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Abstract

Large Vision-Language Models (LVLMs) are
susceptible to typographic attacks, which are
misclassifications caused by an attack text that
is added to an image. In this paper, we in-
troduce a multi-image setting for studying ty-
pographic attacks, broadening the current em-
phasis of the literature on attacking individual
images. Specifically, our focus is on attacking
image sets without repeating the attack query.
Such non-repeating attacks are stealthier, as
they are more likely to evade a gatekeeper than
attacks that repeat the same attack text. We
introduce two attack strategies for the multi-
image setting, leveraging the difficulty of the
target image, the strength of the attack text, and
text-image similarity. Our text-image similar-
ity approach improves attack success rates by
21% over random, non-specific methods on the
CLIP model using ImageNet while maintain-
ing stealth in a multi-image scenario. An ad-
ditional experiment demonstrates transferabil-
ity, i.e., text-image similarity calculated using
CLIP transfers when attacking InstructBLIP.

1 Introduction

Large Vision-Language Models (LVLMs), such
as the contrastive language-image pretraining
model (CLIP) (Radford et al., 2021) and Instruct-
BLIP (Dai et al., 2023), have shown remarkable
performance across a variety of multimodal down-
stream tasks. However, a small, but important, set
of research contributions has recently demonstrated
that LVLMs are vulnerable to typographic attack
on their classification abilities (Goh et al., 2021;
Cheng et al., 2024; Qraitem et al., 2024). In typi-
cal typographic attacks, a text consisting of one or
more words is added to an image, superimposed in
the middle (Cheng et al., 2024) or added at the top
or bottom (Qraitem et al., 2024). Alternatively, it
is added as a physical label to an object before the
target image is taken (Goh et al., 2021). A typo-
graphic attack is successful when the text, which
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Figure 1: In real-world attack scenarios, an attacker
would target a CLIP-based system with a set of images
rather than a single image. The use of a repeating text
(as in a) more strongly signals a typographic attack than
the use of diversified texts (as in b). In this paper, we
introduce the multi-image attack setting, which limits
attack text repetition, and we show the importance of
text-image similarity when choosing an attack text for a
given target image.

we refer to as the attack text, leads to the misclas-
sification of the target image. Typographic attacks
exploit the capability of LVLMs to interpret not
only the visual content of images but also any writ-
ten language that they contain. In this paper, we
introduce the multi-image attack setting for study-
ing typographic attacks and the importance of the
similarity between the attack text and target image.

We explain the multi-image attack setting with
the help of Figure 1. In previous works (Cheng
et al., 2024; Goh et al., 2021), the emphasis is on
attacking individual images, and the same attack
text could be used repeatedly for different target im-
ages (Figure 1a). In our work, in contrast, we con-
sider the pattern of attack texts used for the attack
across a set of images. Specifically, we are inter-
ested in the case in which the attack does not repeat
across the images (Figure 1b). In short, studying
an attack in a multi-image attack setting means
studying the attack from a holistic perspective. The
importance of non-repeating attacks is elaborated
in Section 2.3.
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Developing typographic attacks for the non-
repeating multi-image setting requires answering a
key question: What strategy should the attacker use
to attack the set of target images in a way that main-
tains the attack success rate but avoids repeating
attack texts? This paper reveals that the attacker
should take the similarity between the attack text
and the target image into account.

First, we look at a possible alternative to text-
image similarity, namely, attack text effectiveness
(ATE). Researchers have found that the targeted
attack success rate varies with the attack text (Goh
et al., 2021). ATE is the average attack success of
an attack text measured across a set of images.

Next, we study how images behave under attack.
The literature has reported that adversarial attacks
are not uniformly effective across all images (Ozbu-
lak et al., 2021). We build on this finding and
study visual image prediction probability (VIPP),
i.e., how challenging it is to predict the class of an
image. Using VIPP, we can prioritize images and
propose attack strategies in which the most difficult
images are assigned attack texts first.

Then, we turn to the strategies proposed for typo-
graphic attacks in the multi-image setting. Our first
type of strategy tests the contribution of using ATE
to select attack texts for images prioritized by VIPP.
Our second type of strategy tests the advantages
of using text-image similarity to select attack texts,
with and without VIPP image-prioritization.

Our paper makes the following contributions:
• We introduce and explain the importance of

the multi-image setting for typographic at-
tacks and of studying non-repeating typo-
graphic attacks within this setting.

