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Abstract

Smart word substitution aims to enhance sen-
tence quality by improving word choices; how-
ever current benchmarks rely on human-labeled
data. Since word choices are inherently sub-
jective, ground-truth word substitutions gener-
ated by a small group of annotators are often
incomplete and likely not generalizable. To cir-
cumvent this issue, we instead employ a model-
based score (BARTScore) to quantify sentence
quality, thus forgoing the need for human an-
notations. Specifically, we use this score to
define a distribution for each word substitu-
tion, allowing one to test whether a substitution
is statistically superior relative to others. In
addition, we propose a loss function that di-
rectly optimizes the alignment between model
predictions and sentence scores, while also en-
hancing the overall quality score of a substi-
tution. Crucially, model learning no longer
requires human labels, thus avoiding the cost
of annotation while maintaining the quality of
the text modified with substitutions. Experi-
mental results show that the proposed approach
outperforms both masked language models
(BERT, BART) and large language models
(GPT-4, LLaMA). The source code is available
at https://github.com/Hyfred/Substitute-Words-
with-Ranking.

1 Introduction

In the current era of AI-driven technologies, the
generation of natural language by machines has be-
come a critical area of research within the field of
natural language processing (NLP). The advent of
advanced language models such as GPT (Ouyang
et al., 2022) and LLaMA (Touvron et al., 2023a,b;
Dubey et al., 2024) has brought about unprece-
dented improvements in generating coherent, con-
textually accurate text across a wide range of appli-
cations, including machine translation, summariza-
tion, and conversational agents. These models are
revolutionizing industries by enabling machines to

produce human-like text at scale, greatly expand-
ing the possibilities for automation and interaction
in both professional and creative domains.

As language generation capabilities improve, the
need to refine and control the output of these mod-
els becomes more pressing. One key area in this
direction is smart word suggestion (SWS) defined
by Wang et al. (2023) as a task that focuses on en-
hancing writing by improving two aspects of NLP:
identifying words (or tokens more generally) that if
replaced can improve sentence quality, and suggest-
ing alternatives for such words. Complementarily,
Wang et al. (2023) introduced a dataset to bench-
mark models built for SWS. This task is essential in
applications such as paraphrasing, machine transla-
tion, and writing assistance, where accurate word
choice directly impacts the clarity and quality of
the generated text. Despite the progress in full-
text generation, word substitution presents unique
challenges in maintaining grammatical correctness,
contextual appropriateness, and semantic fidelity.

Previous SWS work can be divided into task-
specific models and prompt-based methods. Task-
specific models are trained directly to address the
SWS task. One approach adapts models for lexi-
cal substitution (LS) (McCarthy and Navigli, 2007;
Kremer et al., 2014), allowing them to generate
substitutions for each word in a sentence. If the
substitution differs from the original word, it is rec-
ognized and recorded as such. BERT-based (Zhou
et al., 2019) and the LexSubCon (Michalopoulos
et al., 2021) models were first explored in Wang
et al. (2023). They also fine-tuned pretrained mod-
els like BERT (Devlin, 2018) and BART (Lewis,
2019), allowing them to handle SWS end-to-end.
Importantly, these models were fine-tuned using
supervised learning to provide suggestions for
Wikipedia text using ground-truth substitutions ob-
tained from a list of synonyms gathered from a the-
saurus. Orthogonal to these machine learning tech-
niques, rule-based methods that rely on paraphras-
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ing databases (e.g., PPDB (Pavlick et al., 2015)) or
a thesaurus (e.g., the Merriam-Webster thesaurus)
have also been explored (Wang et al., 2023).

Alternatively, prompt-based techniques leverag-
ing large language models (LLMs), such as GPT
(Ouyang et al., 2022), have gained popularity in
SWS. Provided that research in language genera-
tion has shifted from narrow tasks like substitution
to generating coherent, contextually rich text, tasks
such as SWS have become less of a priority. How-
ever, in general it is still key to enhance sentence
quality, as precise word choices can significantly
impact clarity, tone, and overall effectiveness in
communication. Moreover, the success of these
methods is highly dependent on prompt design.

From a different perspective, benchmarks for
SWS predominantly rely on human-labeled data
for both training and evaluating model performance.
However, only a small group of annotators are re-
cruited for data labeling, which can lead to a lack
of diversity. For instance, in the SWS test dataset
(Wang et al., 2023), 12,883 suggestions for target
words are available of which 7,827 (60.8%) were
created by a single annotator, only 1632 (12.67%)
of suggestions were created by at least three anno-
tators, and merely 633 (4.91%) of suggestions were
created by more than three annotators. While scal-
ing up the number of annotators could potentially
mitigate this issue, it significantly increases the
costs of generating the annotations. In the context
of substitution tasks, a large number of annotators
is necessary to obtain a comprehensive representa-
tion of the substitution space, as evaluating them re-
quires a diverse sample of high-quality alternatives.
As a result, validation sets in such benchmarks may
not fully capture model performance. Conversely,
recent research has shown that model-based evalu-
ation metrics align closely with human judgments
(Lu et al., 2022; Yuan et al., 2021; He et al., 2024),
offering a viable alternative to alleviate the draw-
backs of human evaluations.

To address these challenges, we propose an ap-
proach that eliminates the dependency on human-
labeled data. Our contributions are listed below:
• We identified a gap in the evaluation methods

for substitution models, which rely on human an-
notators. We propose a model-based evaluation
strategy based on the BARTScore to assess SWS
models without human annotations.

• We introduce an approach for generating and
ranking token substitutions. Our method opti-
mizes both the quality of the substitutions, via

the model-based score, and the ranking of the
substitutions relative to such a score. To the best
of our knowledge, this is the first time SWS has
been tackled by jointly optimizing the associa-
tion between predictions and quality scores.

• We redefined the substitution task by forgoing
the need for supervised learning relying on hu-
man annotations. Thus, our method eliminates
the need for costly human-labeled data while
maintaining high performance in SWS tasks.

• Our experimental results demonstrate that the
proposed approach outperforms both masked lan-
guage models (BERT, BART) and LLMs (GPT-4,
LLaMA) in the SWS task.

2 Related Work

Enhancing word usage is a key feature of writing
assistance. The SWS task in Wang et al. (2023)
addresses it by emulating a real-world end-to-end
writing scenario. Unlike traditional LS tasks (Mc-
Carthy and Navigli, 2007; Kremer et al., 2014),
SWS requires systems to identify words that, if
replaced, can improve sentence quality and suggest
alternatives for such words. In the LS task, how-
ever, the word to be replaced is predefined and the
model is only tasked with finding suitable substi-
tutions without altering the overall meaning of the
sentence. Further, in LS substitutions are typically
lemmatized to match ground-truth labels, but in
SWS they must be in the correct grammatical form.

