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Abstract

Structured data, such as tables, graphs, and
databases, play a critical role in plentiful NLP
tasks such as question answering and dialogue
system. Recently, inspired by Vision-Language
Models, Graph Neutral Networks (GNNs) have
been introduced as an additional modality into
the input of Large Language Models (LLMs)
to improve their performance on Structured
Knowledge Grounding (SKG) tasks. However,
those GNN-enhanced LLMs have the follow-
ing limitations: (1) They employ diverse GNNs
to model varying types of structured data, ren-
dering them unable to uniformly process vari-
ous forms of structured data. (2) The pretrain-
ing of GNNs is coupled with specific LLMs,
which prevents GNNs from fully aligning with
the textual space and limits their adaptability
to other LLMs. To address these issues, we
propose Large Language and Structured Data
Assistant (LLaSA), a general framework for
enhancing LLMs’ ability to handle structured
data. Specifically, we represent various types of
structured data in a unified hypergraph format,
and use self-supervised learning to pretrain a
hypergraph encoder, and a G-Former compress-
ing encoded hypergraph representations with
cross-attention. The compressed hypergraph
representations are appended to the serialized
inputs during training and inference stages of
LLMs. Experimental results on multiple SKG
tasks show that our pretrained hypergraph en-
coder can adapt to various LLMs and enhance
their ability to process different types of struc-
tured data. Besides, LLaSA, with LoRA fine-
tuning, outperforms previous SOTA method
using full parameters tuning.

1 Introduction

Structured data, such as tables, knowledge graphs,
and databases, is prevalent in real-world applica-
tions and plays a crucial role in fields like finance,
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Figure 1: Overview of LLaSA, which can handle vari-
ous types of structured data by transforming them into
a unified format and encoding them with a universal
encoder. The serialized structured data and the graph
representations are then used as input to the LLM.

healthcare, and data analytics. Therefore, Struc-
tured Knowledge Grounding (SKG) (Xie et al.,
2022) has attracted significant research interest
and has been widely studied. SKG tasks, such
as question answering (Pasupat and Liang, 2015;
Nan et al., 2022; Talmor and Berant, 2018), sum-
marization (Nan et al., 2020; Parikh et al., 2020),
fact verification (Chen et al., 2019), utilizing cor-
responding structured data as input and produce
different outputs depending on the task types.

In recent years, with the rapid development of
Large Language Models (LLMs) (Bang et al., 2023;
Zhao et al., 2023), researchers have shifted their fo-
cus from building task-specific models for different
tasks (Xie et al., 2022) to developing a general-
ist model capable of handling a variety of SKG
tasks (Zhuang et al., 2024; Zhang et al., 2024b).
These approaches that leverage LLMs for SKG
tasks commonly serialize structured data (e.g., rep-
resenting tables in markdown format) as pure tex-
tual input to the LLMs. However, this method can
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Figure 2: Comparison between LLM-based and the
proposed G-Former-based GNN pretraining strategies.

lead to the partial loss of structured information,
as all these LLMs are decoder-only Transformer
models (Vaswani et al., 2017) (e.g., in the table
data, cells from the same column or rows in the
original table may become distant from each other
after linear serialization).

Recently, to enhance the utilization of large lan-
guage models in the visual domain, researchers
have crafted Vision-Language Models (VLM)
(Zhang et al., 2024a) that transform image data
into discrete language tokens via a learnable in-
terface. Inspired by the success of VLM, another
line of research introduces GNNs as an additional
modality into the input of LLMs. For example,
G-Retriever (He et al., 2024) combines GNNs en-
coding knowledge graphs with LLMs, enhancing
the graph-based question-answering abilities of the
LLMs. HGT (Jin et al., 2024) propose a hetero-
geneous graph enhanced large language model for
table-based question answering. However, they
employ diverse networks to model varying types
of structured data, rendering them unable to
uniformly process various forms of structured
data, for instance, G-Retriever and HGT can only
handle graphs and tables, respectively. Besides, the
pretraining of GNNs is coupled with specific LLMs
in these methods, for instance, HGT pretrains a
GNN based on a frozen LLM by self-supervised
learning, as shown in Figure 2 (a). This prevents
the GNN from fully aligning with the textual
embedding space because the serialized table is
already included as input during the pretrain-
ing process, making the GNN unnecessary in
this situation. As a result, it is unclear whether

the GNN effectively encodes the table data as ex-
pected during pretraining, and the adaptability of
this GNN to other LLMs also remains a question.