• We identify and discuss the importance of text-
image similarity for typographic attacks.

• We propose two types of strategies for ty-
pographic attacks and test them in our non-
repeating multi-image setting.

• We carry out an analysis that provides insights
into the trade-off between the number of times
attack texts are repeated in the multi-image
setting and the attack success rate.

• We demonstrate that text-image similarity cal-
culated with respect to CLIP will generalize
when attacking another model (InstructBLIP).

Source code for this paper is available. 1

1https://github.com/XiaomengWang-AI/
Typographic-Attacks-in-a-Multi-Image-Setting

2 Background and Motivation

In this section, we provide further details on the
background of and motivation for our work.

2.1 Importance of the multi-image setting

We are interested in studying the multi-image set-
ting because it gives us insight into how real-
world systems might be attacked. The issue is
becoming increasingly important as CLIP and
other LVLMs incorporating its pretrained vision
encoder are being used as the basis for more ap-
plications, where misclassifications have serious
real-world consequences. For example, CLIP has
been used in systems for the detection of unknown
objects on roads (Bogdoll et al., 2022), hateful con-
tent (González-Pizarro and Zannettou, 2023), fake
news (Tahmasebi et al., 2023) and illegal outdoor
advertising (Zhang et al., 2024). In this paper, we
do not develop attacks on classifiers with serious
real-world contexts, rather we use ImageNet data
and the associated classes to study attacks.

2.2 The nature of the misclassification threat

When a target image is attacked with an attack text,
it is pushed into the embedding space in the direc-
tion of the semantics of that attack text. The push
can be quite strong such that the image is misclas-
sified into the class with the same target label as
the attack text. Until now, the literature has been
mainly focused on this case and reported the attack
success rate (ASR) for so-called targeted misclas-
sifications (Goh et al., 2021; Cheng et al., 2024;
Qraitem et al., 2024). However, in our work, we
observe that in a non-negligible number of cases,
the label of the class into which the image is mis-
classified is not identical to the attack text. Since in
critical real-world scenarios, any misclassification
is potentially harmful (e.g., one roadsign being rec-
ognized as another) we focus on measuring ASR
over all misclassifications, which we refer to as the
untargeted ASR.

2.3 Stealth: Evading the gatekeeper

We envision that such applications would use a
gatekeeper (human or machine) to monitor the in-
coming image input (i.e., the set of images submit-
ted to the system). Within the multi-image setting,
non-repeating attack texts (Figure 1b) are important
to study because the lack of repetition improves the
stealth of the attack, i.e., the incoming image input
appears less suspicious to the gatekeeper.
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The gatekeeper cannot block all incoming im-
ages that contain text because text in images is
important in application domains. In fact, in the
widely-used LAION2B dataset, 50% of the images
have been reported to contain text (Lin et al., 2024).
However, the gatekeeper may become suspicious
when the same text is used over again on differ-
ent images. A similar observation has been made
in the literature on perturbative adversarial im-
ages. Adding Universal Adversarial Perturbations
(UAP) (Moosavi-Dezfooli et al.; Sandoval-Segura
et al., 2023) can cause a misclassification. How-
ever, once the UAP pattern is known, the inspector
can easily reverse the adversarial images (Sandoval-
Segura et al., 2022a,b).

2.4 Motivation for text-image similarity

A typographic attack pushes an image away from
its original position in the embedding space to a
position that no longer correctly reflects the seman-
tics of the image’s visual content. We anticipate
that the easiest attack is one that achieves seman-
tic impact with only a small change in the image
position, i.e., an attack that moves an image into
a neighboring semantic class. Where the training
of the LVLM is ideal, semantically similar classes
will lie close to each other in the model’s embed-
ding space. Where the training of the LVLM is not
ideal, classes that the model can easily confuse will
lie close to each other. In both cases, the attack
texts with the highest similarity to the target image
are those attack texts corresponding to neighboring
classes. For this reason, we expect attack texts with
high text-image similarity to be the most effective
attack texts. Certainly, the embedding space should
not be envisioned as a set of mutually exclusive
semantic classes, but the same reasoning holds if
we understand the embedding space to be character-
ized by semantic regions or regions of confusion.