Zhou et al. (2019) proposed a LS method us-
ing contextual word embeddings, modifying BERT
with a dropout embedding policy to partially mask
target words and introduced a validation score
based on the top four layers of BERT for candidate
evaluation. Michalopoulos et al. (2021) integrated
external knowledge from WordNet into BERT for
LS, combining scores from BERT, WordNet gloss
similarity, and sentence embeddings, along with
the validation score from Zhou et al. (2019), to gen-
erate substitutes. ParaLS (Qiang et al., 2023) gen-
erated substitutes through a paraphrasing model,
using a heuristics-based decoding strategy.

To adapt the substitution capabilities from LS to
the SWS task, Wang et al. (2023) used an approach
that allowed models to generate substitutions for
each word. If the substitution differs from the orig-
inal word, it is recognized as the word the model
wants to improve and recorded as a suggestion. Fur-
ther, they fine-tuned pretrained models like BERT
(Devlin, 2018) and BART (Lewis, 2019) to address
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the task in an end-to-end manner, and as an alterna-
tive to machine learning, rule-based methods using
dictionaries (thesaurus) were also explored.

Recently, prompt-based methods have emerged
as a powerful alternative for SWS (Wang et al.,
2023), by leveraging the capabilities of LLMs such
as GPT (Ouyang et al., 2022). These approaches
shift the focus from traditional model fine-tuning to
designing prompts that guide the model to produce
desired outcomes. While this flexibility allows for
easier adaptation to various tasks, the effective-
ness of the method heavily relies on the prompt’s
structure. Despite the growing interest in generat-
ing fluent, contextually cohesive text with LLMs,
prompt-based methods often overlook the impor-
tance of improving specific word choices. In con-
texts where sentence clarity and precision are key,
refining word choices remains an important task
that prompt-based approaches need to address.

Compared to traditional methods that rely heav-
ily on human involvement, e.g., via manual anno-
tations, in our work, we utilize model-based sen-
tence scoring, specifically, BARTScore to quantify
the quality of sentences, thereby eliminating the
human-associated costs. We align the model’s out-
put with the scores through a ranking loss, ensur-
ing that substitutions with higher scores are more
likely to be generated by the model, resulting in
higher-quality substitutions. This approach forgoes
the need for human-dependent supervised training,
thus without the need for human intervention.

3 Methodology

In SWS, achieving a representative sample of high-
quality alternatives requires a broad pool of anno-
tators, as diverse substitution options are essential
for accurate evaluation. However, relying solely on
human annotators is thus not only costly but also
inefficient. Below we introduce a method to train
and evaluate token substitution models that does
not require human annotations, by instead solely
relying on model-based scoring functions.

Problem Definition Let X denote a sentence
composed of N tokens, i.e., X = (x1, . . . , xN ).
We aim to find a collection of K potential substi-
tutes {w̃k}Kk=1 for token xn, while estimating their
likelihood given the sentence (i.e., its context) as
pθ(xn = w̃k|X), where X is the original sentence
and pθ(·) is a model for the conditional likelihood
for token xn parameterized by θ. Note that tech-
nically, if pθ(·) is a masked language model we

should write pθ(xn = w̃k|X\xn
), where X\xn

indi-
cates that xn has been masked out in X , and alterna-
tively, if we use an (autoregressive) language model
we should write pθ(xn = w̃k|x<n, Z), where x<n

is the portion of the original sentence up to to-
ken n − 1 and Z is a prompt. However, we use
pθ(xn = w̃k|X) in the following for notational
simplicity. Based on these likelihood estimates,
the token substitution rule is set as xn ← w̃k if
pθ(xn = w̃k|X) > pθ(xn = wn|X), where wn

is the original value of xn. Moreover, if multi-
ple replacement candidates satisfy the substitution
rule, we select w̃k according to argmaxk pθ(xn =
w̃k|X), and alternatively, if none satisfy it, we
leave the token unchanged, i.e., xn ← wn.

Importantly, pθ(xn = w̃k|X) reflects the likeli-
hood of token w̃k given its context X , rather than
the quality of the sentence. So motivated, we also
seek to align such estimates with a score M(xn =
w̃k|X) quantifying the quality of sentence X with
xn substituted with w̃k. For simplicity, in the fol-
lowing we denote the sentence X with xn replaced
with the k-th candidate, w̃k, as X̃k = (x̃1, . . . , x̃N ).
Further, to make our objective scalable and general,
the score M(xn = w̃k|X) ought not be obtained
via human feedback, but via a black-box model
with which we can score sentences, but through
which we cannot learn, i.e., gradients cannot be
propagated through it to obtain learning signals.

Below we start by showing how we can use a
model-based score to statistically characterize the
suitability of a candidate as an alternative to the
substitution rule introduced above, and then present
an approach to estimate P (xn = w̃k|X) while
accounting for scores M(xn = w̃k|X).

3.1 Statistic for Model-based Scores
Model-based Score Using automated scoring
methods to quantify text generation quality without
relying on human annotators can reduce costs asso-
ciated with human labeling. Model-based scoring
approaches such as BLEURT (Sellam et al., 2020),
BERTScore (Zhang et al., 2019), GPTScore (Fu
et al., 2023), and BARTScore (Yuan et al., 2021),
have proven to be effective while closely aligning
with human evaluation results. BARTScore is one
of the most popular metrics for the evaluation of
text generation. It has been shown that BARTScore
outperforms other metrics such as BERTScore and
BLEURT (Yuan et al., 2021), while also being
more efficient than GPTScore. Further, it has been
used also as a ranking tool for substitution tasks,
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achieving good results (Qiang et al., 2023).
The BARTScore is a metric for universal nat-

ural language generation evaluation (Yuan et al.,
2021). It leverages the conditional likelihood from
a pre-trained BART model (Lewis, 2019) to assess
the quality of generated text. Since BART is an
autoregressive model, the log-likelihood of tokens
in a sentence is obtained one at a time conditioned
on tokens before it. Specifically, we write

M(X̃k) =
∑N

n=1 log pθ̂ (x̃n | x̃<n, X) , (1)

where θ̂ represents the parameters of a pre-trained
model (in this case, BART1), x̃n is the n-th token
of the modified sentence X̃k which we wish to
score, x̃<n represents the first n− 1 tokens of X̃k,
and X is the original (unmodified) sentence. In (1),
the BARTScore M(xn = w̃k|X) has been simpli-
fied for notational convenience to M(X̃k), i.e., the
score of modified sentence X̃k in which a token has
been replaced with the k-th candidate from poten-
tial substitutes {w̃k}Kk=1. For now, we assume that
such candidates are readily available, however, in
the next section we will propose a learning strategy
to train a model to generate substitutes given X .

Model-based Score Statistic One potential issue
with model-based scores including the BARTScore
in (1) is that there is no clear standard to determine
what score (or score range) qualifies as “good”. It
is clear that though scores can be used for pairwise
or aggregate comparisons, the magnitude of the
difference between two scores is not meaningful
without a reference score distribution.

