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Abstract

Online reviews provide valuable insights into
the perceived quality of facets of a product or
service. While aspect-based sentiment analysis
has focused on extracting these facets from re-
views, there is less work understanding the im-
pact of each aspect on overall perception. This
is particularly challenging given correlations
among aspects, making it difficult to isolate the
effects of each. This paper introduces a method-
ology based on recent advances in text-based
causal analysis, specifically CausalBERT, to
disentangle the effect of each factor on overall
review ratings. We enhance CausalBERT with
three key improvements: temperature scaling
for better calibrated treatment assignment esti-
mates; hyperparameter optimization to reduce
confound overadjustment; and interpretability
methods to characterize discovered confounds.
In this work, we treat the textual mentions
in reviews as proxies for real-world attributes.
We validate our approach on real and semi-
synthetic data from over 600K reviews of U.S.
K-12 schools. We find that the proposed en-
hancements result in more reliable estimates,
and that perception of school administration
and performance on benchmarks are significant
drivers of overall school ratings.

1 Introduction

Understanding the influence of specific aspects
mentioned in text reviews on the overall ratings of
products or services is a complex yet important en-
deavor in many industries. For example, in educa-
tion, how does feedback on academic performance
or facility quality influence a school’s overall rat-
ings? Precisely quantifying this influence can help
businesses identify key areas for improvement.

Traditional approaches to this problem include
aspect-based sentiment analysis, which extracts
sentiments tied to predefined aspects (Zhang et al.,
2022; Kandhro et al., 2024), and exploratory anal-
yses that measure the correlation between certain

terms and overall rating (Geetha et al., 2017). How-
ever, these methods generally fail to account for
confounding variables, leading to biased results.
For example, consider a school often praised for
its academic performance, with reviews about its
excellent programs and great teachers. Traditional
analysis might directly link these positive attributes
to the school’s high ratings. However, if these
reviews also frequently mention extensive extracur-
ricular opportunities or high parental involvement,
it could imply that the school’s high ratings re-
flect its socioeconomic advantages, not educational
quality alone. Overlooking such factors could lead
to incorrect assessments of the true influence of
educational quality on overall perceptions.

Our goal is to estimate the impact of aspects men-
tioned in reviews on overall ratings. To achieve this,
we have developed a causal inference framework
to control for confounding variables within text.
Our framework starts by identifying an aspect of
interest from the text related to an entity, e.g., if
the school reviews frequently praise facility qual-
ity. We then utilize the remaining text of the entity,
excluding the aspect-related text, as covariates to
analyze the overall rating for the entity. Here, the
textual content is treated as a proxy for real-world
factors that may influence an entity’s rating. This
approach helps us control for confounders associ-
ated with the entity and isolate the treatment effect
of the specific aspect on the overall rating.

Contribution We apply CausalBERT (Veitch
et al., 2020) to estimate the effects of specific topics
on overall review ratings, isolating genuine influ-
ences from other textual elements. We enhance
CausalBERT by (i) integrating Temperature Scal-
ing to calibrate propensity scores; (ii) optimizing
a key hyperparameter that balances treatment and
outcome prediction, reducing overadjustment for
confounds; (iii) employing interpretability methods
to characterize discovered confounds. We validate

11259



our approach using 600K U.S. K-12 school reviews
from GreatSchools.org, finding that issues of ad-
ministration personnel and academic performance
are significant drivers of perceived school quality.

2 Methods

We apply the potential outcomes framework (Ney-
man, 1923), observing for each subject (school) i
a tuple (Xi, Yi, Ti), where Xi ∈ Rp denotes text
covariates, Yi ∈ R is the continuous outcome (aver-
age review rating), and Ti ∈ {0, 1} is the treatment
assignment (presence of topic in reviews). The
potential outcomes Yi(0) and Yi(1) represent the
outcomes under control (no treatment) and treat-
ment scenarios, respectively. The outcome Yi is
defined as Yi = Ti · Yi(1) + (1− Ti) · Yi(0). The
goal is to estimate the Average Treatment Effect
(ATE), τ , which quantifies the expected difference
in outcomes due to the treatment:

τ = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)] (1)

To estimate the ATE, we consider several core
assumptions and estimators: Ignorability assumes
that the treatment assignment Ti is independent
of the potential outcomes, a critical condition
that allows the use of a naive unbiased estimator
(τ̂unadjust) directly:

τ̂unadjust = E[Yi|Ti = 1]− E[Yi|Ti = 0] (2)

However, this assumption is often unrealistic when
treatment assignment correlates with confounds.
Thus, we further assume Conditional Ignorability,
which posits that the treatment assignment Ti is
independent of the potential outcomes given the
covariates Xi. If we denote E[Yi|Xi = x, Ti = 1]
as Q(1, x) and E[Yi|Xi = x, Ti = 0] as Q(0, x),
then the ATE can be estimated by:

τ̂Q = 1
n

∑n
i=1

(
Q̂(1, Xi)− Q̂(0, Xi)

)
(3)

Here, Q̂(Ti, Xi) is the estimated response given
treatment status and covariates. Positivity assumes
that every subject has non-zero probability of re-
ceiving the treatment (0 < P (Ti = 1|Xi = x) < 1
for all x). With the propensity score g(x) =
P (T = 1|X = x), let ĝ(x) denote the estimate
of the true propensity score g(x). Then the Inverse
Probability Weighting (IPW) estimator is:

τ̂IPW = 1
n

∑n
i=1

(
TiYi
ĝ(Xi)

− (1−Ti)Yi

1−ĝ(Xi)

)
(4)

Figure 1: The causal graph of the framework

To mitigate the instability in IPW estimates due
to extreme propensity scores, we also use aug-
mented inverse propensity weighted (AIPW) es-
timator (Robins et al., 1995):

τ̂AIPW = 1
n

∑n
i=1

[
TiYi
ĝ(Xi)

− (1−Ti)Yi

1−ĝ(Xi)

]

−
[
Ti−ĝ(Xi)
ĝ(Xi)

Q̂(1, Xi)− Ti−ĝ(Xi)
1−ĝ(Xi)

Q̂(0, Xi)
]

(5)

2.1 Estimating Framework

We explore how specific features reflected in re-
views impact the aggregate rating of the entity. To
frame this as a causal inference task, we define the
treatment to be any identifiable feature associated
with the entity being reviewed, such as sentiments
about specific aspects (e.g., ‘administration’ for
schools) or mentions of particular topics (e.g., ‘bul-
lying’). For simplicity, we use a keyword-based
treatment: We define a set of keywords related to
the topic of interest, then categorize each entity into
treatment or control groups based on the presence
of these keywords in their reviews. The outcome
variable is the entity’s average review rating across
all reviews.

To address the challenges noted by Pryzant et al.
(2021) in assessing conditional ignorability – where
the treatment label may itself be influenced by other
text properties – we separate reviews that deter-
mine treatment status from those that do not. That
is, all reviews that are not used to determine treat-
ment are concatenated together to serve as covari-
ate variables Xi, while the remaining reviews are
discarded after being used to determine treatment.
Thus, in this causal inference task (Figure 1), av-
erage review ratings are the outcome (Yi), and the
treatment (Ti) is some real world effect determined
by the presence of keywords in the reviews. We
use the text from reviews without the treatment key-
words as covariates (Xi)—serving as a proxy for
real-world factors that may influence the entity’s
rating—to estimate the ATE according to Equa-
tion 1.
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Figure 2: CausalBERT architecture.