3 Related Work

3.1 Contrastive Language-Image Pretraining

Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) is a large vision-
language model trained from scratch using a
contrastive learning objective on a dataset compris-
ing 400 million image-text pairs collected from the
internet. CLIP is designed to learn representations
of images alongside their corresponding paired
texts to align these representations from the two
modalities within the same embedding space. This

alignment ensures that corresponding image-text
pairs are closer in the embedding space compared
to non-corresponding pairs. After training, the
vision encoder of CLIP learns to associate images
with their corresponding paired texts. This
capability enables CLIP to excel at zero-shot
transfer tasks across various domains, such as
image classification, optical character recognition,
and semantic segmentation.

3.2 Typographic attacks against LVLMs

Recent studies (Goh et al., 2021; Azuma and Mat-
sui, 2023; Noever and Noever, 2021) show that
typographic attacks can impair the zero-shot clas-
sification capability of CLIP. Goh et al. (2021)
claims that the underlying reason for typographic
attacks could be multimodal neurons responding
to shared concepts across different formats. Other
LVLMs, such as InstructBLIP (Dai et al., 2023)
and LLaVA (Liu et al., 2024a), are expected to
inherit similar typographic weaknesses when in-
corporating the vision encoder of CLIP. Studies
in Qraitem et al. (2024); Cheng et al. (2024) evalu-
ate the robustness of LVLMs to typographic attacks,
including InstructBLIP, LLaVA 1.5, MiniGPT4-2,
and GPT4-V models. Cheng et al. (2024) selects
the attack text by random method, further evalu-
ating the impact of font size, color, opacity, and
spatial positioning on the typographic attack suc-
cess. Qraitem et al. (2024) proposes novel ty-
pographic attacks, termed Self-Generated Attacks,
which leverage the capabilities of LVLMs to iden-
tify visually similar deceiving classes or generate
descriptive reasoning for more effective deception.
This work (Qraitem et al., 2024) is close to our
work because the prompt to the LVLMs requests
an attack text that is ‘similar’ to the target image.
In contrast, our work calculates text-image similar-
ity directly in the embedding space. As a result,
our attacks are more directly related to confusion
regions arising due to shortcomings in the training
of LVLMs, laying the groundwork for future study
of principled defenses. As already mentioned, our
work differs from previous contributions in our fo-
cus on the multi-image setting.

4 Insights on Typographic Attacks

In this section, we carry out a set of typographic
attacks that allows us to analyze attack texts, target
images, and text-image similarity. The analysis
reveals the underlying factors that have an impact
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on the success rate of typographic attacks and pro-
vides insights, on which we based our proposed
attack strategies for the multi-image setting (cf.
Section 5).

4.1 Target model, data, and attack settings
In our analysis in this section and our experiments
(Section 6), we study OpenCLIP (Cherti et al.,
2023) as the target model, which is an open-source
implementation of CLIP. We attack the zero-shot
classification task. We use the publicly available
OpenCLIP (ViT-B/32) trained on the LAION2B
dataset (Schuhmann et al., 2022). We use a server
with the following configuration: a 20GB memory
NVIDIA A10 GPU.

Our evaluation dataset is built from the
ILSVRC2012 validation dataset (Russakovsky
et al., 2015). It consists exclusively of images that
have been correctly classified by the target model,
which is a total of 30,940 of the original 50,000
images. Evaluating with only correctly classified
images is conventional in research on adversarial
images (Tabacof and Valle, 2016; Narodytska and
Kasiviswanathan, 2017), because it ensures that the
attack success rate (ASR) includes only misclassi-
fications that are direct results of attacks.

Two design choices in our analysis and experi-
ments are related to the fact that we are studying the
patterns of typographic attacks in the multi-image
setting and not the form of the attack. First, we
focus on attack texts that consist of only one word,
leaving the study of multi-word attacks to future
work. The set of attack texts used in this paper is
drawn from the class labels of the ILSVRC2012
validation dataset. It consists of 579 unique words,
corresponding to the 579 labels from the original
1000 labels that consist of only one word.

Second, we adopt the font style recom-
mendations for attack texts from the previous
work (Cheng et al., 2024). The font color is set
as yellow, and the opacity is 100%. The font size is
adjusted to 0.8 times the font type size. Regarding
the spatial positioning of the attack text, we follow
the protocol in Goh et al. (2021) to use the same
eight arbitrarily chosen coordinates and maintain
a consistent font style. As seen in Figure 1, the at-
tack texts are readily evident to human inspection.
Recall that, in this paper, our focus is stealth as
related to the non-repetition of attack texts and not
the inconspicuousness of attack texts.

