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Abstract

Large language models (LLM) hold significant
potential for applications in biomedicine, but
they struggle with hallucinations and outdated
knowledge. While retrieval-augmented gener-
ation (RAG) is generally employed to address
these issues, it also has its own set of chal-
lenges: (1) LLMs are vulnerable to irrelevant or
unhelpful context, (2) medical queries are often
not well-targeted for helpful information, and
(3) retrievers are prone to bias toward the spe-
cific source corpus they were trained on. In this
study, we present RAG? (RAtionale-Guided
RAG), a new framework for enhancing the reli-
ability of RAG in biomedical contexts. RAG?
incorporates three key innovations: a small fil-
tering model trained on perplexity-based labels
of rationales, which selectively augments in-
formative snippets of documents while filter-
ing out distractors; LLM-generated rationales
as queries to improve the utility of retrieved
snippets; a structure designed to retrieve snip-
pets evenly from a comprehensive set of four
biomedical corpora, effectively mitigating re-
triever bias. Our experiments demonstrate that
RAG? improves the state-of-the-art LLMs of
varying sizes, with improvements of up to 6.1%,
and it outperforms the previous best medical
RAG model by up to 5.6% across three medical
question-answering benchmarks. Our code is
available at https://github.com/dmis-lab/RAG2

1 Introduction

Large language models (LLM) (OpenAl, 2023;
Saab et al., 2024; Al@Meta, 2024) have demon-
strated remarkable performance across various
tasks in biomedicine, including USMLE-style
question-answering (QA) benchmarks (Jin et al.,
2021).! Despite their state-of-the-art performance,

fCorresponding authors.
"The USMLE or United States Medical Licensing Exam-
ination is a standardized test that is required for obtaining a

LLMs face challenges limiting their adoption in
high-stakes areas. A key concern is hallucina-
tion, where the model produces information that
sounds plausible but is incorrect (Maynez et al.,
2020; Huang et al., 2023). Additionally, updat-
ing models’ knowledge is resource-intensive, mak-
ing it difficult to maintain current medical infor-
mation for application (Zhang et al., 2023; Ka-
sai et al., 2024). Retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020) has emerged as
a promising solution to address these limitations by
reducing hallucinations and ensuring models pro-
vide up-to-date information through the integration
of trustworthy documents into their input.
However, applying RAG in the biomedical do-
main presents unique challenges. First, irrelevant
or incorrect context can mislead LLMs. (Wu et al.,
2024). In biomedical texts, the complexity and spe-
cialized terminology heighten the risk of retrieving
documents that are not relevant or unhelpful. Sec-
ond, medical queries often struggle to target useful
information. Some questions that include extensive
patient details, such as medical histories and symp-
toms, may overwhelm retrieval systems, making it
difficult to identify critical diagnostic clues. Con-
versely, overly brief questions often lack necessary
context and depend on implicit medical knowledge,
further complicating effective retrieval. Lastly, re-
triever bias (Chen et al., 2021; Dai et al., 2024) also
presents a significant challenge, as larger medical
corpora often overshadow smaller, specialized ones
that may contain critical, up-to-date information.
For instance, MedCPT (Jin et al., 2023) may show
a preference for PubMed documents over clinical
guidelines and medical textbooks, a tendency likely
stemming from its training on the PubMed corpus.
Building upon these insights, we propose RAG?
(RAtionale-Guided Retrieval Augmented Genera-
tion), a novel framework that improves the relia-
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Figure 1: Our RAG? framework comprises the following three steps. (1) Rationale-based query formulation: the
model-generated rationale is used as the query for evidence retrieval instead of the initial query. (2) Balanced
retrieval: evidence snippets are retrieved in equal amounts from four corpora: two large corpora, PubMed and PMC,
and two smaller but crucial corpora, textbooks and clinical guidelines. Subsequently, a reranker is used to rerank the
retrieved snippets by cross-encoding the initial query and each snippet. (3) Rationale-guided filtering: a filtering
model determines whether incorporating the retrieved snippets into the LLM prompt can help the model answer
correctly and with higher confidence (as indicated by reduced perplexity).

bility of RAG in biomedical applications (see Fig-
ure 1). First, we introduce a rationale-guided filter-
ing method, training a Flan-T5 model (Chung et al.,
2024) using labels derived from the differences in
perplexity between rationales with and without re-
trieved documents. This model estimates the snip-
pets’ informativeness for the base LLM, selectively
augmenting useful information while filtering out
potential distractors. Next, our method substitutes
medical questions with LLM-generated rationales
as queries using chain-of-thought prompting (Wei
et al., 2022; Jiang et al., 2023b; Kang et al., 2024).
These rationale-based queries help identify key
components through systematic problem-solving
and also enable query expansion for brief ques-
tions (Jagerman et al., 2023; Wang et al., 2023a).
Finally, we implement a balanced retrieval strat-
egy that retrieves snippets equally from diverse
biomedical corpora. This approach mitigates the
potential bias present in dense retrievers by promot-
ing a more comprehensive retrieval process across
multiple information sources, regardless of their
size or level of training exposure.

We evaluate our RAG? framework us-
ing three closed-book medical QA bench-
marks—MedQA (Jin et al., 2021), MedMCQA (Pal
et al., 2022), and MMLU-Med (Hendrycks et al.,
2021)—where no oracle documents are present.
Our method significantly enhances the average
accuracy of state-of-the-art LLMs of varying
sizes, including Llama-3-8B-Instruct (AI@Meta,
2024), Meerkat-7B (Kim et al., 2024), and GPT-
40 (OpenAl, 2024). Additionally, it consistently
improves the performance of baseline LLMs by

up to 6.1% across three medical QA datasets

and outperforms four recently developed RAG

baselines, achieving a notable 5.6% improvement

over MedRAG (Xiong et al., 2024a) with the

Llama-3-8B-Instruct model (Al@Meta, 2024).
Our contributions are as follows:

1. We introduce RAG?, a novel retrieval-
augmented generation framework for medical
QA. Our method incorporates advanced meth-
ods in query formulation, retrieval, and filter-
ing processes that address core limitations in
traditional RAG.

