
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 1902–1917

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Option Symbol Matters: Investigating and Mitigating Multiple-Choice
Option Symbol Bias of Large Language Models

Zhen Yang1 Ping Jian* 1,2 Chengzhi Li1
1School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

2Beijing Engineering Research Center of High Volume Language Information Processing
and Cloud Computing Applications, Beijing Institute of Technology, Beijing, China

{bityangzhen, pjian, lichengzhi}@bit.edu.cn

Abstract

Multiple-Choice Question Answering (MCQA)
is a widely used task in the evaluation of Large
Language Models (LLMs). In this work, we re-
veal that current LLMs’ performance in MCQA
could be heavily influenced by the choice of
option symbol sets, due to the option symbol
bias. That is, when altering only the option
symbols (e.g., A/B/C/D→ i/ii/iii/iv), the
results could vary sharply, leading to a mar-
gin of approximately 10% in accuracy. To
uncover the mechanisms behind this, we inves-
tigate the internal components of LLMs from
a causal perspective. By measuring the causal
effects, we identify a small subset of attention
heads responsible for the symbol bias. Sub-
sequently, we interpret these key components
in a human-understandable way, showing that
attention heads with higher causal effects are
more likely to focus on only option symbols,
while those with lower causal effects tend to
distribute their attention across the content of
questions and options. It also motivates us to
pursue debiasing based on the causal effects.
Specifically, to mitigate such bias, we propose
a tuning-free, causal effect driven debiasing
method which intervenes the activations of
identified components according to their causal
effects, with stronger interventions correspond-
ing to higher causal effects. Experimental re-
sults demonstrate that the proposed method not
only alleviates aforementioned bias, but also
improves the MCQA performance of LLMs 1.

1 Introduction

Multiple-Choice Question Answering (MCQA) is
a fundamental and prevalent task for the evaluation
of large language models (LLMs) (Gao et al., 2021;
Zhong et al., 2024; OpenAI, 2023). In MCQA,
LLMs are asked to select the most suitable answers

*Corresponding author.
1Code will be released at https://github.com/

Young-Zhen/CEDE

Which of these countries is not in Europe?
(A) Italy (B) Spain
(C) Greece (D) Israel (A)

(x4)

Change only the
option symbols

Which of these countries is not in Europe?
(x1) Italy (x2) Spain
(x3) Greece (x4) Israel

Figure 1: An illustrative example of option symbol bias
of LLMs in MCQA. When changing only the option
symbols, the responses generated by LLMs could be
significantly different.

from given candidate options based on their com-
prehension of corresponding questions, as exempli-
fied in Figure 1. To ensure an accurate assessment
and a fair comparison among different LLMs, we
always expect these models to respond robustly in
MCQA. Unfortunately, previous researches have
demonstrated certain sensitivities of LLMs in sev-
eral aspects. For instance, the arrangement of
few-shot demonstrations (Zhao et al., 2021), the
number of options (Wang et al., 2024) and even
the order of options (Pezeshkpour and Hruschka,
2024; Zheng et al., 2024) can significantly impact
LLM’s performance in MCQA. Relevant studies
(Robinson and Wingate, 2023; Xue et al., 2024)
suggest that these sensitive behaviors partially re-
flect the limited symbol binding capacity of LLMs.
Namely, LLMs struggle to associate the content
of options with the corresponding symbols, which
also raises the question: does the choice of option
symbols influence the symbol binding capacity?
If so, to what extent can it impact the LLMs’ per-
formance in MCQA? Through extensive experi-
ments, we find that the option symbols do matter
to LLMs. Specifically, when only the option sym-

1902

https://github.com/Young-Zhen/CEDE
https://github.com/Young-Zhen/CEDE


bols are altered (e.g., A/B/C/D→ i/ii/iii/iv),
the responses generated by LLMs could exhibit a
notable difference (as illustrated in Figure 1), result-
ing in an accuracy margin of approximately 10%.
In other words, LLMs demonstrate sensitivity to
multiple-choice option symbols, which we define
as the option symbol bias.

Given the outstanding performance of LLMs
in numerous tasks (Wei et al., 2022; Zhao et al.,
2023; OpenAI, 2023), it is pertinent and essential
to delve into the causes of aforementioned vulner-
abilities and to address them, thereby facilitating
the development of more robust and reliable LLMs.
Regrettably, despite the analyses of training data
(Mu and Andreas, 2020) and investigations treat-
ing LLM as black-box (Zheng et al., 2024; Wang
et al., 2024), the intrinsic mechanisms underlying
the LLM sensitivity still remain mysterious, due
to the complex and non-linear interactions among
densely-connected layers (Zhang et al., 2024b). In
this paper, we aim to uncover the inner mecha-
nisms underlying aforementioned option symbol
bias, interpret these mechanisms in a way that is
comprehensible to humans, and ultimately mitigate
the bias.

