
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12342–12361

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

EmojiPrompt: Generative Prompt Obfuscation for Privacy-Preserving
Communication with Cloud-based LLMs

Sam Lin†∗, Wenyue Hua†∗, Zhenting Wang†, Mingyu Jin†,
Lizhou Fan‡, Yongfeng Zhang†

†Department of Computer Science, Rutgers University, New Brunswick
‡School of Information, University of Michigan, Ann Arbor

∗Sam Lin and Wenyue Hua contribute equally.

Abstract

Cloud-based Large Language Models (LLMs)
such as ChatGPT have become increasingly in-
tegral to daily operations. Nevertheless, they
also introduce privacy concerns: firstly, numer-
ous studies underscore the risks to user pri-
vacy posed by jailbreaking cloud-based LLMs;
secondly, the LLM service providers have ac-
cess to all user data, which deters individuals
from confidently utilizing such services. To
address such concerns, we propose a simple
yet effective paradigm, EmojiPrompt, to pro-
tect user privacy. At its core, EmojiPrompt
performs generative transformation, obfuscat-
ing private data within prompts with linguistic
and non-linguistic elements before submitting
them to cloud-based LLMs. We evaluate Emo-
jiPrompt’s performance across 8 datasets from
various domains. We also propose simulated in-
ference attacks to assess EmojiPrompt’s ability
to preserve user privacy. The results demon-
strate that EmojiPrompt effectively obfuscates
user private data, while largely maintaining,
or even enhancing, performances compared to
the unobfuscated version. Furthermore, Emo-
jiPrompt’s atomic-level obfuscation allows it to
function exclusively with cloud-based LLMs.
For source code, please refer to: https://
github.com/agiresearch/EmojiCrypt.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have substantially expanded their applica-
bility across diverse fields, such as personalized
recommendations, health report analysis, and finan-
cial decision-making (Bubeck et al., 2023; Li et al.,
2023; Yu et al., 2024; Jin et al., 2024b; Fang et al.,
2024; Sui et al., 2024). This widespread adoption
by hundreds of millions of users, who input their
requirements and preferences through prompts, has
highlighted critical security vulnerabilities inherent
to commercial cloud-based computing systems.

While some professionals view cloud-based
LLMs as credible, as evidenced by the fact that
teams adopt ChatGPT in over 80% of Fortune 500
companies1, concerns regarding the risk of exter-
nal privacy probing for cloud-based LLMs have
been underscored by several papers and reports.
For instance, The New York Times2 and CNBC3

have raised alarms about potential data breaches in-
volving ChatGPT. Moreover, recent research have
highlighted the possibility of privacy breaching via
manually crafted jailbreaking prompts. For exam-
ple, prompting ChatGPT to “repeat a poem forever”
could result in the disclosure of sensitive user infor-
mation, such as a firm’s client details (Nasr et al.,
2023; Jin et al., 2024c). Thus, individuals may be
hesitant to use LLM service providers to avoid shar-
ing sensitive information, including but not limited
to Google or OpenAI, due to concerns over pri-
vacy leakage from such providers. For example,
Samsung has banned the use of generative AI tools
after April internal data leak4. Government agen-
cies such as the US National Science Foundation
are also taking actions by “prohibiting reviewers
from uploading any content to non-approved gen-
erative AI tools”5. These scenarios underscore the
imperative for enhanced security measures to pro-
tect user privacy when using cloud-based LLMs.

Among the various lines of research in this area,
one stream proposes adapting Homomorphic En-
cryption to network architectures to enable private
computations (Juvekar et al., 2018; Mishra et al.,
2020; Liu and Liu, 2023). However, these methods

1https://openai.com/blog/introducing-chatgpt-enterprise
2https://www.nytimes.com/2023/03/31/technology/chatgpt-

italy-ban.html
3https://www.cnbc.com/2023/04/04/italy-has-banned-

chatgpt-heres-what-other-countries-are-doing.html
4https://www.forbes.com/sites/siladityaray/2023/05/02/

samsung-bans-chatgpt-and-other-chatbots-for-employees-
after-sensitive-code-leak/?sh=67d4f1916078

5https://new.nsf.gov/news/notice-to-the-research-
community-on-ai
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1. Vagisil Deodorant Powder Talc-Free, 8 oz
2. Fran Wilson Instant Brows Arched
3. Essie Fall 2013 For The Twill of It
4. Tinkle Eyebrow Razor
5. Neutrogena Fresh Foaming Cleanser, 6.7 oz
6. Mary Kay Mineral Powder Foundation Beige 2
                                     ⋮

1.🎒⚪💨🌸🌸8⃣oz
2.🎭📸✨✒🔧
3.🎨🍂🌳🍃2013🌈
4.🔪✂😏👆
5.☁🧼💦6.7oz
6.👸🕯💎Beige2⃣

⋮

Obfuscation
LLM

Given the user has purchased the following items 
in order: [🎨🍂🌳🍃 2013 🌈, 🎒⚪💨🌸🌸 8⃣ oz, 
🔪✂😏👆], which items to recommend out of the 
following candidates: [🎭📸✨✒🔧, ☁🧼💦6.7oz,
2⃣2⃣🖌 👩🎨 👜 🌸 🎀, 👸🕯💎Beige2⃣, 💧 💧 💧 🌿 
🧴 🔁 🌞 (8.5oz)]?

Reusable Text Obfuscated Text

Obfuscated Prompt

Inference
LLM

Items to recommend:
☁🧼💦6.7oz, 
2⃣2⃣🖌 👩🎨 👜 🌸 🎀, 
👸🕯💎Beige2⃣

Output

Figure 1: Illustration of EmojiPrompt for preserving user privacy in LLM-powered personalized recommender
systems, using LLMO to transform product titles in user behavior history into emoji sequences. The LLMI then
processes the obfuscated prompt to infer and generate relevant product recommendations.

require access to LLM weights. Another approach
obfuscates private data tokens by inserting noise
into token embeddings (Qu et al., 2021; Tong et al.,
2023; Mai et al., 2024; Chowdhury et al., 2024).
For instance, Tong et al. (2023) and Chowdhury
et al. (2024) replace each token with a semantically
similar token, sampled from a pre-computed ad-
jacency list based on vector distances. However,
these methods require extensive computation in em-
bedding space and/or hosting a local LLM, posing
challenges for users without access to local com-
putational resources (Naveed et al., 2023; Lv et al.,
2023). Other obfuscation works substitute sensitive
information with generic tags, as described by (Kan
et al., 2023; Chen et al., 2023); however, this strat-
egy is mainly ineffective for tasks where inference
relies on the private data (Mai et al., 2024).

To address such limitations, we propose Emo-
jiPrompt, a novel paradigm obviating the need
of accessing inference LLM weights, tuning local
LLMs as decoders, or substituting private data with
generic tags. EmojiPrompt offers the following
contributions: (1) it leverages pre-trained LLMs for
generative obfuscation, with obfuscation prompts
searched automatically; (2) it integrates both lin-
guistic and non-linguistic elements (e.g., emojis,
logical operators) during obfuscation, as such sym-
bolic figures have shown to be effective in abstract-
ing descriptive details while retaining essential con-
tent (Holtgraves and Robinson, 2020; Erle et al.,
2022); and (3) it proposes an atomic-level obfus-
cation strategy to grant privacy protection against
both external probes and internal leakage.

We evaluate EmojiPrompt’s performance across
8 real-world datasets spanning various domains,

including e-commerce recommendation, spam de-
tection, medical and financial analysis, as well
as comprehensive reading. Our evaluation con-
sists of two comparisons: (1) the performance of
EmojiPrompt-obfuscated prompts against their un-
obfuscated versions; and (2) the performance of
EmojiPrompt-obfuscated prompts against prompts
privatized by 3 other prompt obfuscation models,
on the same inference LLM. Additionally, we con-
duct simulated inference attacks to assess the extent
to which privatized data can be recovered on both
EmojiPrompt and the three baseline models.

2 Related Work

Private inference of neural networks may be cat-
egorized into four classes: homomorphic encryp-
tion, differential privacy, split learning, and text
obfuscation. Private inference of neural networks
was first discussed in (Gilad-Bachrach et al., 2016),
with subsequent works demonstrating the feasibil-
ity of using homomorphic encryption to achieve
non-interactive private inference (Juvekar et al.,
2018; Mishra et al., 2020; Rathee et al., 2020; Liu
and Liu, 2023). Additionally, Huang et al. (2022)
proposed a special encoding method called Chee-
tah to encode vectors and matrices into homomor-
phic encryption polynomials. Hao et al. (2022)
realized that matrix-matrix multiplication domi-
nates in Transformer-based inference, and thus im-
proves the vanilla polynomial encoding by intro-
ducing a blocking method prioritizing the batch
dimension. Lyu et al. (2020); Du et al. (2023) con-
sider Differential Privacy (DP) in inference time
by proposing DP-Forward, which directly perturbs
embedding matrices in the forward pass of lan-
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O
bfuscationLLM

Given the following movie review: =quirk
odd ( )

humor
stoner> odd -> 

”Brother

Movie Review: Phil the Alien is one of those quirky films where the humour is based around the oddness of 
everything rather than actual punchlines. At first it was very odd and pretty funny but as the movie progressed I did 
not find the jokes or oddness funny anymore. Its a low budget film (thats never a problem in itself), there were some 
pretty interesting characters, but eventually I just lost interest. I imagine this film would appeal to a stoner who is 
currently partaking. For something similar but better try "Brother from another planet”.

Non-Reusable Text

, return the sentiment of the review.
Obfuscated Prompt

Inference 
LLM Sentiment: Positive

Output

Obfuscation Explanation:
- : The movie "Phil the Alien" is being discussed.