2. Our rationale-guided filtering method em-
ploys a small language model trained with
data labeled from differences in rationale per-
plexity to assess document utility. This ap-
proach not only enhances efficiency but also
introduces a novel aspect to our methodology.

3. Across three medical QA benchmarks, we
demonstrate that the proposed RAG? frame-
work significantly outperforms previous meth-
ods, including large commercial, small open-
source, and medical-specialized models, with
an average accuracy improvement of 6.1%,
3.8%, and 0.9%, respectively.

2 Related Work

2.1 Retrieval-Augmented Generation

Basic RAG approaches (Lewis et al., 2020; Gao
et al., 2023) involve the straightforward addition
of retrieved documents to input queries. Ad-
vanced methods train LLMs to perform RAG adap-
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tively (Wang et al., 2023b; Zhang et al., 2024; Gan
et al., 2024). Self-RAG (Asai et al., 2024), for
instance, trains an LLM with synthetic data from
GPT-4 to determine whether to use the retrieved
document or not. However, these methods gen-
erally require substantial computational resources
and API costs, making model updates challenging.

Other approaches focus on training smaller mod-
els separately from the base LLM. For instance,
ARES (Saad-Falcon et al., 2024) employs three
small language models trained on a mix of syn-
thetic and human-labeled data to assess context
relevance, answer faithfulness, and answer rele-
vance. CRAG (Yan et al., 2024) uses an iterative
approach with a small evaluator model but it still
relies on GPT-3.5 for query rewriting. Adaptive-
RAG (Jeong et al., 2024b) assesses query complex-
ity based on changes in the correctness of an LLM’s
response, but can only utilize to queries that are an-
swered correctly, overlooking the nuanced effects
of retrieved documents beyond basic accuracy. In
contrast, our method measures perplexity differ-
ences in the rationales generated by the base LLM,
providing the filtering model with more detailed
training signals.

Several RAG methods leverage the rationales of
models to enhance RAG. Speculative RAG (Wang
et al., 2024b) generates multiple pseudo-answers
with rationales and uses a large verifier model to
select the best answer. RAT (Wang et al., 2024a)
iteratively performs retrieval and refines the initial
rationale to obtain the final answer. However, these
approaches come with significant downsides, such
as high computational costs due to the use of large
models for training and multiple LLM calls, as well
as increased latency from the iterative retrieval and
decision-making processes.

Uncertainty-based approaches like FLARE
(Jiang et al., 2023b) and SEAKR (Yao et al., 2024)
dynamically guide RAG by using confidence levels
to make retrieval decisions. However, they both
rely on numerous iterative retrieval and pseudo-
generations, leading to significant computational
costs as well. Our approach also incorporates un-
certainty but restricts its application to the training
stage, thus avoiding the expensive iterative pro-
cesses during the inference stage.

2.2 Medical RAG

Researchers have proposed several methods to en-
hance biomedical information retrieval and RAG
frameworks. MedCPT (Jin et al., 2023) intro-

duced off-the-shelf retriever and reranker models
tailored for the biomedical domain. It overcame
the limited availability of query-article annotations
in medicine domain by using 255 million user click
logs from PubMed. MedRAG (Xiong et al., 2024a)
is an RAG toolkit to comprehensively integrate
indexing, retrieval, and reranking processes. It ex-
tracts documents from the MedCorps corpus using
a hybrid approach that integrates both sparse and
dense retrievers. Self-BioRAG (Jeong et al., 2024a)
adopts the concept of Self-RAG to the domain to
handle complex medical queries more effectively.
Concurrent with our work, Bailicai (Long
et al., 2024) introduced features, including self-
knowledge boundary identification and directed
acyclic graph-based task decomposition. Addition-
ally, i-MedRAG (Xiong et al., 2024b) incorporates
iterative follow-up query generation. We would
like to note that, with the exception of MedRAG,
all other approaches necessitate fine-tuning LLMs
or multiple iterative RAG executions. In contrast,
our method highlights improved training efficiency
and run-time performance by training only a small
filtering model and relying on single-step retrieval.

3 Method

We start by explaining the training objective of
RAG models. Next, we provide a detailed break-
down of the pipeline, focusing on three key steps:
(1) rationale-guided filtering, (2) rationale-based
query formulation, and (3) balanced retrieval. Fig-
ure 1 presents an overview of the entire model.

3.1 Objective

Let x = [z1,...,2N] represent a natural lan-
guage query consisting of NV tokens, and lety =
[y1, ..., yn] represent the output sequence consist-
ing of M tokens. An LLM is trained to minimize
the probability of generating the output sequence y
by maximizing the likelihood of the following con-
ditional probabilities for each token y; as follows:

M
plylx,D*) = [ (v | y<.x, D*), (1)
t=1

where y . represents the sequence of tokens gener-
ated up to time step t — 1, and D* = [dy, ..., dg]
represents the top-k retrieved documents that are
most relevant to the query. The retrieval process
involves embedding both the query and documents
in a shared latent space using a query encoder fg
and a document encoder fg. The most relevant
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Figure 2: Illustration of the data annotation process used
to train our rationale-guided filtering model.

documents are then selected based on their inner
product as follows:

D" = Top-k ((f4(x), fa(d))ld € C), (2)
where C represents the set of candidate documents.

