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Abstract

In this work we systematically investigate how
specific attributes of preference datasets affect
the alignment and downstream performance of
LLMs in instruction-following tasks. We use
a novel synthetic data generation pipeline to
generate 48,000 unique instruction-following
prompts with combinations of 23 verifiable
constraints that enable fine-grained and auto-
mated quality assessments of model responses.
With our synthetic prompts, we use rejection
sampling (RS) and Monte Carlo Tree Search
(MCTS) to obtain preference pairs. Then, we
perform experiments investigating the effects of
(1) the presence of shared prefixes between the
chosen and rejected responses, (2) the contrast
and quality of the chosen, rejected responses
and (3) the complexity of the training prompts.
Our experiments reveal that shared prefixes
provide marginal but consistent improvements
and greater stability across challenging training
configurations. While high-contrast preference
pairs generally outperform low-contrast pairs,
combining both often yields the best perfor-
mance. Additionally, training on prompts of
moderate difficulty leads to better generaliza-
tion across different tasks. Our findings provide
actionable insights into optimizing preference
data curation for instruction-following tasks,
offering a scalable and effective framework for
enhancing LLM training and alignment.

1 Introduction

Aligning large language models (LLMs) with hu-
man preferences has remained a persistent chal-
lenge despite their recent success, particularly for
tasks that involve generating nuanced, instruction-
following responses. To address this bottleneck,
preference learning has emerged as a vital tech-
nique applied in the final stages of LLM post-
training (Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022). Preference learning refines the
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ability of LLMs to align with human expectations
by fine-tuning them on pairs of (chosen, rejected)
responses. Recent successes of using preference
learning to develop frontier language models (Ope-
nAl, 2023; Google, 2023; Anthropic, 2024; Al at
Meta, 2024) have led to automated methods for
curating preference pairs (Pang et al., 2024; Xie
et al., 2024; Xu et al., 2023; Khaki et al., 2024).
While these techniques yield synthetic preference
pairs that significantly improve model capabilities
in closed-ended tasks, it is yet unclear which at-
tributes of the preference pairs contribute to the
improved alignment and downstream capabilities.

Existing research in preference learning has
largely focused on the mechanics of optimization
methods, such as Direct Preference Optimization
(DPO, (Rafailov et al., 2023)) and Proximal Pol-
icy Optimization (PPO, (Schulman et al., 2017)).
While these methods are critical for training mod-
els, they operate with limited insight into how the
structure, quality, and complexity of the preference
datasets themselves affect outcomes (Ivison et al.,
2024; Xiao et al., 2024). For example, questions
remain about whether shared prefixes in paired
responses improve learning, whether training on
high-contrast pairs is always optimal, or how the
difficulty of training prompts impacts generaliza-
tion. Without a systematic investigation of these
factors, designing effective preference datasets is
largely heuristic and suboptimal.

In this work we seek to fill this gap by con-
ducting a systematic investigation of how vari-
ous attributes of automatically-curated preference
datasets affect model performance. We approach
this problem from the viewpoint of instruction-
following (Zhou et al., 2023; Wen et al., 2024;
Zhang et al., 2024b), which are ideal for such anal-
ysis due to their complexity and capacity for inte-
grating multiple constraints, giving us finer con-
trol over the data compared to other domains with
binary correctness such as mathematics or tool
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Figure 1: Automatically curating preference pairs via rejection sampling (RS, left) and Monte Carlo Tree Search
(MCTS, right). RS: We independently sample N different outputs from the policy, score each output with a verifier
and take (high, low) scoring responses as the (chosen, rejected) pairs. MCTS: We perform tree search with the
policy while generating multiple actions. Then, we use the rollouts from sibling nodes with (high, low) reward
scores as the (chosen, rejected) pairs to obtain preference pairs with common prefixes up to the parent nodes.

use (Hendrycks et al., 2021; Mialon et al., 2024).
Furthermore, we focus on verifiable constraints that
can be assessed by code, which allows us to enable
precision by deterministically evaluating the qual-
ity of any response with respect to the constraints,
and scalability by requiring much less compute
than open-ended constraints.

We first define 23 verifiable constraints spanning
diverse requirements such as adherence to specific
structural, stylistic, or formatting requirements,
yet distinct from those presented in IFEval (Zhou
et al., 2023). These constraints form the foundation
of our synthetic data generation pipeline, loosely in-
spired by Instruct-SkillMix (Kaur et al., 2024),
which (1) proposes new general-purpose prompts,
(2) assigns valid combinations of verifiable con-
straints along with the associated parameters and
(3) generates new prompts that incorporate mix-
tures of the constraints in natural language over a
wide variety of domains. Using this pipeline, we
obtain a total of 48K unique prompts which contain
mixtures of four, five or six verifiable constraints.