Aiming to address these drawbacks, we in-
troduce Large Language and Structured Data
Assistant (LLaSA) for SKG tasks. Specifically, we
first model various forms of structured data, such
as tables and knowledge graphs, uniformly as hy-
pergraphs (Chen et al., 2023a), enabling the use of
a unified GNN for encoding. Specifically, We treat
the cells in a table as nodes, with rows and columns
as hyperedges, and for graphs, we treat entities as
nodes and relationships as hyperedges. We then
pretrain a GNN and a G-Former (a cross attention
model similar to Q-Former (Li et al., 2023), but it
extracts features from GNN) with self-supervised
learning which includes question answering and
Graph-Text Matching, as illustrated in Figure 2
(b). This pretraining approach not only aligns the
GNN with the text more effectively but also avoids
coupling with a specific LLM, making it adaptable
to various LLMs. During fine-tuning for down-
stream tasks, we use the G-Former to bridge the
modality gap, transforming the encoded structured
data into a fixed number of soft tokens that can be
understood by LLMs, as shown in Figure 1.

Results on multiple SKG datasets, including ta-
ble, knowledge graph and database, demonstrate
that the proposed LLaSA significantly enhances
LLM’s ability to handle these structured data. With
the frozen LLM, LLaSA Llama-7B achieves an
average improvement of 12% across ten datasets.
With LoRA the tuned LLM, it still yields an aver-
age improvement of 0.4%. Besides, LLaSA, with
LoRA fine-tuning, outperforms previous SOTA
method using full parameters tuning. The codes
and data are available at https://github.com/
YaooXu/LLaSA.

The main contributions of this paper can be sum-
marized as follows:

1. We propose LLaSA, a framework that inte-
grates the encoded representations of struc-
tured data as an additional modality into the
input of LLMs.

2. We represent various forms of structured data
as hypergraphs, enabling unified encoding
through a single GNN, and pretrain the GNN
and G-Former with self-supervised learning.

3. Experimental results demonstrate that our pre-
trained GNN can be adapted to various LLMs,
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enhancing their ability to handle structured
data. Furthermore, ablation studies confirm
the importance of both the GNN and the pre-
training process.

2 Related Work

2.1 Models for SKG tasks

SKG data, such as graphs and tables, exhibit hetero-
geneous data formats, leading to a line of research
focuses on modeling these heterogeneous repre-
sentations during encoding structured data. For
example, TaBERT (Yin et al., 2020) introduces ver-
tical self-attention, a self-attention mechanism that
processes vertically aligned vectors across different
rows. TAPAS (Herzig et al., 2020) captures tabu-
lar structure with additional embeddings, such as
Column / Row ID, based on BERT’s architecture
(Devlin et al., 2019). HyTrel (Chen et al., 2023a)
converts a table into a hypergraph to allow the GNN
to incorporate row/column permutation invariances.
All these methods can also be used in LLaSA, and
we use HyTrel as our default hypergraph encoder
in this work.

USKG (Xie et al., 2022) is the first work that
unifies multiple SKG tasks into a text-to-text for-
mat. However, their results show that multi-task
finetuning is worse than single-task finetuning on
many tasks. Following USKG, StructLM (Zhuang
et al., 2024) finetunes LLMs on multiple SKG tasks
and show strong zero-shot generalization capability
on unseen SKG tasks. TableLlama (Zhang et al.,
2024b) finetunes LLMs with LongLoRA (Chen
et al., 2023b) on multiple table-based datasets to
build a generalist model. However, these methods
all serialize structured data and could lead to the
partial loss of structured information.

2.2 Combine LLMs and GNN

There are many works that combine LMs and
GNNs (Malaviya et al., 2020; Yasunaga et al., 2022;
Zhang et al., 2022; Zhao et al., 2022). In the era of
LLMs, researchers are increasingly focused on how
to convert GNN representations into tokens that
LLMs can understand, thereby avoiding modifica-
tions to the model architecture and minimizing the
impact on other capabilities. LLaGA (Chen et al.,
2024) reorganizes graph nodes to structureaware
sequences and then mapping these into the token
embedding space through a projector. G-Retriever
(He et al., 2024) uses a standard Graph Attention
Network (GAT) (Veličković et al., 2017) to encode
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Figure 3: Examples of converting structured data to a
unified hypergraph format, where yellow nodes repre-
sent hyperedges. In Figure (a), the arrows are omitted
as the edges in the hypergraph are bidirectional.

the retrieved graphs and treats graph embeddings
as soft prompting, but it doesn’t involve pretraining
stage. GraphGPT (Tang et al., 2023) not only ap-
pends the representations of graph nodes to the tex-
tual input, but also employs self-supervised training
to align the encoding of graph structures with the
natural language space. Another similar work is
HGT (Jin et al., 2024), which introduces an GNN
to encode the heterogeneous graph converted by
the corresponding table. Both GraphGPT and HGT
need to pretrain a GNN or a adapter based on a
frozen LLM by self-supervised learning before
task-specific instruction tuning. In contrast, our
LLaSA pretrain a general GNN and G-Former that
are decoupled from the specific LLM, allowing
them to be used with any LLM without the need
for re-pretraining, which is time-consuming.