Concretely, we investigate the internal compo-
nents of LLMs in MCQA task using a causal in-
tervention method known as path patching (Wang
et al., 2023), which perturbs the activations of at-
tention heads within the transformer architecture
(Vaswani et al., 2017) to observe the causal effects
under given metrics. In this work, by measuring
the logit difference (Zhang and Nanda, 2024) after
perturbation, we identify a small subset of attention
heads that appear to be responsible for this bias.

Subsequently, the roles of these key compo-
nents are interpreted in a human-understandable
way, suggesting that attention heads with higher
causal effects are more likely to excessively focus
on the option symbols. We propose that this may
be due to the fact that modern LLMs are mostly pre-
trained in a next-token prediction paradigm (Anil
et al., 2023; OpenAI, 2023; Dubey et al., 2024).
As a result, when performing MCQA, the models
tend to search for the most suitable next-tokens—
obviously, the option symbols—of given questions,
ultimately resulting in a special focus on the option
symbols. In contrast, the heads with lower causal
effects tend to distribute their attention across the
content of questions and options.

Beyond identifying and interpreting the key com-
ponents, the correlation between causal effects and

the attention patterns of these components also
motivates us to mitigate the option symbol bias
based on the causal effects. Specifically, we pro-
pose a tuning-free, Causal Effect driven DEbiasing
(CEDE) method to alleviate such bias. In CEDE,
the activations of identified key components are
steered towards the debiased direction according
to the causal effects, with stronger interventions
applied to components exhibiting higher causal ef-
fects. Experimental results demonstrate the effec-
tiveness of the proposed debiasing method.

It is noteworthy that this work does not aim to
prove that currently used option symbol set (i.e.,
A/B/C/D) is not the best choice for LLMs, nor
does it seek to find a better option symbol set for
MCQA. Instead, our intention is to leverage the ob-
served option symbol bias to explore the intrinsic
mechanisms within LLMs during MCQA, which
provides insights into the emergence of certain be-
haviors. The main contributions of this paper can
be summarized as follows:

• Identifying: We identify a subset of attention
heads of LLMs that contribute to the option
symbol bias in MCQA, which indicates the
LLM sensitivity to option symbols.

• Interpreting: The behaviors of identified
key components are interpreted in a human-
understandable way, where the attention pat-
terns show close relationship to causal effects.

• Mitigating: Given the findings during inter-
preting, a debiasing method, which is tuning-
free, computation friendly and efficient, is pro-
posed to mitigate the option symbol bias.

2 Exploring the Existence of Option
Symbol Bias

In this section, we explore the existence of option
symbol bias across various types and parameter
sizes of LLMs, including llama-2-7b/13b/70b
(Touvron et al., 2023), llama-3-8b (Dubey et al.,
2024), and mistral-7b (Jiang et al., 2023). We
evaluate the MCQA performance of these LLMs
on MMLU (Hendrycks et al., 2021), RACE-middle
(Lai et al., 2017) and RACE-high, which are widely
used benchmarks for LLM evaluation. More de-
tails about the dataset and evaluation process are
described in Appendix A.

For option symbols, we select some com-
monly used formats such as A/B/C/D, 1/2/3/4,
i/ii/iii/iv, etc. Particularly, we also include
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MMLU RACE-Middle RACE-High
Models A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4

LLaMA2-7B 36.52 25.51 37.62 39.06 46.93 26.04 39.13 49.51 39.42 27.18 30.96 41.22
LLaMA2-13B 50.11 42.55 47.46 47.64 65.18 59.47 59.82 64.69 59.83 53.37 51.32 56.38
LLaMA2-70B 62.55 61.43 62.74 63.75 83.84 80.08 82.87 84.54 81.90 78.73 80.62 82.90
LLaMA3-8B 60.07 58.51 59.89 59.21 78.48 65.67 76.74 77.02 73.81 62.01 72.38 73.01
Mistral-7B 58.25 43.21 56.54 56.05 80.36 54.46 79.32 79.04 75.67 50.29 74.24 73.76

one-shot 38.55 27.62 41.75 40.82 54.25 30.06 52.36 46.17 49.46 30.85 42.71 38.65

Table 1: The accuracy (%) of various LLMs on MMLU and RACE. It can be observed that LLMs’ performance
varies sharply with different option symbols. Bold numbers correspond to the best results across different option
symbols, whereas the underlined numbers correspond to the worst. one-shot experiments are conducted on LLaMA2-
7B where a case example is shown for model before the presentation of current question (see Appendix B).

x1/x2/x3/x4 since xi is a common abstract sym-
bol used to represent specific content, frequently
encountered in mathematical or problem-solving
contexts. The prompts for LLMs are constructed
as Appendix B.