=quirk humor > odd -> odd ( ) stoner ”Brother

RecoveringLLM

VeryD
ifferentTexts

- =quirk : The humor style is quirky.
- humor : The humor revolves around odd situations.
- > : Initially more odd than punchline-driven.
- odd -> odd : The oddness starts off amusing but becomes less funny over time
- ( ) : It's a low-budget film, which is not inherently a problem.
- : There are some interesting characters.
- : The reviewer's interest fades.
- stoner : The film might appeal to stoners.
- "Brother : Recommends "Brother from another planet" as a better alternative.

Obfuscation Explanation (optional, NOT disclosed to the Inference LLM)

I just watched a movie that struck me as uniquely quirky and humorously eccentric, far more bizarre and amusing 
than your typical action-packed blockbuster. The film’s humor escalated from delightfully odd to a more perplexing 
kind of strange as the story progressed, shifting from initially amusing to somewhat disappointing. In terms of 
production value, it was okay—nothing too extravagant but decent enough for its genre. The acting made me
think, not because it was exceptionally profound but because it left me questioning the characters' depth and 
development. Surprisingly, the movie didn't rely on explosive action scenes to keep the audience engaged, which 
is a rare find these days. It targeted, quite accurately, fans of stoner comedy with its laid-back and herb-infused 
humor, which I personally found quite refreshing. Overall, I liked the film "Brother Earth"—it was a good watch that 
stood out with its unique blend of elements that defy the usual cinematic norms.

Recovered Text: Recovering LLM is unable to recover the original text

Obfuscated Text

Figure 2: Non-Reusable Obfuscation and Rationale on a movie review

guage models. Split learning was first proposed
by Gupta and Raskar (2018); Vepakomma et al.
(2018) which requires client to train a segment
of deep network. They show that split learning
surpasses federated learning and large batch syn-
chronous SGD by achieving superior accuracy with
reduced client-side computational demands. Never-
theless, all above-listed methods are not applicable
to a cloud-based LLM, as they require access to the
model’s weights or internal structure.

To protect privacy when using cloud-based
LLMs, recent works (Chowdhury et al., 2024; Tong
et al., 2023; Mai et al., 2024) employ text obfus-
cation by converting private data tokens into their
obfuscated, noisy forms while retaining contex-
tual relevance. For example, Split-N-Denoise (Mai
et al., 2024) adds noise to token embeddings before
transmission to cloud-based LLMs and then de-
noises the output with a local LLM. However, such
methods require substantial computations to deter-
mine the noisy terms and to train local de-noising
LLMs. Other text obfuscation methods propose
to anonymize sensitive terms prior to cloud-based
LLM input and subsequently restoring them post-
output (Kan et al., 2023; Chen et al., 2023). For
instance, OpaquePrompt server6 identifies sensi-
tive entities within a user’s prompt and replaces
them with generic identifiers. However, they are
effective mainly when cloud-based LLMs rely on

6https://github.com/opaque-systems/
opaqueprompts-python

context rather than sensitive data for inference.

3 Methodology

This section delineates the structure of our obfus-
cation paradigm, which incorporates two LLMs:
one for the obfuscation of private data, denoted as
LLMO, and the other for task inferences by pro-
cessing the obfuscated prompts, denoted as LLMI .

3.1 Problem Definition
The model LLMO obfuscates a given text x by
adhering to a task obfuscation instruction ot. The
obfuscation process is formally written as:

LLMO(ot, x) = x′, (1)

where x′ represents the obfuscated version of
the original text x. The instruction ot instructs the
LLMO to generate a task-specific obfuscated repre-
sentation of x using a mixture of linguistic (i.e., ab-
breviated characters) and non-linguistic (i.e., emo-
jis, emoticons, mathematical and logical operators)
elements. The obfuscated form of the user’s private
information, ui, is then formulated from x′ (we
specify the process to formulate ui in Section 3.2).

On the other hand, the model LLMI is responsi-
ble for performing inference tasks using prompts
that consist of three components: the task t’s in-
struction (tpt), which defines the inference objec-
tive; the potential output set St, which enumer-
ates all possible outcomes; and the obfuscated pri-
vate information ui. The inference prompt is con-
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structed by combining tpt, St, and ui, and is then
fed into LLMI . The model subsequently carries
out inference to produce an output y ∈ St. This
inference process is formally defined as:

LLMI(tpt, St, ui) = y where y ∈ St. (2)

3.2 Atomic-level Obfuscation
Since LLMO may be cloud-based, there is a po-
tential risk of privacy leakage to the LLMO server
during the obfuscation process. To mitigate this
risk, we propose an atomic-level obfuscation strat-
egy. This approach involves partitioning the user’s
private data into smaller modular units, obfuscat-
ing each unit separately, and then reconstructing
the obfuscated private data from these individually
obfuscated units. Given the diverse nature of user
private data, we define two types of obfuscation:
Reusable and Non-Reusable. We then describe how
our atomic-level obfuscation technique is applied
to each type to ensure privacy and security.

Reusable Obfuscation The Reusable Obfusca-
tion type is designed for scenarios where the user’s
private data is associated with a predefined group
of features or entities that are repetitively refer-
enced. For example, in a recommender system that
leverages information about a user’s past purchases
to make recommendations (as illustrated in Figure
1), this data is sensitive because it can disclose the
user’s buying patterns and preferences. In such
cases, the data items form a consistent set that can
be obfuscated a single time and then reused across
multiple prompts without repeated obfuscation.

To perform atomic-level obfuscation for this
type, we begin by extracting all products in the task
dataset and converting each item to its obfuscated
form. These obfuscated products are then used to
reconstruct the user’s history for subsequent pro-
cessing by the LLMI . This process is depicted in
Figure 1 (Reusable Obfuscation on tabular data is
presented in Appendix A.1, with the same idea).

In this context, we denote Erec as the set of en-
tities (i.e. products represented by titles) to be ob-
fuscated for the recommendation task rec, where
| Erec |= n. For each entity ei ∈ Erec, its obfus-
cated form is denoted as e′i, computed as:

ei
′ = LLMO(orec, ei) for i = 1, 2, . . . , n (3)

Therefore, for a user i who has interacted with enti-
ties {e1, e3, e6}, the obfuscated private information
for user i can be written as:

ui = {e1′, e3′, e6′} (4)

Non-Reusable Obfuscation When user privacy
concerns extend beyond a predefined set of enti-
ties or features, the data is categorized as Non-
Reusable. For instance, as shown in Figure 2, an
LLM may be employed to analyze customer re-
views for sentiment analysis, where the reviews
themselves are considered confidential information.
Unlike structured data with fixed sets of entities,
these reviews are composed of diverse natural lan-
guage sequences, making them unsuitable for re-
peated use after obfuscation. Therefore, each piece
of data requires individual obfuscation for each
instance of processing, ensuring privacy for un-
structured and varied inputs.

To implement atomic-level obfuscation for such
data, we adopt a method similar to the one de-
scribed in Section 3.2. Initially, the full text of each
review is divided into clauses using an established
NLP toolkit (Honnibal and Montani, 2017). These
clauses are then collected into a list and shuffled to
further obscure the original structure. Each clause
is individually obfuscated by LLMO, and the ob-
fuscated clauses are subsequently recombined to
produce a fully obfuscated version of the user re-
view. This obfuscated review can then be processed
by LLMI . The sub-sentence level segmentation
not only reduces the risk of information leakage
but also effectively handles cases where the data
consists of single-sentence texts.

3.3 Theoretical Grounding

To provide a theoretical grounding for our obfus-
cation paradigm, we propose two independent con-
straints: the first constraint “semantic alignment
constraint” is employed during the obfuscation gen-
eration process, while the second constraint “Lo-
cal Differential Privacy (LDP) Post-sampling con-
straint” is applied post-obfuscation generations.

Semantic alignment constraint Prior works on
prompt obfuscation(Du et al., 2023; Lyu et al.,
2020; Mai et al., 2024; Tong et al., 2023) widely
adapted the concept of Differential Privacy (DP).
Intuitively, this principle stipulates that: given a ran-
domization algorithm M, the obfuscations M(x1)
and M(x2) of two adjacent texts x1 and x2 which
differ by a small extent, should remain sufficiently
similar, rendering them indistinguishable to adver-
saries (Chatzikokolakis et al., 2013). We adapt this
principle by first defining adjacency then formulat-
ing relaxed DP under the generative paradigm.

To determine adjacency between pairs of texts
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Item to obfuscate: 22pcs Professional Cosmetic Makeup Brush Set with Pink Bag Pin

- Obfuscation:

- Explanation: 2⃣2⃣ (22) for number of pieces, 🖌 (Paintbrush) for brushes, 👩🎨 (Woman Artist) for 

professional use, 👜 (Handbag) for carrying case, 🌸 (Cherry Blossom) and 🎀 (Ribbon) for pink color.

Item to obfuscate: Neutrogena Triple Moisture Daily Deep Conditioner, 8.5 Ounce

- Obfuscation: 💧💧💧 🌿 🧴 🔁 🌞 (8.5oz)

- Explanation: 💧 (Droplet) for triple moisture, 🌿 (Leaf) for natural ingredients, 🧴 (Bottle) for conditioner,           

🔁 (Repeat Sign) for daily use, 🌞 (Sun) for daytime use, (8.5oz) for volume.

2⃣2⃣ 🖌 👩🎨 👜 🌸 🎀

Figure 3: Obfuscation Rationale on Beauty Products.

(e.g., product titles, natural language clauses, etc.),
we draw inspiration from (Przybocki et al., 2006)
and utilize a token-level metric.

