
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12362–12375

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

MICE for CATs:
Model-Internal Confidence Estimation for Calibrating Agents with Tools

Nishant Subramani♠* Jason Eisner3 Justin Svegliato3

Benjamin Van Durme3 Yu Su3† Sam Thomson3†

♠CMU LTI 3Microsoft
♠nishant2@cs.cmu.edu

3{jason.eisner,jsvegliato,ben.vandurme,
yusu2,samuel.thomson}@microsoft.com

Abstract

Tool-using agents that act in the world need to
be both useful and safe. Well-calibrated model
confidences can be used to weigh the risk ver-
sus reward of potential actions, but prior work
shows that many models are poorly calibrated.
Inspired by interpretability literature exploring
the internals of models, we propose a novel
class of model-internal confidence estima-
tors (MICE) to better assess confidence when
calling tools. MICE first decodes from each
intermediate layer of the language model using
logit lens (nostalgebraist, 2020) and then com-
putes similarity scores between each layer’s
generation and the final output. These fea-
tures are fed into a learned probabilistic clas-
sifier to assess confidence in the decoded out-
put. On the simulated trial and error (STE)
tool-calling dataset using Llama3 models, we
find that MICE beats or matches the baselines
on smoothed expected calibration error. Using
MICE confidences to determine whether to call
a tool significantly improves over strong base-
lines on a new metric, expected tool-calling
utility. Further experiments show that MICE
is sample-efficient, can generalize zero-shot to
unseen APIs, and results in higher tool-calling
utility in scenarios with varying risk levels.
Our code is open source, available at https:
//github.com/microsoft/mice_for_cats.

1 Introduction

Language models are increasingly being used
as tool-using agents, where they can generate
executable API calls that can change external
environments (Schick et al., 2024; Yan et al.,
2024; Wang et al., 2024; Roy et al., 2024).
Sometimes the generated tool calls are relatively
safe, and mistakes will have minimal impact
(e.g., if "how many grand slams has Serena
Williams won?" resulted in the incorrect tool

* Work performed during an internship at Microsoft.
† Equal mentors.

call tennis_reference_count_grand_slams(
name="venus williams"), then the user would
just be misinformed). But other times, incorrect
tool calls can be more harmful (e.g., if "please
remove slash.txt" resulted in the incorrect tool
call cli(args="rm -rf /"), then the user would
lose the contents of their filesystem).

A confidence estimator estimates the probability
that another model’s output is correct. A simple
confidence estimator for a language model would
be based on the probability that the model itself
assigns to its output (i.e., the product of token prob-
abilities) or to its output’s semantic equivalence
class (Zhong et al., 2023; Farquhar et al., 2024).
Yet prior work has shown that this method can be
poorly calibrated (Jiang et al., 2021; Mielke et al.,
2022; Kadavath et al., 2022; Yin et al., 2023). A
probabilistic classifier is well calibrated if on an un-
seen test distribution, it is correct about as often as
it thinks it is (Dawid, 1982; Guo et al., 2017; Desai
and Durrett, 2020; Zhao et al., 2021; Hashemi et al.,
2024). For example, of those unseen examples that
it predicts to be positive with ≈ 25% probability,
≈ 25% really are positive. Well-calibrated proba-
bilities can be used to guide downstream decisions,
but calibration should never be one’s only engineer-
ing target, as even a highly unsure classifier may
be well-calibrated (see §3.1).

To that end, we introduce a class of model-
internal confidence estimators (MICE) and an
end-to-end metric, expected tool-calling utility
(ETCU), to evaluate a tool-calling agent that con-
sults a confidence estimator to decide when to
launch the predicted tool call.1 MICE extracts fea-

1We train and test confidence estimators specifically on
the generation of tool calls—a new setting for confidence
estimation. However, MICE could equally well be applied to
well-studied confidence estimation settings in NLP, such as
machine translation (Blatz et al., 2004; Kumar and Sarawagi,
2019; Wang et al., 2020), long-form generation (Band et al.,
2024), and semantic parsing (Stengel-Eskin and Van Durme,
2023a).

12362

https://github.com/microsoft/mice_for_cats
https://github.com/microsoft/mice_for_cats


Figure 1: The MICE architecture.

tures by decoding from the intermediate layers of
a transformer-based large language model (LLM)
and computes the similarities of those generations
to the output of the final layer. Based on these
features and the LLM’s raw confidence, it learns
a model that outputs a confidence score. MICE
excels on ETCU, increasingly outperforming two
strong baselines as the cost of incorrect tool calls
increases, without increasing calibration error.

This paper makes the following contributions:
We propose a class of model-internal confidence
estimators (MICE) that are empirically well-
calibrated on the task of assessing generated tool
calls (§2). We introduce a new metric, expected
tool-calling utility, that combines accuracy and cal-
ibration to better evaluate tool-calling agents (§3).
Finally, we show that MICE is sample-efficient and
can generalize to new tools, even in a zero-shot
setting (§5).

2 Model-Internal Confidence Estimators

MICE is a simple learned probabilistic classifier
whose features are derived from model-internal
activations. Prior work on understanding the in-
ternals of transformer language models has shown
that intermediate layers at different depths encode
different types of information, and that the acti-
vation spaces at various layers of these models
can be nudged to generate sequences in targeted

ways (Tenney et al., 2019; Subramani et al., 2019;
Subramani and Suresh, 2020; Subramani et al.,
2022; Turner et al., 2023). Decoding from the
layers of a transformer language model has pro-
vided insight into the underlying mechanisms and
has been used in early-exit algorithms for faster
generation (nostalgebraist, 2020; Geva et al., 2022;
Schuster et al., 2022; Belrose et al., 2023). For
question answering tasks, decoding from roughly
the first half of the layers of the language model
produces unintelligible results, but in later layers
the model’s predictions slowly refine into a plausi-
ble answer (Merullo et al., 2024).

We hypothesize that features from intermediate
layers’ hidden states could provide useful signal
for calibration. Drastic changes in the final few
layers could indicate the inability for the LLM to
pinpoint a tool call. As a result, we may trust a
prediction that was slowly refined into an answer
over the final 50% of layers more than one that
drastically changed in the final few layers, even if
they had the same distribution at the end.

