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Abstract

In this study, we applied the semantic projec-
tion approach to animacy, a feature that has not
been previously explored using this method.
We compared the relative animacy rankings of
nouns denoting animals, humans, objects, and
first-, second-, and third-person pronouns, as
derived from word embeddings, with rankings
derived from human behavioral ratings of ani-
macy and from grammatical patterns. Our re-
sults support the semantic projection approach
as an effective method for deriving proxies of
human perception from word embeddings and
offer insights into the sources of grammatical
animacy.

1 Introduction

Why are grammars the way they are? One per-
spective—advocated to varying degrees by propo-
nents of usage-based linguistics, cognitive linguis-
tics, emergentism, and other functionally oriented
approaches (Bybee, 2023, a.o.)—argues that gram-
matical structures emerge from exposure and inter-
action. According to this view, language learners
develop grammars that align with existing linguis-
tic norms because those are the structures they en-
counter. When learners’ grammars diverge from
established norms, these deviations are often at-
tributed to limited or skewed linguistic input (e.g.,
in L1 and L2 learning, or contact-induced change).
Consequently, even when linguistic patterns con-
flict with cognitive or perceptual expectations, they
are still learned. A compelling example is grammat-
ical gender: any fluent speaker of German would
classify the noun Mädchen (‘girl’) as grammati-
cally neuter, despite girls being biologically and
conceptually feminine. Studies on frequency ef-
fects and exemplar-based learning further support
the role of distributional patterns in shaping both
diachronic language change and real-time language
processing.

A contrasting perspective, most prominently
associated with generative linguistics (Chomsky,
1965, a.o.), posits that grammar is shaped by in-
nate cognitive biases. According to this view, the
acquisition of grammar is guided by inductive bi-
ases—cognitive predispositions that shape how
learners interpret and generalize from linguistic
data.

In a naturalistic setting of language acquisition
(as opposed to an unnatural/artificial setting where
learners are exposed to inconsistent input, as in arti-
ficial language learning experiments), where learn-
ers’ exposure generally aligns with the target gram-
mar (e.g., in the case of grammatical gender in Ger-
man), a functionalist explanation alone may seem
sufficient. Finding support for inductive biases
would crucially involve identifying cases where lin-
guistic input and grammatical structures diverge.
Such cases provide strong evidence that learners
internalize grammars that do not simply mirror the
distributional properties of their linguistic environ-
ment. In this study, we argue that grammatical
animacy represents such a case. Our contributions
are summarized as follows:

• Methodologically, we conduct extensive ex-
periments to capture the representation of an-
imacy in English. The application of the se-
mantic projection method to animacy is novel,
as animacy has not been systematically exam-
ined using this approach.

• Empirically, we demonstrate that semantic
projections derived from English word embed-
dings align closely with human perceptions
of animacy, as reflected in animacy rankings
based on human ratings.

• We further show that the distributional pat-
terns of linguistic data in English—captured
through embedding-derived animacy rank-
ings—do not fully align with grammatical
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Animate
InanimateHuman Nonhuman

-man -ma -

Table 1: Animacy modulates plural marking in the Gu-
dandji dialect of Wambaya (Aguas, 1968:5-6; cited in
Santazilia, 2020: Table 7)

patterns as reflected in the grammar-based an-
imacy hierarchy. This finding suggests that
animacy as a grammatical feature is likely in-
fluenced by innate cognitive biases, enabling
first-language learners to override distribu-
tional tendencies in their input.

2 Related works

2.1 The semantic projection method

Word embeddings have been shown to capture se-
mantic relations through analogy (Mikolov et al.,
2013). However, these captured relations are typi-
cally binary, meaning that they reflect definitive or
widely agreed-upon mappings between word pairs.
For example, the pair king and queen represents a
"male-female" gender contrast, and by analogy, the
female counterpart for waiter would be waitress,
which is generally considered the optimal, if not
the only, correct answer. Similarly, in the relation
country-capital, as in Germany-Berlin, a prompt
like China would be expected to elicit Beijing and
no other city.

Yet, many semantic relations are scalar in nature
and do not necessarily involve such definitive op-
positions between word pairs. For instance, along
the semantic dimension of “size,” many things are
larger than bees. In the analogy ant: bee, bee: ?,
we might be asking for an entity that is as many
times larger than a bee as a bee is larger than an
ant. The answer, however, is not unique: cicadas,
mantises, or grasshoppers might all be appropriate
responses.