The results of aforementioned LLMs on MMLU
and RACE are shown in Table 1. LLMs exhibit vari-
ations in performance with different option sym-
bols, such as x1-x4 perform best for LLaMA2-
7B while A-D demonstrate merits in other cases,
which indicates that the option symbol bias persists
across various benchmarks and models. The ac-
curacy gap caused by option symbol bias is up to
25.90% (Mistral-7B on RACE-Middle), and ap-
proximately 10% on average. It is encouraging
that LLMs show improved performance as model
size increases, as shown in Table 1. But regrettably,
the bias has not appeared to be fully addressed
with larger scale, which indicates that the option
symbol bias exists not only across different mod-
els but also at various scales. On the other hand,
even though LLaMA3-8B achieves minimum bias
on MMLU, its performance with different option
symbols still exhibits a pronounced margin on both
RACE-Middle and RACE-High, further highlight-
ing the prevalence and persistence of the option
symbol bias. Additionally, we also validate the per-
sistence of the bias across different prompt formats
by conducting one-shot prompting. As shown in
Table 1, with one-shot prompting, the performance
exhibits notable improvement across different tasks,
which is consistent with previous studies. However,
the bias persists regardless of the prompt formats,
which further highlights the intrinsic cause of this
bias.

3 Understanding the Mechanisms Behind
the Option Symbol Bias

Despite the widespread existence of option symbol
bias, it remains unclear what happens within LLMs
that lead to this. In this section, we firstly iden-
tify the key components responsible for such bias
through causal intervention, then analyze the inter-
nal patterns to decode their roles during MCQA.

3.1 Identifying Key Components

Preliminary The transformer structure consists
of attention modules and multi-layer perceptrons
(MLPs) interconnected via residual connections
(Vaswani et al., 2017). It can be conceptualized
that the residual connections function as the main
stream (denoted as residual stream), while the at-
tention modules and MLPs serve as bypass streams,
adding their computational results to the residual
stream (Meng et al., 2022). This formulation makes
it clear that, in principle, each component has a di-
rect path to the final logits of transformers. There-
fore, the change in final logits could be reasonably
attributed to certain components. More details on
conceptualizing decoder-only transformers in the
context of interpretability can be found in Elhage
et al. (2021).

Method We utilize a causal intervention tech-
nique known as path patching to measure how im-
portant a LLM component is to the option symbol
bias. Path patching typically involves the following
steps: 1) running model on reference data Dr and
caching the head activations, 2) patching targeted
activations with corrupted data Dc while freezing
others with Dr, then caching the final logits of
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residual stream, 3) measuring the causal effect af-
ter patching under specific metrics.

In this work, Dr consists of multiple-choice
questions from MMLU and RACE2 with option
symbols derived from random symbol sets, such
as A-D, i-iv or 1-4 (but not A/1/i/D). In contrast,
the data in Dc differs only in the option symbols,
with the contexts remaining unchanged. To further
control potential factors and accurately measure the
effects caused by option symbol changes, we only
select the one-token symbols as option IDs, thereby
excluding x1-x4. Finally, the causal effects after
patching are calculated as follows:

e(i)n =
logitp − logitr
logitr − logitc

(1)

en =

∑|Ω|
i=1 e

(i)
n

|Ω| , (2)

where n is the number of heads, and logitr, logitc
and logitp represent the logit from residual stream
with reference data, corrupted data and patched
activations respectively, e(i)n is the causal effect
for i-th reference-corrupted data pair, |Ω| denotes
the size of such data pairs, and en is the averaged
causal effect. Unless otherwise specified, causal
effect refers to en in the following discussion.

By measuring causal effects, we can identify
which components are responsible for changes in
model predictions’ logits when altering only the
option symbols. Given the crucial role that the
attention module has demonstrated in previous in-
terpretability studies (Goldowsky-Dill et al., 2023;
Hanna et al., 2023; Wang et al., 2023), we mainly
focus on the attention heads during key components
identification. Specifically, we patch all attention
heads one by one, and record the corresponding
causal effects in En ∈ Rn×n.

Results Figure 2 depicts the results of path patch-
ing (i.e., En) organized by the numbers of the lay-
ers and heads. Red color signifies that the head
exerts a negative effect on output token prediction
when option symbols are altered, whereas blue in-
dicates a supportive effect. And the intensity of
the color reflects the strength of such effects. In
figure 2, it can be observed that: 1) Only a small
fraction of heads have a relatively significant ef-
fect. A small number of heads yield relatively more

2Due to limitations in computational resources, some texts
from RACE are too long to do patching within available GPU
memory. Fortunately, empirical results (Zhang et al., 2024b)
have demonstrated that a small amount of data can yield simi-
lar results.