BERTScore Features Since we hypothesize that
intermediate layers’ hidden states could be a use-
ful signal for calibration beyond the confidences
derived from the final layer, we decode from each
layer, much as in logit lens (nostalgebraist, 2020),
a model interpretation technique. We first decode
the output string y at temperature 0. This is the

12363



Figure 2: Example generations from the validation set
across layers of the Llama3-8B-Instruct model. Gener-
ations from early layers (5, 15) are seemingly random,
but later layers (25, 31) generate thematically relevant
tokens. Layer 32 is the final layer.

usual way to obtain model output in a task like
tool calling. Then at each layer i < ℓ, we obtain a
preliminary output string y(i) of the same length
by per-token argmax decoding:2

y
(i)
t = argmaxh

(i)
t−1Wout (1)

where each t is a token position in y, and the row
vector h(i)

t−1 ∈ Rd is the model’s layer-i encoding
at the previous position, whose product with the
unembedding matrix Wout ∈ Rd×|V | is a vector of
logits ∈ R|V |. Here, d is the embedding size and
|V | is the vocabulary size. This results in ℓ strings,
where ℓ is the number of layers of the model.

We then compute the BERTScore (Zhang et al.,
2020) between y and each y(i). These become the
main input features to the MICE model.3

Raw Confidence Feature We also integrate the
raw confidence of the language model in generating
the tool call as a feature to the MICE model. We
calculate this by computing the product of the prob-
abilities of the tokens in the generated tool call. We

2Note that taking i = ℓ in (1) would recover y. Because
the transformer uses residual connections, each layerwise en-
coding h

(i)
t−1 has the same dimensionality d, so multiplication

by the unembedding matrix Woutis defined even when i < ℓ.
All of these vector-matrix products can be computed in parallel
by a matrix-matrix product, H(i) Wout where H(i) ∈ Rℓ×d.

3BERTScore reencodes the strings y and y(i) with a sepa-
rate model (see §4.4) and aligns their tokens. We found that
the alignments were not always trivial. BERTscore performed
significantly better than methods we explored initially, which
compared the softmax(h

(i)
t−1 Wout) distributions rather than

argmax-decoding single strings y(i). See §9 for other options.

Figure 3: BERTScore similarities between the gener-
ated string y and the preliminary strings y(i) from ear-
lier layers, for Llama3-8B-Instruct on the STE vali-
dation set (Wang et al., 2024). See also Figure 8 in
Appendix A.

notice that including formatting tokens, which are
always present in the tool call, leads to increased
noise and a less accurate estimate of confidence,
so we omit the tokens associated with formatting.
The gray tokens in Figure 1 were omitted, while
the green ones were included.

Model Architecture We train a simple super-
vised classifier that predicts whether the gener-
ated tool call y is correct. It maps from the in-
put features—the BERTScores and the raw confi-
dence—to a probability of correctness (i.e., a confi-
dence estimate). Any trainable model of this form
could be used here; the specific architectures and
baselines that we tried will be described in §4.4.

3 Metrics

Perhaps the most widely reported calibration met-
ric is expected calibration error (§3.1). As men-
tioned in the introduction, however, minimizing
ECE should not be our only goal. We also intro-
duce a utility metric, expected tool-calling util-
ity (§3.2), to assess the performance of a simple
agent that makes call/no-call decisions by using our
well-calibrated confidence estimates. This metric is
parameterized by the cost of false positives relative
to the reward of true positives.

3.1 Expected Calibration Error (ECE)
Expected calibration error (ECE; Naeini et al.,
2014, 2015) is computed by constructing a his-
togram binned by predicted confidence, p̂. The
accuracy of examples within a given bin is com-
pared to the mean predicted confidence within that
bin, |acc − ¯̂p|. These absolute differences are then
averaged across bins, with each bin weighted by
the fraction of examples in that bin.

12364



We use a recently improved variant of ECE,
smooth ECE (smECE; Błasiok and Nakkiran,
2024), which replaces histogram binning with
Nadaraya-Watson kernel regression (Nadaraya,
1964; Watson, 1964). A reflected Gaussian kernel
is used; the kernel width is determined automati-
cally from the data, yielding a consistent estimator.

However, ECE and smECE do not distinguish
between an oracle classifier that returns p̂ = 1.0 on
correct outputs and p̂ = 0.0 on incorrect outputs,
and a maximally uninformative probabilistic
classifier that always predicts the base accuracy
rate. That is, if 70% of all predictions are correct,
then a trivial system that gave p̂ = 0.7 on every
example would be perfectly calibrated (ECE = 0),
yet mostly useless! We would prefer a system that
tends to return high p̂ on correct tool calls and low
p̂ on incorrect ones, so that we can execute the
former and avoid executing the latter.

3.2 Expected Tool-Calling Utility (ETCU)
We thus introduce a parameterized metric, expected
tool-calling utility, which approximates actual util-
ity in situations where a calibrated confidence
score p̂ is used to decide of whether or not to exe-
cute a specific tool call generated by the language
model. We assume we know the expected utility for
each of the four possible outcomes: tp > 0 (true
positive), for when the agent executes a correctly
predicted call; fp < 0 (false positive), for when the
agent executes an incorrectly predicted call; tn ≈ 0
(true negative), for when the agent avoids executing
an incorrect call; fn ≈ 0 (false negative), for when
the agent fails to execute a correct call. tn and fn
may be slightly negative to account for time wasted
making the unused prediction. fp may be highly
negative, e.g., if the agent erroneously deletes all
of the user’s documents, makes a large unintended
purchase, or sends an offensive email.

The exact values of tp, fp, tn, and fn will depend
on the specific task that the agent must perform, and
could be assigned by a domain expert or learned
from data, like human preferences (Christiano et al.,
2017).4 Once these values have been assigned, the
minimum Bayes risk (MBR; Bickel and Doksum,
1977, p. 27) decision can be calculated; it is to
execute the predicted tool call if and only if the
estimated confidence p̂ is above the threshold

4They will also often depend on the predicted API and
arguments. A more careful MBR practitioner would ideally
condition on these and assign utilities to each possible pair
(gold specific action, chosen specific action). Our coarser
expectations {tp, fp, tn, fn} result in cruder decisions.

p̂ > τ
def
=

tn − fp
(tp − fn) + (tn − fp)

(2)

Calibration ensures that of all predicted tool calls
with confidence ≈ p̂, about p̂ are correct. The deci-
sion rule (2) makes either all such calls or none of
them, according to whether the expected utility per
call is higher with all (p̂ tp+(1−p̂) fp) or with none
(p̂ fn + (1− p̂) tn). The threshold τ is high (> 0.5)
if avoiding bad calls (benefit tn − fp) is more im-
portant than executing good calls (benefit tp − fn).