In classic DP, two entities are considered adja-
cent if they differ by one instance (e.g., for two
datasets, they would be adjacent if they differ by
one row). Nevertheless, upon adaptation, instead
of defining two texts to be adjacent if they differ
by one token (which may be overly restrictive as
texts must be very similar to qualify), we broaden
the definition by setting a text adjacency thresh-
old, denoted as ρ, (0 ≤ ρ ≤ 1), and consider two
texts as adjacent if their token-level edit-distance
is ≤ ρ (rounded up) of the maximum token count
between the two texts. Such definition allows more
texts to be adjacent for privacy protection against
adversaries. This relationship is defined as:
Definition 3.1 (Text-based adjacency). Given a
pair of text x1, x2, x1 and x2 are adjacent if

ED(x1, x2) ≤ ⌈ρ×max(TC(x1), TC(x2))⌉
where ED denotes the token-level edit-distance,
and TC represents the token count.

In this work, ρ is set to 0.15 heuristically. In Sec-
tion 4.4, we perform a privacy-utility trade-off with
different values of ρ. Based on this definition of
adjacency, we adapt the concept of DP and propose
a semantic alignment constraint for adjacent pairs
within our generative obfuscation paradigm. Here,
we utilize BERTSCORE (Zhang et al., 2019) to mea-
sure the semantic distance between x1, x2 and and
their obfuscated counterparts M(x1),M(x2).
Definition 3.2 (Semantic Alignment). Given a pair
of adjacent text x1, x2, a randomization algorithm
M is ϵ-LDP under the generative paradigm if

BERTSCORE(x1, x2)

BERTSCORE(M(x1),M(x2))
≤ ϵ

with ϵ being the privacy parameter such that ϵ ≥ 1.
When ϵ = 1, this constraint ensures that the

semantic similarity between the obfuscated repre-
sentations for any adjacent pair x1, x2 is at least as

high as the similarity between their unobfuscated
counterparts, maintaining consistency in meaning.

LDP Post-sampling constraint In addition to
the semantic alignment constraint, we introduce a
post-sampling constraint based on a relaxed version
of the privacy guarantee provided by ϵ-LDP. The
formal definition of ϵ-LDP is as follows:
Definition 3.3 (ϵ-LDP). Given two adjacent texts
x1, x2 and a randomization algorithm M, M satis-
fies ϵ-LDP if for all possible outputs y:

Pr[M(x1) = y]

Pr[M(x2) = y]
≤ eϵ

where ϵ is the privacy parameter.
This condition ensures that for two similar in-

puts, the difference in the probability distributions
of their obfuscated outputs remains bounded, thus
preventing adversaries to infer the original input.

Our adaptation is designed to accommodate sce-
narios where the adjacent texts form a complete
graph (i.e., each text is adjacent to every other text
in the graph). In this case, we use an obfuscation
LLM, LLMO, as M by generating an obfuscated
representation for each of these texts, forming a
set of obfuscated outputs. Instead of directly using
the initial obfuscations, we apply a post-sampling
technique: for each text, we sample from this set
of obfuscated representations, either uniformly or
based on a weighted distribution, to determine the
final obfuscated output used during inference.

To illustrate, consider three adjacent texts
x1, x2, x3 in a recommendation dataset that form
a complete graph. We first generate their obfus-
cated representations x′1, x

′
2, x

′
3 using LLMO and

place them into a common set S = {x′1, x′2, x′3}.
If ϵ = 0, each obfuscated representation is chosen
with equal probability, ensuring highest privacy:
for x1, x2, x3, the probability distribution is thus
Pr[M(xi) = x′j ] =

1
3 , ∀ i, j ∈ {1, 2, 3}. This uni-

form sampling ensures that all outputs are selected
with equal likelihood, thus providing the strongest
privacy guarantee based on LDP.
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Optimization AB (hit@10) AT (hit@10) MR (acc) ES (b-acc) CI (b-acc) HD (b-acc) CR (acc) HG (cos)
GPT-4 N/A 0.292 0.415 0.957 0.949 0.635 0.648 0.671 0.755
SnD + GPT-4 N/A 0.242 0.352 0.879 0.881 0.627 0.635 0.611 0.684
InferDPT + GPT-4 N/A 0.231 0.339 0.887 0.868 0.631 0.641 0.604 0.692
TEP + GPT-4 N/A 0.219 0.327 0.853 0.854 0.619 0.627 0.589 0.677
GPT-4 + GPT-4 Manual 0.277 0.397 0.885 0.897 0.706 0.675 0.632 0.719
GPT-4 + GPT-4 APE 0.281 0.403 0.878 0.889 0.721 0.679 0.637 0.713
GPT-4 + GPT-4 OPRO 0.285 0.395 0.894 0.885 0.736 0.677 0.643 0.717
Gemini + GPT-4 Manual 0.268 0.379 0.861 0.871 0.662 0.683 0.614 0.698
Gemini + GPT-4 APE 0.271 0.385 0.857 0.865 0.671 0.681 0.619 0.703
Gemini + GPT-4 OPRO 0.273 0.391 0.874 0.877 0.674 0.689 0.622 0.708

Table 1: Model Performance. For A+B, A is the obfuscation method and B is the inference LLM. GPT-4 refers to
inferencing with unobfuscated prompts; SnD, InferDPT, and TEP refer to the 3 obfuscation methods employed as
baselines. Any output exceeding the best performance out of the 3 baseline models over 1% are highlighted in bold.

When ϵ > 0, we employ the weighted sampling
by setting the probability of sampling x′i for each xi
proportionally higher to achieve a balance between
privacy and utility. For example:

• For x1,Pr[M(x1) = x′
1] =

1
2
,Pr[M(x1) = x′

2] =
1
4
,Pr[M(x1) = x′

3] =
1
4

• For x2 : Pr[M(x2) = x′
1] =

1
4
,Pr[M(x2) = x′

2] =
1
2
,Pr[M(x2) = x′

3] =
1
4

• For x3 : Pr[M(x3) = x′
1] =

1
4
,Pr[M(x3) = x′

2] =
1
4
,Pr[M(x3) = x′

3] =
1
2

When doing so, we ensure that the probability
ratios for any common obfuscated representation
between adjacent entities are within the bounds
specified by eϵ. From the above example:

Pr[M(xi) = s]

Pr[M(xj) = s]
≤ 2, ∀ i, j ∈ {1, 2, 3}, ∀ s ∈ S

This satisfies the differential privacy condition
with ϵ = ln(2) ≈ 0.693, making the output dis-
tributions for adjacent entities statistically similar
while allowing for a controlled extent of utility in
the modeling. For details on the implementation of
the two constraints, please refer to Appendix A.2.

3.4 Obfuscation Rationale
We proceed with an initial exploration into the ra-
tionale behind EmojiPrompt. To achieve this, we
prompt the LLMO to explain the reasoning for con-
verting natural language texts into non-natural lan-
guage sequences after generating obfuscated con-
tent. This explanation is conducted in two contexts:
a beauty product title and a movie review, as show-
cased in Figure 3 and the “Obfuscation Explana-
tion” section of Figure 2, respectively.

As shown in Figure 3, LLMO is capable of iden-
tifying and encoding key terms from a product title
into symbolic counterparts, while altering the orig-
inal syntactic structure to further obscure the con-
tent. For instance, in the obfuscated version, three

droplets are introduced at the beginning, although
they appear later in the original product title. This
strategic reordering enhances the obfuscation, mak-
ing it harder for recoverers to reconstruct the origi-
nal text. Furthermore, Figure 2 demonstrates how
LLMO constructs non-linguistic phrases by using
sequences of emojis, mathematical symbols, and
logical operators to encapsulate complex expres-
sions from a movie review. For example, a descrip-
tion of a “low-budget yet commendable movie” is
represented by the emoji sequence “Flying Money,
Movie Clapper Board, OK Button.” This exem-
plifies LLMO’s ability to distill intricate concepts
into emblematic emoji sequences, with each emoji
carrying interpretative significance. This approach
enables the encoding of nuanced information while
maintaining a high level of obfuscation.

These transformed sequences, as shown in both
figures, introduce interpretive challenges for those
attempting to recover the original content. In the
case of an obfuscated beauty product description,
the use of symbolic indicators may hint at certain
attributes (for example, a water-drop emoji suggest-
ing moisture), but they also introduce a level of am-
biguity that prevents the clear identification of the
specific product. This obfuscation is particularly
effective because it conveys general information
without revealing specific details. Such challenge
is further amplified in the context of Non-Reusable
Obfuscation, where LLMO generates abstract sym-
bolic sequences with nuanced, context-dependent
meanings that are not immediately clear. In the fu-
ture, we aim to employ more algorithms (Jin et al.,
2025; You and Zhao, 2024) to further analyze the
rationale behind LLM’s obfuscation generations.