We report untargeted ASR and targeted ASR, as
previously mentioned. An attack is successful if

Figure 2: Attack success rates of our 579 attack texts.
The attack texts are arranged in ascending order of un-
targeted attack success rate along the horizontal axis.

the top-1 prediction label of the attacked image is
different from the ground-truth label of the original
image. For targeted ASR, only the cases in which
the top-1 prediction label is identical to the attack
text label are calculated. Targeted ASR reflects
the extent to which the attack text is able to pull
the target images into its exact semantic direction.
Note that the level of attack success rate that an
attack needs to achieve in order to be considered
dangerous depends on the domain. In some do-
mains, even a few images evading the gatekeeper
could cause a serious problem. In this work, we
compare attack success rates without interpreting
them in a particular real-world scenario.

4.2 Attack text effectiveness

Not all texts are equally suited for carrying out typo-
graphic attacks. We define attack text effectiveness
as the property of a text that reflects this suitability.
Following the methodology in Goh et al. (2021),
we conduct a brute-force attack on all images in
the evaluation dataset using the same attack text.
For each attack text, we calculate the attack success
rates based on these attacks. Specifically, higher
attack success rates indicate better attack text effec-
tiveness. Figure 2 shows the attack success rate for
each attack text. We can observe that for both with
respect to untargeted and targeted ASRs, there is a
large amount of variation between texts in terms of
their ability to cause misclassification.

4.3 Prioritizing images

In this section, we study a property of images that
we refer to as the visual image prediction probabil-
ity (VIPP). It is defined as the prediction probability
of the ground-truth label for the original image. A
higher prediction probability of the ground-truth
label indicates that the model is more likely to iden-
tify this image correctly.
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Figure 3: Attack success rates versus visual image pre-
diction probability for three categories of attack texts:
highly, moderately, and minimally effective.

We are interested in the relationship between
VIPP and the attack success rates. To get a detailed
understanding of this relationship, we analyze this
relationship for three separate types of attack text:
highly, moderately, and minimally effective. Fig-
ure 3 shows the trend of the attack success rates as
the VIPP gets higher. We see that indeed difficult-
to-classify images (high VIPP) are more difficult
to attack (low ASR). This observation holds across
all three types of attack text. However, the perfor-
mance of minimally effective attack texts measured
with respect to targeted ASR is particularly low.
This graph suggests that it is useful to prioritize im-
ages using VIPP and use the most effective attack
texts to attack the most difficult images.

Here, we provide some details on how Figure 3
was produced. The three categories of attack texts
were created on the basis of ASR by choosing
thresholds. The grey lines in the targeted ASR
plot of Figure 2 show the thresholds that we chose
(minimally effective is lower than 0.05 ASR, mod-
erately effective is between 0.05 and 0.2 ASR, and
highly effective is larger than 0.2). Note that we are
interested in general trends and did not optimize
these categories (i.e., they could have been chosen
based on different criteria or based on untargeted
ASR). We divided the images into equally spaced
bins based on their VIPP and excluded bins contain-
ing less than 35 images. For each of the categories
of attack text, we use each attack text it contains
to attack all images in each bin. For each bin, we
then have one attack text ASR for each attack text,
which we average to a bin-level ASR and plot.

4.4 Text-image interactions
The text-image similarity is a measure that quan-
tifies the degree of interaction between the attack
text and the target image embedding. We use the

Figure 4: Attack success rates versus text-image simi-
larity for three categories of attack texts: highly, moder-
ately, and minimally effective. The attack success rates
generally increase as text-image similarity rises.

cosine similarity between the embeddings of the
target image and the attack text, both encoded by
the CLIP model. Note that since the training of
CLIP is not necessarily ideal throughout the em-
bedding space, the text-image similarity does not
necessarily correspond to semantic similarity.

Figure 4 shows the relationship between text-
image similarity and attack success rates for the
three types of attack text, minimally, moderately,
and highly effective. For all three types of attack
text, attacks become more successful as the simi-
larity grows higher. This graph suggests that it is
useful to use text-image similarity to choose which
attack text to use to attack a given image. Figure 4
is generated in the following way. We first attack
all target images using each attack text in each cat-
egory while calculating the text-image similarity.
The similarities are then equally grouped into 10
bins, and the results for each bin are averaged. In
the next section, we will introduce the two types
of attack strategies that we propose based on our
analyses in this section.