Figure 2: The results of path patching on LLaMA2-
7B across the data constructed for option symbol bias.
For each head, a darker color indicates a larger logit
difference of the correct answer after patching, which
also reflects the importance of the head in option symbol
bias to some extent.

significant effects compared to others, indicating
the sparsity of key components within option sym-
bol bias problem. Here, we distinguish the heads
with causal effects exceeding -0.04 (-4%) as “key
components”. The sparsity of the key heads also
enables us to analyze their attention patterns manu-
ally. 2) Key heads are almost exclusively found
in the middle layers, concentrated between layer
15-25, while the earlier layers bear micro influence
on the option symbol bias. Such observation veri-
fies the function difference between the prior and
later layers in transformers, which is consistent
with previous findings (Jawahar et al., 2019; Vig
and Belinkov, 2019; Ghiasi et al., 2022). More
results of other LLMs can be found in Appendix C.

Through path patching, we identify some key
heads that appear to contribute to the option sym-
bol bias. However, it raises several critical ques-
tions: Are these heads genuinely responsible for
the bias? What functions do they perform in the
model’s decision-making process? To figure out
the answers to these questions, it is essential to
interpret the key heads in a human-understandable
manner.

3.2 Interpreting the Patterns

3.2.1 Method
Now, we interpret each key head, by conducting
a straightforward analysis of the attention patterns
Aij ∈ Rs×s exhibited in option symbol bias, where
s denotes the length of input tokens, and ij repre-
sents the j-th head in i-th layer. Aij assesses the
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(a) (b)

Figure 3: The attention patterns of top-2 key heads 18.31 and 24.29 in LLaMA2-7B on questions with selected
option symbols. S1, S2, S3 and S4 signify specific option symbols and <bos> denotes the special token in LLMs
representing the beginning of sentence. It can be observed that the heads mainly attend to the option symbols,
excluding <bos> and “\n” with special effects in LLMs.

relevance of each input token relative to others,
allowing human to understand which content the
corresponding head attends to. For each multiple-
choice question, we average the attention patterns
across the aforementioned 3 option symbol sets, ex-
cluding the two-token symbols x1-x4 which would
change the sequence length.

3.2.2 Results and Discussion
Main Results Figure 3 visualizes the attention
patterns with specific question of the top-2 key
heads identified by path patching. Regarding heads
18.31 (referring to the 31st head in 18th layer) and
24.29, which exhibit the two highest causal effects
as depicted in Figure 2, it can be observed that they
primarily attend to the option symbols. Specif-
ically, for the earlier tokens in the question, the
heads constantly shift the attention across the four
options, as illustrated in Figure 3(a) and (b). In
contrast, for the last token in the question related
to the output answer, as shown in Figure 4, there
is a pronounced emphasis on the four option sym-
bols, with the token predicted by the model as the
correct answer receiving greater attention than the
others. It suggests that the heads exhibit a sparse
attention to only option symbol tokens during
the answer generation process. To make the re-
sults more convincing, we present additional cases
with various questions in Appendix D, which are
consistent with aforementioned observations.

Discussion Regarding humans, it is relatively
straightforward to integrate the content of candi-

date options with their corresponding symbols and
realize that the changes in symbols do not affect
the judgment of the correct answers, thereby giving
consistent answers regardless of the option symbol
changes. However, as described in the main results,
this does not seem to be the same case for LLMs.
When performing MCQA, LLMs, given the in-
terpreted patterns, predict the answer by focus-
ing on the option symbols, appearing to iden-
tify the most suitable symbol token to appear in
the next position following the given question.
From a positive perspective, it indicates that the
key heads “know” which token should be gener-
ated during the answer prediction process. But
on the other hand, sparse attention in key heads
is paid to only the option symbols, causing LLMs
excessively rely on the provided option symbols to
determine answers, which explains why they show
such sensitivity to option symbol changes to some
extent. For the verification of the negative effect of
the sparse attention in MCQA, a reasonable piece
of evidence is that when the heads with sparse at-
tention are ablated by setting their activations to
zero (i.e., in the zero-ablation experiments in Table
2), the LLM’s performance on MCQA not only
does not dramatically decline, but actually exhibits
a slight yet notable improvement. Compared to
relevant researches (Goldowsky-Dill et al., 2023;
Zhang et al., 2024b) where the identified compo-
nents take positive effects in certain tasks and the
corresponding performance decline significantly
after zero-ablation, it is reasonable that the identi-
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(a) Last Row of Attention Pattern for 18.31

(b) Last Row of Attention Pattern for 24.29

Figure 4: In the last row of attention patterns associated
with answer generation, key heads exhibit a particular
focus on the option symbols, especially on the predicted
answer (within 18.31).

fied heads with sparse attention in our experiments
appear to be responsible for the option symbol bias.