Grand et al. (2022) introduced the semantic pro-
jection method, which extracts vectors from word
embeddings to represent semantic relations or fea-
tures such as size or danger level. The authors
demonstrated that words’ projections onto these
vectors correlated with human ratings on 17 seman-
tic features. Thus, the semantic projection method
appears to be a reliable proxy for human perception
of various semantic dimensions. However, animacy
was not included among the features they investi-
gated, presenting an important gap.

2.2 Animacy hierarchy based on human
ratings

The concept of animacy goes beyond the simple
biological distinction of "alive" versus "dead." Hu-
man perception of animacy is influenced by several
factors, including human-likeness and the ability
to move, think, or reproduce (VanArsdall et al.,
2017; VanArsdall and Blunt, 2022). These cog-
nitive factors contribute to a scalar hierarchy of
animacy, where living beings, particularly animals
and humans, are perceived as more animate than
others.

Radanović et al. (2016) conducted semantic rat-
ing experiments with 126 English-speaking col-
lege students, asking them to rate 72 nouns based
on their perceived level of animacy. The results
showed that both animals and human-denoting
nouns received high ratings, with average scores
exceeding 95 on a 100-point scale for animals
like dog, giraffe, cow, and squirrel as well as for
human-denoting nouns like baby, mother, and girl-
friend. Interestingly, some human-denoting nouns
like teacher, prince, and queen received slightly
lower ratings (around 90), comparable to creatures
like worm, spider, and fly. This indicates that, from
a cognitive perspective, humans and animals are
similarly animate, with certain animals even out-
ranking humans.

A more recent large-scale online experiment by
VanArsdall and Blunt (2022), with 1,500 native
speakers of English rating 1,200 concrete nouns,
found similar trends. Animals, especially mam-
mals and birds, were rated higher than humans in
terms of being alive, having the ability to reproduce,
and their likelihood of movement. These findings
support a human perception-based animacy hier-
archy, where animals are perceived as at least as
animate as humans, if not more so (see Eq. 1).

Animals > Humans > Inanimate Entities (1)

2.3 Animacy hierarchy based on grammatical
patterns

Animacy plays a crucial role in the grammatical
systems of many languages. However, the way
animacy is represented in grammar can vary. In
some languages, animacy distinctions are discrete,
with specific morphosyntactic markers assigned to
nouns of different animacy levels, affecting per-
son, number, case, and agreement (Corbett, 2006,
2012; Comrie, 1989; Croft, 1990; Ortmann, 1998;
Santazilia, 2019, 2020; Silverstein, 1976; de Swart
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et al., 2008, a.o.) For example, Table 1 illustrates
how plural marking in Wambaya varies depending
on animacy (Aguas, 1968:5-6; cited in Santazilia,
2020:p.823). Other languages exhibit gradient ef-
fects, where animacy influences the likelihood of
one construction being chosen over another. For
example, in English, when the indirect object (re-
cipient) of a ditransitive verb is animate, the double-
object construction (V NP NP) is more likely than
the prepositional dative construction (V NP PP)
(Bresnan et al., 2007). Similarly, with animate
nouns, the s-genitive (John’s book) is preferred
over the of -genitive (the book of John) (Rosenbach,
2008; Stefanowitsch, 2003). When the object of
a verb is more animate than the subject, passive
voice is favored over active voice (Harris, 1978).

Although languages typically categorize nouns
into two or three levels of animacy (e.g. humans
vs. non-humans, living creatures vs. non-living
entities), the exact cut-off points for these cate-
gories differ (Comrie, 1989; Santazilia, 2020; de
Swart et al., 2008, a.o.) Cross-linguistic stud-
ies have synthesized these patterns into a gener-
alized animacy hierarchy (e.g. Gardelle and Sorlin,
2018). One widely recognized version of this hier-
archy is presented in Corbett (2000), where entities
that bear more similarities with the self (i.e. the
speaker) are considered more animate than others
(the egophoricity principle, Dahl, 2008; Langacker,
1991; Yamamoto, 1999): see Eq. 2

Speaker (1st person pronoun) >

Addressee (2nd person pronoun) > 3rd person >

Kin > Human > Animate > Inanimate
(2)

It is worth noting that grammatical animacy is
assumed to be a universal feature (Dahl and Frau-
rud, 1996; Jespersen, 1924; Whaley, 1997, a.o.),
even if its effects are gradient. A case in point is
the optional marking of the direct object in Turkish.
When sentences contain a ditransitive verb and an
optional marker on the direct object, they become
progressively less felicitous as the animacy of the
direct object decreases. Sentences with the optional
marker on human-denoting nouns receive higher
acceptability ratings than those with the marker
on animals or inanimate objects, even though the
nouns denoting humans, animals and inanimate
entities are all direct objects in those sentences
(Krause and von Heusinger, 2019).