3 Method

3.1 Hypergraph Construction

We represent a hypergraph as G = {V, E}, where
V and E denote the set of nodes and hyperedges. A
hypergraph can be regarded as a type of bipartite
graph, that is, every edge connects a node in V to
one in E .
Table to hypergraph. We represent a table as T =
{H,R}, where H = [h1, h2, ..., hn] represents n
column headers, R = [r1, r2, ..., rm] represents m
rows, and each row ri = [ci1, ci2, ..., cin] has n
cells. We treat each cell cij as node vij ∈ V , and
each row ri, each column header hj as hyperedges
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Figure 4: (a) We employ two pretraining objectives to train the hypergraph encoder and G-Former, with the upper
left corner showing the attention masks used for different pretraining tasks. (b) In the LLM finetuning stage, we
only use the graph transformer to extract a fixed number of representations of hypergraph, and treat them as soft
prompts in LLM’s input.

ei, ej ∈ E . Each node vij is only connected to its
corresponding hyperedges ei and ej , as shown in
Figure 3 (a).

Graph to hypergraph. In this work, our research
focuses on Text-Attributed Graphs (TAG), which
are graphs enriched with textual information asso-
ciated with their nodes or edges. We represent a
TAG as a set of factual triples, i.e., G = {(h, r, t)},
where h, r, t are texts, and h, t denote the head and
tail entity, r denotes the relation of them. We treat
h and t as nodes vh, vt ∈ V , r as hyperedge er ∈ E ,
and vh, vt are connected to er. Besides, to preserve
the directional information in the original graph,
we create a reverse relation node for each relation
node, as shown in Figure 3 (b) (e.g., the texts of
normal/reverse relation node are Relation: team
and Reverse Relation: team, respectively).

3.2 Model Architecture

3.2.1 Hypergraph Encoder
Following HyTrel (Chen et al., 2023a), we utilize
a HyperTrans, which is a structure-aware trans-
former module, to encode the hypergraphs. Each
layer of HyperTrans contains two attention module:
Node2Hyperedge and Hyperedge2Node, and a Hy-
peredge Fusion module. The initial representation
of nodes are obtained by sentence bert (Reimers,
2019).

The Node2Hyperedge attention module aggre-
gates information to hyperedge e from its neighbor
nodes v ∈ Ne. This process is defined as follows:

h̃l+1
e = fV→E(K l

e) (1)

where fV→E is a attention function, K l
e = {hl

v|v ∈
Ne} represents the set of representations at layer l
of all nodes connected to the hypernode e .

1938



The Hyperedge Fusion module is a Multilayer
Perceptron (MLP) that integrates the information
collected from both the neighbors of hypernode e
and itself. This process is defined as follows:

hl+1
e = MLP(hl

e; h̃
l+1
e ) (2)

The Hyperedge2Node attention module then ag-
gregates information to node v from its neighbor
hypernodes e ∈ Nv.

h̃l+1
v = fE→V(K l

v) (3)

where fE→V is another attention function, K l
v =

{hl
e|e ∈ Nv} represents the set of representations

at layer l of all hyernodes connected to the node e.
The attention function f used in the equation (1,

3) is similar to transformer (Vaswani et al., 2017),
the function f is defined as follows:

fV→E or E→V(X) = LN(Y + FFN(Y)) (4)

Y = LN(ω + SetMHA(ω,X,X)) (5)

where X is the representations of input nodes or
hyperedges. Y is the intermediate representations.
SetMHA is the multi-head set attention mechanism
defined as follows (for simplicity, we only consider
single-head self-attention here):

SetMHA(ω,X,X) = Softmax(ω(XWK)T (XWV ))
(6)

where ω is a learnable query vector, WK and WV

are the key and value matrices.
In summary, HyperTrans first updates the repre-

sentation of a hypernode based on the neighboring
nodes, and then updates the neighboring nodes us-
ing the updated representation of the hypernode.