5 Attack Strategies

In this section, we first provide the specifics of
how we instantiate the multi-image attack setting
with non-repeating attack texts for our experiments.
Then, we describe the attack strategies we propose
on the basis of the insights in Section 4.

5.1 Non-repeating multi-image attack

To carry out our experiments, we conceptualize
a non-repeating multi-image attack, represented
by Figure 5 as a matching problem. The attacker
has a set of target images to attack and a set of
attack texts that can be used to attack. For each
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target image, the attacker must choose an attack
text, without repeating. The goal of the attack is
to cause a misclassification, such that the target
image is no longer classified as its ground-truth
label. In our experiments, the set of images and the
set of attack texts have the same size, making the
attack a 1-to-1 matching problem. We compare our
proposed strategies against a baseline approach.
Rand: Random. In this baseline approach, one
target image and one attack text are randomly se-
lected from their respective sets. Each attack text
may be selected only once.

5.2 Attack text effectiveness strategies
We propose two attacks that make use of attack text
effectiveness (ATE), presented in Section 4.2. We
conjecture that the best matching strategy is one for
which the most difficult-to-attack images (reflected
by high VIPP) are attacked with the strongest attack
texts (reflected by high ATE). To gain insight into
the importance of matching difficult-to-attack tar-
get images with strong attack images, we propose
a strategy that reverses the relationship to measure
the impact of the attack.
HighVIPP-LowATE: VIPP and Attack Text Ef-
fectiveness. Lower Success Rate Strategy: In this
approach, target images are sorted by descending
visual image prediction probability (VIPP), and at-
tack texts are sorted by ascending targeted attack
success rate. Each target image is then matched
one-to-one with an attack text in sequence, aligning
images with higher prediction probabilities with
texts that have lower attack success rates.
HighVIPP-HighATE: VIPP and Attack Text Ef-
fectiveness. Higher Success Rate Strategy: For this
strategy, target images are again sorted by descend-
ing VIPP, but attack texts are sorted by descending
targeted attack success rate. Consequently, each
target image is matched one-to-one with an attack
text in sequence, this time, the images with higher
prediction probabilities are matched with the text
with higher attack text effectiveness.

The ATE-based strategies provide an alternate
way of matching attack texts and target images to
compare with the Text-image similarity strategies,
which we describe next.

5.3 Text-image similarity strategies
We propose two attacks that make use of text-image
similarity, presented in Section 4.4.
Rand-TextImSim: Text-image similarity. In this
approach, each target image is assigned an attack

Ranked image set

…

Attacked image set  Ranked text sets

dragonfly (0.998)

lycaenid (0.96)
damselfly (0.94)

wing (0.85)
…

ballplayer (0.79)
buckeye (0.75)
pitcher (0.72)

…

sidewinder (0.73)
tray(0.70)

 packet (0.69)
…

baseball (0.995)

pizza (0.980)

lycaenid (0.98)

ballplayer (0.86)

sidewinder (0.99)……

Figure 5: One-to-one matching between the image and
attack text sets. The image and text sets are ranked
by descending VIPP and text-image similarity. The
attack text is selected from the ranked list (excluding
the ground truth label and previously used texts). The
text and numeric values under each image represent
its prediction label and probability, while the bracketed
values for each attack text indicate text-image similarity.

text based on the highest text-image similarity (ex-
cluding the ground-truth class label). All images
are ordered randomly, and for each, the text-image
similarity is calculated to determine the best text
match. The drawback of this approach is that if the
closest attack text to a given target image has pre-
viously been used for another image it is no longer
available. There is no mechanism that can save
the attack texts for the images where they are most
needed. To address this, we propose also using
VIPP prioritization with text-image similarity.

VIPP-TextImSim: VIPP and text-image simi-
larity. The approach is illustrated in Figure 5 and
consists of the following steps.

1. We sequence the target images by visual image
prediction probability (VIPP) in descending order
to prioritize images on which it is most challenging
to conduct an attack.

2. Starting with the top image in the prioritized list,
we calculate the text-image similarity between the
image and all of our attack texts.