4 Experiments

4.1 Experiment Setup

Dataset and Metric We evaluate EmojiPrompt
on 8 real-world datasets from various domains
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AB (hit@10) AT (hit@10) MR (acc) ES (b-acc) CI (b-acc) HD (b-acc) CR (acc) HG (cos)
Gemini + GPT-4 0.268 0.379 0.861 0.871 0.662 0.683 0.614 0.698
Gemini + GPT-4 (Content-matching) 0.281 0.386 0.875 0.881 0.678 0.698 0.627 0.702
Gemini + GPT-4 (Clause-level) 0.265 0.381 0.883 0.892 0.659 0.678 0.631 0.713
Gemini + GPT-4 (Context) 0.279 0.391 0.881 0.889 0.685 0.702 0.638 0.709

Table 2: Ablation Study Performance. For A + B, A is the obfuscation LLM and B is the inference LLM. All
studies use Gemini + GPT-4 as baseline, with outputs exceeding the baseline by more than 1% highlighted in bold.

where LLMs have commonly been applied to (Fang
et al., 2024; Li et al., 2023; Lin et al., 2024b; Rouze-
gar and Makrehchi, 2024): Amazon Beauty (AB),
Amazon Toy (AT), Movie Review (MR), Email
Spam (ES), Census Income (CI), Heart Disease
(HD), Comprehensive Reading (CR), and High-
light Generation (HG). We employ Hit Rate @10
(hit@10), Accuracy (acc), Balanced Accuracy (b-
acc), and Cosine Similarity (cos) as evaluation met-
rics. Specifically, we perform Reusable Obfusca-
tion for AB, AT, CI, and HD, and Non-Reusable
Obfuscation for MR, ES, CR, and HG. For dataset
links, descriptions, modeling pre-processing, and
metric details, please refer to Appendix A.3.

Modeling Setup To conduct a comprehensive
evaluation, we implement EmojiPrompt across
both trusted and untrusted LLMI settings: Trusted:
the LLM employed for task inference is reliable;
in this case, the obfuscation only serves to prevent
third-party privacy probing. Untrusted: the LLM
employed for task inference is not reliable; that is,
the obfuscation serves to prevent both third-party
probing as well as potential information leakage
from the server of the LLMI . In the Trusted sce-
nario, we employ the same LLM for both private
data obfuscation and task inference. In the Un-
trusted scenario, we employ LLMs that are hosted
on distinct servers for obfuscation and inference.
For both cases, our atomic-level obfuscation ef-
fectively mitigates the risk of privacy leakage, as
explained in Appendix A.4. In this work, we em-
ploy GPT-4 Turbo (Bubeck et al., 2023) as the
LLMI . We denote all model configurations as
“A + B”, with A being the LLMO and B being
the LLMI . Thus, in the Trusted scenario, GPT-4
Turbo serves both as the LLMO and the LLMI , de-
noted as “GPT-4 + GPT-4”. In contrast, for the Un-
trusted scenario, we employ Gemini 1.0 Pro (Team
et al., 2023) and Llama 3.1 (8B) (Vavekanand and
Sam, 2024) as the LLMOs, denoted as “Gemini +
GPT-4” and “Llama + GPT-4”, respectively.

All LLMs used in this study are untuned. We ap-
ply LDP Post-sampling with ϵ = 10 on all LLMOs.
We set the temperature to 1.0 for all applicable
LLMOs to encourage the generation of more cre-

ative content, following (Roemmele and Gordon,
2018). For the LLMI , we set the temperature to 0
to obtain more consistent outputs for evaluation.

Modeling Baselines We propose two types of
baselines: (1) against the unobfuscated prompts,
denoted as “GPT-4”, providing a measure of how
well the obfuscation retains task performance; and
(2) against three prompt obfuscation models: Split-
N-Denoise (SnD) (Mai et al., 2024), InferDPT
(Tong et al., 2023), and TokEmbPriv (TEP) (Qu
et al., 2021). For details on the baseline models,
please refer to Appendix A.5. To perform evalu-
ation, we first obfuscate user private data within
the prompts using each model, then submit the ob-
fuscated prompts to the LLMI (i.e., GPT-4 Turbo),
with the configurations denoted as “SnD + GPT-4”,
“InferDPT + GPT-4”, and “TEP + GPT-4”.

Prompt Optimization We employ two prompt
optimization algorithms, APE (Zhou et al., 2023)
and OPRO (Yang et al., 2024), to explore whether
performance-optimized obfuscation prompts can
be automatically generated, thus reducing manual
effort in prompt composition. To ensure a fair com-
parison with the baselines, we focus solely on opti-
mizing the obfuscation prompt, with the inference
prompts fixed across all model variants. For opti-
mization details, please refer to Appendix A.6.

4.2 Result and Analysis

As demonstrated by Table 1, both “GPT-4 + GPT-
4” and “Gemini + GPT-4” with reusable obfus-
cated text exhibit performance comparable and
even surpassing non-obfuscated text, such as Ama-
zon Beauty and Census Income, while showing
largest relative decrease in performance on datasets
with non-reusable obfuscated text (i.e. Movie Re-
view and Email Spam). Notably, Llama 3.1 (8B)
achieves performances mostly on par with Gemini
1.0 Pro, as shown by Table 7 in Appendix.

These findings shed light in the viability of us-
ing untuned LLMs as obfuscators : (1) obfuscating
user private data from natural to non-natural lan-
guage retains sufficient informativeness for task
inference by the same LLM, and (2) the approach
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AB (hit@10) MR (acc) CI (b-acc) CR (acc)
ϵ = 1 0.251 0.825 0.639 0.587
ϵ = 3 0.263 0.837 0.651 0.599
ϵ = 5 0.267 0.856 0.657 0.611

Table 3: Privacy-Utility Trade-off: Semantic Alignment

is extensible when using different LLMs for ob-
fuscation and inference, as seen with “Gemini +
GPT-4” and “Llama + GPT-4”, though with a slight
drop in performance (Appendix A.7 provides ad-
ditional performance results to further validate the
two observations above). Table 1 also highlights
the feasibility of automatic obfuscation prompt op-
timization, as prompts generated by both APE and
OPRO yield performance comparable to, or even
surpassing, manually-tuned prompts.

For performance comparison with baseline mod-
els, in the Trusted scenario, EmojiPrompt achieves
performance comparable to InferDPT on the MR
dataset, while outperforming all selected baselines
across other datasets. In the Untrusted scenario,
EmojiPrompt slightly underperforms InferDPT on
the MR dataset, performs comparably to SnD on
both the MR and ES datasets, while outperforming
all selected baselines on the remaining datasets.

4.3 Further Enhancement and Ablations

We conduct two enhancements and one ablation
study, using “Gemini + GPT-4” with manually-
tuned obfuscation prompts as the baseline:

Content-matching Obfuscation: Instead of
asking LLMO to only generate obfuscated prompts
x′, we also ask LLMO to explain how each token
in x′ corresponds to the original text x, minimiz-
ing hallucination. We denote this experiment as
“Gemini + GPT-4 (Content-matching)” in Table 2.

Clause-level Obfuscation: As discussed in Sec-
tion 3.4, in addition to token-level obfuscation,
LLMO also displays the ability to transform natural
language clauses into non-linguistic sequences at
the clause-level, as shown in Figure 2. To explore
whether this ability enhances task performance, we
use all <natural language clause, non-linguistic se-
quence> pairs from Figure 2 as in-context examples
to guide generation. We denote this experiment as
“Gemini + GPT-4 (Clause-level)” in Table 2.

Obfuscation with Context: Our atomic-level
obfuscation mitigates privacy leakage yet may di-
minish context. To examine whether obfuscating
entities individually affects task performance, we
conduct a study where LLMO is given full access to
private data to generate obfuscations, allowing for
a direct comparison despite privacy risks. For ex-

AB (hit@10) MR (acc) CI (b-acc) CR (acc)
ϵ = 1 0.243 0.831 0.629 0.576
ϵ = 3 0.254 0.837 0.641 0.589
ϵ = 5 0.257 0.845 0.649 0.603

Table 4: Privacy-Utility Trade-off: LDP Post-sampling

ample, instead of obfuscating movie reviews at the
atomic level, we input the full review into LLMO
for obfuscation. We denote this experiment as
“Gemini + GPT-4 (Context)” in Table 2.

As shown in Table 2, Content-matching Obfus-
cation improves performance across all datasets.
Clause-level Obfuscation boosts performance on
non-reusable text datasets while maintaining sim-
ilar results on others. Although atomic-level ob-
fuscation slightly reduces task performance com-
pared to full-context obfuscation (which leaks pri-
vate data), the difference is minimal.

4.4 Privacy-Utility Trade-off

We now conduct a privacy-utility trade-off analy-
sis for the two constraints introduced in Section
3.3, utilizing the "Gemini + GPT-4" configuration
across the AB, MR, CI, and CR datasets with vary-
ing values of the privacy parameter (ϵ). The results,
as presented in Tables 3 and 4, reveal a monotonic
decline in performance as ϵ decreases, demonstrat-
ing the effectiveness of both proposed constraints.

Moreover, we also perform a privacy-utility
trade-off analysis on the text adjacency threshold,
ρ. The results, as shown in Table 5, also exhibit a
monotonic drop in performances as ρ increases.

4.5 Performance on Other Languages

While we have demonstrated the effectiveness of
our paradigm across a wide range of datasets, all
datasets evaluated consist of samples composed
in English. In this section, we aim to investi-
gate whether our paradigm is generalizable to nat-
ural languages other than English. To this end,
we employ four datasets, including: Spam Detec-
tion (SD, in French and German), Amazon Review
Sentiment (ARS, in Japanese), Article Summariza-
tion (AS, in Chinese), and Heart Attack Detection
(HAD, in Spanish). We use Cosine Similarity as the
metric for Article Summarization and Balanced Ac-
curacy for all other datasets. We adhere to the pri-
vacy settings outlined in Section 4.1, while employ-
ing Gemini-1.0 Pro as the Obfuscation LLM with
GPT-4 Turbo as the Inference LLM. We present
the unobfuscated (denoted as “GPT-4”) and obfus-
cated (denoted as “Gemini + GPT-4”) results for
all datasets in Table 6. As shown in Table 6, the ob-
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AB (hit@10) MR (acc) CI (b-acc) CR (acc)
ρ = 0.10 0.280 0.881 0.689 0.629
ρ = 0.15 0.273 0.874 0.674 0.622
ρ = 0.20 0.256 0.862 0.667 0.605

Table 5: Privacy-Utility Trade-off: Text Adjacency

fuscated results across all datasets are comparable
to their unobfuscated counterparts, thus demon-
strating the effectiveness of our paradigm across
various natural languages in addition to English.
For dataset details, please refer to Appendix A.3.