Beyond these, the reasons for an LLM’s supe-
rior or inferior performance with specific option
symbol may be varied. And conducting meticu-
lous case studies on countless option symbol sets
(almost any logically related characters, words or
even icons can serve as option symbols!) falls be-
yond the primary scope of this paper. Here, we
give some reasonable hypotheses for selected 4
option symbol sets which may motivate future re-
searches. x1-x4 exhibit superior performance of
several LLMs, which could be attributed to their
mathematical ability at representing specific con-
tent, frequently encountered in mathematical or
problem-solving contexts. As for i-iv, Roman
numerals may be interpreted as numbers in certain
contexts, but they can also be misread as other sym-
bols or characters (e.g., ’i’ may be perceived as the
first-person pronoun ’I’) by LLMs. This ambiguity
could hinder the model’s ability to accurately differ-
entiate between options. Notably, ’A’ may also be
misunderstood as indefinite article by LLMs, but
large-scale data with A-D as option symbols can po-
tentially address the problem. More interpretability
studies delving into these specific cases would fur-
ther facilitate the reliability of LLMs, charming
avenue for future researches.

Association with Next-Token Prediction Al-
most all of the LLMs are pre-trained using next-
token prediction paradigm:

min
θ

Êz∼τn

[ ∑

t∈[T ]

− log (qθ(zt|z1, . . . , zt−1))

]
,

(3)

where models are trained to predict next token zt
given prefix tokens z1, . . . , zt−1. Benefiting from
next token prediction, LLMs can accurately iden-
tify which kind of tokens (i.e., option symbols)
should be generated to answer the given questions,
as discussed above. However, as for MCQA task,
the dependency between the answer and the actual
content it represents, like in human thoughts, is not
explicitly modeled by next token prediction (Le-
Cun, 2024; Bachmann and Nagarajan, 2024). Such
pre-training approach forces the models to focus
on candidate next tokens (option symbols) to gener-
ate contextually appropriate outputs (Bengio et al.,
2000; Bengio and Bengio, 2000), which appears
to result in aforementioned sparse attention within
key heads on option symbols.

This gap highlights a limitation in the model’s
capacity to meaningfully associate symbolic repre-
sentations with their semantic content, which again
demonstrates the poor symbol binding capacity of
LLMs (Robinson and Wingate, 2023; Xue et al.,
2024). Given the criticism of next token prediction
about insufficient alignment with human cognitive
processes, along with the findings in this paper,
it is essential to thoroughly eliminate the option
symbol bias problem during the pre-training stage,
involving the alignment of LLMs’ symbol binding
capabilities with human-level proficiency.

3.2.3 What Roles Do Other Heads Perform?
Beyond interpreting the key heads, we are also
curious about the roles of other heads in option
symbol bias. We select the two heads with the
smallest causal effect from top-32 heads, and visu-
alize their attention patterns. As shown in Figure 5,
they tend to spread the attention across the content
of question and candidate options, which shows a
pronounced difference with the key heads. Unfor-
tunately, according to the causal effects, they are
less accountable for the option symbol bias.

4 Mitigating the Bias

4.1 Method
Given the behavior difference between key heads
and other heads with lower causal effects, we pro-
pose an adaptive intervention method, CEDE, to
mitigate the option symbol bias, which steers the
activations based on the computed causal effects.

Firstly, we hypothesize that a head’s activation
consists of the bias vector and the answer vector:

vij = vbiasij + vansij , (4)
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(a) (b)

Figure 5: The attention patterns of heads 12.26 and 29.15 with low causal effects in option symbol bias.

where bias vector indicates the LLM bias for differ-
ent option symbols while answer vector determines
the prediction of true answers. Given that the bias
persists across different symbols while the answers
differ for various questions, if we average the acti-
vations of each head over different questions with
different symbols, we can deduce that:

1

|D|
∑

d∈D
vbiasd = Vij

1

|D|
∑

d∈D
vansd

.
= 0

(5)

1

|D|
∑

d∈D
vd

.
= Vij + 0 = Vij , (6)

where vbiasd is the bias vector of specific head on
question d, D is the dataset consists of questions
with different option symbols, and Vij represents
the average bias vector for a head on D. Equa-
tion 6 suggests that the average action of a head
vavgij across different question with various symbols
tends to approach the average bias vector Vij .

Subsequently, the difference between vavgij and
vij is viewed as a stimulation direction γij for de-
biasing vij :

γij = vij − vavgij . (7)

Finally, the debiased activation is calculated as:

vdebiasedij = vij + αeijγij , (8)

where eij denotes the causal effect of head mea-
sured by path patching, and α is a hyperparameter.
This is equivalent to adaptively shifting vij along

the stimulation direction based on corresponding
causal effect.

During experiments, we observe that as causal ef-
fects decrease, eij drops dramatically, which causes
the intervention to be concentrated on just a few
heads, thus hindering the intervention efficacy. To
ensure broader coverage of more heads, eij is re-
fined as:

êij = |κ|softmax
i,j∈κ

(eij), (9)

where κ contains the heads to be intervened,
softmax function achieves

∑
eij = 1, and |κ| ∗

softmax maps eij to 0 ∼ 1 virtually.