Normalizing: These four values can be scaled
by any positive constant, and translated by any real
constant, without affecting the optimal threshold or
the utility (modulo that affine transform) (Gleave
et al., 2021). That is, we can choose a measure-
ment scale for our utilities (without loss of gener-
ality) such that tp = 1 and fn = 0. Two degrees
of freedom still remain (tn and fp). In most tool-
using scenarios, tn will be extremely close to fn,
because in both cases the immediate action by the
agent is the same (do not execute) and thus has
the same effect regardless of the predicted action.5

If we further assume (with loss of generality) that
tn = fn = 0, the intuitive interpretation is that the
agent gets 1 “credit” (an arbitrary utility unit) for
completing its task, 0 credits for doing nothing (re-
gardless of whether that was the best decision), and
fp < 0 credits for doing something wrong. The
single remaining degree of freedom fp is the risk/u-
tility ratio, defining how costly it is to attempt and
fail. In this (slightly less general) case, the MBR
decision rule (2) simplifies to:

p̂ > τ
def
=

−fp
1 +−fp

=
fp

fp − 1
(3)

Settings for expected tool-calling utility: To un-
derstand how confidence estimators perform at dif-
ferent risk levels, we choose three different values
of fp under which to measure normalized risk (Ta-
ble 1). Each setting of fp determines a threshold τ
that the Bayes-optimal policy will use.

High Risk: Tasks where executing an incorrect
tool call is much worse than the reverse error. We
choose fp = −9 for this setting, giving τ = 0.9.

Medium Risk: For these tasks, executing an in-
correct tool call is as bad as executing the correct
tool call is good (fp = −tp = −1), giving τ = 0.5.

5tn might differ from fn because subsequent actions may
diverge, and each utility should ideally include the expected
future reward over all possible rollouts. For example, it might
be slightly easier to ask clarifying questions when the original
prediction was correct (implying fn > tn and raising τ ).

12365



Tool-Calling Utility (↑)

Model Confidence Estimator smECE (↓) Low risk Medium risk High risk AUC

Raw Confidence 0.184 0.351 *-0.015∗† *-0.323∗† *-0.001∗†

HRE 0.041 0.356 *-0.033∗† *-0.000∗† *-0.110∗†

NWKR 0.039 0.356 *-0.027∗† *-0.000∗† *-0.118∗†

Llama3-8B-Instruct MICE LR Zeroshot 0.036 0.356 *-0.025∗† *-0.000∗† *-0.114∗†

MICE RF Zeroshot 0.065 0.349 *-0.011∗† *-0.016∗† *-0.096∗†

MICE LR 0.037 0.356 *-0.055∗† *-0.000∗† *-0.125∗†

MICE RF 0.040 0.356 *-0.100†∗ *-0.024∗† *-0.144∗†

Raw Confidence 0.229 0.240 *-0.129∗† *-0.579∗† *-0.127∗†

HRE 0.050 0.229 *-0.017∗† *-0.000∗† *-0.060∗†

NWKR 0.032 0.239 *-0.000∗† *-0.000∗† *-0.063∗†

Llama3.1-8B-Instruct MICE LR Zeroshot 0.054 0.239 *-0.019∗† *-0.000∗† *-0.061∗†

MICE RF Zeroshot 0.050 0.233 *-0.051†∗ *-0.008∗† *-0.073∗†

MICE LR 0.050 0.239 *-0.051∗† *-0.000∗† *-0.071∗†

MICE RF 0.032 0.248 *-0.072∗† *-0.023∗† *-0.104∗†

Raw Confidence 0.312 0.231 *-0.209∗† *-1.528∗† *-0.458∗†

HRE 0.036 0.229 *-0.000∗† *-0.000∗† *-0.057∗†

NWKR 0.027 0.233 *-0.000∗† *-0.000∗† *-0.057∗†

Llama3.2-3B-Instruct MICE LR Zeroshot 0.032 0.230 *-0.008∗† *-0.000∗† *-0.064∗†

MICE RF Zeroshot 0.061 0.232 *-0.021∗† *-0.068∗† *-0.049∗†

MICE LR 0.025 0.232 *-0.016∗† *-0.000∗† *-0.073∗†

MICE RF 0.041 0.237 *-0.071∗† *-0.013∗† *-0.095∗†

Table 1: Results on the test set. Lower smECE is better, while higher tool-calling utility is better. Bold indicates the
best result in each category and underline indicates the second best result in each category. ∗ indicates statistical
significance compared to HRE and † indicates significance compared to NWKR (p-value < 0.05, permutation test).

Low Risk: These are tasks where executing an
incorrect tool call has relatively low potential down-
side. We choose fp = −1

9 , giving τ = 0.1.

Area Under Curve (AUC): More generally, we
can compute an expected value for any τ ∈ (0, 1).
This yields an “expected tool-calling utility” curve
(Figure 4) for a given confidence estimator on a
given dataset. Any given applied setting may only
be interested in a single τ along the curve. Still,
to compare estimators overall, it may be useful to
consolidate the curve into a single number, sum-
marizing an estimator’s performance across all risk
levels. Taking inspiration from the area under the
receiver operating characteristic (ROC) curve (Mar-
cum, 1960), we take the average of the expected
tool-calling utility values at every point along the
curve, which can be regarded as the (signed) area
under the curve (AUC).6 Since our formulation
sets tn = fn = 0, always abstaining gets a ex-
pected tool-calling utility score of 0 regardless of
risk level, and thus an AUC of 0. Because utilities
can be negative, AUC values can also be negative.
This occurs when a model is overconfident in too
many high-risk predictions.