5 Inference Attacks

Prior works on prompt obfuscation (Tong et al.,
2023; Yue et al., 2021; Qu et al., 2021) tend to
adopt token-level recovering, where the recoverer
is tasked to recover each token of the privatized
prompt back to its original form, with recovery
accuracy reported as the evaluation metric. Never-
theless, this metric could be biased, as even if the
recoverer is unable to recover the exact original to-
kens, it may still successfully predict synonymous
tokens or generate a recovered text with a high
degree of semantic similarity to the original.

To address this, we employ a comprehensive
set of metrics to assess obfuscation robustness,
accounting for the degree of: exact lexical over-
lapping (aligning with prior works), synonym and
paraphrase overlapping, and overall semantic simi-
larity between the original text and the recovered
text, with both LLMs and humans as recoverers.
We adopt the worst-case assumption by perceiving
the cloud-based inference LLM as untrusted, and
evaluate all attacks on “Gemini + GPT-4” against
all baselines introduced in Section 4.1. For de-
tailed descriptions on evaluation methods and re-
sults, please refer to Appendix A.8. Table 10 in
Appendix demonstrates that EmojiPrompt exhibits
comparable robustness in terms of lexical overlap
when benchmarked against the baselines, while
achieving superior performance on both synonym
overlap and overall semantic similarity.

6 Conclusion

This work introduces EmojiPrompt, a novel ob-
fuscation paradigm designed to protect user pri-
vacy during interactions with cloud-based LLMs.
EmojiPrompt uses LLMs to perform generative ob-
fuscation, transforming private data from natural
language into non-natural language forms, thus ob-
fuscating it from both LLM and human recoverers.
We validate EmojiPrompt’s effectiveness across

SD (b-acc) ARS (b-acc) AS (cos) HAD (b-acc)
French German

GPT-4 0.961 0.961 0.979 0.681 0.672
Gemini + GPT-4 0.897 0.885 0.942 0.642 0.653

Table 6: Performance on Non-English Datasets

eight datasets, showing that performance on obfus-
cated prompts is largely preserved and, in some
cases, even exceeds that of unobfuscated prompts.
We also compare EmojiPrompt against three obfus-
cation baselines, showing it matches their perfor-
mance on some tasks while outperforming them in
others, both for task inference and recovery robust-
ness. Finally, the atomic-level obfuscation design
allows the process to be fully cloud-based, enabling
deployment without the need of local LLMs.

7 Limitations

We notice two potential concerns associated with
employing untuned LLMs for obfuscation:

Limited Symbolic Vocabulary: the restricted
set of symbols—such as emojis, emoticons, and
operators—from the LLM’s vocabulary may con-
strain LLMO’s ability to fully capture the nuances
of the original data. This limitation could result
in the oversimplification or omission of intricate
details in the obfuscated output. For instance, as
shown in Figure 3, the use of a leaf emoji to denote
a product’s natural ingredients may not fully encap-
sulate the specificities of the product’s organic com-
position. A potential solution, as Edemacu and Wu
(2024) proposes, involves expanding the symbolic
vocabulary by defining additional symbol-text map-
pings and then incorporating these mappings into
the cloud-based obfuscation LLMs, either through
In-context Learning or API-based fine-tuning.

Inaccurate Information: LLMs are prone to
hallucination, where they generate information that
appears plausible but is factually incorrect or en-
tirely fabricated (Ji et al., 2023b). In this work,
we also observe that the obfuscation LLM has the
potential to generate representations that introduce
elements not present in the original data. For exam-
ple, as shown in Figure 3, a sun emoji is generated
for a product whose title does not specify the time
of day for its use. While this may be viewed as
to introduce additional noise to confuse the adver-
saries, it may also introduce unintended informa-
tion. Several approaches may help mitigate this
issue, including self-reflection (Ji et al., 2023b),
knowledge distillation (McDonald et al., 2024), as
well as splitting memorization and reasoning as
two separated procedures (Jin et al., 2024a).
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A Appendix

A.1 Obfuscation on Tabular Data

Another example for Reusable Obfuscation is the
use of LLMs for processing tabular data, a type of

data commonly encountered in medical and finan-
cial decision-making. In these instances, each user
is characterized by a set of predefined features (or
attributes), with a specific value on each feature.
For example, Figure 4 illustrates a simple tabular
dataset with {Age, Work Class, Education} as fea-
tures, while each feature has two possible levels
(e.g., 19 and 75 for Age). In such a scenario, the
LLMO is first used to obfuscate each level of ev-
ery feature. An obfuscated user representation is
then formed by aggregating all relevant obfuscated
feature values, as depicted by Figure 4.

Please note that for numerical features with con-
tinuous values (e.g., Age or Height), if the feature’s
cardinality exceeds 100, we apply quantile-based
discretization to cast the cardinality to 100, and
then employ the LLMO to obfuscate each value.

A.2 Constraint Implementation Specifics
As inspired by prior works (Qu et al., 2021; Mai
et al., 2024), we also implement a relaxation of
our semantic constraint. Specifically, we initiate by
ranking all texts in an arbitrary order and proceed
to sequentially obfuscate each text using an obfus-
cation LLM. For each text, if it has no adjacent
texts, we directly assign the generated obfuscation.
Otherwise, we iterate through all its adjacent texts.
For each adjacent text that has been assigned an
obfuscation, we compute the BertScore similarity
between the newly generated obfuscation and the
obfuscation of the adjacent text. To ensure that
the semantic constraint is maintained, we check
whether the two obfuscations retain at least 1/ϵ of
the original similarity between their unobfuscated
counterparts. If the generated obfuscation satisfies
this constraint for all its adjacent texts that have
been obfuscated, we accept it and proceed to the
next text. However, if the constraint is violated for
any adjacent text, we waitlist the obfuscation and
generate a new candidate. This process is repeated
iteratively, up to a predefined number of attempts
(set to 10 by default). If no valid obfuscation is
found within the allowed attempts, we select the
obfuscation with the highest mean semantic simi-
larity across all its adjacent texts relative to other
failed candidates. For simplicity, we compute a
bidirectional BertScore to make it symmetric.

For the Post-Sampling Constraint implementa-
tion, we initiate by employing an obfuscation LLM
to generate the obfuscation for each text within a
task domain. Next, we construct a graph where
each text is represented as a node, and two nodes
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Age Work Class Education

User 1 👤🔄🔢➡ 🏢->🔒+💼 🎓➡📜=

User 2 🔢🔄🎂=0 👤-💼->🚀 🎓+📜(

 

Age Work Class Education

User 1 19 private HS-grad

User 2 75 Self-emp-not-inc Masters

Inference
LLM Yes

Obfuscation LLM 
Reusable Text

Obfuscated Text

Obfuscated Prompt Output

Given a user with Age: 👤🔄🔢➡,
Work Class: 🏢->🔒+💼, EducaLon: 
🎓➡📜=; will his income exceed 50k?

Figure 4: Illustration of EmojiPrompt for preserving user privacy on tabular data.

are connected if the corresponding texts are con-
sidered adjacent. We then proceed by repeatedly
finding the maximum clique in the graph. For each
clique found, we retrieve the obfuscations of all
texts within the clique and perform a post-sampling
on such obfuscations with a probability distribution
computed based on ϵ to obtain the final obfusca-
tion for each node (or text) within the clique, and
then remove all nodes within that clique from the
graph. This process continues until the size of the
maximum clique found is one.

A.3 Data and Metric Specifics
A.3.1 Dataset Description
The Amazon 7 datasets are collected from the Ama-
zon.com platform with user ratings and reviews on
products they have purchased on 29 categories of
products. In this paper, we concentrate on evaluat-
ing performance on the Beauty and Toy categories.

The Movie Reviews 8 dataset is an aggregation
of 50,000 movie reviews from the IMDB database.
These reviews, composed in natural language, are
evenly distributed across two sentiment classes,
with 25,000 reviews categorized as positive, and
the remaining 25,000 categorized as negative.

The Email Spam 9 dataset consists 5,695 email
messages covering a variety of topics, where each

7https://jmcauley.ucsd.edu/data/amazon/
8https://www.kaggle.com/

datasets/lakshmi25npathi/
imdb-dataset-of-50k-movie-reviews

9https://www.kaggle.com/datasets/jackksoncsie/
spam-email-dataset

message includes the body of the email along with
any associated subject lines or headers. Among
these messages, 1,368 are labeled as spam.

The Census Income 10 dataset originates from
the 1994 U.S. Census database. It encompasses
14 demographic attributes per record, providing
a comprehensive overview of individual census
respondents. The primary target variable in this
dataset is a binary indicator, signifying whether an
individual’s annual income exceeds $50,000.

The Heart Disease dataset 11 is originally from
the CDC, which conducts annual telephone surveys
to collect data on the health status of U.S. residents.
It contains 18 health-related attributes per sample,
with the primary target variable being whether an
individual has heart disease.

The Comprehensive Reading (Comp. Reading)
dataset 12 comprises 15,000 multiple-choice ques-
tions, balanced and annotated by question type
across four distinct domains: news, user stories, fic-
tion, and blogs. The questions are crafted to assess
the reader’s comprehension of the accompanying
text passages. Each question has four choices.