4.2 Experiments

4.2.1 Experimental Details
We evaluate the performance of CEDE by interven-
ing the activations of top-32 heads in causal effects
and leaving other activations unchanged. vavgij is
estimated on 1,000 questions from MMLU and
RACE with 4 kinds of option symbols, and α is set
to 20.0 empirically. All experiments are conducted
on 2 NVIDIA A800 80GB GPUs.

4.2.2 Main Results
Table 2 shows the results of CEDE and other two
simple and intuitive methods: zero and mean ab-
lation, which replace the activations with zero and
the mean activations (i.e., vavgij ), respectively.

In zero ablation, although the overall perfor-
mance with different option symbols declines, there
is still an improvement in certain cases, such as
on RACE-High, after the top-32 key heads are
knocked out. It indicates that the identified key
heads do bear certain responsibility for the option
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MMLU RACE-Middle RACE-High
Models A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4

Baseline 36.52 25.51 37.62 39.06 46.93 26.04 39.13 49.51 39.42 27.18 30.96 41.22
Zero Ablation 34.51 32.54 38.79 35.97 43.66 35.79 37.88 46.65 40.77 31.59 33.27 42.17
Mean Ablation 33.54 27.87 37.21 37.57 41.63 32.18 37.76 47.49 37.19 29.06 30.90 40.02
CEDE 38.11 35.85 38.14 39.53 49.03 39.28 37.88 49.82 40.58 32.54 33.95 42.74

Table 2: Comparison results between the baseline LLaMA2-7B and various debiasing methods. The proposed
CEDE achieves improvements in accuracy (%) while reducing option symbol bias.

MMLU
Models A-D i-iv 1-4 x1-x4

one-shot 38.55 27.62 41.75 40.82
w/ CEDE 39.69 35.72 41.72 41.44

Table 3: Results of CEDE with one-shot prompting and
different prompt format.

symbol bias and the removal of these heads can
sometimes work. However, as shown in Equation
4, bluntly setting the key heads’ activations to zero
prevents the heads from utilizing the answer vector
to determine the true answer, which is verified by
the overall inferior performance of zero ablation.
On the other hand, the performance in mean ab-
lation is more severely impaired, highlighting the
negative effects of the bias vector in MCQA.

In contrast, CEDE effectively mitigates such
bias across various dataset and exhibits increased
robustness to symbol changes compared to base-
line model, without compromising the overall per-
formance in MCQA. It demonstrates the robust-
ness and effectiveness of the proposed debiasing
method. It is noteworthy that the main objective of
our method CEDE is to mitigate the symbol bias
while preserving the performance, rather than sig-
nificantly improve the MCQA performance. Since
we can achieve almost “no bias” by degrading the
performance across all symbol sets to a dramati-
cally low level, however, that is not our goal. In
brief, CEDE is aimed at debiasing while main-
taining performance, rather than improving, even
though it indeed achieves improvement on most
symbol sets.

Notably, after debiasing by CEDE, the perfor-
mance with using i-iv as option symbols could
exceed a significant improvement (≈ 10%) in ac-
curacy, which indicates that the potential option

symbol bias is far more severe than we realize
and CEDE effectively alleviates this issue. On
the other hand, the proposed method also achieves
improvement on x1-x4, which exhibits the best
performance before debiasing. This indicates that
CEDE not only reduces the influence of the bias
vector but also directs the LLM toward the cor-
rect answer, further demonstrating the efficacy of
CEDE. The ablation study about α and causal ef-
fect is supplemented in Appendix E.

Despite the effectiveness of this approach in mit-
igating biases introduced by the internal mecha-
nisms of LLMs, it falls short of offering a com-
prehensive solution. Given the countless nature of
option symbols, it is impractical to estimate and
debias on every possible symbol set. To develop
a reliable LLM with robust symbol-binding capa-
bilities, it is crucial to address this issue at the
pre-training stage to explore improved pre-training
methodologies, as discussed in Sec. 3.2.2.

5 Related Work

Mechanistic Interpretability Interpreting the
inner mechanism of neural networks, especially
LLMs, has raised increasing attention in recent
years (Räuker et al., 2023; Madsen et al., 2023;
El-Gayar et al., 2024). Research efforts have fo-
cused on understanding internal features (Elhage
et al., 2022; Ju et al., 2024b; Allen-Zhu and Li,
2024), developing mathematical frameworks for
interpreting machine learning architectures (El-
hage et al., 2021), and identifying circuits within
models (Chughtai et al., 2023; Nanda et al., 2023;
Hanna et al., 2023; Lieberum et al., 2023; Wang
et al., 2023). Furthermore, deeper understand of
the mechanisms has also motivated the refinement
of models, such as better-architecture design (Fu
et al., 2023) and post hoc enhancement (Ju et al.,
2024a; Zhang et al., 2024b). This work generally
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follows the "identify-interpret-refine" process in
Zhang et al. (2024b), where LLMs are not only
being interpreted but also refined.

