well-known singer. who
was kind of a heart-throb. Hm he I
mean he’s still active but like 10
years ago like all of the girls were
crazy about this guy.
Guesser: [MASK]

Table 8: Example conversation pairs from the pseudo-parallel corpus: en-US || en-IN. A positive example contains
conversations describing the same target word, while the negative example contains conversations pertaining to two
different target words.

Method Training Data ||Corpus
MISTRAL GEMMA µ

Similarity Accuracy Similarity Accuracy Similarity Accuracy

LORDD en-US + en-IN en-US || en-IN 55.9 30.0 63.9 41.3 59.9 35.7

↔ ||Corpus
en-IN (No

Augmentation)

en-US || en-IN 52.0 23.1 53.7 28.8 52.9 (7.0) 26.0 (9.7)

en-IN || IN-TR 52.0 23.8 54.1 28.8 53.0 (6.9) 26.3 (9.4)

en-US || IN-MV 53.3 25.0 54.6 30.0 54.0 (5.9) 27.5 (8.2)

Table 9: Ablation on LORDD based on parallel corpus (↔ ||Corpus) and data augmentation. For each model, we
report Similarity and Accuracy when tested on en-IN. The best performance is shown in bold. µ is the average of
the metrics across both models. The degradation on the ablations compared to LORDD is shown in (number).

16



Method ||Corpus % of en-US
MISTRAL GEMMA µ

Similarity Accuracy Similarity Accuracy Similarity Accuracy

LORDD en-US || en-IN

0% 52.0 23.1 53.7 28.8 52.9 26.0
25% 53.8 31.9 61.2 35.4 57.5 33.7
50% 58.8 33.8 64.1 41.8 61.5 37.8
75% 54.6 30.6 63.4 40.8 59.0 35.7

100%* 55.9* 30.0* 63.9* 41.3* 59.9* 35.7*

−LDial Not Used

0% 51.0 24.4 54.6 30.0 52.8 27.2
25% 52.0 29.4 60.5 34.4 56.3 31.9
50% 55.3 29.4 61.4 35.6 58.4 32.2
75% 52.5 27.5 61.6 35.6 57.1 31.6

100% 54.4 26.9 62.3 37.5 58.4 32.2

Table 10: Ablation on LORDD based on dialect adapter (LDial) and proportion of en-US conversations in
augmented data (en-US + en-IN). For each model, we report Similarity and Accuracy when tested on en-IN. The
best performance is shown in bold, and the proposed combination is represented by number*. µ is the average of
the metrics across both models.
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