The universality of grammatical animacy sug-
gests that the animacy hierarchy in Eq. 2, based on

cross-linguistic grammatical patterns, should also
apply to English. This sets the stage for compar-
isons with the human perception-based hierarchy
derived from English data, as introduced in the pre-
vious section. The two hierarchies exhibit different
rankings, which we elaborate on in the next section.

2.4 Contrasting hierarchies

There are two key points of divergence between
the hierarchy based on grammatical patterns and
the one based on human perception. First, the
grammar-based hierarchy ranks humans above
other animate entities, whereas the human rating-
based hierarchy often ranks animals as equally
or even more animate than humans. Second, the
grammar-based hierarchy makes finer distinctions
among human-denoting nouns. For instance, in
the grammar-based hierarchy, pronouns are ranked
higher than human-denoting common nouns, and
within pronouns, first-person pronouns are ranked
higher than second-person pronouns, which in turn
rank higher than third-person pronouns. In contrast,
the rating-based hierarchy does not have principled
predictions regarding the relative rankings among
various human-denoting nouns.

These discrepancies raise important questions
about the trilateral relationship between language
use, cognition, and grammar. To what extent does
the assumption that language use—specifically co-
occurrence patterns—reflects human perceptions
(Harris, 1954; Firth, 1957; Wittgenstein, 1953, a.o.)
hold for ‘animacy’? What are the origins of gram-
matical animacy? Could grammatical patterns of
animacy deviate from general trends in language
use? Understanding how distributionally derived
animacy hierarchies align with or diverge from
perception-based and grammar-based hierarchies
can provide valuable insights into the cognitive and
linguistic foundations of animacy distinctions.

3 This study

In this study, we apply the semantic projection
method to investigate the animacy ranking as re-
flected in English word embeddings. Specifically,
we examine the divergent predictions made by the
grammar-based hierarchy and the human rating-
based hierarchy, focusing on three relative rank-
ings: the rankings 1) between animals and humans;
2) between human-denoting common nouns and
pronouns; and 3) among pronouns.
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3.1 Experiment setup

Selection of target words We employed two sets
of target words. The first set comprises three lists
of 50 common nouns, categorized as humans (e.g.
artist, man, mother), animals (e.g. bird, cat, fish),
and objects (e.g. cave, hill, rock), respectively.
These nouns were selected from the top 60 high-
frequency words in each category from WordNet
(Miller, 1995), following three selection criteria:
(1) preference for high-frequency words over low-
frequency ones; (2) inclusion of words that repre-
sent typical members of their respective categories
to maintain clear contrasts among humans, animals,
and objects; and (3) inclusion of both singular and
plural forms to mitigate potential number-related
effects. For example, although humans are tech-
nically animals, we excluded human being from
the list of animals to preserve the distinction be-
tween the "humans" and "animals" categories. An-
other example related to the second criterion is god.
While it could be argued to denote a human-like
being, it is equally reasonable to classify god as
an imaginary (and thus abstract) entity, making it
more akin to an object. Such words were excluded
from our analyses.

The second set of target words includes 31 words
in total, consisting of singular and plural first-,
second-, and third-person pronouns. This set in-
cludes nominative (e.g., I), accusative (e.g., me),
adjectival possessive (e.g., my), possessive (e.g.,
mine), and reflexive (e.g., myself ) pronouns. In-
clusion of pronouns beyond the nominative forms
provides a more balanced comparison between pro-
nouns and common nouns.

Selection of contexts Vulić et al. (2020) demon-
strated that averaging over 10 contexts is sufficient
for capturing type-level lexical information, though
increasing the number of contexts improves per-
formance only marginally. In line with this, we
sampled 30 sentences for each target word from
the Brown Corpus (Francis and Kucera, 1979), ac-
cessed via the Natural Language Toolkit (NLTK)
(Bird et al., 2009) in Python. In cases where fewer
than 30 sentences were available, all sentences
were used. Some nouns in the common noun set
were excluded from subsequent analyses due to the
unavailability of sufficient contexts (e.g., antelopes,
goats, grasshopper). Additionally, we filtered out
cases where nouns were used as denominalized
verbs (e.g., to duck a punch) by restricting the part-
of-speech (POS) tags of target words in the first set

to NN or NNS (singular or plural nouns).1

For the pronoun set, we manually verified the
sampled sentences to exclude non-pronoun uses.
For instance, sentences where mine refers to a
bomb or mineral extraction (e.g., coal mine) were
excluded. Additionally, since pronouns like "you"
have multiple meanings (i.e., second person singu-
lar or plural), we did not attempt to differentiate
between such polysemous uses, as those distinc-
tions are orthogonal to the animacy feature we aim
to study.