3.2.2 G-Former
To bridge the gap between a hypergraph encoder
and text, and to compress the hypergraph node rep-
resentations into fixed-length tokens, we propose
G-Former based on Q-Former (Li et al., 2023). As
demonstrated in Figure 4 (a), our G-Former con-
sists of two transformer sub-modules: (1) A graph
transformer which interacts with hypergraph rep-
resentations. (2) A text transformer that encodes
and generates text. The graph transformer uses
a fixed number of learnable query tokens, which
first interact with each other through self-attention,
then interact with hypergraph nodes representation
through cross-attention. During the pretraining
stage, we use different attention mechanisms based
on the specific pretraining tasks to control the inter-
action between query and text tokens.

3.3 Training

3.3.1 Pretraining

Even though HyTrel (Chen et al., 2023a) also trains
an encoder for table encoding, its pretraining tasks,
such as column type classification and table similar-
ity prediction, does not truly align the hypergraph
encoder space with the textual space. Similar to
Q-Former (Li et al., 2023), we also introduce two
tasks to effectively align these two spaces, and their
attention mechanisms are shown in the upper left
corner of Figure 4. The details of constructing
pretraining dataset can be founded in Appendix A.
Graph-Depended Answer Generation. This
tasks trains the G-Former to generate answers,
given input tables as the condition. The informa-
tion required for generating the answer is first ex-
tracted by the query tokens with cross-attention,
and then passed to the text transformer through
self-attention. The graph transformer learns to com-
press all the graph node representations into a fixed
number of query tokens. The multimodal causal
attention allow query tokens to interact with each
others but not the text tokens while each text token
can interact with all query tokens and its previous
text tokens.
Graph-Text Matching. Since some answers can
be easily deduced even without any structural infor-
mation, for example, the column name for "Miami
Heat" is likely to be "Team". Therefore, we also
introduce Graph-Text Matching. We employ a bi-
directional self-attention mask, allowing all queries
and text tokens to attend to each other. As a re-
sult, the output query embeddings, denoted as Q,
integrate multimodal information effectively. Each
query embedding is then passed through a MLP to
generate a corresponding logit. Finally, we com-
pute the overall matching score by averaging the
logits across all queries.

3.3.2 Task-specific Instruction Tuning

In the instruction tuning stage, we use multiple
SKG tasks to finetune LLMs through Parameter-
Efficient Fine-Tuning (Ding et al., 2023). In this
stage, we only use the graph transformer module
pretrained in the pretraining stage, that is, we ex-
tract fixed-length query embeddings q̂ from the
node representations of hypergraph G. Then the
extracted query embeddings q̂ are projected into
the same dimension as the text embedding of the
LLM through a fully connected layer. This process
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Held In Held Out

Dataset WikiTQ HybridQA FeTaQA TabMWP WikiSQL TabFact ToTTo KVRet CWQ DART Avg SQA WTT FinQA Avg

Metric Ex Acc BLEU Acc Ex Acc BLEU Micro Acc BLEU Acc BLEU Acc

1-shot Learning

Mistral 7B Instruct 20.0 22.9 8.9 30.5 24.6 54.8 16.8 54.0 34.5 43.5 31.1 3.2 3.8 6.7 4.6

ChatGPT 3.5 42.6 38.4 15.1 52.9 50.4 53.0 22.4 53.0 50.1 57.0 43.5 9.7 4.0 12.2 8.6

ChatGPT 4 60.8 50.8 8.4 72.6 35.8 79.0 21.4 60.3 66.6 53.7 50.9 5.4 3.1 18.0 8.8

Full Parameters Tuning

USKG 3B × N 49.3 59.2 36.0 - 86.0 80.8 49.0 67.9 73.3 46.7 - 0 0 0 0

FLAN-UL2 20B 54.6 61.0 35.8 - 87.3 87.1 - - 75.9 50.4 - 70.1† 19.4† 5.9† 31.8†
StructLM 7B-M 56.8 62.6 37.5 73.5 87.0 84.6 49.8 72.2 79.9 63.2 66.7 41.9 16.7 24.6 27.7

Lora Tuning

TableLlama 7B 35.0* 39.4* 39.0 - 50.5* 82.5 20.8* 48.7* - - - 2.6 3.0 1.4 2.3

Mistral 7B Instruct 56.9 62.4 36.7 76.9 86.8 84.1 49.0 71.2 78.1 65.0 66.7 47.1 10.7 14.2 24.0

HGT 7B-M 57.2 62.4 36.6 75.8 87.0 83.8 49.2 70.8 78.3 65.4 66.7 51.0 8.2 18.0 25.7

G-Retrieve 7B-M 57.4 62.6 36.5 76.0 86.6 84.2 48.9 71.6 78.4 65.2 66.7 50.9 12.5 16.6 26.7