This underscores that numerical scores alone are
insufficient to fully capture the significance of a
score difference. Inspired by statistical hypothe-
sis testing (Moore, 1999), we propose constructing
a reference (null) distribution of M(X̃k) by sam-
pling a collection of substitutes for a given token
and then calculating their model-based score. By
determining where M(X̃k) lies within this empir-
ical distribution, we can more reliably assess the
quality of a substitute. Since sampling candidates
uniformly at random from a natural language vo-
cabulary or from empirical token frequencies will
be hugely inefficient, instead we use a model to
generate substitute candidates. In this manner, we
can evaluate the relative quality of the generated
substitutes compared to other candidates from the

1We use BARTScore (ParaBank2 version) without incor-
porating any prompts.

model’s own distribution. This constitutes a prin-
cipled framework for assessing the quality of a
model in generating token substitutes. Next, we
introduce a hypothesis test to estimate a p-value for
the significance of a candidate substitute relative to
a reference (empirical) substitute distribution.

Given a model we wish to evaluate, let {w̃k}Ks
k=1

be a set of Ks candidates for sentence X at a given
position produced by such model, e.g., a masked
language model like BERT (Devlin, 2018). Note
that in general, Ks is a number much larger than
the size of potential substitutes K described before.
We can evaluate the quality of, for instance, the
top candidate w1 (assuming they are ordered) as
the proportion of times it produces a score that is
larger than using all other candidates, {w̃k}Ks

k=2.
This frequency or p-value is formally written as

pX̃1
=

1

Ks − 1

∑Ks
k=2 I[M(X̃k) > M(X̃1)] , (2)

where I[·] is the indicator function and the
{wk}Ks

k=1 producing modified sentences {X̃k}Ks
k=1

are obtained from a model pθ(xn = w̃k|X), which
defines the reference distribution. In standard hy-
pothesis testing fashion, we reject the hypothesis
that candidate w1 has the same expected score as
the reference distribution if pX̃1

< α, for a signif-
icance level α, which we set to α = 0.01 in our
experiments. Since calculating model-based scores
such as BARTScore is computationally expensive,
we trade-off statistical accuracy with computational
efficiency and let Ks = 1000 in the experiments.

3.2 Preference-Aware Learning
Now that we have constructed a statistic based
on model-based scores, in principle, we seek to
train a model such that for each token xn, the re-
sulting pX̃k

from (2) for a given substitute can-
didate wk producing X̃k is as small as possible.
According to (2), it is desirable for M(X̃1) to be
larger than M(X̃k̂) for {wk}Kk=1 candidates sam-
pled from model pθ(xn|X). This means that ef-
fectively we require the model being such that its
outputs align, in likelihood, with the model-based
score, BARTScore here. Consequently, it is desir-
able to learn parameters θ so pθ(xn = wk|X) is
ranked consistent to M(X̃k), which in turn will
make pX̃k

→ 0 in (2) for k → 1. Below we con-
sider two approaches to accomplish this: margin
ranking (Liu et al., 2023b; Chern et al., 2023; Liu
et al., 2022) and direct preference optimization
(DPO) loss (Rafailov et al., 2024).
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Ranking Optimization Ranking has been used
as an optimization objective in many tasks includ-
ing text summarization (Chern et al., 2023; Liu
et al., 2022). Maximum likelihood estimation
based on the standard cross-entropy loss can be
effective at satisfying (2) by setting it as a clas-
sification problem by defining a vector of labels
y where yk = 1 if M(X̃k) is maximum among
{M(X̃k)}Kk=1 or yk = 0 otherwise. However,
it does not take into account the ordering of the
model-based scores or their magnitude differences.
So motivated, we consider the following margin
ranking (MR) loss (Liu et al., 2023b; Chern et al.,
2023; Liu et al., 2022)

LMR =
∑K

k

∑K
j>k max(0, sj − sk + λjk) , (3)

where {sk}Kk=1 are the logits from model pθ(xn =
wk|X), i.e., before applying the softmax function,
and we have sorted them such that sk > sj if
M(X̃k) > M(X̃j) for i, j = 1, . . . ,K. Further,
we set the margin λjk = λ × (j − k) for some
hyperparameter λ, which in the experiments is
set via cross-validation. Intuitively, (3) encour-
ages the model to make predictions whose outputs
{pθ(xn = wk|X\xn

)}Kk=1 are consistent in order
with {M(X̃k)}Kk=1, by penalizing pairwise order
mismatches, while also enforcing predictions to be
distanced by a fixed margin to improve robustness.
The latter is justified by extensive results from the
margin learning literature (Smola, 2000).

Improving Model-based Scores One unin-
tended consequence of the loss function in (3) is
that though it encourages model predictions to be
aligned with model-based scores, it does so regard-
less of their values. This is so because only the
order of {M(X̃k)}Kk=1 is considered in (3). In prac-
tice, we have observed that (3) effectively improves
the ranking of predictions from the model, but it
does so at the expense of producing predictions
that have, on average, lower model-based scores
relative to a reference model, e.g., the pre-trained
model used as initialization for the refinement of
{pθ(xn = wk|X)}Kk=1. To address this issue, we
consider two approaches, one that seeks to improve
the weighted average of model-based scores and
another that maximizes the model-based score of
the top prediction from the model relative to that
of the reference model. Specifically, we write

LAS = −∑K
k h(sk)M(X̃k) , (4)

LBS = max(0, (M(X)−M(X̃1))f (s1)) , (5)

where h(·) is the softmax function, sk is the logit
corresponding to pθ(xn = wk|X), and M(X) and
M(X̃k) are the model-based scores of the original
and modified sentence, respectively. Recall that
for M(X̃1), the token of interest xn in X has been
modified to the top prediction w1 from the model.
Conceptually, LAS in (4) seeks to maximize the
(weighted) average of model-based scores from K
predictions, while LBS aims to improve the model-
based score of the top prediction with respect to
that of a reference model.

We then combine the margin ranking loss in (3)
with the score-improving losses in (4) or (5) as

LMR+AS = LMR + γLAS , (6)

LMR+BS = LMR + γLBS , (7)

where γ is a hyperparameter trading off ranking
or model-based score improvement. In the exper-
iments we will compare these two approaches to
determine empirically whether is better to attempt
to improve the scores of K predictions from the
model as opposed to improving the score of one
of the predictions from the model (the most likely)
relative to a baseline prediction obtained from a
reference model. Note that is tempting to use (5)
with all predictions, not just the first one, however,
we found empirically that it considerably increases
the computational cost without significant perfor-
mance gains. The cost overhead is caused mainly
by the need to evaluate the model-based score K
times rather than just 2 in (5).