Embedding models Previous studies have
shown that embeddings differ qualitatively across
models and layers (Ethayarajh, 2019). To under-
stand whether specific patterns of animacy rank-
ing are model-dependent or restricted to particular
layers, we employed two pre-trained embeddings
models: BERT and GPT-2. The models are chosen
for their contrasting architectures:

• BERT (Bidirectional Encoder Representations
from Transformers) is a bidirectional trans-
former model designed for language under-
standing, which captures relationships from
both left and right contexts (Devlin et al.,
2019).2

• GPT-2 is a unidirectional transformer decoder,
designed for language generation tasks (Rad-
ford et al., 2019).3 It processes language se-
quentially from left to right.

We extracted embeddings from all twelve inter-
nal layers of both models using PyTorch and the
Hugging Face transformers library. This allows
us to determine how patterns of animacy evolve
across layers in these two models.

Extraction of embeddings and derivation of ani-
macy scores For each target word, we extracted

1Although our corpus may seem smaller than those typi-
cally used in computational linguistics studies, it is compara-
ble in size to corpora from some previous studies. Radanović
et al. (2016) analyzed 72 English nouns of various cate-
gories, only about 13 of which were human-denoting nouns
(baby, mother, girlfriend, boy, uncle, sailor, brother, profes-
sor, teacher, prince, queen, witch, cook). In contrast, our
study, after filtering, analyzes 170 words in total, including 46
human-denoting nouns. Other categories (animals, pronouns,
objects) are of roughly comparable sizes.

2https://huggingface.co/google-bert/
bert-base-uncased, accessed and used under Apache
License Version 2.

3https://huggingface.co/openai-community/gpt2,
accessed and used under MIT License.
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its embeddings in context.4 If a target word was
out-of-vocabulary,5 we used the mean of its sub-
word token embeddings. The embeddings for each
target word were averaged across contexts at each
layer.

To derive the vectors representing the semantic
feature of animacy, we averaged, at each layer,
the embeddings of animal and object categories
separately (Eq. 3, 4), then subtracted the average
embeddings of objects from animals (Eq. 5).

vl
animal =

1

Nanimal

Nanimal∑

i=1

elanimal,i (3)

vl
object =

1

Nobject

Nobject∑

i=1

elobject,i (4)

al = vl
animal − vl

object (5)

Here, elanimal,i and elobject,i denote the embed-
dings of the i-th animal or object word on Layer
l. Nanimal and Nobject are the number of words in
the animal and object categories.

These vectors al were transformed into unit vec-
tors (Eq. 6). The animacy score slw for a target
word w on Layer l was calculated by projecting its
embeddings elw onto the (extensions of the) layer-
specific unit vector âl (Eq. 7).

âl =
al

∥al∥ (6)

slw = elw · âl (7)

Statistical analyses Given that the animacy
scores did not follow a normal distribution, we
applied non-parametric tests to analyze the data.
Specifically, we used the Kruskal-Wallis tests and
performed post-hoc Dunn’s tests with Benjamini-
Hochberg correction (Benjamini and Hochberg,
1995) to account for multiple comparisons. These
statistical analyses were conducted using R (R Core
Team, 2024) with the dunn.test package (Dinno,
2024). The results are reported in the next sections.

3.2 Experiment 1 & 2

Fig. 1 and 2 show the embedding-derived animacy
scores for all target words used in analyses. Words
of different categories exhibit distinct patterns de-
spite within-category variation. The distinctions
appear to be more prominent in BERT than in GPT-
2.

We conducted a Kruskal-Wallis test to compare
the animacy scores among nouns denoting animals,
humans, objects, and pronouns across all layers in
both embedding models. Significant differences
were found between categories across all layers in
both models (p < 0.05 for all comparisons). Below,
we present the results of post-hoc Dunn’s tests. Ex-
periment 1 focuses on the relative rankings among
humans, animals, and objects, while Experiment
2 compares human-denoting common nouns and
pronouns.

3.2.1 Experiment 1: humans, animals, objects

By-category mean and standard deviation of words
denoting animals, humans and objects are shown
in Fig. 3 (and Table 3 in Appendix A.2). Post-
hoc Dunn’s tests revealed that in BERT, animals
consistently ranked higher than humans and ob-
jects across all layers of BERT (animals > humans
> objects, p < 0.05 for all). In GPT-2, all layers
except Layer 12 followed this pattern, with the dif-
ferences between animals and humans achieving
significance on Layers 1-2 and 10-11, but not on
intermediate Layers 3-9 (p < 0.05), and the dif-
ferences between humans and objects achieving
significance on Layers 1-11 (p < 0.05). Interest-
ingly, Layer 12 in GPT-2 exhibited a reverse pattern
where objects were ranked higher than humans, but
the differences were not statistically significant.