3.2 Rationale-Guided Filtering

Retrieval mechanisms do not always pick the most
helpful documents as similarity alone does not en-
sure a positive contribution to the model’s output.
To filter out distractors and obtain only helpful doc-
ument, we train a filtering model to evaluate the re-
trieved documents before they are presented to the
LLM. Our method begins by analyzing the LLM’s
outputs when answering questions under two condi-
tions: (1) using its intrinsic parametric knowledge,
and (2) using external information retrieved from a
knowledge base. If the model successfully answers
a question with the aid of retrieved documents but
fails to do so independently, the documents are la-
beled as “helpful”’; otherwise, they are labeled as
“not helpful.” This labeling strategy was similarly
adopted in previous works (Jeong et al., 2024b), but
it fails to fully capture the document utility, partic-
ularly in cases where the model’s accuracy remains
unchanged regardless of whether the document is
included or not.

To address this, we calculate the difference in
perplexity, APPL, to determine the document’s
impact on the model’s confidence as follows:

APPL = PPL(x) — PPL(x,d) > 7, (3)

where d is the target document and 7 represents a
threshold set to select the top percentage of perplex-
ity differentials. The perplexity for the input query

x and the document d are calculated as follows:

L1
1
PPL(x) = exp <_L Zlog Pz | X<z‘)> ;

=0

L-1
1
PPL(x,d) = exp <_L Z log P(z; | X<, d)) .

i=0

“
It is important to note that while lower perplexity
(i.e., higher model confidence) generally correlates
with higher accuracy, this relationship is not always
consistent. Perplexity alone cannot reliably guar-
antee accuracy, making it necessary to introduce a
threshold for more precise labeling. Through our
validation process, we determined that setting the
threshold value 7 to the top 25% of perplexity dif-
ferentials consistently yielded the best performance
and was therefore fixed across all our experiments.
Figure 2 illustrates the data annotation process.
By applying this systematic labeling approach, we
generate a perplexity-stratified dataset derived from
the base model’s outputs, which is subsequently
used to train a Flan-T5-large model as our filter-
ing model. This method not only ensures that the
filtering model effectively assesses the utility of
retrieved documents for the base model, allowing
only relevant and beneficial information to be in-
tegrated into the LLM, but also helps address the
challenge of scarce annotated data in the medical
domain by utilizing model-generated labels instead

of relying solely on human annotations.

3.3 Rationale-Based Query Formulation

As we discussed in the introduction, the initial
query, x, can be verbose or too brief, increasing
the complexity of medical QA. To address this,
we use model-generated rationales as queries to
search for relevant information (Wang et al., 2023a;
Kang et al., 2024). Following Kim et al. (2024), we
extract the LLM’s rationales using the following
chain-of-thought prompt:

The following are multiple choice questions
about medical knowledge. Solve them in
a step-by-step fashion, starting by summa-
rizing the available information. Output
your explanation and single option from the
given options as the final answer.

Here is the question: [initial_query]

Here, we replace [initial_query] with the ini-
tial query x and obtain the model’s response. We
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search for document snippets solely using the ra-
tionale, excluding the initial query. Including both
the initial query and the rationale exceeds the max-
imum length of the retriever and, as confirmed by
our initial experiments, leads to suboptimal perfor-
mance. Also, we note that the same LLM is used
both for rationale generation and QA. In our ex-
periments, we show that rationale queries can still
be effective even with smaller open-source models
(see Table 2 in Experiments).

3.4 Balanced Retrieval

Searching documents from a broad corpus can pro-
vide high coverage, but it can lead the retriever
to favor dominant corpora and popular informa-
tion (Chen et al., 2021; Kim et al., 2023). As a
result, smaller yet essential corpora may be un-
derrepresented. To address this issue, we use bal-
anced retrieval, a simple yet effective method. This
approach extracts an equal number of documents
from each corpus, ensuring that all corpora are rep-
resented more evenly compared to existing meth-
ods (Xiong et al., 2024a). After the balanced re-
trieval stage, we further refine the selection of rele-
vant documents. We use MedCPT (Jin et al., 2023),
an off-the-shelf reranker, which encodes the origi-
nal query along with each document to determine
a relevance score. This process prioritizes docu-
ments that are more closely aligned with the query
by reranking the results initially retrieved from mul-
tiple sources in a balanced manner, enhancing over-
all performance.

4 Experiments

4.1 Datasets

We utilize three widely recognized medical QA
datasets. (1) MedQA (Jin et al., 2021) consists
of USMLE-style questions curated by medical ex-
amination experts from various medical question
banks. (2) MedMCQA (Pal et al., 2022) com-
prises exam questions from the two Indian affil-
iations, AIIMS (All India Institute of Medical Sci-
ences) and NEET PG (National Eligibility cam En-
trance Test for Post Graduate courses). (3) MMLU-
Med, a subset of the MMLU dataset (Hendrycks
et al., 2021), consists of questions for six biomed-
ical subjects—clinical knowledge, medical genet-
ics, anatomy, professional medicine, college biol-
ogy, and college medicine—spanning from high
school to professional-level knowledge. All of
these datasets consist of multiple-choice questions

Dataset Training Validation Test
MedQA 10,178 1,272 1,273
MedMCQA 182,822 4,183 6,150
MMLU-Med - - 1,089
Table 1: The number of question-answer pairs in

the three medical QA datasets, MedQA (Jin et al.,
2021), MedMCQA (Pal et al., 2022), and MMLU-
Med (Hendrycks et al., 2021).

with four answer options. Detailed statistics about
the datasets can be found in Table 1.