3. Moving down the list, for each target image, we
select the attack text with the highest text-image
similarity after the image’s own ground-truth label
and attack text labels that have already been used
have been excluded.

In the next section, we report the results of our
experiments that apply these attack strategies.
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6 Experiments

6.1 Experimental setting

The model and attack settings for the experiments
are the same as were used in the analysis in Sec-
tion 4 and were previously described in Section 4.1.
In this section, we continue to use the same 579
one-word attack texts. We test our model on five
randomly drawn sets of target images containing
579 images each. Recall that the evaluation data
contains only images that are correctly classified
by our model, OpenCLIP. To draw one test set of
579 images we follow the following procedure. We
chose the 579 test images by first randomly choos-
ing 579 classes from the original 1000 classes of
the LSVRC2012 validation dataset (Russakovsky
et al., 2015). Then, we randomly choose one image
from each of the 579 classes. This method pro-
vides us with a satisfying degree of certainty that
the target images are semantically well-balanced.
Note that the outcome of our experiments would be
less informative if either the 579 attack texts or the
579 target images were highly homogenous with
respect to their semantics.

6.2 Non-repeating attacks in the multi-image
setting

The evaluation results, depicted in Figure 6, reveal
the importance of text-image similarity, with Rand-
TextImSim and VIPP-TextImSim being the highest
performers by a substantial margin. The two ap-
proaches, however, achieve comparable ASR, i.e.,
VIPP prioritization is not making a measurable con-
tribution. Further, HighVIPP-HighATE performs
closely to Rand, our random baseline.

We conclude that using ATE for attack text se-
lection is not competitive with using TextImSim in
the multi-image attack setting. Recall, however,
that the experimental setup requires one-to-one
matching, making it quite challenging. For this
reason, we should not abandon VIPP or ATE en-
tirely. Evidence that these properties are potentially
impactful is the difference between the two ATE ap-
proaches. Specifically, when we reverse the use of
ATE, matching difficult images (HighVIPP) with
weak attack texts (LowATE), we observe a deterio-
ration of performance over HighVIPP-HighATE.

It is interesting to observe that for the text-image
similarity strategies, a greater proportion of the
untargeted ASR is comprised of targeted ASR, re-
flecting a large number of misclassifications being
made into the class whose label is identical to the

Figure 6: Comparisons of the five strategies in the multi-
image setting. The values above the bars denote the
average attack success rates. The error bars represent the
variability of the attack success rates. VIPP-TextImSim
strategy achieves the highest attack success rates.

attack text. Referring to Figure 5 allows us to gain
further insight into how text-image similarity se-
lects attack texts for images. These examples are
real examples of cases in which the attack causes
a targeted misclassification. In the top example,
the relationship between the target image and the
attack text is one of visual similarity, between the
target image of the dragonfly and the attack text
lycaenid, which is a type of butterfly, both of which
are winged insects. In the middle example, the re-
lationship is one of semantic similarity, with the
baseball in the target image being a key object as-
sociated with the attack text ballplayer. At the
bottom, the relationship is again visual, but corre-
sponds to a glitch in the semantic space, with the
pizza in the target image being associated with the
attack text sidewinder, which is a kind of snake.
Future work should focus on understanding how
typographic attacks take advantage of regions of
the CLIP embedding space in which the representa-
tion of semantics is not optimal. Also, future work
should investigate the untargeted cases, in which
the image is misclassified into a class unrelated to
the attack text. These cases have the potential to
be particularly stealthy because the intent of the
attacker cannot be read from the text in the image.

7 Loosening the Non-repeating
Requirement

In this section, we gradually increase the maximum
number of repetitions of attack texts allowed in the
multi-image setting. We aim to study the trade-off
between the stealth of the multi-image attack and
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Figure 7: Untargeted attack success rates versus the
maximum number that a given attack text is allowed to
repeat. VIPP-TextImsim achieves the highest untargeted
attack success rate as the number of allowed repetitions
grows from 1 to 10.

the ASR. We focus on HighVIPP-HighATE and
VIPP-TextImSim, which represent our ATE and
TextImSim approaches. Figure 7 plots the untar-
geted ASR as we allow attack texts to repeat an
increasing number of times from the non-repeating
setting (which corresponds to 1 at the far left). Tar-
geted ASR is not depicted, but follows the same
trends.