The finding that animals rank higher than hu-
mans contradicts predictions from the grammar-
based animacy hierarchy but aligns with the human-
rating-based hierarchy. This confirms that the se-
mantic projection approach, as introduced in Grand
et al. (2022), is effective in capturing perceived an-
imacy in a human-like manner.

4The code we used can be found at https://github.com/
yesvivian/animacy

5Which words were out-of-vocabulary would depend on
the tokenization method used in the models. BERT uses Word
Piece vocabulary; words like anaconda and bumblebee were
out-of-vocabulary and were represented as the combination of
multiple sub-word pieces. GPT2 uses BPE-based tokenization;
words like snake and sheep, which were in-vocabulary in
BERT, were multi-token (i.e. out-of-vocabulary) words in
GPT2.
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Figure 1: Heatmap showing animacy scores for all words used in the analyses across all layers in BERT (top) and
GPT-2 (bottom). The vertical black lines in both panels demarcate different word categories, arranged from left to
right: animals, humans, first-person pronouns, second-person pronouns, third-person pronouns, and objects. In both
panels, the blue end of the color spectrum represents the highest level of animacy. The full list of words analyzed
can be found in Appendix A.1.

Figure 2: Line graph showing animacy scores of all
target words used in the analyses across all layers in
BERT (top) and GPT-2 (bottom). Categories (animals,
humans, pronouns, objects) are color-coded. Within
each panel, the lower the score, the higher the animacy.

3.2.2 Experiment 2: pronouns vs.
human-denoting common nouns

Next, we examined the animacy scores for human-
denoting common nouns and pronouns. Results
from Dunn’s tests indicated that human-denoting
common nouns were generally ranked higher than
pronouns. The differences were statistically sig-
nificant (p < 0.05) across most layers in BERT,

Figure 3: Line graph showing mean and standard devia-
tion (error bars) of animacy scores of categories animals,
humans and objects, averaged across words. Within
each panel, the lower the score, the higher the animacy.

except Layers 9-11. In GPT-2, the ranking was
the same, with common nouns ranking higher than
pronouns, though the differences were significant
only in Layer 1 and Layers 3-5 (p < 0.05).

Again, these findings challenge the grammar-
based hierarchy, which predicts that pronouns
should rank higher than human-denoting common
nouns.
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3.3 Experiment 3: pronouns

Figure 4: Line graph showing mean and standard devia-
tion (error bars) of animacy scores of first-, second-, and
third- person pronouns, averaged across words. Within
each panel, the lower the score, the higher the animacy.

We analyzed the personal pronoun series (mean
and standard deviations shown in Fig. 4, and in
Table 4 in Appendix A.2) to test the predictions
from the grammar-based animacy hierarchy under
the egophoricity principle. Kruskal-Wallis tests
showed no significant differences between first-,
second-, and third- person pronouns across most
layers of BERT and GPT-2,6 except for Layers 3,
4, and 6 in BERT. Post-hoc Dunn’s tests revealed
that on Layers 3 and 4 in BERT, second-person
pronouns ranked higher than third-person pronouns
and first-person pronouns. The differences between
second- and third- person pronouns were not sta-
tistically significant, but both were significantly
higher than first-person pronouns (p < 0.05). On
Layer 6, the same ranking emerged; however, pair-
wise comparisons did not achieve statistical signifi-
cance.

In summary, while grammatical hierarchies
based on the egophoricity principle rank first-
person pronouns as the most animate, our
embedding-based analysis revealed a different rank-
ing. On layers that showed differentiation, second-
and third person pronouns were ranked as more
animate than first-person pronouns.

6In GPT-2 Layers 3-11, although the mean animacy scores
of first-person pronouns were lower than those of second-
and third-person pronouns, the differences were not statisti-
cally significant due to the high variability among first-person
pronouns.

4 General Discussions

4.1 Embedding-derived animacy

Semantic projection approach is effective The
analyses reveal that animacy rankings derived
from word embeddings align well with the human-
ranking-based hierarchy. Specifically, our results
show that common nouns denoting animals are
ranked higher in animacy than humans, which
replicates findings from behavioral surveys. These
findings provide further evidence that embedding-
derived metrics of lexical semantics can serve as
reliable proxies for human perception of semantic
features, such as animacy. This adds to the growing
support for distributional approaches to lexical se-
mantics (Harris, 1954; Firth, 1957; Mikolov et al.,
2013; Miller and Charles, 1991; Pennington et al.,
2014). More broadly, these findings contribute to
the case for using language models as effective
proxies for human-like agents in various linguistic
tasks (e.g. Andreas, 2022).