2.2 CausalBERT
A key challenge in performing causal inference
with text is adjusting for confounding effects within
the text. CausalBERT (Veitch et al., 2020), an ex-
tension of BERT (Devlin et al., 2018), addresses
this challenge by learning text representations that
predict both the propensity score g(.) and the condi-
tional expected outcomes Q(ti, .), thereby learning
causally sufficient text representations.

The architecture of CausalBERT (Figure 2), in-
spired by Dragonnet (Shi et al., 2019), processes
textual data into causally relevant embeddings. Ini-
tially, CausalBERT utilizes BERT1 to transform
input text xi into a dense representation, hi =
B(xi; θB), captured at the CLS token output. This
representation is essential as it captures the criti-
cal textual information needed for causal analysis.
Following the initial embedding process, Causal-
BERT extends into three predictive branches: (1)
gnn(hi; θg) for binary treatment assignment using a
sigmoid-activated linear map, and (2) Q0

nn(hi; θ0)
and Q1

nn(hi; θ1) for potential outcomes under non-
treatment and treatment scenarios, respectively,
modeled through fully connected layers (each with
two hidden layers). CausalBERT optimizes a multi-
objective loss function combining mean squared
error for outcome predictions and cross-entropy for
treatment assignment:

(θ∗, θ∗B) = argminθ,θB
1
n

∑
i

[ (
Q0

nn(hi; θ0)− yi
)2

(1− ti)

+
(
Q1

nn(hi; θ1)− yi
)2

ti

]
+ αCE(gnn(hi; θg), ti)

Here, θ∗ represents the parameters of the down-
stream predictive models, including those for treat-
ment assignment (θg) and conditional expected out-
come prediction (θ0, θ1). The parameter θB cor-
responds to the underlying BERT parameters that
are fine-tuned to optimize text representations for
the specific causal inference tasks. α is a hyper-
parameter balancing the prediction accuracies of
treatment assignments and outcomes. For scalabil-
ity, we do not include the ‘next sentence prediction’

1In our project, we use pre-trained DistilBERT (Sanh et al.,
2019), a smaller, faster, and lighter version of BERT base.

and ‘masked language model’ tasks typically found
in BERT’s training regime.

Inference involves passing data through the
model to obtain propensity scores ĝ(.) and poten-
tial outcomes Q̂(0, .), Q̂(1, .), which are then used
in the ATE estimators from Section 2. We next
describe several enhancements to refine the perfor-
mance of CausalBERT.

2.3 Temperature Scaling in CausalBERT
In observational studies, treatment and control
groups often exhibit a lack of complete overlap in
confounder distributions, which hinders the deriva-
tion of empirical counterfactuals (Gelman et al.,
2021). In CausalBERT, this lack of overlap can
arise due to poorly calibrated propensity scores,
where extreme ĝ(.) values make adjustments unsta-
ble. To address this issue, we enhance CausalBERT
with Temperature scaling (Guo et al., 2017), which
introduces a temperature parameter M > 0 to ad-
just the confidence levels of the propensity score
predictions. This parameter helps align the pre-
dicted probabilities with their actual confidence
levels, mitigating the risk of extreme propensity
scores that could negatively affect subsequent esti-
mations such as IPW or AIPW.

In CausalBERT, for a given logit vector z from
the treatment prediction branch, the adjusted con-
fidence prediction is: ĝscaled = maxk σSM

(
zk
M

)
,

where σSM denotes the softmax function and k de-
notes the class index. The temperature M (where
M > 1) “softens” the probabilities, increasing
output entropy and leading to more uniform class
probabilities. Conversely, as M approaches zero,
the softmax probabilities converge to a point mass,
favoring more confident predictions.

To determine M , we minimize the Negative
Log-Likelihood (NLL) of the propensity score
predictions on a heldout validation set: M∗ =
argminM NLL

(
z
M ; t

)
, where t is the true treat-

ment label. Adjusting M does not change the pre-
dicted class — it only refines the softmax probabil-
ities to better represent the underlying uncertainties
in treatment assignment predictions.

2.4 Mitigating Overadjustment
Overadjustment for potential confounds can lead
to biased effect estimates (VanderWeele, 2009). In
the CausalBERT objective, α determines the im-
portance placed on the treatment prediction head,
which in turn can influence the amount of con-
founder adjustment. We propose setting α based
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on estimates of the amount of confounding in the
data. To estimate the amount of confounding, we
use the accuracy of treatment prediction as a signal.
This assumes that lower treatment classification ac-
curacies generally indicate weaker confounding. In
such cases, we can increase α, thereby intensifying
the model’s focus on treatment classification with-
out the risk of substantial bias from confounds. By
correlating α with observed treatment accuracy, we
employ an empirical approach to adjust α, enhanc-
ing causal effect estimation across confounding
scenarios. We explore this further in §4.

2.5 Interpreting CausalBERT
As true causal effects are rarely known, it is im-
portant to have qualitative methods to assess the
validity of CausalBERT. We explore two qualita-
tive methods to do so: CLS Comparative Analysis
and Integrated Gradients.

First, building on interpretability methods for
deep learning, our CLS Comparative Analysis
quantifies the aggregate attention for the CLS to-
ken and compares the fine-tuned CausalBERT with
baseline DistilBERT to determine how fine-tuning
affects term importance. We analyze tokens that
significantly influence the CLS token – exclud-
ing stopwords and punctuation – using two strate-
gies. General Top Contributing Tokens ranks
tokens by attention score, selecting the most influ-
ential for each document, while Max Subarray
for Continuous Contribution identifies contigu-
ous token subarrays with maximum influence on
the CLS token. By aggregating these tokens across
all documents, we compare the top influential to-
kens between CausalBERT (A), which controls for
confounding effects through its design, and Distil-
BERT (B), which does not, using A \B to assess
changes in attention due to fine-tuning. Addition-
ally, in semi-synthetic experiments below, we as-
sess the proportion of A\B tokens that correspond
to the confounding variable we inject into the data,
providing an additional check that CausalBERT is
discovering confounders appropriately.

Second, we employ Integrated Gradients
(IG) (Sundararajan et al., 2017), an interpretability
technique that attributes the prediction of a deep
learning model to its input features. For each out-
put component of CausalBERT (treatment and out-
comes), IG identifies the tokens that significantly
increase or decrease the model’s predictions. By
aggregating across instances, we compile the most
influential tokens for each prediction task. We de-

note g+ and g− as the top terms that respectively
increase and decrease the propensity score predic-
tion, while Q+

0 and Q+
1 describe the top terms that

enhance the outcome predictions for the control
and treated groups, and Q−

0 and Q−
1 for those that

diminish these predictions. Each token in these cat-
egories is associated with a contribution weight that
quantifies its impact on the model’s output. These
weights are normalized within each respective list
to highlight the relative importance of each term.