4.2 Models

Large Language Models We use state-of-the-
art baseline models from three categories: (1)
open-source LL.Ms (Llama-2-7B (Touvron et al.,
2023), Mistral-7B-Instruct (Jiang et al., 2023a),
Llama-3-8B-Instruct (Al@Meta, 2024)), (2) med-
ical LLMs (MediTron-7B (Chen et al., 2023),
BioMistral-7B (Labrak et al., 2024), Meerkat-
7B (Kim et al., 2024)), and (3) commercial LLMs
(GPT-3.5 (OpenAl, 2022), GPT-4 (OpenAl, 2023),
GPT-40). From these categories, we select the
top-performing models based on benchmark per-
formance as our backbone models. (1) Llama-3-8B-
instruct?, part of the Llama series (Touvron et al.,
2023), is the state-of-the-art open-source model.
We use this model as-is, without further fine-tuning
on the target datasets. For simplicity, we refer to it
as Llama-3-8B. (2) Meerkat-7B is initialized using
the Mistral-7B weights (Jiang et al., 2023a) and fur-
ther instruction-tuned with rationales generated by
GPT-4. The model is then fine-tuned specifically
on the MedQA and MedMCQA datasets. (3) GPT-
40 is the latest version of OpenAl’s closed-source
LLM, demonstrating state-of-the-art performance
across various tasks. We apply our RAG method to
these models to assess whether our RAG method
can further enhance their high performances with-
out the need for fine-tuning.

RAG Methods We conduct a comprehensive
comparison between the state-of-the-art RAG
models and our proposed method: (1) Med-
CPT (Jin et al., 2023) is a retriever pre-trained
using user search logs from PubMed. (2) Med-
CPT+Rationale refers to the MedCPT retriever en-
hanced with model-generated rationale queries. (3)
MedRAG (Xiong et al., 2024a) employs four differ-

2https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct
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Model

MedQA MedMCQA MMLU-Med Average

Open-source LLMs (zero- or few-shot)

Llama-2-7B (Touvron et al., 2023) (3-shot) 352 36.3 46.3 39.3
Mistral-7B-Instruct (Jiang et al., 2023a) (0-shot) 41.1 40.2 55.8 45.7
Llama-3-8B-Instruct (AI@Meta, 2024) (0-shot) 57.7 53.5 69.5 60.2
+ MedCPT (Jin et al., 2023) (k = 1) 55.3 51.3 65.8 57.5
+ MedCPT+Rationale (k = 1) 58.0 52.1 70.3 60.1
+ MedRAG (Xiong et al., 2024a) 56.4 56.6 69.2 60.7
+ query2doc (Wang et al., 2023a) (k = 1) 54.3 50.0 58.5 54.3
+ Adaptive-RAG (Jeong et al., 2024b) 57.3 53.1 70.3 60.2
+ InstructRAG-ICL (2-shot) (Wei et al., 2024) 55.5 55.7 71.9 61.8
+RAG? (Ours) 64.6 59.4 74.8 66.3
Medical LLMs (fine-tuned)

MediTron-7B (Chen et al., 2023) 50.2 57.9 56.7 54.9
BioMistral-7B (Labrak et al., 2024) 54.3 61.1 64.6 60.0
Meerkat-7B (Kim et al., 2024) 71.2 60.8 73.8 68.6
+ MedCPT (Jin et al., 2023) (k = 1) 71.8 57.9 74.0 67.9
+ MedCPT+Rationale (k = 1) 73.3 58.4 75.7 69.1
+ MedRAG (Xiong et al., 2024a) 67.9 60.6 76.1 68.2
+ query2doc (Wang et al., 2023a) (k = 1) 70.3 53.8 73.6 65.9
+ Adaptive-RAG (Jeong et al., 2024b) 71.4 60.5 74.0 68.6
+ InstructRAG-ICL (2-shot) (Wei et al., 2024) 65.8 53.2 63.7 60.9
+RAG? (Ours) 75.6 63.0 78.7 72.4
Commercial LLMs (zero- or few-shot)

GPT-3.5 (OpenAl, 2022) (5-shot) 53.6 51.0 67.3 57.3
GPT-4 (OpenAl, 2023) (5-shot) 81.4 72.4 87.1 80.3
GPT-40 (0-shot) 88.5 76.7 92.8 86.0
+ MedCPT (Jin et al., 2023) (k = 1) 86.6 72.5 90.1 83.1
+ MedCPT+Rationale (k = 1) 87.3 74.7 90.2 84.1
+ MedRAG (Xiong et al., 2024a) 88.3 75.9 92.4 85.5
+ query2doc (Wang et al., 2023a) (k = 1) 89.1 73.9 91.5 84.8
+ Adaptive-RAG (Jeong et al., 2024b) 88.5 76.7 92.5 85.9
+ InstructRAG-ICL (2-shot) (Wei et al., 2024) 87.7 73.5 90.0 85.6
+RAG? (Ours) 91.1 77.2 92.5 86.9

Table 2: Performance (accuracy) of LLMs and RAG models on the three medical QA benchmarks. RAG methods
are applied to the underlying models, specifically Llama-3-8B-Instruct, Meerkat-7B, and GPT-40. The best scores

for each benchmark are highlighted in bold.

ent sparse and dense retrievers to gather informa-
tion from a collection of corpora called MedCorp,
then reranks the retrieved results using Reciprocal
Rank Fusion (RRF) (Cormack et al., 2009). (4)
query2doc (Wang et al., 2023a) instructs LLMs
to make pseudo-documents for query expansion.
(5) Adaptive-RAG (Jeong et al., 2024b) trains a
filtering model with labels obtained from correctly
answered queries with and without RAG. (6) In-
structRAG (Wei et al., 2024) employs explanatory
rationales generated using the training set as few-
shot demonstrations for in-context learning. We do
not include Self-BioRAG (Jeong et al., 2024a) in
our experiments for two reasons. First, our goal
is to present an efficient RAG approach that trains
only a small filtering model, without the need to
train the LLM itself. While Self-BioRAG trains the

Llama-2 7B and 13B models using data generated
by GPT-4, we opt to train a filtering model based on
Flan-T5-large, which has only 770 million parame-
ters (Chung et al., 2024). This smaller model can
be trained on a single RTX 3090 24G GPU. Sec-
ond, we aim for computational efficiency through
single-pass generation, in contrast to Self-BioRAG,
which generates multiple candidate answers and
selects the highest-scoring response.