The Highlight Generation dataset 13 contains

10https://archive.ics.uci.edu/dataset/2/adult
11https://www.kaggle.com/datasets/kamilpytlak/

personal-key-indicators-of-heart-disease
12https://www.kaggle.com/

datasets/thedevastator/
introducing-quail-a-comprehensive-reading-compre?
resource=download

13https://huggingface.co/datasets/abisee/cnn_
dailymail
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Optimization AB (hit@10) AT (hit@10) MR (acc) ES (b-acc) CI (b-acc) HD (b-acc) CR (acc) HG (cos)
GPT-4 N/A 0.292 0.415 0.957 0.949 0.635 0.648 0.671 0.755
Llama + GPT-4 Manual 0.257 0.371 0.856 0.859 0.692 0.705 0.607 0.687
Llama + GPT-4 APE 0.261 0.376 0.867 0.851 0.699 0.701 0.611 0.691
Llama + GPT-4 OPRO 0.268 0.383 0.871 0.862 0.707 0.712 0.618 0.697

Table 7: Model Performance. For A+B, A is the obfuscation LLM and B is the inference LLM. GPT-4 refers to
inferencing with unobfuscated prompts.

unique news articles written by journalists at CNN
and the Daily Mail, where each article is accom-
panied by a highlight written by the article author.
The highlight has a mean token count of 56, while
the article has a mean token count of 781.

For non-English datasets, the Multilingual Spam
Detection data 14 consists 5,157 unique passages
in three languages, with 13% labeled as spam. The
Amazon Review Sentiment data 15 consists cus-
tomer reviews in various languages. The Article
Summarization data 16 is from the official daily
news, where each article is accompanied by a head-
line summarizing its content. For the Heart Attack
dataset, we employ an LLM to translate all feature
values from the Heart Disease dataset into Spanish.

A.3.2 Metrics Employed
For Amazon Beauty and Toy datasets, we use
Hit@k as the evaluation metric; it computes the
percentage of ranking lists that include at least one
positive item in the top-K highest ranked items (we
set K = 10, thus denoting it as hit@10). For the
Movie Review and Comp. Reading datasets, we
use accuracy as the evaluation metric, as the senti-
ment label and the question types are both balanced
(i.e., with 50% of reviews being positive, and the
rest being negative). For the Email Spam, Census
Income, and Heart Disease datasets, we employ
Balanced Accuracy as the evaluation metric, due to
the imbalanced nature of the target feature within
each dataset. To clarify, Balanced Accuracy is com-
puted as the average of the proportion of correctly
predicted instances in each class, thus ensuring a
fair assessment of model performance across both
majority and minority classes. For the Highlight
Generation dataset, we utilize Cosine Similarity as
metric to quantitatively assess the semantic congru-
ence between the target highlights (author gener-
ated) and those generated by the LLMI .

14https://www.kaggle.com/datasets/rajnathpatel/
multilingual-spam-data/data

15https://github.com/tyqiangz/
multilingual-sentiment-datasets/tree/main/data

16https://www.kaggle.com/datasets/noxmoon/
chinese-official-daily-news-since-2016

A.3.3 Data Processing for Modeling
To conduct experiments on the Amazon Beauty
and Toy datasets, we extract the complete purchase
history for each user and retain the 15 most recently
purchased items to assess the LLM’s performance
in sequential recommendation. Inspired by prior
works (Geng et al., 2022; Hua et al., 2023; Ji et al.,
2023a), we designate the most recently purchased
item as the ground truth or positive sample, with the
remaining 14 items as the user’s interaction history.
Given the finite context window size of the LLM,
we adhere to the evaluation methodology proposed
by (Geng et al., 2022; Liu et al., 2023) by randomly
selecting 99 items from the entire set of beauty/toy
products to serve as negative samples. These 100
sampled items collectively form a list of potential
candidates for the LLMI to rank on. Subsequently,
we submit both the user’s interaction history, in
obfuscated form, and the sampled candidate list
to the LLMI , then prompt it to generate a list of
top-K recommended items for the user, based on
the user’s interaction history (we set K = 10).

For the Movie Reviews dataset, we furnish the
LLMI with a user’s movie review in obfuscated
form and instruct it to produce a binary sentiment
classification (positive or negative) for the review,
devoid of any accompanying explanations. A sim-
ilar practice is applied to the Email Spam dataset,
where we prompt the LLMI with an obfuscated
email and request the model to determine whether
it is spam, also without additional explanations.

For the Census Income and Heart Disease
datasets, we provide the LLMI with obfuscated
versions of each individual’s attribute-value pairs.
We then prompt the model to make a binary deci-
sion by responding with either “yes” or “no”, with-
out further elaboration. Specifically, the LLMI is
asked to determine whether an individual’s annual
income exceeds $50,000 or whether the individual
has heart disease, respectively. Given that the Cen-
sus Income dataset was collected in 1994, we ex-
plicitly instruct the LLMI to determine whether the
individual’s income would have exceeded $50,000
in that year, in order to account for inflation.
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For the Comp. Reading dataset, we provide the
LLMI with the privatized passage, along with the
question statement as well as the four choices in
natural language form. Subsequently, we prompt
the LLMI to select the most appropriate choice that
answers the question based on its comprehension
of the obfuscated passage. Lastly, for the Highlight
Generation dataset, we provide the LLMI with the
privatized article and then prompt it to generate
a highlight for the article, while ensuring that the
token count of the LLM-generated highlight is less
than or equal to that of the target highlight.

A.3.4 Budget Information
For this work, we allocate a total of $1750 as we
perform a vast amount of evaluations, covering
both performance and simulated inference attacks.

A.4 Atomic Obfuscation Against Leakage

For the Trusted scenario, our atomic-level obfus-
cation helps to mitigate the risk of privacy leakage
from jailbreaking attacks. Even if attackers man-
age to obtain one or more queries from the LLM’s
platform through triggering prompts (as discussed
in Section 1), these queries remain largely unin-
terpretable because the user privacy is obfuscated.
To accurately recover user privacy, attackers must
acquire the complete set of text-obfuscation pairs
for all entities in the task domain. For instance,
recovering a user’s purchase history would require
recovering the representations of all product titles,
which could number in the millions. This require-
ment substantially increases the difficulty of the
attack compared to simply accessing a few queries.

For the Untrusted scenario, our atomic-level
obfuscation preserves user privacy from both the
obfuscation LLM and the inference LLM. For
the obfuscation LLM, we prompt it to obfuscate
each individual entity instead of the entire piece
of private text. For instance, on product recom-
mendation task, we prompt it to obfuscate each
individual product title instead of the entire user
purchase/interaction history. The rationale is that,
while a user’s purchase history is sensitive, the
individual products are not, as they are publicly
available on platforms for customers to browse.
Similarly, for review (or text in natural language in
general) obfuscations, the obfuscation LLM only
sees the highly segmented clauses instead of the
entire piece of text; such clauses can be merged in
numerous ways, rendering it ambiguous on the real
content of the text. Thus, even if the server host

and/or third-party probers obtain such information,
it would still be challenging for them to restore
the user privacy. For the inference LLM, we only
prompt it to perform task inferencing with user pri-
vacy in obfuscated form, so that even if the server
host and/or third-party obtain such information, it
would be difficult to interpret the user privacy, as
they are represented in non-natural language.

A.5 Baseline Specifics
For TokEmbPriv, we perturb the token embedding
by incorporating stochastic noise prior to uploading
to the server. This perturbation is implemented
by introducing random noise Z drawn from a d-
dimensional distribution characterized by p(N) ∝
exp(−η∥N∥). We set the privacy parameter η =
100 to balance utility and privacy, according to the
evaluations presented in the paper. We also employ
the text-to-text privatization (this post-processing
procedure does not affect privacy guarantees).

For InferDPT, it comprises two modules: (1) the
Perturbation Module, which generates a perturbed
text via ϵ-LDP by replacing each token in the text
with another from a predefined vocabulary, and (2)
the Extraction Module, a locally hosted LLM (less
capable than the inference LLM) that reconstructs
the noisy output from the cloud-based inference
LLM to better align with the original prompt.

We adhere to the methodology described in the
paper by employing RANTEXT as the differential
privacy mechanism, which, according to the paper,
offers superior perturbation performance compared
to existing state-of-the-art mechanisms. At its core,
InferDPT randomly selects replacement tokens that
are sufficiently close to the original token in the
embedding space, with probabilities exponentially
proportional to proximity. We replace Insw with
our task-specific instruction. We set ϵ = 10 to bal-
ance between utility and privacy, as demonstrated
by the synonym evaluation section of the paper.
As for the Extraction Module, we utilize Gemma
(2B) (Team et al., 2024) to refine open-text out-
puts from the inference LLM (i.e., outputs that are
not confined to a predefined set of tokens). For
Tabular datasets, we alter the sampling ranges for
numerical values to enhance performances.

For Split-N-Denoise, it also adopts dx-privacy
to perform LDP based token-level perturbations,
while introducing a novel trained local de-noising
LLM to denoise outputs generated by the infer-
ence LLM with perturbed inputs. This de-noising
LLM takes as input the raw user input embedding,
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AB (hit@10) AT (hit@10) MR (acc) ES (b-acc) CI (b-acc) HD (b-acc) CR (acc) HG (cos)
Gemini-1.5 0.263 0.379 0.955 0.951 0.641 0.653 0.662 0.759
Gemini-1.5 + Gemini-1.5 0.258 0.363 0.887 0.891 0.719 0.687 0.645 0.724
GPT-3.5 + Gemini-1.5 0.246 0.349 0.863 0.872 0.692 0.681 0.618 0.703
Llama + Gemini-1.5 0.243 0.338 0.857 0.859 0.704 0.695 0.611 0.689

Table 8: Model Performance. For A+B, A is the obfuscation LLM and B is the inference LLM. Gemini-1.5 refers
to inferencing with unobfuscated prompts. We employ OPRO for obfuscation prompt optimization.