LlaSA 7B-M (Ours) 56.2 62.9 37.0 76.7 87.1 84.3 49.0 72.3 78.4 64.7 66.9 51.3 16.3 13.9 27.2

Table 1: The evaluation results of our model against other baselines. Cells with "*" represent that the model
did not train on this dataset. Cells in the held-out section with "†" are held-in results. 7B-M represents using
Mistral-7B-Instruct-v0.2 as the base model. The results of HGT 7B-M and G-Retrieve 7B-M were re-implemented
by us. The results of StructLM 7B-M are from their paper. USKG 3B × N indicates training a 3B model for each
task. The boldface indicates the best result.

is defined as follows:

q̂ = FC(fg(q,X)) (7)

where X ∈ Rn×d1 is the hypergraph node embed-
dings, n is the number of nodes in the graph, d1 is
the dimension of node embeddings, q ∈ Rb×d1 is
the original query embeddings, q̂ ∈ Rm×dl is the
extracted query embeddings, m is the number of
query tokens, dl is the dimension of the LLM’s text
embeddings, fg and FC represents G-Former and
fully connected layer.

These projected query embeddings are treated as
soft prompts and appended to the text embeddings.
The LLM learns to predict answers based on these
text embeddings and soft prompts. This process is
defined as follows:

ht = TextEmbedder([serialize(G);xq]) (8)

pθ(Y |G, xq) =
r∏

i=1

pθ(yi|y≤i, [ht; q̂]) (9)

where θ is the LLM’s parameters, serialize de-
notes function that serializes structured data to text
sequence, [;] represents concatenation operation,
xq and Y represents the question and answer, re-
spectively.

4 Experiment

4.1 Datasets
To validate the effectiveness of our approach, we
collected 10 SKG tasks as our training data, which

can be categorized into the following four types:
(1) Structured Data Question Answering: This
task requires the LLM to answer questions based
on the given tables, knowledge graphs, and textual
information. The datasets for this category include
WikiTQ (Pasupat and Liang, 2015), CompWebQ
(Talmor and Berant, 2018), and TabMWP (Lu et al.,
2022). (2) Fact Verification: This task requires
the LLM to determine whether a given statement is
entailed or refuted based on the information in the
table. The corresponding dataset is TabFact (Chen
et al., 2019). (3) Structured Data to Text: This
task requires the LLM to summarize or describe
the content of a given table or knowledge graph in
one or two sentences. The relevant datasets for this
category include ToTTo (Parikh et al., 2020) and
DART (Nan et al., 2020).

To evaluate the generalization ability of our
method, we use SQA(Iyyer et al., 2017), Wik-
iTableText (Bao et al., 2018) and FinQA (Chen
et al., 2021) as held-out datasets, where SQA be-
longs to table-based question, WikiTableText be-
longs to structured data to Text and FinQA re-
quires generating python-executable math expres-
sion based on the given questions and tables.

Statistics of these datasets can be found in Ap-
pendix B.

4.2 Baselines

In this work, we compare LLaSA with other LLMs
based methods. We primarily select StructLM
(Zhuang et al., 2024), which performs full pa-
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Held In Held Out

dataset WikiTQ HybridQA FeTaQA TabMWP WikiSQL TabFact ToTTo KVRet CWQ DART Avg SQA WTT FinQA Avg

metric Ex Acc BLEU Acc Ex Acc BLEU Micro Acc BLEU Acc BLEU Acc

Freeze LLM

Phi 3B 31.2 39.0 13.6 41.9 47.1 59.9 32.4 46.3 45.1 58.0 41.5 14.8 8.1 9.2 10.7

LlaSA-Phi 3B 35.1 49.1 26.6 62.5 65.4 70.3 39.9 62.1 60.2 59.7 53.1 21.8 11.7 13.7 15.7

Llama2 7B 27.2 42.3 8.9 27.3 45.0 50.8 32.7 46.8 52.2 51.6 38.5 11.0 7.7 2.1 6.9

LlaSA-Llama2 7B 32.5 50.2 26.6 48.5 62.9 66.2 40.6 62.0 62.1 58.3 51.0 19.9 17.5 3.5 13.6

Mistral 7B 34.1 44.2 5.3 37.9 55.3 59.4 35.2 43.7 55.4 58.1 42.9 26.7 14.8 12.1 17.9

LlaSA-Mistral 7B 38.4 50.6 27.3 59.9 70.1 73.6 42.4 65.7 67.1 59.2 55.4 25.9 6.0 7.4 13.1