Implementation Details In the experiment, the
MedCPT and MedCPT+Rationale models rely
solely on the top-1 snippet to investigate perfor-
mance variations across different query types. The
query2doc model has not been assessed in a closed-
book QA setting. For consistency with Med-
CPT+Rationale, we set k£ = 1. For Adaptive-RAG
and InstructRAG, we apply the specified hyper-
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Figure 3: The accuracy (y-axis) of Llama-3-8B-Instruct and Meerkat-7B with/without different RAG models when
varying the number of top-k snippets (x-axis). “RAG? w/o filter” is our RAG framework only that does not the
filtering model. The performance on the MMLU-Med dataset can be found in the appendix.

parameters of K = 1 and k = 5, respectively.
MedRAG and RAG? use the optimal top-k values,
determined through validation. We apply the same
index and retriever to the MedCPT, query2doc,
Adaptive-RAG, and InstructRAG as those used for
RAG?, whereas MedRAG uses its own methods.
We train our filtering and Adpative-RAG models
using QA pairs from MedQA and MedMCQA. For
Adaptive-RAG, we label training set queries as
“simple” if the model could answer them correctly
without retrieval and “complex” if it could only
answer them correctly with RAG. We then train a
small binary classifier using these labeled queries
as input. Since MMLU-Med does not provide train-
ing data, we use the MedMCQA training data to
train the filtering model. Details of the retrieval
corpus are described in the appendix.

4.3 Main Results

Table 2 presents the accuracy of various LLMs,
with various RAG baselines and RAG?2, across
three medical QA benchmarks. The results indi-
cate that our RAG? method consistently enhances
the baseline LLMs, yielding an average score im-
provement of 6.1%, 3.8%, and 0.9% for Llama-
3-8B-Instruct, Meerkat-7B, and GPT-40 respec-
tively. Additionally, the performance improvement
on MMLU-Med is 5.3% for Llama-3-8B and 4.9%
for Meerkat-7B, demonstrating the transferability
of our filtering model to out-of-domain datasets.
In contrast, some baseline RAG methods show
inconsistent results, with some even showing lower
average scores. This suggests that without ad-
vanced retrieval and filtering modules, RAG frame-
works do not always guarantee improved perfor-
mance, especially in the medical domain. The
performance of the query2doc model declines

significantly with smaller models, likely due to
their limited ability to generate effective pseudo-
documents for answering queries. On the other
hand, MedCPT+Rationale maintains strong perfor-
mance across models of various capacities, sug-
gesting that our rationale-based query approach is
more robust and adaptable.

Additional experiments using an ensemble of
different filtering models with GPT-40 on MedQA
demonstrates a score increase to 91.6. However, as
our study focuses on single-pass generation, we do
not include ensemble results in Table 2.

Although Adaptive-RAG shares similarities with
our RAG? model in that using a filtering model
with the training data, the results differ significantly.
This is because the perplexity-based labels we use
offer a more informative and fine-grained training
signal to the filtering model compared to the coarse
correct-or-incorrect labels used by Adaptive-RAG.
We discuss this further in Section 5.1.

S Analysis

5.1 Ablation Study

The Number of Retrieved Snippets Figure 3
illustrates the performance of various RAG meth-
ods across different top-k values, using Llama-3-
8B-Instruct and Meerkat-7B as backbone LLM:s.
MedRAG demonstrates inconsistent performance,
often underperforming compared to LLMs without
retrieval capabilities. In contrast, the use of ratio-
nale queries generally enhances the performance of
the baseline LLMs, leading to improvements of up
to 5.7% on MedQA and 4.3% on MedMCQA for
Llama-3-8B-Instruct, and up to 3.4% on MedQA
and 3.8% on MedMCQA for Meerkat-7B. Further
application of rationale-guided filtering results in
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Med- Med-
QA MCQA

Llama-3-8B (MedCPT w/o Filtering) 55.3 51.3
+ Adaptive-RAG (Jeong et al., 2024b)  57.3 53.1
+ InstructRAG-ICL (Wei et al., 2024)  55.5 55.7
+ GPT-40 58.5 55.8
+ Rationale-guided Filtering (Ours) 58.6 55.8

Method

Table 3: Performance of Llama-3-8B-Instruct depend-
ing on the filtering method applied. Top-1 documents
are used except for InstructRAG-ICL (top-5)

additional performance gains, with Llama-3-8B
achieving up to 6.9% on MedQA and 5.8% on
MedMCQA, and Meerkat-7B reaching up to 4.4%
on MedQA and 4.5% on MedMCQA.

For Llama-3-8B-Instruct, the performance tends
to improve as the top-k value increases, while
Meerkat-7B shows a peak in performance followed
by a decline. This difference could be attributed
to the models’ trained context lengths: the Llama
model is trained with a maximum context length
of 8K, whereas Meerkat-7B is instruction-tuned
with a 2K maximum length. This likely explains
the performance drop when more snippets are pro-
vided. Nonetheless, across all top-k values, our
RAG? method consistently outperforms MedRAG.