3 Experiments

We empirically examine the capabilities of Causal-
BERT and the proposed enhancements, using both
real and semi-synthetic review data, with a focus on
the following questions. RQ1: How does Causal-
BERT performance vary with confounder strength?
RQ2: What effect does Temperature Scaling have
on treatment effect estimation? RQ3: How does
hyperparameter α in the loss function influence
overadjustment and how does its optimal value re-
late to treatment prediction accuracy? RQ4: How
effective are interpretability methods at surfacing
the confounders discovered by CausalBERT? RQ5:
To what extent do educational aspects, such as ‘bul-
lying’ and ‘administration,’ impact overall school
ratings in real-world data?

Dataset We analyze 677,210 reviews from
GreatSchools.org 2 , covering 83,795 public, pri-
vate, and charter schools in the United States be-
tween 2002-2019. We investigate the impact of
school-related topics such as ‘bullying,’ ‘academic
performance,’ ‘administration,’ ‘extracurricular ac-
tivities,’ and ‘curriculum,’ each defined by a key-
word list established by prior work (Harris et al.,
2022; Gillani et al., 2021) (Appendix A.6). For
each topic, we first separate reviews into those that
discuss the topic and those that do not. For out-
come, we normalize review ratings by computing
state-specific z-scores and average these scores for
each school over the selected period. Thus, out-
come values are in standard units. For treatment
assignment, we adopt different methods based on
the nature of the topics discussed in the reviews.
For neutral topics such as ‘administration,’ treat-
ment is determined by sentiment about that topic.
In this case, an entity is considered treated (T = 1)
if all relevant reviews express positive sentiment
and untreated (T = 0) if all are negative. Schools

2The dataset was provided by our collaborator
GreatSchools and is not publicly available.
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with a mix of positive and negative reviews on
administration are excluded from the analysis to
maintain a clear treatment distinction. For the neg-
ative topic of ‘bullying,’ treatment is 1 if the topic
is mentioned, 0 otherwise.

In our framework, the ‘bullying’ task aims to
assess how the presence of bullying affects the
school’s overall ratings. For other topics like ‘ad-
ministration,’ we treat the sentiment of text ref-
erencing administration as a proxy for real-world
administrative quality and measure how that fac-
tor’s sentiment influences the school’s overall rat-
ing. Our causal pathway assumes multiple school
attributes can affect overall ratings, so we isolate
the effect of a specific aspect by controlling for
other factors. For instance, to examine bullying,
we separate it from other negative conditions—like
poor administration—that might also lower ratings.
We have between 3,900 and 13,300 schools for
each topic; more detailed statistics (e.g., average
total reviews per school) are provided in §A.1.

Semi-Synthetic Data Setup First, we employ a
semi-synthetic evaluation framework (Weld et al.,
2022) to evaluate CausalBERT’s treatment effect
estimation capabilities using the bullying topic. We
simulate a binary confound Ci ∈ {1, 2} by insert-
ing text related to an academic challenges topic
into certain reviews (see §A.2 for terms). Schools
in Class 1 receive these injected sentences, while
those in Class 2 do not.

To manipulate the ATE, we vary the true ATE
by defining two outcome models based on treat-
ment status: for Class 1, outcomes are modeled
as Y ∼ N (u2, 0.3) when treatment T = 1 and
Y ∼ N (u1, 0.3) when T = 0. Class 2 main-
tains uniform effects with Y ∼ N (u2, 0.3), indi-
cating no treatment effect from textual confound-
ing. Here, u2 is set at -0.3, and u1 varies within
{0.3, 0.4, 0.5}, creating corresponding true ATE u
values of {−0.3,−0.35,−0.4}.

The confounder strength is controlled by adjust-
ing the probability p, which defines the treatment
assignment probabilities within each class. We
vary p from 0.9 to 0.5, where for Class 1: P (T =
1|C = 1) = 1− p and P (T = 0|C = 1) = p, and
inversely for Class 2: P (T = 1|C = 2) = p and
P (T = 0|C = 2) = 1− p.

In our semi-synthetic experiments, we construct
data according to specific values for u and p by
sampling schools to satisfy these constraints. Thus,
the only synthetic part of these experiments is the

sampling procedure and the injection of confound-
ing sentences. Each experiment samples 5,000
instances from a population of 13,361.

Evaluation Metrics We perform 5-fold cross-
validation for the semi-synthetic data experiments
and bootstrap aggregation for real-world data anal-
ysis (§A.7). Estimators τ̂Q, τ̂IPW , and τ̂AIPW , and
their calibrated versions, are used to estimate the
ATE, with the naive estimator τ̂unadjust as a base-
line. Since we have different true causal treatment
effect designs, we use the error ratio to evaluate
the estimation results, defined as |τ̂est − τtrue|/τtrue,
where τ̂est is the estimated treatment effect and τtrue
is the true treatment effect. We also report the accu-
racy of treatment prediction and the mean squared
error (MSE) of outcome prediction.

4 Results

4.1 Evaluation on Semi-Synthetic Data

Treatment Assignment Prediction Table 1
reports average treatment prediction accuracy
(α=0.33) for different confounder strengths p and
true ATE u. For every fixed u, the accuracy of
treatment assignment prediction increases linearly
as the confounder strength increases. These re-
sults provide evidence that CausalBERT can cap-
ture the relationship between treatment and con-
founder variables. Furthermore, the results suggest
that treatment prediction accuracy can serve as a
reliable indicator of confounder strength in real-
world data, which we will return to below.

Treatment Accuracy MSE
p u = -.40 u = -.35 u = -.30 u = -.40 u = -.35 u = -.30

.5 .59±.01 .58±.03 .57±.02 .077±.01 .069±.00 .080±.01

.6 .62±.02 .62±.01 .61±.02 .088±.01 .074±.00 .085±.01

.7 .67±.02 .67±.02 .63±.01 .067±.00 .077±.01 .085±.02

.8 .77±.01 .74±.01 .73±.02 .066±.01 .071±.01 .070±.00

.9 .83±.02 .82±.02 .83±.01 .068±.01 .069±.01 .075±.01

Table 1: Average treatment classification accuracy and
outcome MSE using CausalBERT(α=0.33) for different
confounder strength p and true ATE u.

Outcome Prediction Table 1 also shows the aver-
age MSE of outcome prediction. Unlike treatment
accuracy, MSE does not exhibit sensitivity to con-
founder strength. This suggests that the regression
task of predicting outcomes is less challenging for
CausalBERT compared to the classification task of
treatment prediction, indicating different levels of
complexity and sensitivity in these tasks.
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Figure 3: Average error ratio (with standard error) of
treatment effect estimation by confounder strength.

Effects of Confounder Strength Figure 3 shows
the performance of different estimators across
various confounder strengths for semi-synthetic
datasets with a fixed true ATE of -0.3 (see Ap-
pendix for similar results with true ATE values
-0.35 and -0.4). The baseline unadjusted ATE esti-
mator performs better as confounder strength de-
creases, achieving optimal results at a confounder
strength of 0.5. This observation aligns with ex-
pectations for a randomized trial scenario, where
treatment assignment is completely random and
devoid of confounding biases, thus rendering this
naive estimator unbiased.