The plot reveals that the strength of the VIPP-
TextImSim strategy with respect to the HighVIPP-
HighATE strategy is maintained as more and more
repetitions are allowed, supporting the importance
of text-image similarity for typographic attacks.
The ASR of both VIPP-TextImSim and HighVIPP-
HighATE increase as more repetitions are admit-
ted, reflecting the trade-off between stealth (i.e., re-
stricted attack text repetitions) and attack strength
(i.e., ASR). However, HighVIPP-HighATE in-
creases more steeply, which we attribute to the
increased use of attack texts with the highest effec-
tiveness, i.e., those on the far right of Figure 2.

We note that the performance of VIPP-
TextImSim is limited by the attack texts that are
available in the set of 579 attack texts used in this
experiment. The set might fail to obtain optimal
attack texts, meaning attack texts with the high-
est possible similarity to the target image. Future
work should study the impact of the set of candi-
dates from which the attack text can be chosen on
approaches using text-image similarity.

8 Evaluation on Other LVLMs

In the previous sections, we have experimented
with a whitebox attack on CLIP. We assume that at-
tackers have full access to the trained CLIP model
that they are attacking. This experimental setting is
not unrealistic because many LVLMs are publicly
available. However, it is interesting to understand
whether our multi-image attack can also be car-
ried out without whitebox access. In this section,
we perform a greybox attack on the InstructBLIP
(FlanT5XXL) (Dai et al., 2023) model using VIPP-
TextImSim, our best-performing method from Sec-
tion 6. The attacker does not access InstructBLIP
to create the attack but instead has access to CLIP.
We refer to this attack as greybox and not blackbox,
since InstructBLIP uses a vision encoder similar
in structure to CLIP and its training dataset has a
substantial overlap with the CLIP training set.

We choose the InstructBLIP (FlanT5XXL) be-
cause it demonstrates better optical character recog-
nition (OCR) performance, e.g., compared to the
MiniGPT4 model evaluated in Liu et al. (2024b).
The OCR performances mean that InstructBLIP
focuses on text in images and is for this reason par-
ticularly susceptible to typographic attack (Qraitem
et al., 2024). Future work can also look at
the LLaVA (Liu et al., 2024a) model, which ex-
hibits limited robustness against typographic at-
tacks (Cheng et al., 2024), as well as models with-
out strong OCR performance.

8.1 Experimental setting

Our experiments follow the setting introduced in
Section 6.1 but integrate modifications that are
necessary for testing attacks on LVLMs. We first
make the choice of a prompt to use, cf. Figure 8.
To choose the prompt, we follow Qraitem et al.
(2024), a recent study on single-image typographic
attacks, which includes an attack on InstructBLIP.
The prompt used in Qraitem et al. (2024) is ‘Se-
lect the correct {Dataset Subject} pictured in the
image: (1) {first option} or (2) {second option}.
Answer with either (1) or (2) only.’ Like Cheng
et al. (2024), this prompt gives the model a small,
closed set of options (only two). In order to evalu-
ate untargeted ASR, it is necessary for the model to
output one of the full set of options (1000 ImageNet
class labels). During our exploratory experiments,
we found that InstructBLIP cannot deal well with a
longer list. Also, posing an open question adds the
step of mapping the output back to the full set of
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Select the correct object pictured in the image:
(1) junco or (2) robin. Answer with either (1) or (2) only.

(1) junco

Select the correct object pictured in the image:
(1) junco or (2) robin. Answer with either (1) or (2) only.

(1) robin

Original image

Attacked image

What is the main entity depicted in the image?
(1) lion       (2) another entity

(2) another entity

Attacked image

(a) Model output for the original image.

Select the correct object pictured in the image:
(1) junco or (2) robin. Answer with either (1) or (2) only.

(1) junco

Select the correct object pictured in the image:
(1) junco or (2) robin. Answer with either (1) or (2) only.

(1) robin

Original image

Attacked image

What is the main entity depicted in the image?
(1) lion       (2) another entity

(2) another entity

Attacked image (b) Model output for the attacked image.

Figure 8: Model outputs for the original and attacked
images given the multiple options in the prompt.

options, which can introduce error. For this reason,
we decided to stick closely to Qraitem et al. (2024),
adding only a sentence to explicitly request one
answer only.