LLM Intervention Despite the impressive suc-
cess of LLMs in numerous tasks (Frieder et al.,
2023; Kojima et al., 2022; Zhang et al., 2023),
they still exhibit substantial room for improve-
ment across various domains, such as faithfulness
(Turpin et al., 2023), truthfulness (Lin et al., 2022),
reasoning ability (Li et al., 2024), etc. Many works
focus on fine-tuning LLMs using downstream data
(Bao et al., 2023; Rafailov et al., 2023), which is
particularly resource-consuming due to the high
computational demands of LLMs. Another line of
research seeks to directly intervene in the internal
activations of models, steering the activations to-
ward a target direction (Li et al., 2023; Zhang et al.,
2024a; Jorgensen et al., 2023; Cao et al., 2024; Luc-
chetti and Guha, 2024). These methods are more
computationally efficient, as they perturb the activa-
tions during the forward pass, eliminating the need
for backward computation. The proposed CEDE
falls within this category, thus sharing all the merits
of activation intervention. Additionally, the acti-
vations in CEDE are adaptively shifted based on
causal effects, thereby demonstrating more effec-
tive bias mitigation and enhanced editing flexibility.

6 Conclusion

In this paper, we systematically investigate the sen-
sitivity of LLMs to option symbols, defined as op-
tion symbol bias, when performing MCQA. We
firstly demonstrate the ubiquity of such bias by con-
ducting extensive experiments on various LLMs
with different option symbols. Then, we delve into
the internal components within LLMs through a
causal intervention method known as path patching.
Through path patching, we not only identify a sub-
set of attention heads responsible for the sensitivity,
but also interpret their roles through the extracted
attention patterns. Our exploration reveals that
the bias can be attributed to the inner excessive
and sparse focus on symbol tokens, which further
relates to the next token prediction paradigm in
pre-training. Finally, we propose a inference-time
debiasing method to intervene the activations of
identified components based on their causal effects.
Expriments demonstrate the effectiveness of pro-
posed method. We advocate for increased research
efforts directed towards exploring the true capacity
of LLMs, emphasizing the need to better address

LLM sensitivities during the pre-training stage.
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Limitations

The option symbol sets selected in our experiments
are commonly used to represents specific content,
thus allowing us to investigate the option symbol
bias in a general and broad context. However, due
to the countless characteristic of option symbols,
the LLM performance under other symbol sets still
remains unexplored. Additionally, the bias vector
in proposed CEDE is also estimated on selected
symbols, which may not cover all possible sym-
bols. A more accurate estimation may yield further
improvement.

While the proposed CEDE method has proven ef-
fective, it remains a post hoc refinement for trained
LLMs. A thorough and comprehensive elimina-
tion of option symbol bias should be initiated dur-
ing pre-training stage, involving the modeling of
symbol-binding capacity to more closely align with
human-level proficiency.

Finally, due to space and resource constraints,
we conduct detailed debiasing experiments only
on LLaMA2(7B), and do not include all modern
LLMs, such as OPT (Zhang et al., 2022), Pythia
(Biderman et al., 2023), and GLM (Du et al., 2022).
We encourage future research to carry out compre-
hensive experiments across a wider range of LLMs.

Ethics Statement

This paper mainly focus on interpreting and miti-
gating the option symbol bias in MCQA of large
language models, highlighting that modern LLMs
are sensitive to option symbol changes and exhibit
different decision-making patterns compare to hu-
mans. Our goal is to mitigate the potential bias
by understanding why they perform such behavior
first, thereby advancing the development of more
reliable and robust LLMs. Nonetheless, the find-
ings in this paper about LLM sensitivity and inner
mechanisms may be misconducted by malicious
actors to attack or mislead LLMs. Therefore, we
stress the importance of increased oversight by rel-
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evant authorities concerning the applications of
LLMs.

Last but not least, although we use expressions
such as "the LLMs/attention heads know ..." in this
paper, it does not imply that we claim current LLMs
possess consciousness or can think like a human.
On the contrary, the results from this paper and
other relevant researches suggest that current LLMs
are still far from achieving true artificial general
intelligence (AGI).
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A Dataset and Evaluation

MMLU contains approximately 16,000 4-option
questions covering a variety of subjects, such as
mathematics, physics, public relations, etc. And
RACE consists of near 28,000 passages and near
100,000 questions with 4 options in reading com-
prehension format, which tasks the models to
choose the correct answers based on their com-
prehension of given passages. It is divided into
two subsets according to the difficulty of questions:
for middle school students (RACE-Middle) and for
high school students (RACE-High).

The evaluation process follows the mainstream
LLM evaluation frameworks (Gao et al., 2021;
Hendrycks et al., 2021; Zheng et al., 2024). Specif-
ically, we gather the probabilities of option symbol
tokens and take the maximum one as the predicted
answer.