Filtering Methods We evaluate how the perfor-
mance of the baseline model, Llama-3-8B-Instruct,
is affected by different filtering methods. To isolate
the impact of filtering in this experiment, we fix
the top-k value at 1 and used the original query
instead of a rationale-based query. For Instruc-
tRAG, top-k value is 5 following the default set-
ting. The “GPT-40” filtering determines whether
a retrieved document contributes to answering the
question. Our filtering method uses the perplex-
ity of the LLM’s rationale to annotate question-
document pairs. As a result, this approach signifi-
cantly improves Llama’s performance, surpassing
Adaptive-RAG by 1.3% on MedMQ and 2.7% on
MedMCQA, as shown in Table 3. Additionally, it
achieves results similar to GPT-40 while avoiding
its API costs.

Effect of Balanced Retrieval Table 4 demon-
strates that our balanced retrieval consistently out-
performs MedRAG, highlighting the effectiveness
of extracting information in a balanced manner
from each corpus. We used the same initial query
and top-1 document, without applying other meth-
ods, to solely compare the retrieval component.
Additionally, further studies with corpus ablation,

Method MedQA MedMCQA MMLU-Med
Llama-3-8B-Instruct

+ MedRAG 51.9 49.0 65.1

+ Ours 55.3 51.3 65.8
Meerkat-7B

+ MedRAG 63.2 56.0 73.1

+ Ours 71.8 57.9 74.0

Table 4: Comparison with MedRAG (Xiong et al.,
2024a) and our balanced retrieval. Top-1 documents
are used.

Rationale Query of

Model Llama-3-8B  Meerkat-7B | GPT-40
Llama-3-8B 63.4 71.5 73.6
Meerkat-7B 71.3 74.6 78.8
GPT-4o 87.4 88.3 89.8

Table 5: Performance comparison on MedQA of back-
bone models using rationale queries generated by Llama-
3-8B-Instruct, Meerkat-7B, and GPT-40.

as well as ablation studies of balanced retrieval, are
provided in the appendix to demonstrate how this
approach mitigates retriever bias.

5.2 Quality of Rationale Queries

Table 5 highlights that rationale queries gener-
ated by higher-performing models consistently en-
hance the accuracy of LLMs on MedQA. Specif-
ically, GPT-40-generated rationales consistently
yield the highest performance improvements across
all models, followed by Meerkat-7B and Llama-3-
8B. High-quality rationales refine poorly targeted,
complex medical questions into precise and infor-
mative queries, minimizing the retrieval of non-
informative documents and improving overall re-
trieval effectiveness.

5.3 Case Study

Figure 4 presents an example from the MedQA
dataset involving a patient with a severe COPD
exacerbation. Initially, the Meerkat-7B model rec-
ognizes the severity of the situation but fails to pri-
oritize less invasive options like BiPAP (Option A),
which would be appropriate before considering in-
tubation (Option C). This outcome highlights the
limitations of relying solely on the model’s para-
metric knowledge. When applying RAG with the
rationale query, the model is presented with a snip-
pet containing information about tension pneumoth-
orax and needle decompression. Although this in-
formation is medically accurate, it is irrelevant to
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Initial Query
A62-year-old man presents to the emergency department with shortness of breath. ... He feels as if he is unable to take a deep breath. The patient has a past medical history of COPD and a 44-
pack-year smoking history. The patient has been admitted before for a similar presentation. Vitals: T 98.7°F, BP 177/118 mmHg, P 123/min, R 33/min, 02 sat 80% on room air. The patient s started
on 100% oxygen, albuterol, ipratropium, magnesium, and prednisone. ... He is still short of breath. Physical exam: bilateral wheezes, poor air movement.

Which of the following is the best next stepin management? (A) BiPAP (B) Chest tube pl (€)1 (D) Needle D p
Rationale Query
... The presence of bilateral wheezes and poor air movement on physical examination suggests exacerbation of COPD with significant airflow obstruction. ... (C) Intubation may be n ary for

patients who are in respiratory failure and not responding to medical therapy, especially if they are at risk of respiratory arrest. Given the patient's poor response to treatment and ongoing hypoxemia,

this could be a consideration. ... Therefore, the answeris (C) Intubation.

l Retriever

Top 2 Snippet Top 3 Snippet

Top 4 Snippet

o0 ... The presence of bilateral wheezes could also be
consistent with a severe COPD exacerbation, but the

Top 1 Snippet =

... respiratory and hemodynamic signs c

and addressed immediately, as this r

>ompression.

ec.0. . .
Filtering
l v Model

© g0

; Top 9 Snippet | °°°
Top 3 Snippet = Top 7 Snippet P PP

eumothorax should be considered a medical emergency

— clinica cture is more s stive of
oneumothorax, which is a medical emergency. ...
Therefore, the answeris (D) Needle decompression.

a tension

... These findings suggest an exacerbation of COPD with
respiratory failure. ... Non-invasive positive pressure

Exacerbations of COPD ... Non-invasive positive pressure ventilation is considered to be effective in reversing
acute respiratory failure in selected patients with elevated carbon dioxide and no other life-threatening

comorbiditieswhoareable...

— ventilation can be used in COPD exacerbations to decrease
the work of breathing and improve oxygenation. ...
Therefore, the answeris (A) BiPAP.