In contrast, the Q-only, IPW, and AIPW esti-
mators significantly outperform the baseline when
confounder strength is high (p > 0.7). Both IPW
and AIPW outperform Q-only in scenarios with
strong confounders, suggesting that the propensity
scores calculated by CausalBERT are particularly
beneficial in aiding robust ATE estimation.

Calibrated IPW and AIPW estimators display
the most consistent performance across various set-
tings, suggesting that temperature scaling, which
aligns predicted probabilities more closely with
their true confidence levels, enhances reliability.
However, under conditions of weak confounder
strength (p = 0.5), CausalBERT tends to underper-
form compared to the unadjusted estimator. This
could be due to the model capturing irrelevant in-
formation perceived as confounding. Next we will
further explore these observations on temperature
scaling and overadjustment.

Effect of Temperature Scaling Figure 4 (Left)
presents the average error reduction provided by
temperature scaling on estimates from IPW ATE
(α = 0.4) across various confounder strengths and

true ATEs. Temperature scaling consistently en-
hances IPW estimates by aligning predicted prob-
abilities more closely with their actual confidence
levels, mitigating the issue of extreme propensity
scores. This is evident as scaled IPW consistently
shows reduced error ratios compared to non-scaled
IPW across all configurations. For AIPW (see Ap-
pendix), the benefit of scaling is less pronounced
and primarily observed in high confounder strength
scenarios. AIPW’s inherent double robustness
mechanism may make it less susceptible to the
pitfalls of extreme propensity scores.

Both IPW and AIPW show significant improve-
ment from scaling at a confounder strength of 0.9.
This may be attributed to the propensity model’s
increased risk of producing extremely confident
predictions (too close to 0 or 1) at high treatment
probabilities, where the calibration can have a sub-
stantial impact. For a further analysis, see §A.5.

Mitigating overadjustment Figure 4 (Center)
shows the linear relationship between confounder
strength and treatment prediction accuracy, trained
with α = 0.5. This analysis suggests that treatment
prediction accuracy can serve as an indicator of the
amount of confounding within a dataset. Building
upon this relationship, Figure 4 (Right) explores
the impact of varying α ∈ {0.2, 0.5, 0.8} on model
performance for calibrated AIPW on a fixed true
ATE of u = −0.3. (See Appendix for IPW re-
sults.) Taken together, these results suggest that
we can guide our selection of α based on treat-
ment prediction accuracy. Notably, at lower treat-
ment accuracies, indicative of weaker confounding,
α = 0.8 yields the best ATE estimates. Conversely,
in regions of higher treatment accuracy, α = 0.5
performs best. This analysis can guide the selec-
tion of an appropriate α value: a higher α when
treatment accuracy is around or below 0.6 and a
moderate α when treatment accuracy exceeds 0.65.

A possible explanation for the effectiveness of
a higher α in low-confounding scenarios is that it
shifts the model’s focus towards treatment classi-
fication, enhancing its sensitivity to treatment sig-
nals. In these settings, clearer signals emerge be-
cause the primary challenge is not adjusting for con-
founds but accurately identifying treatment pres-
ence. Thus, by prioritizing treatment prediction,
the model more effectively captures and learns
from these direct treatment effects, improving its
performance in estimating treatment impacts.
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Figure 4: (Left) Error ratio decrease by temperature scaling on IPW. (Center) Treatment accuracy (standard error)
for CausalBERT (α=0.5) by confounder strength. (Right) Error ratio by treatment accuracy and α (trained with
α = 0.5) on a semi-synthetic dataset with a fixed true ATE u = −0.3, for the AIPW Calibrated model.

CLS Comparative Analysis We now turn to a
qualitative analysis to investigate which words and
phrases drive the predictive signal in CausalBERT.
The analyses in this section are conducted across
semi-synthetic datasets, fixing the true ATE u =
−0.3, setting α = 0.4, and varying confounder
strengths from 0.9 to 0.5.

To understand which factors are potential con-
founds discovered by CausalBERT, Table 2, dis-
plays results from applying the CLS comparison
method while varying confounder strength. We ob-
serve that when the confounder strength is strong
(p = .9 or .8), the tokens in A \B predominantly
derive from our inserted confounder text, indicating
that supervised fine-tuning enhances the model’s
emphasis on confounder information within the
text representation. When the confounder strength
is weak, however, the model shifts its focus towards
the treatment itself, with tokens such as ‘bull,’ ‘hor-
rible,’ ‘rude,’ and ‘bad’ emerging prominently.

p Top terms Prop.

.9 ##pf, exams, sweet, special, involvement, involved,
handling, ##istic, course, make, structured, study,
want, kind, thinking, transferring, ##hel, sy, even,
face, understand, challenges, ##ul, ##bus, believe,
know, semester, environment, advice, professor

.667

.8 simply, ##pf, exams, deeply, ##real, handling,
course, deal, sizes, materials, level, feedback,
caring, transferring, assignments, focused, ele-
mentary, oldest, ##ted, sy, gifted, face, under-
stand, poorly, challenges, assistants, ##ul, awe-
some, growing, job, large, believe, semester, amaz-
ing, advice, smile, professor

.622

.5 told, needs, ##ing, experience, middle, last, people,
bad, need, never, ##t, un, nothing, even, horrible,
rude, go, bull, ##ied

.053

Table 2: Terms with high attention in CausalBERT but
not DistilBERT by confounder strengths p. Bold terms
were inserted by the synthetic confounder. Prop. is
fraction of top tokens from the confounder template.

These tokens are closely associated with the
manifestation of bullying, suggesting that Causal-

Figure 5: ATEs by topic (α=0.5).

Figure 6: AIPW Calibrated estimates by topic and α .

BERT is sensitive to direct treatment signals when
the confounder-treatment correlation is minimal.
These results indicate that CausalBERT effectively
identifies confounding topics when the confound-
ing strength is high, but has more difficulty doing
so when confounding strength is low.

4.2 Application to Original Data

We next apply CausalBERT to the original school
review data, without any synthetic data injection.
Figure 5 presents the bootstrapped treatment ef-
fect estimates by topic with α = 0.5. We ob-
serve that our adjustment for confounders consis-
tently reduces the magnitude of the effect estimates

11265



when compared to the unadjusted estimates. For in-
stance, in the case of ‘bullying’, AIPW-Calibrated
produces an effect of -0.16, in contrast to a more
substantial decrease of -0.26 in the unadjusted es-
timate. This difference suggests the presence of
confounding factors, such as poor administration,
that often co-occur with bullying incidents, lead
to a compounded negative impact on school rat-
ings. Similarly, in ‘academic performance’, where
AIPW-Calibrated shows a treatment effect of +0.66
compared to the unadjusted effect of +0.87, posi-
tive academic performance may coexist with other
favorable conditions, such as educational programs
and community involvement.

Comparing the overall effect sizes, ‘administra-
tion’ has the highest effect, followed by ‘academic
performance,’ ‘curriculum‘, and ‘extracurricular
activities.’ In contrast, ’bullying’ has a negative im-
pact, as expected. We note that it may be difficult
to directly compare the magnitudes of the bullying
topic with the others, due to the difference in how
the treatment categories were determined (§3).