6In practice, we approximate AUC by evaluating expected
tool-calling utility at each τ ∈ {0.001, 0.002, . . . , 0.999}.

4 Experiments

We now look at training MICE and using it at test
time to measure both smooth expected calibration
error (smECE) and expected tool-calling utility.

4.1 Dataset
Our experiments use the simulated trial-and-error
(STE) dataset (Wang et al., 2024). The dataset
was synthetically generated by simulating plausi-
ble tool-using scenarios for a given API and using
GPT3.5-turbo with execution feedback to identify
(presumptively) correct tool calls.

The dataset consists of English-language queries
that require calling 50 distinct APIs. For tool call
generation, we few-shot prompt an off-the-shelf
LLM with examples from a demonstration set con-
sisting of 4,520 examples taken from the STE train-
ing set. An alternative would have been to fine-tune
the LLM on this demonstration set.

To train MICE, we use the rest of the STE train-
ing set, split into a training set of 1500 examples
(30 from each API) and a validation set of 750
examples (15 from each API). We then evaluate
MICE on STE’s test set of 750 examples. In all
cases, we label a generated tool call as correct if
and only if it exactly matches the one given by STE.

12366



Figure 4: Expected tool-calling utility on the test set at varying risk levels. We include four trivial policies for
reference: oracle executes only when the underlying model is correct (an upper bound); always abstain never
executes, getting reward 0; always execute never abstains; and the base rate policy switches from always
execute to always abstain when the risk level exceeds the base accuracy. All policies perform similarly at
low risk levels, where always execute is close to optimal and hard to improve on. MICE models show clear
improvements in the medium and high risk regimes.

4.2 LLMs
We consider three LLMs: Llama3-8B-Instruct,
Llama3.1-8B-Instruct, and Llama3.2-3B-Instruct
(Dubey et al., 2024). We build and evaluate a sepa-
rate MICE classifier for each LLM.

4.3 Experimental Settings
We run each LLM on our validation and test sets
in an 8-shot in-context learning setting, follow-
ing Wang et al. (2024), using greedy decoding
to generate the tool calls y. For each evaluation
example, the 8 in-context learning examples are
selected from our demonstration set according to
the procedure of Wang et al. (2024), which com-
putes similarity to the evaluation example using
SentenceBERT (Reimers and Gurevych, 2019).

We train a baseline or MICE regressor on the
training set to predict whether tool calls are correct,
and use the validation set for hyperparameter
and model selection. Features used by MICE
regressors were described in §2. We then evaluate
the regressor on the test set, using the metrics of §3.

4.4 MICE Configurations & Baselines
Raw Confidence Our first baseline is the raw
confidence score from §2, which can be used di-
rectly as a confidence estimate p̂. Recall that we
defined this as

∏
i∈S p(wi|w<i), where S is the

subset of token indices that are relevant to the tool
call. S omits the tokens associated with format-
ting ("action:" and "action input:", which
are generated for every tool call), and also omits

tokens that are generated after the arguments of the
tool call. We observed in initial experiments that
including these irrelevant tokens resulted in worse
calibration. We also observed that taking the mini-
mum probability across generated tokens instead
of the joint probability (as in Zhou et al. (2022);
Stengel-Eskin and Van Durme (2023a)) resulted
in little effective difference. Note that calculating
raw confidence does not require any learning, so
neither the training nor validation set is used. Raw
confidence is also used as a base feature in the
estimators described below.

Histogram Regression Estimator (HRE; Nobel,
1996) For our second (stronger) baseline, we use
a standard method to calibrate the previous base-
line. We use the training set to construct a his-
togram binned by raw confidence scores. We use
25 bins: [0, 0.04), [0.04, 0.08), . . . , [0.96, 1.0]. To
map from a raw confidence score c to a recalibrated
estimate p̂, we look up c’s bin, and return the per-
centage of examples in that bin that are correct.
Note that this is the same histogram construction
used to calculate traditional ECE (except here con-
structed on the training set), and so should be ex-
pected to perform well on ECE metrics.

Kernel Regressor (NWKR) Here, rather than
using a histogram with fixed bins to recalibrate, we
use Nadaraya–Watson kernel regression (Nadaraya,
1964; Watson, 1964), following the exact proce-
dure Błasiok and Nakkiran (2024) used to compute
smECE. Analogously to above, since this follows

12367



the exact same procedure as in smECE, we should
expect it to perform well under that metric.7

MICE Models We extract features as described
in §2, using DeBERTa-xlarge-mnli to compute
the BERTScore features as it is the strongest
BERTScore base model (He et al., 2021). This
gives ℓ− 1 BERTScore features along with the raw
confidence feature. There are ℓ = 32 layers for
Llama3 and 3.1 and 28 layers for Llama3.2.

MICE Logistic Regressor (MICE LR): We train a
logistic regression model with an L2 regularization
strength of 2 to predict whether the tool call is
correct or not.

MICE Random Forest (MICE RF): We train a
random forest classifier using 1000 trees each with
a maximum depth of 20 and a maximum of 10 fea-
tures to use at each split, using the Scikit-Learn
package (Pedregosa et al., 2011). Other hyperpa-
rameters are set to defaults. This model is also
trained to predict whether the tool call is correct.8

5 Results

Smooth Expected Calibration Error Lower
smECE is better. The first numeric column of Ta-
ble 1 shows that all of the confidence estimators are
well-calibrated—their smECE values are small and
not significantly different—except for the raw con-
fidences, which have smECEs 3–10x higher than
the others. This is not surprising: HRE and NWKR
are explicitly designed to calibrate the raw confi-
dences, while logistic regression and random forest
training are known to produce well-calibrated clas-
sifiers (Niculescu-Mizil and Caruana, 2005).

Expected Tool-Calling Utility Figure 4 shows
the expected tool-calling utility curve for each con-
fidence estimator and each model. We find that
raw confidence performs dangerously poorly at
and above moderate risk levels. HRE and NWKR
both degrade quickly toward 0 as risk increases.
The MICE models also degrade, but more slowly:
matching performance of HRE and NWKR at the
lower risk levels and outperforming at medium and

7HRE and NWKR learn to map a single confidence input
feature to a recalibrated output confidence. Any confidence
estimator can be calibrated in this way on held-out data. Other
common approaches to this problem include isotonic regres-
sion and Platt scaling (§7).