Figure 4: This case study demonstrates the effectiveness of our rationale-guided filtering approach (see the main
text for detailed descriptions). Some content has been omitted due to space limitations.

the patient’s condition of COPD exacerbation. The
presence of this extraneous data causes the model
to incorrectly infer the possibility of a tension pneu-
mothorax, leading to an inappropriate recommen-
dation for needle decompression (Option D). After
applying our filtering method to remove the irrele-
vant information about tension pneumothorax, the
model correctly identifies the patient’s condition
as severe COPD exacerbation. As a result, it se-
lects BiPAP (Option A) as the appropriate next step.
This example underscores the critical role of doc-
ument filtering in reliable RAG: the initial error
stems from the model’s distraction by irrelevant in-
formation, but proper filtering lead to the correct di-
agnosis and management plan. This case highlights
how our method could improve the base LLM’s
ability to deliver more accurate clinical guidance
by prioritizing relevant snippets and minimizing
the risk of misdiagnosis in real-world scenarios.

6 Conclusion

In this study, we presented RAG?, a novel frame-
work designed to enhance the reliability and per-
formance of LLMs in biomedical QA tasks. By in-
tegrating rationale queries, balanced retrieval, and
a rationale-guided filtering method, we created a
comprehensive approach that effectively refined
and optimized the entire RAG pipeline. Our ex-
perimental results consistently demonstrated that
RAG? significantly improved the accuracy of vari-
ous state-of-the-art LLMs across multiple medical

QA benchmarks. This advancement marked an
important step toward more reliable Al-assisted
medical decision-making.

Limitation

Our RAG? framework has several limitations. First,
our model has only been tested in the biomedical
domain, leaving its applicability to general domains
unexamined. We plan to explore its performance in
various general domains in future research. Second,
we used only one size of the Flan-T5 model as the
filtering model; experimenting with different sizes
or architectures may yield additional improvements.
Third, an incorrect rationale from the model might
prompt the retriever to gather distracting evidence.
Although this risk is limited, as errors generally
make up only a small portion of the rationale and
our filtering model can discard distractors, a thor-
ough analysis and evaluation of this issue remains
essential for future work. Lastly, when creating
perplexity-based labels, we evaluated each snippet
individually, which may overlook the combined
impact of multiple relevant snippets. Also, the
Flan-T5 model can filter only one snippet at a time
due to its limited context length. In future research,
we plan to explore both a labeling approach that
considers multiple related snippets and new encod-
ing methods to overcome the structural limitations
of the current filtering model.
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A Appendix

A.1 Ablation Study of Top-k documents on
MMLU-Med

Figure A1 shows the performance of baseline mod-
els with and without RAG methods as the number
of retrieved documents is varied. Note that our fil-
tering model is trained using MedMCQA since the
MMLU-Med training set does not exist. Similar
to the results observed in MedQA and MedMCQA
(Figure 3), our RAG? model achieves the best per-
formance, demonstrating the effectiveness of our
approach even in out-of-domain distributions.

A.2 Datasets

MedQA (Jin et al., 2021) MedQA is a multi-
lingual multiple-choice QA dataset derived from
professional medical board exams. It encompasses
three languages: English, simplified Chinese, and
traditional Chinese. The English subset, MedQA-
US, specifically comprises USMLE questions.

MedMCQA (Pal et al., 2022) MedMCQA
is a comprehensive multiple-choice question-
answering dataset designed for medical domain
evaluation. It comprises over 194K curated
multiple-choice questions derived from AIIMS and
NEET PG entrance exams. These questions span
across 2.4k healthcare topics and 21 medical sub-
jects, offering a broad coverage of the medical field.

MMLU-Med (Hendrycks et al., 2021) MMLU-
Med is a specialized subset of the Massive Mul-
titask Language Understanding (MMLU) bench-
mark, which is first introduced by Singhal et al.
(2023). While the full MMLU benchmark encom-
passes 57 diverse tasks, MMLU-Med is subset of
six biomedical-related domains: anatomy, clinical
knowledge, professional medicine, human genetics,
college medicine, and college biology.

A.3 Implementation Details

Retrieval For our information retrieval tasks, we
used the MedCPT retriever and the reranker. The
corpus employed in this study is the same as that
used in Self-BioRAG (Jeong et al., 2024a), an ear-
lier work that preceded MedRAG. This corpus
includes PubMed abstracts, PMC full texts, and
clinician practical guidelines Chen et al. (2023).
(used for training Meditron, with 8 out of 16 pub-
licly available), and 18 medical textbooks. Unlike
MedRAG, which utilizes a different corpus called

Corpus #Docs #documents Index Size
MedCorp (Xiong et al., 2024a)

PubMed 23.9M 23.9M 211GB
Wikipedia 6.5M 29.9M 262GB
StatPearls 9.3k 301.2k 3.0GB
Textbooks 18 125.8k 1.1GB
Total 30.4M 54.2M 477.2GB
Ours

PubMed 36.5M 69.7M 400GB
PMC 1.1M 46.3M 160GB
CPG 35.7k 607.0k 3.5GB
Textbooks 18 134.0k 0.7GB
Total 37.6M 116.7M 564.2GB

Table Al: The statistics of MedCorp (Xiong et al.,
2024a) and our retrieval corpus. CPG represents the
clinical guidelines collected by Chen et al. (2023). Note
that the number of documents can vary even for the
same corpus, as it depends on how documents are di-
vided into documents. Additionally, the indexing for
MedCorp was done using four different retrievers, while
we only used a single retriever, MedCPT, which resulted
in a difference in index size.

MedCorp—comprising PubMed, textbooks, Stat-
Pearls,’ and Wikipedia—we chose to retain the
Self-BioRAG corpus due to its already proven ef-
fectiveness. Although PubMed provides only ab-
stracts, which lack detailed discussions or results,
we supplemented this with PMC full texts to pro-
vide a more comprehensive dataset. To ensure com-
prehensive coverage and prevent the inadvertent
truncation of context, we applied a sliding window
mechanism with overlap for chunking the docu-
ments.