4.2.1 Integrated Gradients

g+ Bullying g−

horrible, terrible, rude, worst,
##ing, un, bad, lack, bull, seems,
office, needs, nothing, ##t, nega-
tive, different, disappointed, many,
##ied, problem

great, love, best, wonderful, amaz-
ing, excellent, loves, every, caring,
awesome, much, top, say, happy,
truly, family, dedicated, commu-
nity, support, pleased

g+ Academic Performance g−

great, love, school, excellent, amaz-
ing, best, program, staff, happy,
community, know, always, wonder-
ful, make, learn, really, highly, part,
awesome, dedicated

principal, get, administration,
needs, horrible, education, new,
want, rude, worst, care, leadership,
bad, nothing, terrible, bullying,
feel, reviews, di, bull

Table 3: Top 20 terms for treatment assignment predic-
tion (g+ and g−) by Integrated Gradients.

Table 3 presents the top 20 terms for g+ and
g− by applying Integrated Gradients for ‘bully-
ing’ and ‘academic performance’ topics, highlight-
ing how specific terms influence treatment predic-
tion. For ‘bullying,’ terms like ‘horrible’, ‘terrible’,
and ‘rude’ significantly increased the propensity
score, indicating that bullying often co-occurs in
schools with many other negative reviews. Con-
versely, positive terms such as ‘great’, ‘happy’,
‘love’, ‘support’, ‘family’, and ‘community’ de-
creased the propensity score, reflecting environ-
ments where bullying is likely absent and the
school atmosphere is perceived positively. For ‘aca-
demic performance’, positive sentiment terms are
associated with schools perceived favorably aca-

demically, while administrative terms like ‘princi-
pal’ and ‘administration’ correlate with negative
perceptions of academic performance. This pattern
indicates that perceptions of academic quality are
correlated not only with leadership and administra-
tive factors but also with community engagement
and the quality of educational programs.

Selecting α To apply CausalBERT to real data,
we assess the confounder strength by first apply-
ing CausalBERT with a moderate α to estimate
treatment prediction accuracy. The relationship
between this initial accuracy and the estimation
performances, as in Figures 4 (Center), informs the
selection of an appropriate α for subsequent anal-
ysis. Once an optimal α is determined, we recom-
mend re-running CausalBERT with this adjusted α
and employing temperature scaling to enhance the
robustness of the estimate.

Applying this approach, we find that treatment
prediction accuracies by topic are: bullying=.53,
extracurricular=.59, curriculum=.62, academic per-
formance=.63, administration=.65, suggesting low
to moderate confounder strength across all topics.
According to Figure 4 (Right), we repeat the ex-
periment with a higher α = 0.8, using AIPW Cali-
brated estimator, since it is the most robust in our
semi-synthetic experiments. The results in Figure 6
show that the estimated treatment effects are con-
sistently larger than those at α = 0.5 and closer
to the unadjusted estimates. This new result with
α = 0.8 may offer more accurate estimates, as
prior experiments with semi-synthetic data showed
that, under weak confounder conditions, α = 0.8
tended to be the most precise.

5 Related Work

Aspect-based sentiment analysis analyzes senti-
ment toward specific topics (Hu and Liu, 2004;
Tang et al., 2015; Ruder et al., 2016), yet generally
does not address the causal impact of these aspects
on overall ratings, potentially conflating correla-
tion with causation. There is growing research
in causal inference with text (Keith et al., 2020;
Feder et al., 2021; Keith et al., 2023; Veljanovski
and Wood-Doughty, 2024). A common approach
is to use NLP to identify confounds and adjust
for them in estimation (Sridhar and Getoor, 2019;
Roberts et al., 2020; Mozer et al., 2020). Other
methods method adjust for confounders from text
with supervised NLP. Veitch et al. (2020) intro-
duced CausalBERT, leveraging pre-trained BERT
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models (Devlin et al., 2018) to derive “sufficient"
embeddings that capture confounding properties
within texts, optimizing predictions for both treat-
ment and counterfactual outcomes. While they
highlighted the potential for deep learning methods
to improve estimation accuracy, they also outlined
several future challenges: refining deep learning
approaches to enhance estimation accuracy; devel-
oping visualization and sensitivity analysis tools
to clarify the “black box” nature of embeddings;
and expanding semi-synthetic simulations into a
comprehensive benchmarking strategy. These chal-
lenges have inspired the work in this paper.

6 Conclusions

In this study, we have extended CausalBERT to un-
derstand how factors mentioned in school reviews
affect overall ratings. Through semi-synthetic ex-
periments, we verified the effectiveness of Causal-
BERT in a controlled setting, which then guided
our application to real-world data. Our analysis
indicates that Temperature Scaling and Integrated
Gradients can refine causal estimates and enhance
interpretability. Analysis of U.S. K-12 school re-
views found that educational aspects like ‘Admin-
istration’ and ‘Academic Performance’ have signif-
icant influence on school ratings.

7 Limitations

Like most studies involving causal inference, true
effects are unknown, and thus there is unavoidable
uncertainty in the results. Despite rigorous valida-
tion using semi-synthetic data that demonstrates
the model’s effectiveness in controlled scenarios,
the extrapolation of these results to real-world data
must be treated with caution.

Additionally, our reliance on keyword-based
treatment identification introduces another layer
of potential noise. This method assumes that the
presence of predefined keywords, such as ’bully-
ing’, sufficiently identifies relevant reviews.

8 Ethics Statement

Our analysis focuses on publicly available online
school reviews. While we are primarily inter-
ested in understanding specific school-related top-
ics—such as "bullying," "academic performance,"
"administration," "extracurricular activities," and
"curriculum" that influence overall school ratings,
our work could also be utilized by administrators

or parents, potentially leading to unintended con-
sequences for certain schools. We caution against
over-reliance on our results and emphasize con-
sidering each school’s unique context. All data
were provided by our collaborator, GreatSchools,
in an anonymized form, containing no personally
identifiable information. We only use aggregated,
school-level data; any individual-level identifiers,
such as reviewer names or addresses, were removed
prior to our access.
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A Technical Appendix

A.1 Schools Per Topic Table

topic T = 1 T = 0 total

bullying 4,688 8,673 13,361
administration 2,940 1,049 3,989

academic performance 4,111 1,670 5,781
extracurricular 5,406 1,385 6,791

curriculum 4,431 2,063 6,494

Table 4: Schools in treatment and control groups by
topic.

Topic Total Reviews Keyword-Containing Reviews
T = 1 T = 0 T = 1 T = 0

Bullying 11.08 ± 9.06 8.34 ± 5.23 1.60 ± 1.10 0.00 ± 0.00
Administration 8.09 ± 5.34 6.62 ± 2.14 3.41 ± 2.87 2.35 ± 1.39
Academic Performance 8.01 ± 4.76 6.79 ± 2.37 2.39 ± 1.74 1.77 ± 0.98
Extracurricular 9.64 ± 6.55 8.22 ± 4.12 1.82 ± 1.35 1.27 ± 0.58
Curriculum 8.61 ± 5.74 7.37 ± 2.90 2.05 ± 1.69 1.48 ± 0.80

Table 5: Average (± standard deviation) of total and
keyword-containing reviews for treated (T = 1) and
untreated (T = 0) per schools by topic.