AB (hit@10) AT (hit@10) MR (acc) ES (b-acc) CI (b-acc) HD (b-acc) CR (acc) HG (cos)
Claude-3.5 0.271 0.386 0.960 0.949 0.702 0.711 0.664 0.753
Claude-3.5 + Claude-3.5 0.262 0.381 0.891 0.884 0.719 0.725 0.639 0.715
GPT-3.5 + Claude-3.5 0.241 0.369 0.874 0.869 0.715 0.731 0.612 0.699
Llama + Claude-3.5 0.237 0.362 0.862 0.853 0.722 0.727 0.609 0.684

Table 9: Model Performance. For A+B, A is the obfuscation LLM and B is the inference LLM. Claude-3.5 refers
to inferencing with unobfuscated prompts. We employ OPRO for obfuscation prompt optimization.

the noise matrix, and the noisy embedding from
the cloud-based inference LLM. To train the de-
noising LLM in a privacy-preserving manner, a
public dataset similar to the modeling dataset is
needed. In this work, we utilize the validation set
reserved for prompt optimization to train the lo-
cal de-noising LLM. Since cloud-based inference
LLMs, such as GPT-4 Turbo, require text as in-
put, we adopt the text-to-text privatization method
from TokEmbPriv, mapping perturbed token em-
beddings to their nearest tokens in the embedding
space. We also map inference LLM outputs to their
embeddings to facilitate de-noising LLM training.

Lastly, we refer to the following GitHub reposito-
ries (while modifying code if needed) for executing
the baseline models: InferDPT is hosted at https:
//github.com/mengtong0110/InferDPT, while
TokEmbPriv and Split-N-Denoise are avail-
able at https://github.com/NusIoraPrivacy/
eaas-privacy/tree/master.

A.6 Prompt Optimization Specifics

We reserve 1,000 samples per dataset as validation
set for prompt search, with the remaining data used
for performance evaluation. Firstly, we manually
tune the obfuscation prompt for both “GPT-4 +
GPT-4” and “Gemini + GPT-4”. We then employ
APE and OPRO for automatic prompt optimization
on the obfuscation prompt for both model variants.
For both optimization algorithms, we use GPT-3.5
Turbo as the prompt generator to propose candi-
date obfuscation prompts based on a fixed, manu-
ally crafted meta-prompt. Also, we do not provide
input-output pairs in the meta-prompt, as there is
no universal ground-truth in how an entity should
be obfuscated into its non-linguistic form.

For APE, during the Monte Carlo search, 7 can-

didate prompts are generated per iteration. To en-
hance efficiency, we implement early-stopping dur-
ing the evaluation of each candidate prompt and
concluded the search after 6 iterations. Specifically,
for every 50 samples, we compare the average per-
formance of the current candidate prompt with that
of the best-performing prompt. If the current candi-
date prompt underperforms the best prompt for two
consecutive comparisons, we terminate its evalu-
ation and move on to the next candidate. If the
current prompt exceeds the performance of the
best-performing prompt for the entire validation
set, it will be updated as the new best-performing
prompt. Additionally, we introduce a slight modi-
fication to the standard algorithm: instead of con-
ducting a greedy approach that generates candidate
prompts for the next iteration solely based on the
best-performing prompt from the current iteration,
we generate candidate prompts for the subsequent
round from the top two performing prompts.

For OPRO, we adopt the original workflow pre-
sented in the paper, where for each newly generated
obfuscation prompt, we evaluate its performance
score on the validation set (with early-stopping),
and augment the prompt-score pair to the meta
prompt. We repeat this process for up to 40 iter-
ations, then employ the prompt with best perfor-
mance. Nevertheless, we observe that initiating
the search with a single obfuscation prompt may
lead to repeated generation of prompts that are se-
mantically similar to the first prompt in subsequent
rounds, thus resulting in only minimal differences
in performance. To resolve this, we introduce a
modification by requesting the prompt generator to
produce three distinct prompts and record their re-
spective performances on the validation set. These
three prompt-score pairs are then used to initiate
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the search process, promoting the generation of
more diverse prompts in subsequent rounds.

A.7 Additional Performance Results

In this section, we utilize two additional cloud-
based LLMs for task inferencing to evaluate
whether private data obfuscated via our paradigm
can be interpreted by LLMs other than GPT-4
Turbo. Specifically, we employ Gemini 1.5 Pro
(denoted as Gemini-1.5) and Claude 3.5 Sonnet
(Kurokawa et al., 2024) (denoted as Claude-3.5).
Aligning with Section 4, we use the same inference
LLM as the obfuscation LLM for the Trusted sce-
nario, while employing GPT-3.5 Turbo (denoted as
GPT-3.5) and Llama 3.1 (8B) (denoted as Llama) as
obfuscation LLMs for the Untrusted scenario. We
employ OPRO for obfuscation prompt optimiza-
tion, as it has achieve best overall performance
for both scenarios according to Section 4.2. As
demonstrated by Table 8 and Table 9, for both in-
ference LLMs, obfuscating user private data from
natural to non-natural language retains sufficient in-
formativeness for task inference by the same LLM,
as evidenced by the performance of “Gemini-1.5
+ Gemini-1.5” as well as “Claude-3.5 + Claude-
3.5”. Such approach is also extensible when using
different LLMs for obfuscation and inference, as
demonstrated by the performance of “GPT-3.5 +
Gemini-1.5”, “Llama + Gemini-1.5”, “GPT-3.5 +
Claude-3.5”, and “Llama + Claude-3.5”.

A.8 Inference Attack Details

A.8.1 LLM-based Attack

In this section, we adopt from prior works (Tong
et al., 2023; Mai et al., 2024) by proposing a sim-
ulated attack that leverages the LLMI to recover
obfuscated texts. We assume that the adversary sup-
plies the LLMI with details regarding the obfusca-
tion methodology. Specifically, for EmojiPrompt,
the LLMI is informed that the obfuscation involves
transforming natural language into a non-natural
form using LLMs. For all baselines, the LLMI
is made aware that token-level replacements are
performed, with candidate tokens chosen based on
their proximity within the embedding space. The
LLMI is subsequently tasked with reversing this
transformation to recover the original text from
its obfuscated representation. Furthermore, we as-
sume that the adversary provides the LLMI with
task-specific context, such as indicating that the
obfuscated text corresponds to a movie review.

While prior works employ the token-level re-
covery rate to assess obfuscation robustness, we
believe this approach may be an over-simplification.
For instance, even if a recoverer fails to accurately
recover the exact tokens in an obfuscated product
review, it may still produce synonymous tokens or
generate a recovered text that retains high semantic
similarity to the original content, thus leaking the
underlying meaning of the review.

To provide a more comprehensive evaluation
against this attack, we employ both semantic and
token-level metrics to assess the degree of seman-
tic similarity and lexical overlapping between the
LLM-recovered text and the original text. For se-
mantic similarity, we compute the Cosine Similar-
ity score between the original and recovered texts,
employing the “text-embedding-3-small” model
from OpenAI for embedding vector generations,
with the embedding dimension set to 200 to miti-
gate the curse of dimensionality following a prior
work (Lin et al., 2024a). A higher similarity score
would suggest lower obfuscation performance, in-
dicating that the LLMI can decode an obfuscated
text to be more semantically similar to the original.
Additionally, for token-level metrics, we compute
both ROUGE (1, 2, and L) and METEOR scores
between the original and recovered texts, taking
into account identical tokens, synonyms, and para-
phrases in the overlap. Similar to Cosine Similarity,
a higher lexical overlapping would indicate that the
obfuscation mechanism is less effective.

We now proceed to specify how the evaluation is
conducted. For reusable text, we employ the Ama-
zon Beauty and Census Income datasets, while for
non-reusable text, we utilize the Movie Review and
Comp. Reading datasets. On the Amazon Beauty
dataset, we present the title of each beauty product
in its obfuscated form to the LLMI , prompting the
model to infer the original title of the beauty prod-
uct based on its obfuscated representation. We then
compute the Cosine Similarity as well as ROUGE
and METEOR scores between the original product
title and the inferred product title. Similarly, for the
Census Income dataset, we instruct the LLMI to re-
cover each obfuscated feature value, providing the
feature name as context, and then compute the Co-
sine Similarity as well as ROUGE and METEOR
scores between the original and recovered feature
values. As for movie reviews and articles (from
Comp. Reading), we direct the LLMI to recover
each obfuscated review (or article) back to its nat-
ural language form, and then compute the Cosine
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Amazon Beauty Movie Review Census Income Comp. Reading

CosSim

Gemini + GPT-4 0.531 0.607 0.467 0.641
SnD + GPT-4 0.609 0.641 0.518 0.673
InferDPT + GPT-4 0.617 0.635 0.525 0.682
TEP + GPT-4 0.622 0.657 0.534 0.694

Rouge-1

Gemini + GPT-4 0.211 0.183 0.205 0.228
SnD + GPT-4 0.207 0.187 0.199 0.221
InferDPT + GPT-4 0.205 0.193 0.187 0.219
TEP + GPT-4 0.214 0.179 0.201 0.223

Rouge-2

Gemini + GPT-4 0.061 0.035 0.039 0.047
SnD + GPT-4 0.058 0.037 0.043 0.051
InferDPT + GPT-4 0.054 0.031 0.045 0.039
TEP + GPT-4 0.063 0.042 0.036 0.045

Rouge-L

Gemini + GPT-4 0.207 0.171 0.198 0.215
SnD + GPT-4 0.201 0.165 0.187 0.209
InferDPT + GPT-4 0.198 0.179 0.191 0.212
TEP + GPT-4 0.203 0.163 0.195 0.218

METEOR

Gemini + GPT-4 0.183 0.152 0.178 0.191
SnD + GPT-4 0.219 0.193 0.199 0.238
InferDPT + GPT-4 0.228 0.189 0.202 0.241
TEP + GPT-4 0.231 0.196 0.207 0.247

Table 10: Recovering Robustness on LLM-based Attacks across 5 Metrics. For A+B, A is the obfuscation method,
and B is the inference LLM. SnD, InferDPT, and TEP are the obfuscation methods used as baselines. Any output
more than 1% lower than the best performance among the baseline models (lower is better) is highlighted in bold.