Direct Preference Optimization Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024) is
an efficient technique for aligning large language
models with human feedback, which gained pop-
ularity due to its simplicity (Miao et al., 2024).
For instance, it has demonstrated to be effective
in chat benchmarks (Tunstall et al., 2023; Zheng
et al., 2023). In our case, the model-based score
serves as proxy for human feedback DPO (under
the Plackett-Luce model) and is formally expressed
as

LDPO = −E
[
log

∏K
k=1

exp(δrk)∑K
j=k exp(δrj)

]
, (8)

where rk = log pθ(X̃k)− log pθ̂(X̃k), the expecta-
tion is over {X̃1, . . . , X̃K , X}, and θ and θ̂ denote
the parameters of the model being trained and that
used for reference, respectively. Accordingly, only
θ are updated while learning while θ̂ are kept fixed.
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Since the magnitude of the logits drops signif-
icantly as k → K, we found that the sum in the
denominator of (8) weakens the loss. Therefore,
we removed the sum and instead compared the k-th
and the (k+1)-th substitution, rather than compar-
ing it with all K values. Further, we approximate
log pθ(X̃k) with its logit sk, and let δ = 1 for con-
venience. Then (8) simplifies (for a single token in
sentence X) to

LDPO* = −∑K−1
k=1 (sk − ŝk − sk+1 + ŝk+1) , (9)

where sk and ŝk denote the logit of the k-th substi-
tution from the model being trained and the refer-
ence model, respectively.

We also extend DPO (under the Bradley-Terry
model) (Rafailov et al., 2024) to multiple substitute
candidates, where each candidate is compared with
the next in the ordered list of substitute candidates.
We write (for a single token in sentence X)

LσDPO* = (10)

−∑K−1
k=1 log σ (sk − ŝk − sk+1 + ŝk+1) ,

from which we see that the only difference between
(10) and (9) is that the comparison of logit values in
the former is scaled with the log-logistic function.
See Appendix A for a derivation of both losses.

4 Experiments

Below we illustrate the problem with evaluating
with human annotations, then we present an abla-
tion study comparing the optimization approaches
in Section 3.2 and a benchmark comparing the
proposed model to MLM and LLM approaches
in terms of model-based score alignment, average
score and the statistic in (2). Further, we explore
the performance of top-2 predictions, i.e., when
the top prediction is the original token, and results
comparing LLMs with and without prompts en-
couraging token substitutes to be ranked by quality.

Datasets We consider four datasets. The SWS
dataset by Wang et al. (2023) consists of three
sets, validation and test labeled by human annota-
tors, and an artificially generated training set. The
training dataset was constructed from Wikipedia
sentences, with labels obtained using a combi-
nation of PPDB (Pavlick et al., 2015) and the
Merriam-Webster thesaurus. We also consider two
traditional lexical substitution datasets, LS07 (Mc-
Carthy and Navigli, 2007) and LS14 (Kremer et al.,
2014), which use lemmatized human annotations

as ground truth substitutions. Further, we also con-
sider a general dataset without ground-truth substi-
tutions. Specifically, we use XSum (Narayan et al.,
2018), a summarization dataset consisting of BBC
news articles and corresponding summaries. In the
Appendix we show Table 6 summarizing these four
datasets.

Baselines We compare our method with three
classes of baseline models. Masked language mod-
els (MLMs): BERT-base-uncased with original
MLM head (BERT-naive) (Devlin, 2018). BERT-
spsv (Zhou et al., 2019), as a representative LS
model. BERT-SWS and BART-SWS, both of
which were fine-tuned on the SWS training dataset
(Wang et al., 2023). Rule-based models: The rule-
based approach introduced by Wang et al. (2023),
which leverages a thesaurus. Prompt-based large
language models (LLMs): We leverage the power
of pretrained LLMs via prompts to generate token
substitutions. We consider two popular choices,
GPT (Ouyang et al., 2022) and LLaMA (Touvron
et al., 2023a,b; Dubey et al., 2024), specifically,
GPT-4o and LLaMA-3.1-8B-Instruct. Prompt-
based techniques have gained popularity due to
their flexibility and effectiveness in generating
high-quality, contextually appropriate substitutions
without requiring task-specific tuning (Liu et al.,
2023a). We designed both ranking and non-ranking
prompts, which we show in Appendix B.

Evaluation Metrics We use the cosine simi-
larity (CS) to measure the correlation between
model predictions and model-based scores, i.e.,
BARTScores. Since BARTScore produces log-
likelihoods, we log-transform model predictions
accordingly. We also consider the quality of the
substitutes {w̃k}Kk=1. First we get the score ratio
between the sentence with and without substitution
and then calculate the average of BARTScore ratios
as ABR = 1/K

∑K
k=1M(X̃k)/M(X).

Implementation For our model, we fine-tuned
the BERT-base-uncased model (Wang et al., 2023)
on 100k randomly sampled sentences from the
SWS training dataset using one Nvidia A100 GPU.
For each sentence, we randomly selected 5 tokens,
and for each token, we chose K = 5 candidates
from the model’s output to form a candidate pool
and compute the training loss. The model was fine-
tuned over 5 epochs. For DPO, we duplicated the
same BERT model and weights at initialization,
freezing one as the reference while only updating
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Not change Agreement Disagreement
Change 4125 (0.74) 631 (0.11) 830 (0.15)

Not change 14138 (0.94) 969 (0.06)

Table 1: Token changes in SWS test data. Rows are for
annotator changes and columns indicate model changes
and if they are in agreement with the annotator. In
parenthesis are proportions relative to the row totals.

the weights of the other during training. During
testing, we used the same token selection strat-
egy, randomly selecting 5 tokens per sentence and
choosing the top 5 candidates for each. Hyperpa-
rameter settings are described in Appendix C.

Illustrative Example We stratify tokens in the
SWS test set into five groups according to whether
they were substituted by human annotators and/or
the model. These groups are: change agreement
(CA: both model and the human annotator agreed
on the change), change disagreement (CD: both
model and the annotator suggested a change, but
the model substitution did not match that of the
annotator), no change agreement (NCA: the model
and the annotator kept the token unchanged), only
model changed (OMC: the model suggested a
change, but the annotator did not find it necessary),
and only annotator changed (OAC: the annotator
suggested a change, but the model did not).

Results in Table 1 show that most tokens remain
unchanged (NCA: 94%) by both model (BERT-
SWS) and annotator. The proportion of annotator
changes for which the model agrees or disagrees
is similar, CA: 11% vs. CD: 15%, respectively.
Interestingly, most annotator changes are not cap-
tured by the model (OAC: 74%), which is consis-
tent with results in Wang et al. (2023) for a variety
of models, and OMC: 6% tokens not changed by
the annotator are changed by the model. These
results underscore that i) a model is unlikely to
match human annotations when these are largely
subjective and incomplete; and ii) cases in which
changes made by the model do not match the hu-
man annotator cannot be considered errors. These
are consequences of having a few annotators each
selecting which tokens need to be changed.