Mismatches between embedding-derived ani-
macy and grammatical animacy Our results
deviate from predictions from grammar-based ani-
macy hierarchy. Among common nouns denoting
animals, objects, and humans, embedding-derived
animacy scores ranked humans as less animate
than animals; pronouns were ranked as less an-
imate than human-denoting common nouns and
first-person pronouns were overall not more ani-
mate than second- or third- person pronouns. These
findings contradict the egophoricity principle (Dahl,
2008).7

Our findings bear implications for understanding
the sources of grammatical animacy. The fact that
grammar-based hierarchy imposes relative rank-
ings (e.g. between common nouns for animals and
humans) that are different from those in human
perception and general language use (as reflected
in averaged embeddings across contexts) suggests
that language learners, when acquiring the gram-
mar, must defy the general tendencies in perception
and language use, and selectively focus on a subset
of constructions (e.g. ditransitives, Krause and von
Heusinger, 2019), to develop alternative ranking
preferences. Thus, our findings provide evidence

7Note, however, although as a category, first-person pro-
nouns were not more animate than second-, and third-person
pronouns, the first-person singular pronoun in nominative
form I was perhaps the most animate word across Layers 3-11
in GPT-2, which is consistent with the egophoricity principle
(Dahl, 2008).
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that ‘animacy’, as a grammatical feature, is shaped
by inductive biases, highlighting the intricate inter-
play between cognitive perception, linguistic usage,
and grammatical representation.

4.2 Capturing semantic features in neural
network models

Bidirectional vs. unidirectional context In
our study, we utilized both a bidirectional model,
BERT, and a unidirectional model, GPT-2. Re-
markably, both models produced comparable re-
sults, yielding identical rankings across almost all
internal layers for common nouns in the categories
of animals, humans, and objects. This suggests
that the left-context used by GPT-2 and the bidirec-
tional contexts employed by BERT convey similar
information when encoding the semantic feature of
animacy. Hence, using unidirectional context alone
is sufficient for inferring relative animacy ranking
that align with human perception. This contrasts
the task of inferring fine-grained animacy distinc-
tions with tasks like constituency parsing, which
rely more heavily on bi-directional context (e.g. Li
and Risteski, 2021). It may be that the inference
of semantic features generally relies less on right-
side context compared to the inference of syntactic
features. Future studies could further explore this
topic by systematically examining the utility of uni-
vs. bi-directional contexts across a diverse range of
tasks.

Information encoding across internal layers
Our results align with previous findings suggest-
ing that lower layers of embedding models pre-
dominantly encode type-level information, while
higher layers capture context-specific characteris-
tics (Ethayarajh, 2019; Tenney et al., 2019). In
our findings, differences in animacy diminished at
higher levels, particularly at Layer 12. Since ab-
stract type-level information is less likely to change
across contexts, and that higher layers tend to en-
hance the representation of contextually dependent
features, the observed reduction in animacy differ-
ences between common nouns for humans, animals,
and objects, as well as among first-, second-, and
third-person pronouns, is not unexpected.

Within-category variations Since the focus of
our study is on the comparisons of relative ani-
macy rankings across categories of words, we did
not conduct in-depth analyses on within-category
variations or same-word cross-layer differences in

animacy scores. However, some notable patterns
are worth mentioning.

First, substantial within-category variation is
present in the animacy scores derived from both
BERT and GPT-2. For example, in both models,
ant was more animate than other animal words,
whereas rattlesnake(s) and grasshopper were com-
paratively less animate (see Fig. 1).

Second, within-category variation appears more
pronounced in GPT-2. A particularly striking case
is the first-person singular nominative pronoun I,
which, in GPT-2 Layers 3-11, emerged as the most
animate word across all words. In contrast, BERT
did not exhibit a similar distinction for I relative to
other pronouns. Beyond capturing the animacy of
the entities denoted by words, GPT-2’s embedding-
derived animacy scores also seemed systematically
sensitive to additional grammatical and semantic
features. For instance, nominative case pronouns
consistently appeared more animate than other pro-
nouns. Moreover, plural-singular noun pairs exhib-
ited marked differences: pond was more animate
than ponds, and stars was more animate than star.
Such differences were much less drastic in BERT.