Training We trained the filtering model on a sin-
gle NVIDIA H100 GPU with 80GB memory over
40 epochs, using a learning rate of 3e-5 and a per-
device batch size of 16. We selected a few candi-
date models from the validation set, as performance
converged after certain epochs, and evaluated them
on the test set.

Inference For inference, the same GPU was used
with vVLLM (Kwon et al., 2023) for faster process-
ing with LLMs. Greedy decoding was employed
with a temperature set to O to minimize random-
ness, but some variability persisted due to hard-
ware/software factors. Notably, GPT-4o still exhib-
ited some randomness under these conditions.

3https://www.statpearls.com/
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Figure Al: Accuracy (y-axis) of Llama-3-8B-Instruct
and Meerkat-7B with/without different RAG models
when varying the number of top-k documents (x-axis)
on the MMLU-Med dataset. Since MMLU-Med only
consists of the test set, we used the filtering model
trained on MedMCQA during evaluation on MMLU-
Med. The accuracy results indicate that the effective
filter trained from a different dataset (MedMCQA) per-
forms well across other dataset (MMLU-Med).

A.4 Open-ended Clinical Questions

We test our method on multiple-choice QA datasets,
including MedQA, MedMCQA, and MMLU-Med.
While these benchmarks are valuable for assess-
ing the medical knowledge of LL.Ms, they do not
fully capture the complexity of real-world clinical
scenarios. To address this, we further evaluated
our method in a setting that more closely resem-
bles actual clinical environments. We used the
ClinicalQA25 dataset (Zakka et al., 2024), which
consists of 25 queries from clinicians.

A.4.1 Metrics

We used the following two metrics to measure
the models’ long-form responses: ROUGE-L and
BERTScore.

ROUGE-L (Rouge, 2004) ROUGE-L is based
on the longest common subsequence (LCS) be-
tween the candidate text C' and the reference text
R, and is computed as follows:

ROUGE-L Precision(C, R) = LC&T’éC’R)’
ROUGE-L Recall(C, R) = wk‘}gﬂ)v

Precision x Recall

ROUGE-L F1 =2 .
(C, R) % Precision + Recall

BERTScore (Zhang et al., 2020) BERTScore
computes precision, recall, and F1 score based on
cosine similarity between token embeddings, de-

Llama-3-8B
m No RAG MedRAG m No RAG MedRAG
m MedRAG w/ Filter  Ours w/o Filter m MedRAG w/ Filter  Ours w/o Filter
Ours Ours
0.22 0.62
0.21 0.61
0.20
0.60
0.19
0.59
0.18
ory l 058 I
0.16 0.57
ROUGE-L BERTScore

Figure A2: Performance of Llama-3-8B-Instruct using
different RAG pipelines on ClinicalQA25, which repre-
sents a real-world clinical scenario.

fined as follows:

Precision(C, R) ‘ C| Zmax cosine_similarity(c, r),

Recall(C, R) = Zmax cosine_similarity(r, c),

|R\
Precision x Recall
Precision 4+ Recall”

BERTScore(C, R) =

BERTScore is based on the similarity of word
embeddings, allowing it to capture semantic mean-
ing more effectively than ROUGE-L.

A.4.2 Results

Figure A2 demonstrates that RAG, including both
our proposed approach and MedRAG, outperforms
the model-alone baseline. This suggests that RAG
is effective in retrieving accurate and relevant in-
formation for open-ended questions. Additionally,
the integration of our filtering mechanism seems to
further improve performance, potentially enhanc-
ing retrieval accuracy. This experiment demon-
strates that our filtering model, although trained
on multiple-choice QA, still shows effectiveness
in long-form and real-world clinical queries. In
future work, we plan to further validate the broader
applicability of our approach.

A.5 Balanced Retrieval

To validate the effectiveness of balanced retrieval
in medical QA, we conduct corpus ablation studies
and compare three retrieval strategies: indepen-
dent corpus retrieval, stacked retrieval following
MedRAG (Xiong et al., 2024a) with and without
reranking, and our balanced method, with and with-
out filtering (Figure A3).
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Figure A3: Comparison of retrieval strategies: independent corpus retrieval, stacked retrieval (following
MedRAG (Xiong et al., 2024a)), reranked stacked retrieval, and our proposed balanced retrieval, with and with-
out rationale-guided filtered retrieval. The balanced approach consistently outperforms others, highlighting the
importance of considering corpus-specific properties in medical information retrieval. The highest scores for each
retrieval strategy are marked in bold.

Our experiments reveal several important find-
ings: (1) Independent corpus retrieval consistently
underperformed, confirming that no single corpus
contained sufficient information to cover diverse
medical questions. (2) While the stacked retrieval
broadens coverage by combining all sources, it
shows lower performance than our balanced re-
trieval method. This suggests that simply combin-
ing corpora can lead to suboptimal results. Even
after reranking, the stacked approach does not out-
perform our balanced retrieval method. (3) Our bal-
anced retrieval, especially when combined with fil-
tering, consistently achieves the best performance
across all retrieval scenarios. This demonstrates
that deliberately maintaining representation from
diverse sources while filtering out unhelpful docu-
ments is crucial for effective medical information
retrieval.

These results strongly support the importance
of a balanced approach to multi-corpus retrieval
in medical QA. By explicitly accounting for the
unique properties and contributions of each corpus,
our method achieves more reliable and compre-
hensive information retrieval than approaches that
rely on simple corpus combination or single-source
retrieval.
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