8Note that HRE and MICE LR use a similar number of
parameters, but in HRE they are devoted to closer analysis
(binning) of the raw confidence dimension, rather than to
additional BERTScore dimensions.

higher risk levels. Across all three LLMs, MICE
RF performs best at nearly every risk level.

Table 1 displays how well confidence estimators
perform at three specific risk level settings (low,
medium, and high) and across the full range of risk
levels using AUC (see §3.2). For all of these met-
rics, a higher score is better. For each risk level,
MICE RF always has the highest reward, outper-
forming HRE, NWKR, and MICE LR. Raw to-
ken confidence nearly always performs worst. For
lower risk levels, most strategies perform compara-
bly, with relatively high reward. This is expected:
executing an incorrect tool call (fp) gives a low
penalty relative to a correct tool (tp), so aggres-
sively biasing for execution is optimal, garnering a
high reward. As risk levels increase, the penalty for
executing an incorrect tool call grows and using raw
confidences nearly always incurs a negative reward
when the risk level is greater than 0.5 (fp < −1).
Across the three risk levels, we find that the MICE
models outperform both baselines for each of the
three tool-calling LLM agents.

We run permutation tests for each metric in Ta-
ble 1 for each MICE method as compared to HRE
and NWKR. In summary, MICE RF is always sig-
nificant (p-value < 0.05) at the medium risk level,
never significant at the low risk level, and signifi-
cant at the high risk level for Llama3 and 3.1, but
not 3.2. MICE LR outperforms the baselines, but
is only significant for the medium risk level for
Llama3.1. For the summary statistic AUC–ETCU,
both MICE models are nearly always significantly
better than HRE and NWKR for all three Llamas.

Zero-Shot Generalization to New APIs To test
MICE’s out-of-domain generalization, we simulate
encountering new APIs by holding one out during
training. Since there are 50 APIs present in the
STE dataset, we train 50 MICE RF and 50 MICE
LR models. Each model is trained on data from 49
APIs and evaluated solely on the held-out API. We
combine the predictions from each of the models
to get predictions across the entire test set.9 These
confidence estimates are solely constructed by
MICE models that have never seen that specific
API before, so every tool is unseen. MICE does
worse in this setting, but only degrades to the level
of HRE and NWKR models trained on the full data;
they are statistically indistinguishable from them.

9This resembles 50-fold cross validation, where each fold
is constructed solely with data from one API. However, for
comparability with other methods, we evaluate on the corre-
sponding fold in the test set, not the training set.

12368



Figure 5: Feature importance for BERTScore features
and confidence on the trained MICE RF model on the
STE dataset for the Llama3 LLM.

6 Analysis

What is generated by decoding from interme-
diate layers? Here, we look at what the LLM
generates from intermediary layers. Using the logit
lens, we find that models slowly evolve their predic-
tions throughout the layers to get closer to the final
output generation. Figure 2 shows sample genera-
tions. Qualitatively, the first two-thirds of the layers
tend to generate seemingly random strings. After
this point, the generations get increasingly closer
to the final generation, but significant refinement
still occurs in the final layer.

The box-and-whisker plot in Figure 3 shows that
BERTScore tends to increase with layer number.
Figure 8 in Appendix A shows that at some layers,
the distribution of BERTScores tends to be shifted
slightly higher on correct outputs, providing signal
to the classifier.

What is learned? To better understand how the
MICE features are used, we examine our MICE
models trained on the STE dataset with Llama3-
8B-Instruct. For MICE RF we calculate Gini coef-
ficients, and for MICE LR we analyze the feature
weights, as suggested by reviewers. Figures 5 and 6
indicate that confidence is the most important fea-
ture in both MICE models: roughly 3 times as im-
portant as other features in MICE RF and 2 times as
important as other features in MICE LR.10 There is
no obvious other pattern in the estimated weights,
and it is possible that they are underdetermined.

Feature Ablations To better understand which
features contribute most to confidence estimation,
we performed feature ablations for both MICE
models for the three LLMs in our study. In ad-
dition to the original setting with all features, we
tested four new settings: confidence only;11 first

10Perhaps calibrated confidence would have worked even
better as a feature.

11For LR, this is exactly Platt scaling with L2 regularization.

Figure 6: Coefficients for the trained MICE LR model
on the STE dataset for the Llama3 LLM.

Figure 7: Sample complexity: AUC of MICE models
and HRE baselines as the size of the training set varies
on the Llama3-8B-Instruct model. Error bars are one
standard deviation.

half of the layers’ BERTScores plus confidence;
second half of the layers’ BERTScores plus confi-
dence; and all of the layers’ BERTScores, but no
confidence. See Table 2 in Appendix A for details.

MICE RF: Confidence alone performed ex-
tremely poorly. The second half of the layers plus
confidence performed better than the first half plus
confidence, but using all layers without confidence
performed worse than using half the layers with
confidence. This suggests that features from the
second half of the model are more useful than the
first half, and confidence is an important feature.

MICE LR: Confidence alone performed compa-
rably to other settings, indicating that confidence
accounts for much of the performance; unlike RF,
LR learned how to use this feature. Additionally,
for Llama3 and 3.1, using confidence alone outper-
formed using all the layers’ BERTScore features.
Using the second half of the layers’ BERTScore
features outperformed using the first half of the
layers’ features, similar to MICE RF.

How sample efficient is MICE? To measure
sample efficiency, we vary the size of the training
set to be 25, 50, 75, 100, 300, 500, and 750. For
each size, we randomly partition the 1,500 training
examples into disjoint groups of that size (e.g., 15

12369



groups of 100 examples, or 3 groups of 500 ex-
amples). We then train on each group, measure
AUC–ETCU, and compute the mean and variance
across groups. We repeat this 100 times and aver-
age across trials, plotting results in Figure 7.

For dataset sizes of 150 or below NWKR per-
forms best, but it saturates at this level and does
not improve further with more data. MICE LR
and HRE perform poorly with small datasets, but
as size increases, they get closer to MICE RF and
NWKR. For larger dataset sizes, MICE RF and
MICE LR overtake NWKR. In fact, with as few as
300 examples (20% of the training data), MICE RF
outperforms NWKR trained on the full dataset.