A.2 Academic Challenge Post Templates
This subsection outlines the templates and words
used to generate academic challenge posts for our
semi-synthetic data generation process. We use the
following sentence templates to simulate academic
challenges faced by students, with placeholders
indicated by {}:

• "I can’t believe I have to deal with {} in this
course."

• "Every semester, I face {} in my classes."

• "The professor doesn’t understand the chal-
lenges of {}."

• "Does anyone have advice on handling {} in
school?"

• "I’m thinking of transferring because of {}."

The placeholders are filled with words repre-
senting academic challenges: "unrealistic assign-
ments", "difficult exams", "lack of study materials",
"unhelpful teaching assistants", "large class sizes",
"lack of feedback", "poorly structured syllabus".

Data Generation Procedure: Each synthetic
data point is generated by randomly selecting one
of the above words and inserting it into a randomly
chosen template. This process introduces variabil-
ity and simulates real-world academic challenges,
facilitating the evaluation of CausalBERT’s perfor-
mance in handling text-based confounders.

A.3 Estimator Comparison

In this section, we provide additional insights into
the comparison of various treatment effect estima-
tors used in our analysis.

Naive Estimator (τ̂unadjust): The simplest ap-
proach, assumes ignorability, where the treatment
is independent of potential outcomes. While
straightforward, this estimator is often unreliable
in practice due to potential confounding variables
that correlate with treatment assignment.

Q-only Estimator (τ̂Q): It refines the Naive Esti-
mator by assuming conditional ignorability, where
treatment assignment is independent of potential
outcomes given covariates Xi. This method adjusts
for confounders but depends heavily on accurately
modeling the relationship between covariates and
outcomes, which can be challenging with varying
covariate distributions across treatment and control
groups(Rubin, 2001).

Inverse Probability Weighting (IPW): To ad-
dress the limitations of the Q-only Estimator, IPW
introduces the concept of propensity scores, g(x),
estimating the probability of treatment given co-
variates. This method reweights observations to
balance covariate distributions between treated and
untreated groups. However, IPW is sensitive to
extreme propensity scores (ĝ(x) close to 0 or 1 ),
which can lead to unstable estimates.

Augmented IPW (AIPW): AIPW enhances
IPW by combining the propensity score with out-
come modeling. This dual adjustment stabilizes
the estimation process, particularly when extreme
propensity scores are present, offering a more ro-
bust approach to treatment effect estimation.

A.4 CausalBERT Parameter Detail

The CausalBERT model, similar to DistilBERT,
utilizes a model dimension of 768 with an input
maximum length of 512 tokens. The embeddings
layer consists of word embeddings with a size
of [30 522, 768] and position embeddings with a
size of [512, 768]. The transformer layers, com-
prising six blocks, have attention and feedforward
networks, each with parameter vectors of size
[768, 768] and [768, 3072] respectively. For the
downstream tasks, such as treatment assignment
prediction and outcome regression, the model uses
fully connected layers with a hidden dimension of
200. In total, the model contains approximately
66 million parameters, with key components dis-
tributed as follows: embeddings layer (24 million),
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transformer layers (43 million), and downstream
layers (0.3 million).

A.5 Propensity score distribution
To investigate why temperature scaling most sig-
nificantly enhances IPW and AIPW at higher con-
founder strengths (as shown in Figure 4 (Left) and
Figure 11), we begin by defining the overlap metric
as follows:

Overlap =
1

N


 ∑

i:Ti=0

ĝi +
∑

i:Ti=1

(1− ĝi)


 ,

where N is the total number of observations, ĝi
is the predicted propensity score for observation i,
and Ti is the treatment label for observation i. This
Overlap metric assesses the similarity of propen-
sity score distributions between treatment/control
groups. A higher Overlap indicates a better bal-
ance of observed covariates between groups, which
enhances the reliability of causal inference.

Figure 7 shows the Q–Q Plot of Overlap Dif-
ferences (the overlap increment after temperature
scaling) vs. Temperature Scaling Boost on AIPW
across different confounder strengths p from 0.9
to 0.5 and true ATE u = −0.4, computed from
an overall validation set in cross-validation with
CausalBERT(α=0.4). We observe that at higher
confounder strengths, particularly p = 0.9, there is
a marked increase in the overlap increment, which
correlates with significant improvements in AIPW
estimation accuracy and vice versa for lower con-
founder strength. This trend suggests that the tem-
perature scaling interventions effectively mitigate
the distortions in the propensity score distributions
that are more pronounced at higher confounder lev-
els. Consequently, the propensity score estimate
is rectified towards a more moderate range, pre-
venting the extreme values that typically skew the
analysis at high confounder strengths. This im-
proved covariate balance directly enhances AIPW
estimation, demonstrating the benefits of scaling
interventions in strongly confounded scenarios.

To enhance the robustness of our findings in Fig-
ure 7, we extend our analysis by examining the
Pearson Correlation Coefficients (Schober et al.,
2018) across multiple true ATE values (u =
−0.4,−0.35,−0.3). This involves two specific
correlations: first, between the confounder strength
and the increment in overlap, and second, between
the overlap increment and the boost in AIPW esti-
mation accuracy. Across these different true ATE

Figure 7: Q–Q Plot of Overlap Differences (the overlap
increment after temperature scaling) vs. Temperature
Scaling Boost on AIPW (the AIPW error ratio reduction
after the temperature scaling), with α=0.4.

scenarios, we compute and average the Pearson
correlation coefficients, with the first correlation
yielding a value of 0.974 ± 0.022, and the sec-
ond yielding a value of 0.503 ± 0.061. Both cor-
relations are consistently positive, indicating that
a larger confounder strength is always associated
with a more pronounced increase in overlap after
temperature scaling, and that a larger increase in
overlap is associated with a more significant boost
in AIPW estimation accuracy. This consistent posi-
tivity affirms the observations from the Q–Q Plot
and underscores the efficacy of temperature scal-
ing in adjusting for confounder-related distortions
within propensity score distributions, particularly
in settings with high confounder strength.

A.6 Keywords for School-Related Topics

The following lists detail the keywords used to
identify mentions of various school-related topics
in reviews, adapted from the work by (Harris et al.,
2022). Refer to Table 6 for the specific keywords
categorized by topic.

A.7 Data Process Details

A.7.1 Selected Period Define
To determine the most relevant time period for an-
alyzing the influence of specific topics in school
reviews, we employ a systematic approach to iden-
tify the four consecutive years with the highest
frequency of topic mentions across schools. This
method involves aggregating the review data an-
nually for each school and isolating those reviews
that contain keywords associated with the topic
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Table 6: Keywords used to identify school-related topics in reviews.