Similarity as well as ROUGE and METEOR scores
between the original and the recovered review. For
each dataset, we compute the mean scores among
all entities on each metric. All scores for the Emo-
jiPrompt and the baselines are shown in Table 10.

In addition to benchmarking our EmojiPrompt
against the 3 baseline models, we introduce a hypo-
thetical baseline, referred to as “Random Entities”,
to enable a more comprehensive evaluation of ob-
fuscation robustness. To establish this baseline, we
randomly sample a subset of N entities (we set
N = 5) from the same dataset for each entity. We
then compute the mean Cosine Similarity, ROUGE
(1, 2, and L), and METEOR scores between the
entity and each of the random entities. For exam-
ple, in the Movie Review dataset, we randomly
sample five reviews for each original review, calcu-
late the Cosine Similarity, ROUGE, and METEOR
scores between the original review and each of the
five selected reviews. We then compute the mean
score of the five scores across all three metrics.
This procedure is repeated for all reviews in the
dataset to obtain the overall mean scores for the
three metrics. The same methodology is applied to
all entities in the Amazon Beauty, Census Income,
and Comp. Reading datasets to compute their re-
spective overall mean scores. All scores for the
“Random Entities” baseline are shown in Table 11.

Such scores serve as a strong baseline for obfus-
cation performance, because if the semantic simi-
larity (and degree of lexical overlapping) of a recov-
ered review falls below this baseline, it indicates

that the recovering LLM generates a less relevant
output compared to a set of randomly selected texts,
demonstrating very effective obfuscation.

As Table 10 showcases, when compared to the
baselines, EmojiPrompt demonstrates similar ro-
bustness in lexical overlap, as evidenced by the
ROUGE scores, while outperforming them in both
synonym overlap and overall semantic similarity,
as indicated by the METEOR and Cosine Similar-
ity scores. While the scores are higher than those
for “Random Entities” (as shown in Table 11), this
is acknowledged, as the goal of the obfuscation is
not to render the text entirely random but to obscure
it while preserving essential information.

A.8.2 Human-based Attack

In addition to utilizing an advanced LLM for infer-
ence attacks, we propose two human-based attacks
on EmojiPrompt. All participants are independent
of this study and were explicitly informed that their
data would be used exclusively for experimental
purposes within the scope of this research.

Item Identification: on the Amazon Beauty
dataset, we randomly sample 300 item-obfuscation
pairs, for each item in the pair, we pass a 500-item
list (randomly sampled, with the item included)
and the item obfuscation to all recoverers, asking
them to identify the item from the list based on its
obfuscation. We report the percentage of correctly
identified items for each recoverer.

Review Recovery: on the Movie Review dataset,
we randomly sample 300 review-obfuscation pairs,
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Amazon Beauty Movie Review Census Income Comp. Reading

CosSim Gemini + GPT-4 0.531 0.607 0.467 0.641
Random Entities 0.307 0.411 0.295 0.392

Rouge-1 Gemini + GPT-4 0.211 0.183 0.205 0.228
Random Entities 0.173 0.168 0.161 0.155

Rouge-2 Gemini + GPT-4 0.061 0.035 0.039 0.047
Random Entities 0.049 0.019 0.021 0.017

Rouge-L Gemini + GPT-4 0.207 0.171 0.198 0.215
Random Entities 0.167 0.152 0.147 0.149

METEOR Gemini + GPT-4 0.183 0.152 0.178 0.191
Random Entities 0.159 0.143 0.139 0.141

Table 11: Recovering Robustness on LLM-based Attack benchmarked against Random Entities. Random Entities
involves replacing private entities in each dataset with randomly selected entities from the same dataset.

for each sampled review, we provide all recoverers
with its obfuscation, asking them to recover the
original review. We then report the mean Cosine
Similarity, ROUGE (1, 2, and L), and METEOR
scores between each human recoverer and their
corresponding original reviews.

For the Item Identification test, five human re-
coverers completed the task, correctly identifying
31, 28, 24, 17, and 21 items, respectively. This
results in a mean identification rate of 8.07%. It is
important to note that while the item identification
test employs a list of 500 items (including the tar-
get item) for evaluators to identify the correct item
based on its obfuscation, this is already a simpli-
fied evaluation. In the domain of beauty products,
there are tens of thousands of items available on
major online platforms, assuming web scraping
is performed, which is substantially larger than
the 499 negative samples from our test. Despite
this simplification, our obfuscation mechanism still
demonstrates solid performance.

For the Review Recovery test, three human re-
coverers completed the task. Again, we employ
the “text-embedding-3-small” model for embed-
ding generation, with embedding vector dimension
set to 200. The resulting mean similarity scores
for the recoverers were: 0.556, 0.493, and 0.587,
respectively. For ROUGE and METEOR, we re-
port the F1 score, as it represents the harmonic
mean between precision and recall. The scores for
all recoverers are presented in Table 12. Overall,
the performance of the human recoverers generally
aligns with that of the LLMI , further underscoring
the effectiveness of the obfuscation. We choose not
to have the human recoverers identify the correct
review from a list of candidate reviews, as we did
in the Item Identification test, due to the nature of
the data. In e-commerce, items are generally ac-
cessible information from popular online platforms

ROUGE-1 ROUGE-2 ROUGE-L METEOR
Recoverer 1 0.189 0.029 0.169 0.167
Recoverer 2 0.178 0.025 0.153 0.161
Recoverer 3 0.191 0.031 0.178 0.181

Table 12: Human-based Attack for Gemini + GPT-4 on
Review Recovery

and may be scrapped, whereas individual customer
reviews are not publicly accessible unless released
by the company or the individuals themselves.

A.8.3 Distribution-based Attack
Furthermore, we propose a hypothetical attack
aimed at tabular datasets, where the adversary tar-
gets a dataset used for a specific inference task,
such as heart disease classification. Knowing the
task, the adversary collects related public datasets
via web scraping, which contain similar features to
the target dataset. This allows them to analyze the
value distributions for overlapping features.

The adversary then examines the distribution
of each value in the public datasets for features
that overlap with the obfuscated features in the
target dataset. Despite not being able to directly
recover the obfuscated feature values, the adversary
uses the distribution information to make educated
guesses about the obfuscated data. For example, if
a public dataset shows that 70% of entries for the
feature “Gender” are “Male”, and the obfuscated
dataset has a value comprising 67% of the entries
for the same feature, then the adversary may infer
that this obfuscated value corresponds to “Male”.

By matching these distributions, the adversary
effectively maps the obfuscated values to their ac-
tual values. This technique bypasses the obfusca-
tion by leveraging statistical patterns rather than
attempting to recover the obfuscated text directly.

To protect tabular datasets against distributional
inference attacks, we propose a novel generative
obfuscation mechanism with post-sampling. This
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approach involves generating multiple obfuscated
representations for each feature value instead of
mapping each value to a single obfuscation.

Consider an example with a feature that has two
possible values, A and B, where A accounts for
40% of the dataset instances and B accounts for
60%. Instead of generating a single obfuscated
representation for A, we prompt LLMO to produce
four distinct and substantially different obfusca-
tions: A1, A2, A3, and A4. Likewise, for B, we
prompt LLMO to generate three distinct and sub-
stantially different obfuscations: B1, B2, and B3.
During the inference stage, one of the obfuscated
representations is randomly sampled for each in-
stance of the feature value. Consequently, for fea-
ture value A, the obfuscated representations A1,
A2, A3, and A4 will each appear in approximately
10% of instances, while for feature value B, the ob-
fuscated representations B1, B2, and B3 will each
appear in approximately 20% of instances.

This method offers two key benefits. (1) by de-
coupling the obfuscated values from their original
distribution, this mechanism prevents adversaries
from accurately deducing the original feature val-
ues through distributional analysis. (2) the variabil-
ity in obfuscated representations allows multiple
combinations of obfuscated values to collectively
approximate the original distribution proportions
of 40% for A and 60% for B. For instance, the
combination of A1, A2, and B1 could collectively
account for 40% of the dataset instances. This
variability makes it challenging for adversaries to
ascertain which obfuscated representations corre-
spond to specific feature values, thus obscuring
discernible patterns and enhancing data security.

To assess whether our multi-obfuscation method
retains task performance, we employ both Census
Income and Heart Disease datasets to perform an
ablation study against single obfuscated represen-
tation, with Gemini as LLMO and GPT-4 Turbo as
LLMI . For each categorical feature, we randomly
sample two to four unique obfuscated representa-
tions for each value of the feature. To ensure that
the obfuscated representations are sufficiently dif-
ferent, we repeat the generation process until each
obfuscated representation has a Cosine Similarity
of 0.5 or less with all other representations. The
balanced accuracies of multi-obfuscation versus
single-obfuscation are: 0.657 vs. 0.674 (for Census
Income) and 0.691 vs. 0.689 (for Heart Disease).
These figures demonstrate that our method retains
performance for tabular modeling.
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