7 Related Work

Model Internals Tenney et al. (2019) show that
different layers of models encode different aspects
of the classical NLP pipeline. Moreover, interme-
diate layer activations can be nudged via steering
vectors to control output generations (Subramani
et al., 2019, 2022; Turner et al., 2023). The acti-
vation spaces of models are relatively well-formed
and there exist directions in these latent spaces that
correlate with interpretable properties (Subramani
and Suresh, 2020; Li et al., 2024). These act as
part of the basis for our hypothesis that the model
internals could contain a trustworthiness signal,
although we did not attempt to discover specific
directions in these spaces.

Intermediate Decoding We can view language
models with multiple layers as doing iterative in-
ference, where each successive layer refines the
predictions of the previous layer. With this lens,
decoding from intermediate layers provides signal
albeit noisy: the first half of the layers generate
uninterpretable text, but after this predictions refine
toward a plausible answer (Belrose et al., 2023;
Yom Din et al., 2024; Merullo et al., 2024). Other
work has focused on inference efficiency by early
exiting from transformers (Teerapittayanon et al.,
2017; Geva et al., 2022; Schuster et al., 2022; El-
houshi et al., 2024). Our work decodes from inter-
mediary layers as a signal for better calibration.

Calibration Prior work has measured the cal-
ibration of off-the-shelf models, including neu-
ral networks (Niculescu-Mizil and Caruana, 2005;
Wang, 2024), large language models (Kadavath
et al., 2022; Yin et al., 2023), and semantic
parsers (Stengel-Eskin and Van Durme, 2023a;

Zhou et al., 2022).
A line of machine learning work focuses on cali-

brating binary classifiers while conditioning only
on their predicted confidence. Platt scaling trans-
forms a real-valued output (like that of an SVM
classifier) into probabilities using logistic regres-
sion (Platt, 1999), which is proven to be equiva-
lent to beta calibration up to preprocessing (Böken,
2021). Isotonic regression (Ayer et al., 1955) is a
non-parametric approach that learns a best fit to
data making only a monotonic non-decreasing as-
sumption. HREs are popular, and there has been
work on adaptive binning strategies (Nobel, 1996).
We chose HRE and NWKR as strong baselines
from this class of models. MICE LR could be
viewed as an extension to Platt scaling because
MICE conditions on model internals in addition to
the original confidence.

Applications of Well-Calibrated Confidences
The DidYouMean system can rephrase a query and
ask for confirmation when the model is unconfi-
dent (Stengel-Eskin and Van Durme, 2023b). Like
us, they frame the competing concerns in terms
of safety and utility, weighing wrongly predicted
actions against the cost of asking clarifying ques-
tions. While they tune a single confidence thresh-
old, we transform confidences into calibrated prob-
abilities so that a Bayes-optimal threshold can be
dynamically derived for any risk/reward ratio. LA-
CIE (Stengel-Eskin et al., 2024) communicates its
fine-tuned confidences to users. APEL (Zhong
et al., 2023) reduces its uncertainty about a seman-
tic parse by asking questions of a user, using raw
confidences to identify informative questions; cali-
brated confidences should work better, allowing it
to finish with fewer questions.

8 Conclusion

In this work, we introduce model-internal confi-
dence estimators (MICE), which improve the trust-
worthiness and safety of language models as tool-
calling agents. We introduce a new metric, ex-
pected tool-calling utility, that combines calibra-
tion and usefulness to better evaluate the safety and
utility of tool calls. We show that MICE matches or
beats both regression baselines (HRE and NWKR)
when measured by smooth ECE, and significantly
improves expected tool-calling utility, especially
in medium and high-risk regimes. Finally, we find
that MICE is sample efficient and can generalize to
unseen APIs in a zero-shot setting.

12370



9 Limitations

Like logit lens, MICE assumes a transformer lan-
guage model whose intermediate layers have the
same shape as the final layer. More generally,
MICE requires access to model internals, ruling
out some of the most capable current LLMs, which
are closed.

In principle, MICE is a general-purpose confi-
dence estimation recipe for transformer language
models. However, we evaluated MICE exclusively
in one setting: a tool-calling task on one dataset.
Other settings such as machine translation and ques-
tion answering (see footnote 1) have been left to
future experiments.

As footnote 3 hinted, there are many other pos-
sible ways to compute MICE features. We do not
claim to have found the best variant even for the set-
ting we studied. While we settled on BERTScore
for this paper, there are several other possible
choices for how to encode, align, compare, and
aggregate the tokens at each layer. We remark that
one possible encoding trick would be to learn a
linear transform of each layer i so that h(i)

t−1 is max-

imally similar to h
(ℓ)
t−1 or maximally predictive of

yt, as in the tuned lens of (Belrose et al., 2023).
There are also various ways to build a classifier

that uses MICE features. We also experimented
with SVMs with different kernels (not reported).
Other options could also be tried.

10 Impact Statement

Better calibrated models can help people make
safer decisions. We hope to bring increased fo-
cus to risk/reward tradeoffs; we have intentionally
framed the task and metric in a way that highlights
the cost of false positives. Decision theory and
reward functions are not a substitute for careful
design, however; practitioners must exercise great
care before hooking up an LLM to a tool with real
effects in the world, including taking care to set
appropriate rewards such as tp, fp, tn, fn.

References
Miriam C. Ayer, Hugh D. Brunk, George M. Ewing,

W. T. Reid, and Edward Silverman. 1955. An empir-
ical distribution function for sampling with incom-
plete information. Annals of Mathematical Statistics,
26:641–647.

Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori
Hashimoto. 2024. Linguistic calibration of long-

form generations. In Forty-first International Confer-
ence on Machine Learning.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor V. Ostrovsky, Lev McKinney, Stella Bi-
derman, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
ArXiv, abs/2303.08112.

Peter Bickel and Kjell Doksum. 1977. Mathematical
Statistics: Basic Ideas and Selected Topics., vol-
ume 56. Holden-Day Inc.

Jarosław Błasiok and Preetum Nakkiran. 2024. Smooth
ECE: Principled reliability diagrams via kernel
smoothing. In The Twelfth International Conference
on Learning Representations.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004. Confidence estimation
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 315–321, Geneva,
Switzerland. COLING.