Llama3 8B 41.2 50.1 20.3 52.7 67.0 66.1 38.2 53.2 62.4 59.3 51.1 31.2 13.0 17.0 20.4

LlaSA-Llama3 8B 45.9 53.8 29.9 70.5 74.8 78.2 43.1 64.3 69.6 60.4 59.1 29.0 12.2 23.1 21.4

Lora Tuning LLM

Phi 3B 45.8 53.6 30.7 70.0 80.2 75.5 42.6 62.5 68.3 62.9 59.2 34.3 9.5 11.4 18.4

LlaSA-Phi 3B 47.4 55.4 31.6 72.4 81.5 77.5 44.5 67.8 70.8 62.0 61.1 45.8 13.0 7.1 22.0

Llama2 7B 45.0 59.5 32.5 62.8 82.9 78.1 46.3 67.1 75.0 63.8 61.3 35.3 8.6 6.5 16.8

LlaSA-Llama2 7B 45.9 60.0 33.0 64.2 83.0 78.6 47.0 66.6 76.0 63.1 61.7 35.5 8.6 9.7 17.9

Mistral 7B 56.9 62.4 36.7 76.9 86.8 84.1 49.0 71.2 78.1 65.0 66.7 47.1 10.7 14.2 24.0

LlaSA-Mistral 7B 56.2 62.9 37.0 76.7 87.1 84.3 49.0 72.3 78.4 64.7 66.9 51.3 16.3 13.9 27.2

Llama3 8B 59.4 62.8 34.1 77.0 86.2 85.8 47.7 69.2 78.9 64.0 66.5 47.7 11.7 21.5 27.0

LlaSA-Llama3 8B 60.4 63.0 34.7 77.8 86.3 86.1 48.0 69.2 79.0 63.1 66.8 52.6 10.8 22.8 28.7

Table 2: The evaluation results of LLaSA with different base models under different finetuning strategies. The soft
tokens in prompt tuning (Freeze LLM) is set 10, which is the same as the number of query tokens in G-Former. The
lora rank is set to 32 in lora tuning.

rameters fine-tuning on various SKG datasets, as
the main baseline. It is important to note that
StructLM utilizes a broader range of datasets such
as SQL2Text (Shu et al., 2021). These datasets
are excluded from LLaSA’s training set because
their inputs could not be transformed into hyper-
graphs. We also compare with TableLLama (Zhang
et al., 2024b), which not only leverages a broader
range of foundational table tasks, such as Column
Type Annotation and Entity Linking, but also uses
a longer 8K context length to finetune the LLMs.
As HGT(Jin et al., 2024) and G-Retrieve(He et al.,
2024) use different models and training datasets,
we re-implement and train them under our frame-
work for a fairer comparison, where HGT concate-
nates the representations of all GNN nodes to the
LLM input, G-Retrieve takes the average of all
GNN node representations and concatenate it to
the LLM input. Additionally, we also evaluate the
performance of GPT-3.5, GPT-4, and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) under a 1-shot
setting.

4.3 Implement Details

We choose Phi-3B (Marah Abdin, 2024), LLama2-
7B (Hugo Touvron, 2023), Mistral-7B (Jiang et al.,
2023) and LLama3-8B (Abhimanyu Dubey, 2024)
as our base models. We use a learning rate of 2e-5
with a 3% warm-up cosine scheduler, set the batch
size as 3, epoch as 3. The default lora rank is set

to 32. All this models are trained on 8 H800 80G
using DeepSpeed ZeRO-2 (Aminabadi et al., 2022).
A training on a 7B model takes about 12 hours. The
maximum sequence length is set to 2048 during
training, the maximum generation length to set as
1024 during inference. We set the dimension of
the hypergraph encoder to 768, with 12 layers, and
use RoBERTa-base as the initial parameters for the
G-Former. The total number of parameters for both
components is 400M. The G-Former and GNN are
pretrained on 25M tables for one epoch, and these
data are taken from TaBERT (Yin et al., 2020).

4.4 Main results

Table 1 presents the results of our LLaSA compared
to previous baselines across 10 datasets. From the
table, we can see that GPT-3.5 and GPT-4 still fall
short in handling SKG tasks, trailing behind LLaSA
7B-M by 23.3% and 15.9% points, respectively,
across the ten tasks. Moreover, our LLaSA 7B-M
achieves state-of-the-art (SOTA) performance in 4
out of 10 tasks within the LLM-based method.