This is further illustrated below in Table 4 where
we show that though tokens for which both model
and annotator agree have better model-based statis-
tics, there is also a non-insignificant portion for
which model and annotator disagree, but the model-
based statistic suggests that the model changes are
of good quality. Some of these examples are shown
in Table 7 of the Appendix.

SWS LS07 LS14 XSum AVG
CS ABR CS ABR CS ABR CS ABR CS ABR

MR 0.99 0.82 0.93 0.81 0.93 0.78 0.93 0.79 0.94±0.024 0.8±0.012
DPO 0.91 0.87 0.9 0.86 0.91 0.83 0.85 0.82 0.89±0.025 0.85±0.025
DPO* 0.92 0.87 0.91 0.86 0.91 0.82 0.87 0.83 0.9±0.019 0.85±0.021
σDPO* 0.93 0.89 0.93 0.86 0.92 0.84 0.88 0.84 0.92±0.021 0.86±0.02
MR+BS 0.94 0.90 0.95 0.87 0.95 0.86 0.95 0.86 0.94±0.005 0.87±0.015
MR+AS 0.98 0.890 0.99 0.85 0.99 0.83 0.99 0.84 0.99±0.002 0.86±0.021

Table 2: Ablation CS and ABR metrics. Figures for each
dataset are medians over all token predictions. The last
column shows averages over all datasets with standard
deviations. The best results are highlighted in bold.

SWS LS07 LS14 XSum AVG
CS ABR CS ABR CS ABR CS ABR CS ABR

BERT-naive 0.92 0.87 0.92 0.83 0.92 0.82 0.93 0.81 0.92±0.003 0.83±0.018
BERT-spsv 0.93 0.82 0.93 0.80 0.93 0.74 0.93 0.74 0.93±0.002 0.78±0.038
BERT-SWS 0.92 0.84 0.92 0.81 0.93 0.78 0.93 0.79 0.93±0.003 0.81±0.02
BART-SWS 0.93 0.84 0.92 0.83 0.92 0.77 0.93 0.80 0.93±0.003 0.81±0.028
Rule-based 0.93 0.90 0.92 0.83 0.93 0.82 0.93 0.83 0.93±0.001 0.85±0.024

GPT-4o 0.95 0.89 0.95 0.86 0.96 0.82 0.96 0.85 0.95±0.002 0.86±0.025
LLaMA 0.93 0.86 0.94 0.84 0.93 0.76 0.94 0.79 0.94±0.003 0.81±0.040
MR+AS 0.98 0.90 0.99 0.85 0.99 0.83 0.99 0.84 0.99±0.002 0.86±0.021

Table 3: Benchmark median CS and ABR metrics. The
last column shows averages over all datasets with stan-
dard deviations. The best results are highlighted in bold.

Ablation Study Section 3.2 introduced two ap-
proaches to align the predictions of a trained model
with model-based scores, namely MR in (3) and
DPO in (8), (9) and (10). For the former, we
consider two ways of improving the model-based
scores, via a weighted average in (6) and improve-
ment relative to a reference model in (7). Results in
Table 2 show results comparing i) the alignment of
model predictions with model-based scores using
median CS, and ii) the average model-based scores
using median ABR. Distributions of CS and ABR
for all tokens are shown in the Appendix Figures 1
and 2. We see that i) the MR loss alone is not
sufficient to deliver the best CS and produces the
worst ABR; ii) DPO variants improve the ABR
relative to MR, but not in terms of CS; c) MR+BS
and MR+AS produce the best overall ABR and CS,
respectively, however, MR+AS seems to provide
the best trade-off between the two performance
metrics, while outperforming both MR and DPO.
Consequently, in the following experiments we will
focus on MR+AS.

Model Benchmark Next, we evaluate MLMs
(BERT, BART) and LLMs (GPT-4o, LLaMA) on
all datasets using median CS and ABR as metrics
(distributions are shown in the Appendix Figures 1
and 2). Table 3 shows that MR+AS outperforms
both MLMs (BERT, BART) and LLMs (GPT-4o,
LLaMA), with top performances in terms of CS
in all datasets and top ABR in two of the datasets
(SWS and LS14). Also, when accounting for re-
sults variation across datasets, we see that MR+AS
significantly outperforms the others in terms of CS,
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CA CD OMC
BERT-naive 0.646 0.389 0.612
BERT-spsv 0.709 0.442 0.491
BERT-SWS 0.204 0.118 0.078
BART-SWS 0.225 0.139 0.121
Rule Based 0.602 0.241 0.344

GPT-4o 0.761 0.563 0.661
LLaMA 0.700 0.517 0.603
MR+AS 0.961 0.917 0.810

Table 4: Proportion of p-values below the significance
threshold (α = 0.01) on the SWS test data.

while being comparable with GPT-4o in terms of
ABR. Importantly, for the latter, MR+AS and GPT-
4o perform markedly better than other approaches.

Model-based Statistic Benchmark After show-
ing the effectiveness of our model in terms of CS
and ABR, we now use the model-based statistic
introduced in Section 3.1. Table 4 shows the pro-
portion of model predictions that meet the signif-
icance threshold (α = 0.01) for three groups of
tokens: CA, CD and OMC. We do not present re-
sults for the other two groups (NCA and OAC)
because when using rule- and LLM-based models,
we get no candidates for non-substitutions. Fur-
ther, for these models we may not always get the
same number of substitute candidates per token,
thus we use their median (3 candidates) across all
tokens in the SWS test set as the number of can-
didates for all other models when calculating the
statistic, i.e., Ks = 3 in (2). In the Appendix
Table 8 we show an extended table showing the
NCA and OAC groups and Ks = 1000 for MLM-
based models (ours included) and Figures 3-6 with
p-value distributions for all models. To avoid prob-
lems associated with overfitting, thus making the
evaluation more reliable, in Appendix Table 9 and
Table 10 we extended the evaluation result by using
the GPTScore2 (Fu et al., 2023) with two backbone
models: GPT2 (Radford et al., 2019) and OPT
(Zhang et al., 2022). The results show that our
MR+AS still outperforms other baseline models.

Ideally, we want proportions in Table 4 to be
close to one, indicating that the top candidate is
of better quality than the alternatives. Effectively,
results demonstrates that our model (MR+AS) not
only produces the largest proportions, but it does so

2Similar to BARTScore, we adapted GPTScore for the
paraphrasing task using the following prompt: “Rewrite the
following text with the same semantics. {original sentence}
In other words, {the modified sentence}”. We also calculated
the Spearman correlation between BARTScore and GPTScore
(GPT2-medium and OPT-350M), which yielded results of
0.929 and 0.921, respectively. These values indicate a strong
correlation between BARTScore and GPTScore.