Additionally, we observed differences between
the two models in how animacy for the same word
was encoded across layers. In GPT-2, animacy
scores for highly animate words (e.g., I and ant)
remained relatively stable across Layers 3-11, with
noticeable shifts occurring primarily from Layer
2 to Layer 3 and from Layer 11 to Layer 12. In
contrast, BERT exhibited a more dynamic encoding
of animacy, with incremental changes in animacy
scores from Layer 0 to Layer 11, except for the least
animate words (e.g., beach and beaches), whose
scores remained relatively stable.

These observations highlight the nuanced ways
in which animacy was encoded across words (even
within the same broad category) and across layers
and models. They suggest two insights: 1) seman-
tic projection may offer a viable approach for ex-
ploring sub-dimensions of animacy; 2) while both
BERT and GPT-2 consistently ranked major cate-
gories (e.g., animals, humans, pronouns, objects) in
similar relative orders, GPT-2 appears to be more
sensitive to grammatical and semantic features.

5 Conclusion

In this study, we applied the semantic projection
approach to animacy, a feature that has not been
previously explored using this method. We com-
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pared the relative animacy rankings of nouns denot-
ing animals, humans, objects, and first-, second-,
and third-person pronouns, as derived from word
embeddings, with rankings derived from human be-
havioral ratings of animacy and from grammatical
patterns. Our results support the semantic projec-
tion approach as an effective method for deriving
proxies of human perception from word embed-
dings and offer insights into the sources of gram-
matical animacy.

6 Limitations and future directions

While our study provides valuable insights, sev-
eral limitations warrant acknowledgement. First,
our experiments focused exclusively on English
nouns. Future research could extend embedding-
based animacy analyses to other languages, par-
ticularly those with morphosyntactic markings of
animacy, to assess the cross-linguistic validity of
the patterns observed here.

Second, our analysis of embedding-derived an-
imacy scores did not account for factors such as
sentence length, the semantic roles of target words,
or their syntactic dependency relations. We as-
sumed that averaging across 10 contexts would
sufficiently capture type-level lexical information
(Vulić et al., 2020). Future research could exam-
ine whether these factors systematically influence
derived animacy scores.

Although our study does not have immediate
practical applications, our finding that embedding-
derived animacy closely aligns with human rating-
based animacy rankings suggests that embeddings
may be useful for automatic animacy classification
(e.g., Tepei and Bloem 2024). However, tasks re-
quiring animacy classification vary in nature: some
target semantic or cognitive animacy (e.g., atypical
animacy in metaphors; Coll Ardanuy et al., 2020;
Hanna et al., 2023; Jahan et al., 2018), while oth-
ers focus on grammatical animacy (e.g., translating
from languages without morphosyntactic animacy
marking to those with such marking). A promising
direction for future research is to identify repre-
sentations of animacy in language models’ latent
space that align with grammar-based animacy hier-
archies or to develop methods (e.g., fine-tuning on
grammatical tasks) to induce ‘biases’—akin to hu-
man inductive biases—in language models, thereby
shifting their embeddings toward greater alignment
with grammar-based animacy hierarchies.

Lastly, while our findings indicate that the se-

mantic projection approach effectively approxi-
mates human perceptions of overall animacy, future
studies could investigate specific sub-dimensions
of animacy, such as mobility, where relative rank-
ings may diverge from overall animacy rankings.
Further exploration of these subcomponents using
the semantic projection method could enhance our
understanding and modeling of complex, nested
semantic structures. Additionally, examining how
embedding-derived animacy scores correlate with
human ratings and whether distinct layers corre-
spond to different sub-dimensions (à la Hollis and
Westbury, 2016) would be a valuable avenue for
future research.
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A Appendix

A.1 Experiment materials: words

Animals
anaconda calves horse pig
anacondas cat horses pigs

ant cats insect rabbit
antelope chicken insects rabbits

ants chickens kitten rat
bee dog kittens rats
bees dogs mice rattlesnake
bird duck monkey rattlesnakes
birds ducks monkeys sheep

bumblebee fish mouse snake
bumblebees goat ox snakes

calf grasshoppers oxen
Humans

artist employee members soldiers
artists employees men son
brother farmer mother sons
brothers farmers mothers teacher

child guy officer teachers
children guys officers wife
citizen husband parent wives
citizens husbands parents worker
colonel kid patient workers
colonels kids patients writer
doctor man petitioner
doctors member soldier

Objects
beach hill pond shores

beaches hills ponds skies
boulder hole rainbow sky
boulders holes river star

cave island rivers stars
caves islands rock stone
cloud lagoon rocks stones
earth lagoons sand valley

electron lake sands valleys
electrons lakes sea water
ground mountain seas
grounds mountains shore

Pronouns
I us her itself

me we hers she
mine you herself their
my your him theirs

myself yours himself them
our yourself his themselves
ours yourselves it they

ourselves he its

Table 2: Words used in experiments.
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A.2 Descriptive statistics