It can be found that HGT 7B-M and G-Retrieve
7B-M did not achieve much improvement com-
pared to the naive LLM, which may be due to the
following reasons: 1) The projector-based strat-
egy introduces noise by feeding all node repre-
sentations into the LLM. In real-world structured
data question-answering scenarios, many cells are
irrelevant to the current question and may distract
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the LLM. In contrast, our G-Former compresses
all graph node representations into a fixed-length
token sequence, retaining only the most relevant in-
formation. 2) The projector-based strategy fails
to fully leverage the alignment objectives in pre-
training. During pretraining, we aligned the Q-
Former, which acts as a bridge between GNN rep-
resentations and the textual space, rather than di-
rectly aligning the GNN itself. Consequently, even
pretrained GNNs cannot directly enhance the final
performance of the LLM.

From the perspective of model parameters, we
find that the performance of LoRA-tuned Mistral
7B closely approaches that of the fully fine-tuned
StructLM 7B-M. When using LLaSA framework,
the LoRA-tuned Mistral 7B can surpass StructLM
7B-M, despite the former only requiring 400M
trainable parameters compared to the latter’s 7B
parameters, and outperforms StructLM 7B-M on
6 tasks. Additionally, we observe that fully fine-
tuning LLMs on SKG tasks may lead to a decline
in their performance on other tasks, whereas LoRA-
tuned LLMs experience a smaller drop. One piece
of evidence is the TabMWP dataset, which requires
mathematical reasoning, where LLaSA 7B-M sig-
nificantly outperforms StructLM 7B-M by 4.2%.

On the held-out data, although StructLM 7B
achieves a higher average performance, our LLaSA
significantly outperforms StructLM 7B on the SQA
dataset.

4.5 LLaSA with Different Base Models
To verify the generality of our pretrained hyper-
graph encoder and G-Former, we evaluate LLaSA
under different base models with different finetun-
ing strategies (Prompt Tuning and Lora Tuning),
the results are demonstrated in Table 2.

As shown in the table, the pretrained hypergraph
encoder and G-Former enhance the models’ ability
to handle SKG tasks and improve their generaliza-
tion to unseen datasets across most base models
(except for the prompt-tuned LLaSA-Mistral 7B,
which shows a performance drop on the held-out
data). Especially under the Freeze LLM setting,
LLaSA achieves significant improvements com-
pared to basic prompt tuning. Specifically, it deliv-
ers an approximate 10% performance boost across
Phi-3B, Llama2-7B, Mistral-7B, and Llama3-8B
models. This indicates that our pre-trained hy-
pergraph encoder and G-Former can be effec-
tively adapted to various LLMs, enhancing their
ability to handle structured data.
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Figure 5: The average performance of models using
different pretrained Hypergraph Encoder (GNN).

Under the LoRA tuning LLM setting, although
LLaSA achieves smaller improvements on the held-
in datasets, it consistently enhances model perfor-
mance on held-out datasets. This suggests that
our approach genuinely improves the model’s abil-
ity of handling structured data rather than merely
overfitting to the training data. Additionally, we
observed that LLaSA’s 0.9% performance improve-
ment on Phi-3B is notably greater than the 0.3%
improvement on Llama3-8B. This difference may
be attributed to Phi-3B’s inherently weaker ability
to process structured data, making the introduc-
tion of the hypergraph encoder more impactful in
enhancing its performance.

4.6 Comparison Between Different
Pretraining Strategies

We compared two strategies for pre-training the
GNN: (1) Llama based pretraining, which use ques-
tion answering task to pretrain a GNN based on
a frozen LLM, as shown in Figure 2 (a). (2) G-
Former-based pretraining, using both answer pre-
diction and Graph-Text Matching tasks, as shown
in Figure 2 (b). We select checkpoints with the
same training time for both strategies and con-
duct experiments under the frozen LLM setting,
the results are shown in Figure 5. The experimen-
tal results indicate that the GNN pretrained with
G-Former exhibits superior adaptability, showing
greater improvements across various models com-
pared to the GNN pretrained with Llama. The main
reasons are as follows: (1) In the Llama based pre-
training, the soft tokens are not essential since seri-
alized text is already included in the input, which
prevents the GNN from fully aligning with the tex-
tual embedding space. As a result, it is unclear
whether the GNN effectively encodes the table data
as expected or just helps the LLMs fit the training
data better. (2) The GNN pretrained with Llama
primarily aligns with the Llama text space, limiting
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Method Avg-I Avg-O Avg

LLaSA Llama-7B 51.0 13.6 32.3
w/o pretraining 47.2 8.6 27.9

w/o GNN 42.2 7.3 24.8

w/o G-Former 42.7 7.7 25.2

prompt tuning 38.5 6.9 22.7

Table 3: Ablation results on LLaSA Llama-7B. Avg-I
and Avg-O represent the average score of Held-In and
Held-Out datasets. The "w/o pretraining": randomly
initializing GNN and G-Former without pre-training.
The "w/o GNN": ignoring cross attention in G-Former.
The "w/o G-Former": ignoring the whole G-Former.

its adaptability to other models.