SWS LS07 LS14 XSum AVG
BERT-naive 0.88 0.84 0.82 0.81 0.84± 0.025
BERT-spsv 0.82 0.80 0.73 0.73 0.77± 0.040
BERT-SWS 0.85 0.82 0.78 0.79 0.81± 0.028
BART-SWS 0.82 0.81 0.74 0.77 0.79± 0.035
Rule Based 0.89 0.84 0.82 0.85 0.85± 0.025

GPT-4o 0.88 0.86 0.80 0.85 0.85± 0.028
LLaMA 0.86 0.83 0.77 0.79 0.81± 0.035
MR+AS 0.91 0.87 0.85 0.85 0.87 ± 0.024

Table 5: Median BARTScore ratios for top-2 candidates.
The last column shows averages over all datasets with
SDs. The best results are highlighted in bold.

irrespective of the group (CA, CD or OMC). This
suggests that substitutions made by our model are
of good quality (using BARTScore as proxy for
quality) even if they do not agree with the human
annotator. Moreover, in general, LLMs are better
than the other MLM- and rule-based alternatives.

It is worth noting that LLM-based models make
considerably more substitutions than our model.
In the Appendix Table 11 we show that GPT-4o
makes 24.4%, 24.8% and 11.5% changes in groups
CA, CD and OMC, respectively, compared to 5.5%,
5.2% and 2.7% by our MR+AS. This suggests a
trade-off between quality and quantity of substitu-
tions between MR+AS and GPT-4o, respectively.

Top-2 Candidate Performance Provided that
the substitution rates by our model are low relative
to others as discussed above, we now examine the
quality of the top-2 substitute. Note that in MLM-
based models a change is produced only when the
top substitute candidate is different than the origi-
nal token and that for LLM-based models the top-2
candidate is only available is the model considers
a substitution has to be made and more than one
candidates are provided. To quantify the quality of
the top-2 candidates, we randomly selected five to-
kens from each sentence where the top-2 candidate
is available and calculate the BARTScore ratio be-
tween the sentence modified with the top-candidate
and that of the original (unchanged) sentence. We
then averaged these ratios provide a summary of
the quality of top-2 candidates. Results in Table 5
indicate that MR+AS achieved the best top-2 can-
didate quality across all four datasets followed (on
average) by GPT-4o and the rule-based model.

Encouraging ranking in LLMs It is well known
that prompting LLMs to provide ordered responses
is challenging (Lu et al., 2023). We tried prompts
with and without a specific request for ordered sub-
stitute candidates (see Appendix B for details). We
found that both GPT and LLaMA produced slightly
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better median CS values without the prompt spec-
ifying ranked candidates (0.954 and 0.943, re-
spectively) relative to the alternative (0.953 and
0.940, respectively). Importantly, these are signifi-
cantly lower than the median CS value for MR+AS
(0.983). CS distributions for all models can be
found in the Appendix Figure 7. We note that it
may be possible to optimize the prompt for better
ranked results, however, this is beyond the scope
of our work.

Human Study We recruited five annotators to
carry out the study. First, we randomly sampled
25 cases from the SWS test data and provided the
top two candidate replacements proposed by our
model. We randomly flipped the order of these two
candidates before presenting them to the annotators.
Annotators were asked to indicate their preference
for the order and whether they preferred to replace
the target word with either of the two candidates3.

To assess inter-annotator agreement, we calcu-
lated the (unweighted) Cohen’s kappa coefficient
for both order agreement and replacement agree-
ment. The average kappa values for the order
agreement and the replacement agreement were
0.40±0.21 (standard deviation) and 0.13±0.21, re-
spectively. These results align with our assumption
that asking annotators to suggest replacements for
a specific word in a given sentence is a subjective
task. In Appendix Table 12, we present the com-
plete results. Furthermore, we observed that in
83% of the cases, the annotators did not choose to
replace the target word.

To mitigate the potential bias caused by provid-
ing the target word in advance, we designed a sec-
ond questionnaire consisting of 50 cases. Twenty-
five cases were sampled where our model and
BARTScore agreed, and twenty-five cases where
they disagreed. In this setting, the target word was
hidden and only the top two candidate replacements
(with randomly flipped order) were provided. An-
notators were then asked to choose their preference
from three options4: (0) the top-1 and top-2 candi-
dates are equally good. (1) the top-1 candidate is
better. (2) the top-2 candidate is better.

Subsequently, we made a comparison between
the model predictions and the responses of the an-
notators. The results showed that in 38.8% of the

3Example of questionnaire 1 can be accessed at
https://tinyurl.com/SWSQuestionnaire1.

4Example of questionnaire 2 can be accessed at
https://tinyurl.com/SWSQuestionnaire2.

the instances, annotators considered both candi-
dates equally good. In the remaining cases, when
the model and BartScore agreed, 79% of annota-
tors favored the same choice. In cases where the
model and BartScore disagreed, annotators sided
with BartScore 67% of the time and with the model
33% of the time. In the SWS test data, the model
and BartScore agreed on the ranking of the top two
candidates in 67% of instances. In Appendix Table
13, we present the complete results.

5 Discussion

This paper addressed the problem of training and
evaluating SWS models without requiring human
annotations. Specifically, we leveraged a model-
based score (BARTScore) to define evaluation met-
rics and to serve as a label-proxy for our loss func-
tion. Extensive experimental results demonstrate
the effectiveness of our approach relative to both
MLM- and LLM-based models.

Limitations

The proposed method leverages BARTScore as
a sentence scoring mechanism, essentially act-
ing as a proxy for human annotators in guiding
model optimization during preference-aware learn-
ing. However, we cannot eliminate the possibil-
ity that BARTScore may not always accurately
quantify the quality of token substitutions. While
BARTScore has shown effectiveness in our exper-
iments, it could be readily replaced by alternative
scoring metrics deemed more reliable or better
suited to other word substitution contexts. We leave
this exploration as interesting future work.

Ethical Considerations

In the process of developing and deploying smart
word suggestion systems it is crucial to consider
the broader ethical implications of relying on au-
tomated tools for language optimization. These
systems may inadvertently reinforce biases present
in training data, leading to unintended or inappro-
priate word suggestions. Moreover, the replace-
ment of human judgment with automated scoring
models like BARTScore can risk overlooking or
misrepresenting nuances in language, particularly
in sensitive contexts. Therefore, we recommend on-
going human oversight and continuous evaluation
of the model’s output to ensure fairness, inclusivity,
and alignment with ethical standards.
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A DPO Derivation Details

DPO* Direct Preference Optimization (DPO)
(Rafailov et al., 2024) is an efficient technique for
aligning large language models (LLMs) with hu-
man feedback, which gained popularity due to its
simplicity (Miao et al., 2024). For instance, it has
demonstrated to be effective in chat benchmarks
(Tunstall et al., 2023; Zheng et al., 2023). In our
case, the model-based score serving as proxy for
human feedback DPO (under the Plackett-Luce
Model) is written as

LDPO = −E
[
log

∏K
k=1

exp(δrk)∑K
j=k exp(δrj)

]
, (11)

where rk = log pθ(X̃k)− log pθ̂(X̃k), the expecta-
tion is over {X̃1, . . . , X̃K , X}, and θ and θ̂ denote
the parameters of the model being trained and that
used for reference, respectively. Accordingly, only
θ are updated while learning while θ̂ are kept fixed.