Topic Keywords List
Bullying bully, bullying, harassment, intimidation, teasing, taunting, tormenting, victimization,

abuse, threatening, coercion, humiliation, exclusion, cyberbullying, aggression, peer
pressure, verbal abuse, physical abuse, emotional abuse, marginalization, ostracization,
discrimination, hazing, stalking

Administration administrator, board, counselor, counselors, coaches, handle, governance, head, ad-
visor, superintendent, headmaster, vice, administration, policymaker, dean, policies,
policy, staff, policymakers, coach, director, faculty, educators, educator, admin, as-
sistant, headmistress, professional, administrative, leadership, principle, principal,
administrators, principals, management

Academic
Performance

exams, grade, score, standards, benchmark, ratings, evaluations, exam, reputation,
performance, review, achievement, assessment, tests, rated, results, test scores, scores,
grades, evaluation, star, rate, standard, academic, test, performing, benchmarks, as-
sessments, success, rating

Extracurricular athletic, club, extracurricular, music, teams, basketball, team, band, sports, drama,
art, football, clubs, dance, athletics, soccer, choir, orchestra, volleyball, cheerleading,
theater, debate, speech, track, swimming, tennis, robotics, student council, volunteer

Curriculum language, reading, spanish, books, projects, courses, pe, writing, course, arts, science,
assignments, book, subjects, math, english, social, history, lessons, write, homework,
curricular, ap, curriculum, subject, physical

of interest. We then count the number of unique
schools discussing these topics each year. By ex-
amining these annual counts, we pinpoint the time
span where the conversation around each topic is
most concentrated. This focused analysis ensures
that our causal inference study is grounded in the
period of maximal relevance for each educational
aspect under consideration.

For each topic, once we define the time period,
we then aggregate the review data for each school
in this period to get school-level data. The data
is further refined by excluding schools with fewer
than five reviews and ensuring that concatenated
non-keyword comments comprise at least 100 to-
kens. In this process, we define the treatment, out-
come, and covariate for each school accordingly,
as we discuss in Section 3. The summary of the
school-level data is shown in Appendix A.1.

A.7.2 Bootstrap Detail
For the real-world data experiment, to ensure sta-
tistical robustness, we utilize a bootstrap sampling
method without replacement, selecting equal num-
bers of treated and control schools for each topic
to create balanced datasets. Specifically, based on
the school-level data summary shown in Appendix
A.1, we sample 9,000 schools for ‘bullying,’ 3,200
schools for ‘academic performance,’ 2,000 schools
for ‘administration,’ 2,600 schools for ‘extracur-

ricular,’ and 4,000 schools for ‘curriculum.’ This
process is repeated six independent times for each
topic to mitigate any sampling bias and provide
a comprehensive overview of the causal impacts.
The experimental results are then averaged across
these six iterations to present a consolidated finding
on how specific aspects influence school ratings.

A.7.3 Reviews Concatenate
When concatenating non-keyword reviews for each
school, we insert the ‘[SEP]’ special token between
individual reviews. This token is preserved dur-
ing training to serve as a delimiter, indicating the
transition between separate reviews from the same
school. To accommodate the DistilBERT model’s
token limit of 512, we employ a two-step truncation
method for concatenated reviews exceeding 450 to-
kens. Initially, up to four sentences are included
in each component review unless adding another
sentence would exceed 450 tokens. If the token
limit has not been reached after this initial pass,
additional sentences are sequentially added from
each review in rounds, continuing until reaching
the token limit or exhausting all sentences. This
approach is based on the assumption that the first
several sentences of a review typically contain the
most relevant information. The aim is to balance
the depth of content detail within each review and
the breadth of including multiple reviews, ensuring
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comprehensive coverage without exceeding token
constraints.

A.7.4 Confounder Insert
In our semi-synthetic data experiments, confounder
text is randomly inserted at different positions
within the reviews, specifically at locations marked
by ‘[SEP]‘ tokens, at the beginning or at the end of
the review texts. This insertion ensures that the con-
founder text is separated from the existing content
by a ‘[SEP]‘ token, maintaining the structure of
the original reviews. This approach simulates the
addition of an authentic single review, seamlessly
integrating the confounder text to reflect realistic
review scenarios while preserving the integrity of
individual reviews.

A.8 Semi-Synthetic Data Detail

In this section, we introduce the probability dis-
tribution framework we employ for the semi-
synthetic data. Building on the definitions in Sec-
tion 2.1, we expand our probability model to in-
clude a confounder class for each subject i, rep-
resented as (Xi, Yi, Ti, Ci). Here, Ci ∈ {1, 2}
categorizes the confounder.

Outcome distributions are modeled to assess
the effect of treatment across confounder classes.
When T = 1 and C = 1, outcomes follow a tar-
get distribution Y ∼ N (u2, 0.3), contrasting with
Y ∼ N (u1, 0.3) when T = 0 and C = 1. For
Class 2, irrespective of the treatment, outcomes
are both modeled as Y ∼ N (u2, 0.3), indicating
uniform effects in the absence of confounding text.
In this example, the conditional ATE for Class 1 is
(u2 − u1), and for Class 2 is 0, then the true ATE
u = (u2 − u1)/2 for the whole dataset.

The probability of confounding class assignment
is evenly distributed with P (C = 1) = P (C =
2) = 0.5. Class 1 subjects receive academic
challenge posts inserted into their observed text,
whereas Class 2 subjects’ text remains unaltered,
simulating environments with varying levels of tex-
tual confounding. Within these classes, the treat-
ment assignment probabilities are designed to re-
flect their respective confounding impacts: P (T =
1|C = 1) = 1 − p and P (T = 0|C = 1) = p,
contrasting with P (T = 1|C = 2) = p and
P (T = 0|C = 2) = 1 − p. The magnitude of
p directly modulates the strength of the confound-
ing effect in our model. As p approaches 1, it
signifies a strong correlation between the treatment
assignment T and the confounder class C, indicat-

Figure 8: Estimator performance at a true ATE of u =
−0.35, consistent with the settings in Figure 3.

ing robust confounding. Conversely, when p nears
0.5, treatment assignment becomes effectively ran-
dom within each class C, implying minimal or no
confounding influence. Thus, p serves as a key
parameter to adjust the intensity of confounding in
our study. In our case, we vary p from 0.9 to 0.5.

The selection of u1 and u2 in our experiment is
informed by the statistical properties of our 13,361
population dataset. The primary objective is to
ensure that our sample not only includes a suffi-
cient number of instances but also reflects a high
sampling quality that aligns closely with the target
distribution. Specifically, we set u2 = −0.3, as the
median and mean of Y |T = 1 in our dataset hover
around -0.3. For u1, we explore values within the
range [-0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5], and ul-
timately select 0.3, 0.4, and 0.5, where the resulting
sample distribution closely matches our target. Ul-
timately, we choose a sample size of 5,000 for our
analysis, ensuring both robustness and relevance in
our evaluation of CausalBERT’s performance.

A.9 Additional Results

Estimation for others true ATE Figures 8 and 9
show the performance of different estimators across
various confounder strengths for semi-synthetic
datasets where the true ATEs are -0.35 and -0.4,
respectively.

Effect of α Figure 10 shows the effect of α on
the IPW Calibrated model, mirroring the results
found on AIPW in Figure 4 (Right).

Temperature Scaling Figure 11 shows the aver-
age error reduction provided by temperature scal-
ing on the AIPW ATE estimates, mirroring the
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Figure 9: Estimator performance at a true ATE of u =
−0.4, consistent with the settings in Figure 3.

Figure 10: Error ratio comparison for CausalBERT
under varying α values (0.2, 0.5, 0.8) indicated by
treatment accuracy (trained with α = 0.5) on a semi-
synthetic dataset with a fixed true ATE u = −0.3, for
the IPW Calibrated model.

results found on IPW in Figure 4 (Left).