Our final prompt is, ‘Select the correct object
pictured in the image: (1) {ground-truth label} or
(2) {attack text label}. Answer with either (1) or
(2) only.’ We shuffle the ordering of each option
to avoid model bias to any answer order. In future
work, more focus on prompt engineering, address-
ing the issue of the high sensitivity of models to
prompts, would allow the evaluation of untargeted
attacks. However, in this section, we will evaluate
only the targeted case.

As in Qraitem et al. (2024), the attack text is
placed on the top white space in black font color
and size of 20px, as shown in Figure 8b.

8.2 LVLM attack in the multi-image setting

A comparison of the Rand and our VIPP-
TextImSim attacks is shown in Table 1. The ‘Origi-
nal Image Set’ column shows the original accuracy
of InstructBLIP. Since either attack strategy spec-
ifies its own {attack text label}, the two attacks
may have different original accuracy, although this
difference turns out to have little impact (0.62 vs.
0.63). We also see the original accuracy is rela-
tively low, consistent with that observed in Qraitem
et al. (2024) (for other datasets). The ‘Attacked
Image Set’ column shows the performance of the
attacks. Our VIPP-TextImSim method achieves a
significant drop in accuracy (from 0.63 to 0.39) on
the attacked image set, compared to the random
baseline (from 0.62 to 0.49).

Additionally, we point to the difference in the
style of the text added to the image for the typo-
graphic attack. When attacking the CLIP model,
text was added eight times scattered over the image,

Attack Original Image Set Attacked Image Set

Rand 0.62 0.49
VIPP-TextImSim 0.63 0.39

Table 1: Accuracy of InstructBLIP with respect to the
original ground-truth label on the image set used in
Section. 6.2 (original and attacked images). Note: 0.49
and 0.39 correspond to targeted ASRs of 0.51 and 0.61.

as in Figures 1 and 5. When attacking InstructBLIP,
the text is added more consistently with how text
occurs naturally in a social image collection (at
the top of an image), as in Figure 8b. In the fu-
ture, more work on natural-looking attack texts can
further increase the stealth of typographic attacks,
both in the single-image and multi-image settings.

9 Conclusion and Outlook

In this paper, we have introduced a multi-image at-
tack setting for typographic attacks and studied the
contribution of the similarity between target images
and attack text to typographic attacks. We have ar-
gued that repeated use of the same attack text is
not the most dangerous attack, since it would be
evident to a gatekeeper. Once stealth is taken into
account, the importance of text-image similarity
for typographic attacks becomes clear.

Moving forward, we foresee that typographic
attacks based on text-image similarity can reveal
issues in the embedding space of LVLMs. Also,
research is needed to understand the factors influ-
encing attack texts that cause untargeted misclas-
sifications, investigating whether the distraction
introduced by the text is semantic or purely visual
in nature. Such investigations can improve LVLMs,
making them robust to the dangers of typographic
attacks. Studying diverse attack texts in the multi-
image setting will continue to be part of this effort.

Limitations

Our work is primarily limited in two dimensions.
First, we focus on single-word attack texts, ex-
cluding the potential complexities introduced by
multi-word texts. In real-world scenarios involving
more complex and varied visual texts with images,
the findings of this paper may differ. Future work
could expand the types of texts used in attacks to
assess whether the observed trend holds for more
sophisticated attack texts. Second, compared with
imperceptible perturbative attacks, the way that we
superimposed the attack text on the image when
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attacking CLIP is more conspicuous, thereby limit-
ing attack stealth at the single image level. Future
work may explore more natural methods of placing
the attack text, while ensuring semantic consistency
with the image content, similar to images in the real
world, thus reducing suspicion at the image level.

Ethical Considerations

This paper was inspired by concerns about typo-
graphic attacks on real-world detection systems
based on CLIP, such as those used for detecting
hateful content. We point out the reality of a multi-
image setting and the significance of stealth for
typographic attacks. We propose new strategies
to conduct typographic attacks on models, such
as CLIP and InstructBLIP, more effectively in the
multi-image setting. This technique could poten-
tially be exploited by malicious users. However,
we believe that our work highlights the potential
risk of typographic attacks in a multi-image set-
ting, thus inspiring the development of effective
defense strategies. Moreover, in this paper, we do
not design or optimize attacks on classifiers used
in critical applications. Instead, we conduct all ex-
periments using ImageNet data and select classes
labeled within this dataset as our attack texts.
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