Since the magnitude of the logits drops signif-
icantly as k → K, we found that the sum in the
denominator of (11) weakens the loss. Therefore,
we removed the sum and instead compared the k-th
and the (k+1)-th substitution, rather than compar-
ing it with all K values. The Derivation of DPO*
is shown below

LDPO* = − log
∏K−1

k=1
exp(δrk)

exp(δrk+1)
(12)

= −∑K−1
k=1 log exp(δrk)

exp(δrk+1)

= −∑K−1
k=1 (δrk − δrk+1)

= −∑K−1
k=1 δ

(
log pθ(X̃k)

pθ̂(X̃k)
− log

pθ(X̃k+1)

pθ̂(X̃k+1)

)
.

Further, we approximate log pθ(X̃k) with its logit
sk, and let δ = 1 for simplicity. Then (12) simpli-
fies (for a single token in sentence X) to

LDPO* = −∑K−1
k=1 (sk − ŝk − sk+1 + ŝk+1) ,

where sk and ŝk denote the logit of the k-th substi-
tution from the model being trained and the refer-
ence model, respectively.

σDPO* We also extend DPO (under the Bradley-
Terry model) (Rafailov et al., 2024) to multiple
substitute candidates, where each candidate is com-
pared with the next in the ordered list of candidates.
We write for a single token in sentence X

(13)LσDPO∗ = −
∑K−1

k=1 log σ (δrk − δrk+1) .

We approximate log pθ(X̃k) with its logit sk, and
let δ = 1 for simplicity. Then in (13) simplifies
(for a single token in sentence X) to

LσDPO* =

−∑K−1
k=1 log σ (sk − ŝk − sk+1 + ŝk+1) ,

from which we see that the only difference between
(10) and (9) (in the main paper) is that the compar-
ison of logit values in the former is scaled with the
log-logistic function. See Appendix for a deriva-
tion of both losses.

B LLM Prompts

Prompt without order:
In the following sentence, please give some sug-

gestions to improve word usage. Please give the
results with the JSON format of “original word”:
[“suggestion 1”, “suggestion 2”]. The ’original
word’ should include all words that can be im-
proved in the sentence, directly extracted from the
sentence itself. [s]
Prompt with order:

In the following sentence, please give some sug-
gestions to improve word usage. Please give the
results with the JSON format of “original word”:
[“suggestion 1”, “suggestion 2”]. The ’origi-
nal word’ should include all words that can be
improved in the sentence, directly extracted from
the sentence itself, and the suggestions should be
ranked in order of the degree of improvement,
from the most effective to the least. [s]

where [s] is the sentence.
At times, the model may fail to provide the cor-

rect JSON format, making it difficult to extract the
intended answer. In such cases, it is often necessary
to query the model multiple times to obtain a valid
JSON output.

C Model Hyperparameters

Both of BERT_SWS reproduction and model op-
timization are: epochs = 5, batch size = 64,
learning rate = 0.0007, max norm = 1e − 5
for clipped gradient norm, dropout rate = 0.1,
λ = 0.5, and γ = 1.

Data Task Training Validation Test
SWS SWS 3,909,650 200 800
LS07 Lexical Substitution - 299 1710
LS14 Lexical Substitution - 892 1569
XSum Summarization 204045 11332 11,334

Table 6: Datasets summary.

11562



CD

While being saddened by my friend’s suffering, I also gradually became aware of the critical role of law in our daily life.
Annotations: Human={"integral", "important"}, Model={"crucial"}
The residential theory argues that there are houses in the Chaco structures, and the structure is big enough for hundreds of people.
Annotations: Human={"discussed", "states", "reasons", "discusses"}, Model={"claims"}
As I planned well for the whole day, I would not make mistakes such as doing things relating to a single subject in a complete morning or afternoon,
which would make my head dizzy and I could not focus all my attention on my work.
Annotations: Human={"single", "whole"}, Model= {"full"}
By contrast, the professor refutes this idea and insists that it will not be that profitable when the cost is taken into consideration.
Annotations: Human={"urges", "claims"} Model= {"argues"}
For example, in traditional China, young people needed to turn down their knees to show their respect to old people like their parents or their teachers.
Annotations: Human={"convey", "display", "manifest"} Model= {"demonstrate"}
As a matter of fact, young people didn’t need to obey too many strict rules and could have a relatively relaxing life.
Annotations: Human={"generally", "decidedly", "approximately"} Model= {"fairly"}
To be more specific, most young men tend to be couch potatoes during weekends, leading to not concerning about social issues.
Annotations: Human={"updating", "concerns", "regarding", "caring"} Model= {"worrying"}
As a result, to make sure that I fulfil the goal I made every day, I would prevent myself from doing unnecessary things like playing for a long time in
the playground as some of my classmates would do.
Annotations: Human={"aim"} Model= {"objective"}
When enjoying this piece, people can directly follow the progress of the piece to feel the picture constructed between the various instruments
without exploring its creative background.
Annotations: Human={"diverse"} Model= {"different"}
No one likes to deal with people who can’t adopt other people’s advice and insist that only his or her idea is correct.
Annotations: Human={"prefers", "enjoys"} Model= {"wants"}
Globalists view the coronavirus as a global threat that shows the common plight of humanity and the need to work together.
Annotations: Human={"reoccurring", "everyday"} Model= {"shared"}
Second, the reading suggests that the mining industry on asteroids would be highly profitable due to the numerous valuable elements and precious
metals buried under the asteroids.
Annotations: Human={"implies", "proposes"} Model= {"indicates"}