Björn Böken. 2021. On the appropriateness of Platt
scaling in classifier calibration. Information Systems,
95:101641.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in Neural Information Processing Systems,
30.

A. Philip Dawid. 1982. The well-calibrated Bayesian.
Journal of the American Statistical Association,
77:605–610.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295–302, Online.
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and
Yarin Gal. 2024. Detecting hallucinations in large
language models using semantic entropy. Nature,
630(8017):625–630.

12371

https://api.semanticscholar.org/CorpusID:121836360
https://api.semanticscholar.org/CorpusID:121836360
https://api.semanticscholar.org/CorpusID:121836360
https://openreview.net/forum?id=rJVjQSQ8ye
https://openreview.net/forum?id=rJVjQSQ8ye
https://api.semanticscholar.org/CorpusID:257504984
https://api.semanticscholar.org/CorpusID:257504984
https://doi.org/10.2307/2286373
https://doi.org/10.2307/2286373
https://openreview.net/forum?id=XwiA1nDahv
https://openreview.net/forum?id=XwiA1nDahv
https://openreview.net/forum?id=XwiA1nDahv
https://aclanthology.org/C04-1046
https://aclanthology.org/C04-1046
https://doi.org/10.1016/j.is.2020.101641
https://doi.org/10.1016/j.is.2020.101641
https://api.semanticscholar.org/CorpusID:121781338
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://arxiv.org/abs/2407.21783
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0


Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Adam Gleave, Michael D Dennis, Shane Legg, Stuart
Russell, and Jan Leike. 2021. Quantifying differ-
ences in reward functions. In International Confer-
ence on Learning Representations.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. Preprint, arxiv:1706.04599 [cs].

Helia Hashemi, Jason Eisner, Corby Rosset, Ben-
jamin Van Durme, and Chris Kedzie. 2024. LLM-
Rubric: A multidimensional, calibrated approach to
automated evaluation of natural language texts. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
13806–13834.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? On the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models(mostly) know what
they know. arXiv preprint. ArXiv:2207.05221 [cs].

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. ArXiv, abs/1903.00802.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-
time intervention: Eliciting truthful answers from
a language model. Advances in Neural Information
Processing Systems, 36.

J.I. Marcum. 1960. A statistical theory of target detec-
tion by pulsed radar. IRE Transactions on Informa-
tion Theory, 6(2):59–267.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.
Language models implement simple Word2Vec-style

vector arithmetic. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
5030–5047, Mexico City, Mexico. Association for
Computational Linguistics.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-
Lan Boureau. 2022. Reducing conversational agents’
overconfidence through linguistic calibration. Trans-
actions of the Association for Computational Linguis-
tics, 10:857–872.

Elizbar A Nadaraya. 1964. On estimating regression.
Theory of Probability & Its Applications, 9(1):141–
142.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos
Hauskrecht. 2014. Binary classifier calibration: Non-
parametric approach. ArXiv, abs/1401.3390.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated proba-
bilities using bayesian binning. Proceedings of the
... AAAI Conference on Artificial Intelligence. AAAI
Conference on Artificial Intelligence, 2015:2901–
2907.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd International Con-
ference on Machine Learning (ICML).

Andrew Nobel. 1996. Histogram regression estima-
tion using data-dependent partitions. The Annals of
Statistics, 24(3):1084 – 1105.

nostalgebraist. 2020. Interpreting gpt: the logit lens.
Blogpost.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In Advances in Large Margin Clas-
sifiers, pages 61–74. MIT Press.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin
Van Durme. 2024. BenchCLAMP: A benchmark

12372

https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://openreview.net/forum?id=LwEQnp6CYev
https://openreview.net/forum?id=LwEQnp6CYev
https://arxiv.org/abs/1706.04599 [cs]
https://arxiv.org/abs/1706.04599 [cs]
https://aclanthology.org/2024.acl-long.745/
https://aclanthology.org/2024.acl-long.745/
https://aclanthology.org/2024.acl-long.745/
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2207.05221
https://api.semanticscholar.org/CorpusID:67855916
https://api.semanticscholar.org/CorpusID:67855916
https://api.semanticscholar.org/CorpusID:67855916
https://doi.org/10.18653/v1/2024.naacl-long.281
https://doi.org/10.18653/v1/2024.naacl-long.281
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1162/tacl_a_00494
https://api.semanticscholar.org/CorpusID:7982059
https://api.semanticscholar.org/CorpusID:7982059
https://api.semanticscholar.org/CorpusID:6292807
https://api.semanticscholar.org/CorpusID:6292807
https://www.cs.cornell.edu/~alexn/papers/calibration.icml05.crc.rev3.pdf
https://www.cs.cornell.edu/~alexn/papers/calibration.icml05.crc.rev3.pdf
https://doi.org/10.1214/aos/1032526958
https://doi.org/10.1214/aos/1032526958
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410


for evaluating language models on syntactic and se-
mantic parsing. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA. Curran
Associates Inc.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

Elias Stengel-Eskin, Peter Hase, and Mohit Bansal.
2024. LACIE: Listener-aware finetuning for confi-
dence calibration in large language models. Preprint,
arXiv:2405.21028.

Elias Stengel-Eskin and Benjamin Van Durme. 2023a.
Calibrated interpretation: Confidence estimation in
semantic parsing. Transactions of the Association for
Computational Linguistics, 11:1213–1231.

Elias Stengel-Eskin and Benjamin Van Durme. 2023b.
Did you mean . . . ? Confidence-based trade-offs in
semantic parsing. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2621–2629, Singapore.

Nishant Subramani, Samuel Bowman, and Kyunghyun
Cho. 2019. Can unconditional language models re-
cover arbitrary sentences? Advances in Neural Infor-
mation Processing Systems, 32.

Nishant Subramani and Nivedita Suresh. 2020. Dis-
covering useful sentence representations from large
pretrained language models. arXiv preprint
arXiv:2008.09049.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 566–581, Dublin, Ireland. Association for
Computational Linguistics.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2017. BranchyNet: Fast inference via
early exiting from deep neural networks. Preprint,
arxiv:1709.01686 [cs]. Version: 1.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J Vazquez, Ulisse Mini, and Monte
MacDiarmid. 2023. Activation addition: Steer-
ing language models without optimization. arXiv
preprint arXiv:2308.10248.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin
Van Durme, and Yu Su. 2024. LLMs in the imag-
inarium: Tool learning through simulated trial and
error. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10583–10604, Bangkok,
Thailand. Association for Computational Linguistics.