B Prompt Formats

We construct the prompts for LLMs as follows,
which are consistent with Lieberum et al. (2023). It
forces the model to directly output the answer "X"
(option symbol), rather than spreading the predic-
tion between several almost identical tokens such
as "X", " X", " X.", " X,", etc (Lieberum et al.,
2023).

Prompt Example for MMLU
Question: Which of the following is not a
basic somatosensation?
Options:
(A) pain
(B) touch
(C) cold
(D) itch
Answer:(

Prompt Example for RACE
Passage: Have you ever complained why
life is so tiring? Does the sky sometimes
seem dark to you? Are your studies some-
times not successful? Well, friends, cheer
up and smile all the time. If you see the
world with your warm heart , you’ll find
that the whole world smiles to you. While
in school, sometimes you are tired of your

lessons, but have you ever noticed the happy
smile on your teacher’s face when you did
a good job? One day it is fine. Just before
you want to go out, it suddenly starts to
rain . Maybe you would feel very sad and
start complaining about the weather. But
dear friends, why don’t you sit down and
listen to the free concert that the nature of-
fers you? And with the timely rain , crops
in the fields will grow better and better and
farmers will have a good harvest. Although
everyone wants to succeed in what he tries
to do, sometimes failure can’t be avoided . I
think failure is not terrible, and the terrible
thing is that we are afraid of it and give up
hope . When we face failure , we must be
confident in ourselves, draw a useful lesson
from it and try our best to finish what we
have to do. As a popular saying goes , "
Failure is the mother of success ." Attitude
decides everything . With an optimistic atti-
tude life is easy and pleasant . Let’s smile
to whatever we meet and the whole world
will smile to us .
Question: People sometimes complain _ .
Options:
(A) the sky is always dark
(B) their studies are successful
(C) they see the world with their heart
(D) life is tiring
Answer:(

one-shot Experiment
{case example}
Question: Which of the following is not a
basic somatosensation?
Options:
(A) pain
(B) touch
(C) cold
(D) itch
Answer:(

C More Results of Path Patching on
Other LLMs

The results of path patching on LLaMA2-13B and
Mistral-7B are shown in Figure 6. As can be ob-
served, the path patching results on other LLMs are
consistent with the findings presented in Section
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(a) LLaMA2-7B (b) LLaMA2-13B (c) Mistral-7B

Figure 6: Resuls of path patching on other LLMs.

(a) (b)

(c) (d)

Figure 7: Additional attention patterns across various questions align with the primary results discussed in Section
3.2.2, reinforcing the credibility of the discussion and conclusions.

3.1, where key heads constitute only a small por-
tion of the overall model and they generally appear
in the middle and later layers.

D More Attention Pattern Cases

To make the discussion in Section 3.2.2 more con-
vincing, we provide more attention patterns with
various questions. The results are shown in Figure
7. The additional patterns illustrated in Figure 7
exhibit consistent behaviors with that in Figure 3.

E Ablation Study

The effect of α. Firstly, we investigate the
influence of the hyperparameter α. We sweep the
α from 0.0 to 100.0 and obtain the corresponding
performance of CEDE on RACE-Middle with
i-iv (on LLaMA2-7B), where CEDE exhibit the

maximum improvement in accuracy. The variation
in accuracy with respect to α is shown in Figure
8. When α is set to 0.0, the CEDE degrades to the
baseline and has no impact on the activations of the
heads. It can be observed that even with a slight
adjustment of activations toward the stimulation
direction (α = 3.0), CEDE can achieve a notable
increase in accuracy, which indicates the effective-
ness of stimulation direction in answer prediction.
However, the performance shows a noteworthy
decline when α is too large (=100.0). We also
decode the output of LLaMA2-7B when α equals
100.0, and find that the model struggles to output
tokens in the symbol sets i-iv and generates noisy
output, which suggests that intensive stimulation
of activations would cause them to deviate from
the normal semantic space.
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MMLU RACE-Middle RACE-High
Models A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4 A-D i-iv 1-4 x1-x4

CEDE 38.11 35.85 38.14 39.53 49.03 39.28 37.88 49.82 40.58 32.54 33.95 42.74
CEDE w/o CE 36.92 33.28 36.34 38.72 47.60 38.55 37.19 49.44 38.69 30.85 30.22 40.59

Table 4: Ablation results of causal effect in CEDE, where CE is the abbreviation of causa effect.
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Figure 8: The results of CEDE across the range of α
from 0.0 to 100.0.

The effect of causal effect. CEDE adaptively
shifts the activations based on the causal effect.
Here, we also aim to investigate the effect of the
adaptive intervention. The results of CEDE and
without causal effect are shown in Table 4. As
can be observed, although CEDE without causal
effect shows marginally improvement compare to
the baseline (LLaMA2-7B without CEDE), its per-
formance still lags behind the CEDE driven by
causal effect, which demonstrates the rationale and
effectiveness of the causal effect driven activation
intervention in CEDE.
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