Layer
BERT GPT-2

Animals Humans Pronouns Objects Animals Humans Pronouns Objects
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 -3.57 -0.71 1.48 0.62 0.07 0.39 3.47 1.14 -0.9 0.33 -0.33 0.14 -0.17 0.14 0.62 0.32
1 -4.48 -0.96 1.73 0.71 0.14 0.41 4.27 1.43 -10.41 4.45 -2.84 1.48 -0.53 1.24 8.35 3.73
2 -5.32 -1.23 1.96 0.79 0.01 0.4 4.61 1.67 -13.85 6.99 -6.04 4.31 -4.47 9.99 8.16 4.57
3 -5.04 -1.44 1.72 0.74 -0.02 0.3 4.47 1.56 -48.8 56.71 -42.5 44.83 -55.64 109.55 -14.96 16.95
4 -5.15 -1.42 1.61 0.77 0.05 0.27 4.09 1.7 -51.69 56.76 -43.36 44.83 -55.91 108.41 -15.33 17.18
5 -5.13 -1.45 1.25 0.81 0.03 0.23 3.64 1.51 -53.96 57.82 -46.28 45.88 -58.53 110.76 -16.36 17.8
6 -4.38 -1.25 0.92 0.61 0.03 0.22 3.24 1.41 -56.61 57.47 -48.7 45.48 -61.59 109.85 -16.94 18.23
7 -3.82 -0.99 0.84 0.52 0.04 0.24 3.1 1.29 -60.95 56.11 -51.91 44.38 -63.52 107.54 -18.26 18.34
8 -2.63 -0.23 0.75 0.49 0.53 0.22 3.35 1.1 -63.33 51.97 -52.57 41.06 -61.88 99.83 -16.85 17.87
9 -1.25 0.84 0.78 0.49 1.26 0.26 4.1 1.08 -69.13 50 -56.46 39.34 -63.71 95.69 -18.62 17.87

10 -0.95 1.49 1 0.57 1.92 0.29 4.8 1.08 -77.86 49.99 -61.11 38.91 -70.69 95.8 -21.25 18.77
11 0.15 2.74 1.12 0.61 3.19 0.32 6.19 1.16 -89.98 47.77 -70.88 35.94 -84.1 89.71 -27.23 19.5
12 -2.24 -0.34 0.73 0.38 0.17 0.21 1.36 0.55 -9.47 4.91 -0.15 3.29 1.68 3.65 -0.43 5.46

Table 3: Mean and standard deviations of target words by category: animals, humans, pronouns, objects, in BERT
(left) and GPT-2 (right).

Layer
BERT GPT-2

First Second Third First Second Third
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 0.14 0.57 -0.11 0.48 0.08 0.18 -0.15 0.15 -0.25 0.12 -0.16 0.13
1 0.38 0.53 -0.04 0.42 0.04 0.24 -0.56 1.72 -0.6 0.81 -0.48 1.07
2 0.25 0.44 -0.25 0.54 -0.06 0.25 -6.15 16.36 -2.95 4.87 -3.89 5.44
3 0.22 0.27 -0.23 0.36 -0.11 0.22 -76.54 180.76 -35.88 51.73 -48.75 56.67
4 0.26 0.28 -0.11 0.14 -0.04 0.21 -76.83 178.62 -35.2 51.5 -49.31 56.35
5 0.11 0.18 -0.12 0.37 0.02 0.2 -80.29 182.42 -36.97 52.6 -51.68 57.56
6 0.16 0.19 -0.09 0.14 -0.02 0.23 -82.86 180.93 -40.39 51.56 -54.93 57.32
7 0.15 0.21 -0.06 0.11 0 0.28 -84.42 177.14 -42.91 50.35 -56.9 56.09
8 0.56 0.19 0.48 0.05 0.52 0.27 -81.33 164.13 -43.01 47.1 -55.63 52.59
9 1.24 0.27 1.1 0.14 1.32 0.28 -82.22 156.84 -45.83 45.43 -57.73 51.29
10 1.99 0.27 1.69 0.27 1.95 0.29 -89.15 156.55 -52.84 45.89 -64.73 52.13
11 3.22 0.3 3.07 0.38 3.21 0.33 -101.87 145.87 -68.37 44.32 -77.91 49.74
12 0.18 0.23 0.26 0.22 0.14 0.2 1.73 4.39 1.8 1.71 1.61 3.79

Table 4: Mean and standard deviations of target words in the pronoun set: first-, second-, and third person pronouns,
in BERT (left) and GPT-2 (right).
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