Integrated Gradients In this section, we extend
our qualitative analysis on semi-synthetic datasets
with a fixed true ATE u = −0.3 and varying con-
founder strengths from 0.9 to 0.5 using Integrated
Gradients. Figure 12 reveals how top tokens(top
20) from ‘g+‘, ‘g−‘, ‘Q+

0 ‘, ‘Q+
1 ‘, ‘Q−

0 ‘ and ‘Q−
1 ‘

respond to changes in confounder strengths within
CausalBERT. The top graph tracks the proportion
of tokens from ‘g+‘ and ‘g−‘ that derive from the
confounder template, showing how the model’s
reliance on confounder-driven features for treat-
ment prediction varies with confounder strength.
The bottom graph employs Jensen–Shannon di-

Figure 11: Error ratio decrease by temperature scaling
on AIPW estimations

Figure 12: Application of Integrated Gradients on
CausalBERT models trained across semi-synthetic
datasets with a fixed true ATE u = −0.3 across a
varying of confounder strengths from 0.9 to 0.5. The
analysis identifies the top 20 tokens that influence the
model’s predictions across different output components.
The top graph displays the proportion of these tokens
from ‘g+‘ and ‘g−‘ originating from the inserted con-
founder template, and the bottom graph compares the
Jensen–Shannon divergence(JSD) between the weighted
tokens from ‘Q+

0 ‘ and ‘Q+
1 ‘ as well as ‘Q−

0 ‘ and ‘Q−
1 ‘.

Both graphs are presented across varying confounder
strengths.

vergence(JSD)3 to measure the similarity between
weighted tokens from ‘Q+

0 ‘ and ‘Q+
1 ‘ as well as

‘Q−
0 ‘ and ‘Q−

1 ‘.
We observe from the top graph that the propor-

tion of words in ‘g−‘ that originate from the con-
founder template decreases linearly as confounder
strength is reduced from 0.9 to 0.5. This aligns with
our expectations from the semi-synthetic dataset
design. Under strong confounder conditions, a
substantial portion of the non-treatment text in-
corporates inserted confounder text, making these
features strong predictors of non-treatment. As
confounder strength weakens, and the distribu-

3The Jensen–Shannon divergence (JSD) is a symmetric
measure of the similarity between two probability distributions
(Menéndez et al., 1997)
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tion of confounder text between treatment and
non-treatment groups becomes more balanced, the
model’s reliance on these features for predicting
treatment diminishes accordingly.

In the bottom graph, we observe a decrease in
the JSD between the weighted token lists Q+

0 and
Q+

1 , as well as between Q−
0 and Q−

1 , as confounder
strength diminishes. This trend indicates that not
only are the same terms present in both lists, but
their relative weights also converge, suggesting
a decreasing distinction in the outcome predic-
tion signals for treated and untreated groups with
weaker confounder influence. This result aligns
with the design of our semi-synthetic data, which
expects diminishing differences in reviews between
treated and control groups as confounder strength
decreases. Additionally, the range of change in
JSD is notably greater for Q+

0 and Q+
1 than for

Q−
0 and Q−

1 . This pattern aligns with the structural
design of our semi-synthetic data, where a higher
target mean outcome (u1 = 0.3) is associated with
the presence of inserted confounder text, in con-
trast to a lower target mean (u2 = −0.3), which
is mostly derived from Class 2 (without inserted
confounder text). This design implies that the in-
serted confounder text serves as an indicator of
higher overall ratings. Thus, the prediction signals
for increasing outcomes exhibit greater sensitivity
to shifts in confounder strength, as reflected by the
larger divergence observed in Q+

0 and Q+
1 . These

findings collectively highlight CausalBERT’s nu-
anced ability to detect, adapt to, and accurately
represent subtle changes and biases in treatment
effects, confirming its effectiveness in evaluating
the impacts on outcomes under varying conditions
of confounder strength.

Weighted Token Comparison In this section,
we focus on the Integrated Gradients analysis ap-
plied to real data, emphasizing the weighted to-
ken differences between top terms (top 20) Q+

1

and Q+
0 , as well as Q−

1 and Q−
0 . Figure 13 shows

the Jensen–Shannon divergence(JSD) between the
weighted tokens from ‘Q+

0 ‘ and ‘Q+
1 ‘ as well as

‘Q−
0 ‘ and ‘Q−

1 ‘ across all topics. we observe a
distinct pattern across all topics: the JSD for the
outcome-decreasing predictions top terms (‘Q−

0 ‘
and ‘Q−

1 ‘) consistently exhibits greater divergence
compared to the outcome-increasing predictions
top terms(‘Q+

0 ‘ and ‘Q+
1 ‘), particularly notable in

the ’bully’ topic. This trend suggests that, com-
pared to positive comments, negative comments

Figure 13: Comparison of the Jensen–Shannon diver-
gence(JSD) between the weighted tokens from ‘Q+

0 ‘
and ‘Q+

1 ‘ as well as ‘Q−
0 ‘ and ‘Q−

1 ‘ across all topics.
All weighted tokens are derived from the Integrated
Gradients analysis applied to each topic from a single
bootstrap sample.

about schools often cover a broader and more var-
ied range of concerns, based on specific school
attributes.

To provide additional context for Figure 13, we
present the detailed weight distribution of the top
terms used in the analysis along with their corre-
sponding JSD values for several topics (’bullying’
and ’curriculum’), as shown in Figures 14, 15, 16,
and 17. Generally, the observed variations between
control and treatment groups in outcome predic-
tions are subtle, especially for outcome-increasing
predictions. Universally positive terms such as
’great,’ ’love,’ and ’amazing’ are prevalent in both
groups (Figures 15&16), indicating a consensus on
the attributes that positively impact school percep-
tions. For outcome-decreasing predictions, while
negatively charged terms like ’bad’ and ’horrible’
are common in both scenarios (Figure 17), there
remain slight distinctions, highlighting subtler vari-
ations in concerns that negatively impact school
ratings. For example, in the ’bullying’ topic (Fig-
ure 14), we notice that the term ’administration’ is
predominantly featured in the control group’s neg-
ative predictors, highlighting that in the absence
of bullying, issues like poor administration signifi-
cantly impact school ratings. Conversely, this term
is less pronounced in the treated group, suggesting
that the presence of bullying tends to overshadow
other administrative problems in influencing school
ratings.
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Figure 14: The weight distribution for top 20 weighted tokens from ‘Q−
0 ‘ and ‘Q−

1 ‘ for ’bullying’ topic. We also
include the JSD between these two weighted tokens.

Figure 15: The weight distribution for top 20 weighted tokens from ‘Q+
0 ‘ and ‘Q+

1 ‘ for ’bullying’ topic with JSD
between these weighted tokens.

Figure 16: The weight distribution for top 20 weighted tokens from ‘Q+
0 ‘ and ‘Q+

1 ‘ for ’curriculum’ topic with JSD
between these weighted tokens.
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Figure 17: The weight distribution for top 20 weighted tokens from ‘Q−
0 ‘ and ‘Q−

1 ‘ for ’curriculum’ topic with JSD
between these weighted tokens.
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