OMC

Therefore, the power to resolve disputes and maintain social order is the psychological restraint of the actor and the education of the elder to the
young rather than the litigation.
Annotations: Human={"resolve"}, Model={"settle"}
According to recent statistics, there is ample coverage demonstrating that humans who inhabit the hub continually will undergo severe conditions due
to the dirty air and stressful surroundings.
Annotations: Human ={"continually"}, Model={"constantly"}
We are capable of making crops which can resist many kinds of unideal factors, such as colds, bugs, or even drought.
Annotations: Human={resist} Model= {"withstand"}
With the proliferation of schools and private firms nowadays, it is sometimes argued that a company or campus should have strict rules that control
the type of clothing that people wear at work and at school.
Annotations: Human={sometimes} Model= {"occasionally"}
The number of students who have grades over 90 in international exams this year has surprisingly soared roughly about 10 percent, a figure that has
nearly doubled as against that of last year.
Annotations: Human={nearly} Model= {"almost"}
As a result, to make sure that I fulfil the goal I made every day, I would prevent myself from doing unnecessary things like playing for a long time
in the playground as some of my classmates would do.
Annotations: Human={result} Model= {"consequence"}
Even though the issue is becoming increasingly critical, many believe it is not essential for the young to learn how to plan and organize.
Annotations: Human={essential} Model= {"necessary"}
When enjoying this piece, people can directly follow the progress of the piece to feel the picture constructed between the various instruments
without exploring its creative background.
Annotations: Human={exploring} Model= {"examining"}
There is no doubt that letting students decide how many and how often they could do study assignments is more flexible.
Annotations: Human={often} Model= {"frequently"}
This is because the Parliament has the intention to limit personal liberty identified as fundamental rights by the unequivocal language without
allowing the diagnosed person to leave the residence or places except for certain circumstances (Momcilovic; Aboriginal Justice; s4).
Annotations: Human={allowing} Model= {"permitting"}
Those who bolster the idea might indicate this operation either is interesting to allow them to engage in a relaxed atmosphere or spend less time
focusing on solid books.
Annotations: Human={focusing} Model= {"concentrating"}
What is more, if young students keep making use of video games in some lessons, their caliber of watching objects will decrease, granted that
they avail themselves of exhibiting sight too much.
Annotations: Human={decrease} Model= {"decline"}

Table 7: Original sentences with target token substitution in red. CD: change disagreement and OMC: only model
changed.

Figure 1: CS distribution results for SWS test data. Figure 2: ABR distribution results for SWS test data.
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OAC CA CD OMC NCA
BERT-naive 0.999 0.888 0.339 0.274 1
BERT-spsv 0.994 0.981 0.583 0.486 0.999
BERT-SWS 0.999 0.942 0.731 0.628 1
BART-SWS 0.992 0.905 0.604 0.588 0.969
Rule Based - 0.602 0.241 0.344 -

GPT-4o - 0.761 0.563 0.661 -
LLaMA - 0.700 0.517 0.603 -
MR+AS 0.999 0.994 0.9 0.705 1

Table 8: Proportion of p-values below the significance
threshold (α = 0.01) for Ks = 1000 using BARTScore.

OAC CA CD OMC NCA
BERT-naive 1 0.888 0.425 0.47 1
BERT-spsv 1 0.891 0.474 0.438 1
BERT-SWS 1 0.948 0.717 0.621 1
BART-SWS 1 0.869 0.6 0.595 1
Rule Based - 0.552 0.248 0.309 -

GPT-4o - 0.734 0.557 0.655 -
LLaMA - 0.654 0.518 0.624 -
MR+AS 1 0.963 0.809 0.719 1

Table 9: Proportion of p-values below the significance
threshold (α = 0.01) for Ks = 1000 using GPTScore
with GPT2-medium (355M).

OAC CA CD OMC NCA
BERT-naive 1 0.893 0.439 0.351 1
BERT-spsv 1 0.927 0.506 0.498 1
BERT-SWS 1 0.975 0.749 0.655 1
BART-SWS 1 0.897 0.618 0.625 1
Rule Based - 0.531 0.247 0.332 -

GPT-4o - 0.745 0.554 0.673 -
LLaMA - 0.694 0.531 0.625 -
MR+AS 1 0.981 0.759 0.657 1

Table 10: Proportion of p-values below the significance
threshold (α = 0.01) for Ks = 1000 using GPTScore
with OPT-350M (350M).

OAC CA CD OMC NCA Ratio
BERT-naive 0.914 0.032 0.054 0.052 0.948 4.09
BERT-spsv 0.952 0.02 0.028 0.017 0.983 2.82
BERT-SWS 0.738 0.113 0.149 0.064 0.936 1.65
BART-SWS 0.736 0.113 0.151 0.068 0.932 3.88
Rule Based 0.63 0.11 0.26 0.101 0.899 3.66

GPT-4o 0.508 0.244 0.248 0.115 0.885 4.28
LLaMA 0.722 0.121 0.157 0.065 0.935 4.28
MR+AS 0.893 0.055 0.052 0.027 0.973 3.96

Table 11: The value indicates the proportion of tokens in-
volved. We divided the data into three groups (OAC, CA,
CD) for changes made by human annotators, and two
groups (OMC, NCA) for tokens the human annotator
did not change. The ratio in the last column is between
tokens both the model and the annotator change (CA
and CD) and tokens only the model changed (NCA).

Figure 3: p-value distributions.

Figure 4: p-value distributions.

Figure 5: p-value distributions.
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Figure 6: p-value distributions.

Figure 7: Results for LLaMA and GPT-4o with and
without a prompt encouraging ranking.

Order Agreement
Annotator1 Annotator2 Annotator3 Annotator4 Annotator5

Annotator1 - 0.28 0.51 0.75 0.44
Annotator2 - - 0.12 0.19 0.2
Annotator3 - - - 0.41 0.44
Annotator4 - - - - 0.68
Annotator5 - - - - -
Average±SD 0.40±0.21

Replacement Agreement
Annotator1 Annotator2 Annotator3 Annotator4 Annotator5

Annotator1 - -0.03 -0.2 0.28 0.43
Annotator2 - - 0.11 0.17 0.4
Annotator3 - - - -0.16 0.11
Annotator4 - - - - 0.17
Annotator5 - - - - -
Average±SD 0.13±0.21

Table 12: Inter-annotator agreement using (unweighted)
Cohen’s kappa coefficient. SD is the standard deviation.

Model and BARTScore Agreement (25 cases)
Select same Select different Select 0

Annotator1 7 1 17
Annotator2 12 5 8
Annotator3 14 9 2
Annotator4 18 5 2
Annotator5 8 0 17
Average±SD 11.8±4.5 4±3.6 9.2±7.5

Model and BARTScore Disagreement (25 cases)
Agree with BARTScore Agree with Model Select 0

Annotator1 6 3 16
Annotator2 9 7 9
Annotator3 14 7 3
Annotator4 14 8 3
Annotator5 4 1 20
Average±SD 9.4±4.6 5.2±3.0 10.2±7.7

Table 13: Human study results. The Model is our
(MR+AS) model. SD is the standard deviation. Based
on the last column, we calculated the proportion of cases
in which humans selected 0 by dividing the last col-
umn’s value by 25 and computing the average, resulting
in 38.8%. For the remaining cases (where the selection
is either 1 or 2), we analyzed agreement between the
annotator, the model, and BARTScore. In the top panel,
the proportion of cases where the annotator agree with
model and the BARTScore is calculated as the value
in the first column divided by the sum of the first and
second columns, resulting in an average of 79%. In the
bottom panel, we computed two proportions: the agree-
ment between the annotator and BARTScore, calculated
as the value in the first column divided by the sum of the
first and second columns, and the agreement between
the annotator and the model, calculated as the value in
the second column divided by the sum of the first and
second columns. The resulting agreement proportions
are 67% for annotator-BARTScore agreement and 33%
for annotator-model agreement.
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