Cheng Wang. 2024. Calibration in deep learn-
ing: A survey of the state-of-the-art. Preprint,
arXiv:2308.01222.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3070–3079, Online. Association for Computa-
tional Linguistics.

Michael L. Waskom. 2021. seaborn: statistical data
visualization. Journal of Open Source Software,
6(60):3021.

Geoffrey S Watson. 1964. Smooth regression analysis.
Sankhyā: The Indian Journal of Statistics, Series A,
pages 359–372.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-
Jie Ji, Tianjun Zhang, Shishir G. Patil,
Ion Stoica, and Joseph E. Gonzalez. 2024.
Berkeley function calling leaderboard.
https://gorilla.cs.berkeley.edu/blogs/8_
berkeley_function_calling_leaderboard.html.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuanjing Huang. 2023. Do large
language models know what they don’t know? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 8653–8665, Toronto,
Canada. Association for Computational Linguistics.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2024. Jump to conclusions: Short-
cutting transformers with linear transformations. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 9615–9625, Torino, Italia. ELRA and ICCL.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Proceed-
ings of the International Conference on Learning
Representations.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein,
and Sameer Singh. 2021. Calibrate before use:
Improving few-shot performance of language mod-
els. Technical Report arXiv:2102.09690, arXiv.
ArXiv:2102.09690 [cs] type: article.

12373

https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://arxiv.org/abs/2405.21028
https://arxiv.org/abs/2405.21028
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.18653/v1/2023.emnlp-main.159
https://doi.org/10.18653/v1/2023.emnlp-main.159
https://arxiv.org/abs/2008.09049
https://arxiv.org/abs/2008.09049
https://arxiv.org/abs/2008.09049
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.48550/arXiv.1709.01686
https://doi.org/10.48550/arXiv.1709.01686
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/2024.acl-long.570
https://doi.org/10.18653/v1/2024.acl-long.570
https://doi.org/10.18653/v1/2024.acl-long.570
https://arxiv.org/abs/2308.01222
https://arxiv.org/abs/2308.01222
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://aclanthology.org/2024.lrec-main.840
https://aclanthology.org/2024.lrec-main.840
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/arXiv.2102.09690
https://doi.org/10.48550/arXiv.2102.09690
https://doi.org/10.48550/arXiv.2102.09690


Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eis-
ner. 2023. Non-programmers can label programs
indirectly via active examples: A case study with
text-to-SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5126–5152, Singapore. Association for
Computational Linguistics.

Jiawei Zhou, Jason Eisner, Michael Newman, Em-
manouil Antonios Platanios, and Sam Thomson.
2022. Online semantic parsing for latency reduc-
tion in task-oriented dialogue. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1554–1576, Dublin, Ireland. Association for Compu-
tational Linguistics.

12374

https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2022.acl-long.110
https://doi.org/10.18653/v1/2022.acl-long.110


A Feature Ablation & Analysis

Tool-Calling Utility (↑)

Base LLM MICE Model smECE (↓) Low risk Medium risk High risk AUC

RF Confidence Only 0.186 0.330 -0.037 -0.217 0.003
RF First Half Layers + Confidence 0.035 0.353 0.065 -0.007 0.127
RF Second Half Layers + Confidence 0.036 0.357 0.097 0.019 0.143
RF All Layers 0.044 0.356 0.081 -0.005 0.129

Llama3-8B-I RF 0.040 0.356 0.100 0.024 0.144
LR Confidence Only 0.037 0.356 0.035 0.000 0.120
LR First Half Layers + Confidence 0.034 0.356 0.043 0.000 0.122
LR Second Half Layers + Confidence 0.041 0.356 0.048 0.000 0.124
LR All Layers 0.055 0.356 0.039 0.000 0.108
LR 0.037 0.356 0.055 0.000 0.125

RF Confidence Only 0.183 0.182 -0.097 -0.061 -0.012
RF First Half Layers + Confidence 0.039 0.242 0.057 0.003 0.086
RF Second Half Layers + Confidence 0.031 0.247 0.067 0.017 0.098
RF All Layers 0.031 0.243 0.051 0.020 0.095

Llama3.1-8B-I RF 0.032 0.248 0.072 0.023 0.104
LR Confidence Only 0.043 0.239 0.016 0.000 0.064
LR First Half Layers + Confidence 0.045 0.239 0.028 0.000 0.065
LR Second Half Layers + Confidence 0.050 0.239 0.049 0.000 0.070
LR All Layers 0.047 0.239 0.000 0.000 0.061
LR 0.050 0.239 0.051 0.000 0.071

RF Confidence Only 0.158 0.196 -0.065 0.005 0.010
RF First Half Layers + Confidence 0.034 0.236 0.064 0.011 0.089
RF Second Half Layers + Confidence 0.041 0.235 0.059 0.009 0.084
RF All Layers 0.046 0.236 0.075 0.013 0.095

Llama3.2-3B-I RF 0.041 0.237 0.071 0.013 0.095
LR Confidence Only 0.022 0.233 0.000 0.000 0.057

. LR First Half Layers + Confidence 0.033 0.231 0.023 0.000 0.072
LR Second Half Layers + Confidence 0.026 0.233 0.012 0.000 0.064
LR All Layers 0.044 0.233 0.037 0.000 0.071
LR 0.025 0.232 0.016 0.000 0.073

Table 2: Results of the feature ablation on the STE test set (Wang et al., 2024). Lower smECE is better, while higher
tool-calling utility is better. Bold indicates the best result in each category and underline indicates the second best
result in each category.

Figure 8: A version of Figure 3 that shows how positive examples (blue) and negative examples (orange) may
have slightly different BERTScore distributions at each layer (see §6), which is apparently enough to inform the
confidence estimator. In both figures, we use the standard boxplot function in the Seaborn package with default
hyperparameters (Waskom, 2021).

12375