4.7 Ablation Study
Table 3 presents the results of our ablation study on
LLaSA Llama2-7B under the frozen LLM setting.
From the table, we can observe that compared to
the randomly initialized GNN, the pretrained GNN
helps the LLM achieve improvements of 3.8% on
Held-In datasets and 5.0% on Held-Out datasets.
This clearly demonstrates the effectiveness of the
pretraining process.

In the "w/o GNN" and "w/o G-Former" settings,
hypergraph information is ignored. The former
directly passes the query token through multiple
layers of self-attention, while the latter only ap-
plies a linear transformation via a fully connected
layer. They can be viewed as more complex forms
of prompt tuning. Although these two settings
achieved a small 4% improvement on Held-In
datasets compared to basic prompt tuning, they
do not show significant gains on Held-Out datasets.
This suggests that simple prompt tuning mainly
helps the model fit the training data better, without
truly enhancing its generalization capability.

5 Conclusion

In this work, we propose LLaSA, a framework that
converts structured data into hypergraphs and inte-
grates the hypergraphs representations as an addi-
tional modality into the input of LLMs. We pretrain
the hypergraph encoder on 25M tables with self-
supervised learning. The experimental results on
different LLMs over multiple datasets demonstrate
the effectiveness and generalization of our method.

Limitation

The limitations of our proposed LLaSA are as fol-
lows: (1) We used a fixed number of query tokens,

but the number of nodes in the hypergraph varies
significantly, with some graphs having as few as a
dozen nodes and others having over a hundred. As
a result, when faced with graphs that have a large
number of nodes, the G-Former may struggle to
capture information effectively. (2) Due to resource
constraints, we conduct our experiments using a
context length of 2K instead of the 8K used in
TableLlama. The performance of LLaSA in longer
contexts remains to be evaluated further.
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Overall Length Train Test

Dataset Input
(avg)

Output
(avg) Count Input

(max)
Output
(max)

# Nodes
(avg) # Trunc Count Input

(max)
Output
(max)

# Nodes
(avg) # Trunc

TabMWP 208 5 23059 709 33 20 0 7686 703 31 19 0

ToTTo 252 31 120761 2040 155 110 467 7700 2048 119 111 31

KVRet 573 17 6288 1217 161 57 0 807 1147 82 56 0

HybridQA 700 7 62682 2047 91 92 200 3466 2048 79 93 6

CompWebQ 1350 12 27639 2047 321 265 321 2816 2048 256 264 8

TabFact 660 5 92283 2045 5 94 2 12779 1687 4 93 0

WikiTQ 832 6 11321 2028 273 114 0 4344 2048 148 115 10

WikiSQL 689 7 56355 2047 518 96 16 15878 2048 244 98 1

FeTaQA 653 39 7326 1853 158 97 0 2003 1548 114 95 0

DART 134 30 62659 406 258 17 0 5097 261 109 17 0

SQA 657 35 12275 1812 1012 98 2 3011 1725 769 102 0

WikiTableText 150 27 10000 313 97 13 0 2000 226 89 14 0

Finqa 1230 21 6251 2040 72 29 186 1147 2048 61 31 25

Table 4: The statistics of numbers of input and output tokens in the training and test sets for each task. "# Trunc"
indicates the number of samples where the input length exceeds 2048 tokens and has been truncated. "# Nodes"
indicates the average number of nodes in hypergraphs.

A Pretraining Dataset

We use the 25 million tabled collected by TaBERT
(Yin et al., 2020). We designed three types of ques-
tion templates and used them to generate 10 ques-
tions for each table. The specific templates are as
follows:

1. What’s the column name of "{node_name}" ?

2. In the row where the value of {first_col_name}
is "{row_value}", what is the corresponding
value of {col_name}?

3. Are "{node_name1}" and "{node_name2}" in
the same row?.

B SKG Datasets

Some datasets are not used in our study, such as
FEVEROUS and Infotabs, because the tables in
these datasets are not well-structured, with some
rows having a different number of cells than the
table headers. The statistics of the SKG datasets
we used are shown in Table 4.
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