Using the synthetic prompts, we then apply two
commonly-used methods for automatically curat-
ing preference pairs: rejection sampling (RS) and
Monte Carlo Tree Search (MCTS). Rejection sam-
pling presents a straightforward method to extract
preference pairs for a given prompt by generating
N independent responses with the policy model,
scoring each response and using (high, low) scor-
ing pairs of responses as the preference pairs (Yuan
et al., 2024b; Khaki et al., 2024). On the other hand,
Monte Carlo Tree Search presents a more complex
method for extracting preference pairs — for a given
tree obtained via MCTS, where each node repre-

sents the partial response generated for the given
prompt, any pair of sibling nodes with (high, low)
scoring pairs of responses are used as preference
pairs (Xie et al., 2024; Zhang et al., 2024a). The
RS approach is computationally efficient but there
is no structure to the generated responses. Mean-
while, the MCTS approach is more resource in-
tensive, but returns pairs of responses that share
common prefixes and a more nuanced contrast in
their remaining suffixes.

We use our synthetic prompts and the associated
preference pairs to systematically investigate how
different heuristics used for automatically curating
preference pairs impact models’ downstream per-
formances. To this end, we focus on three critical
dimensions that characterize a preference dataset:

1. Shared prefixes in preference pairs: Does
structural consistency (e.g., common prefixes)
between chosen and rejected responses im-
prove learning?

2. Contrast and quality of responses: Is high-
contrast or low-contrast pairing always supe-
rior, or does a mix of high- and low-contrast
pairs offer better results?

3. Difficulty of training prompts: How does
the complexity of training prompts affect the
model’s generalization ability?

Our findings reveal several actionable insights:

1. Preference pairs with shared prefixes
(MCTS) marginally outperforms preference
pairs that do not (RS) consistently over differ-
ent training configurations. The performance of
the MCTS-generated preference pairs is also more
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stable across different training configurations than
the RS-generated preference pairs — this stability is
particularly valuable when response correctness is
challenging to quantify.

2. Having only high-contrast preference pairs
is better than having only low-contrast prefer-
ence pairs, but having a mixture of both of-
ten provides the best performance by balanc-
ing learning efficiency and diversity. Our results
also consistently indicate that the relative contrast
between the chosen and rejected responses have a
greater impact than their absolute correctness.

3. Training on moderately difficult prompts
results in better generalization across evalua-
tion tasks, including more complex ones. Curat-
ing preference datasets with excessively challeng-
ing prompts returns a low yield rate of preference
pairs due to the lower success rate of the model
responses, and even given the same dataset size,
the difficulty of the prompts tend to overwhelm the
model and hinder the learning efficiency.

2 Background

Preference Learning. Preference learning is a
technique that is used to align LLMs, involving
pairs of (chosen, rejected) responses. Common
methods for preference learning such as Direct
Preference Optimization (DPO, (Rafailov et al.,
2023)) directly optimize the model to update its
parameters to increase the likelihood of generat-
ing the chosen response over the rejected response.
Meanwhile, other methods such as Proximal Policy
Optimization (PPO, (Schulman et al., 2017)) indi-
rectly perform this optimization by first training
a reward model to assign scores corresponding to
the preferences in the training data, and then op-
timizing a policy model with the guidance of the
reward model. Both approaches have been instru-
mental in aligning LLMs with human preferences
and enhancing their capabilities.

Data Curation for Preference Learning. While
various methods have been proposed for curating
preference data (Zhou et al., 2024; Yuan et al.,
2024a; Lai et al., 2024), in this paper we focus
on two popular methods: rejection sampling (RS)
and Monte Carlo Tree Search (MCTS). During
RS, the policy model generates /N independent re-
sponses to the given prompt and a verifier scores
each response according to some evaluation metric.
Responses with (high, low) scores are selected as
the (chosen, rejected) responses (Yuan et al., 2024b;

Khaki et al., 2024). Meanwhile, in the MCTS
framework, the policy model performs tree search
by generating a fixed number of tokens at each iter-
ation and builds the tree with nodes that represent
each subsequence of generated tokens (Xie et al.,
2024). During MCTS, the policy model performs
rollouts by generating full responses and backprop-
agates the reward scores assigned to the rollouts.
This results in a tree of possible responses to the
prompt, with each node being assigned a Q-value.
Here, sibling nodes with sufficient differences in
Q-values or reward scores are selected such that
the preference pairs contain common prefixes.

Unlike previous work, we conduct a systematic
investigation into how different attributes of prefer-
ence datasets affect the downstream performance.
We choose instruction-following as our task to in-
corporate multiple constraints into the prompt and
score the response on a fine-grained level. We use
verifiable constraints to assign quality scores to our
responses in a reliable and efficient manner.

3 Prompt Synthesis

We perform all our experiments with a new set
of synthetic prompts that incorporate mixtures of
verifiable constraints. These prompts allow us to
evaluate the qualities of the generated responses
in both a consistent and fine-grained manner, pro-
viding a suitable environment for us to control the
attributes of the preference dataset.

3.1 Instruction-Following with Verifiable
Constraints

Our verifiable constraints resemble but are distinct
from those provided in IFEval (Zhou et al., 2023).
We define 23 constraints which can be verified us-
ing code, including constraints such as having a
TL;DR summary at the end, alliteration of a cer-
tain number of words, having a fixed number of
parentheses, etc. The complete ontology of our
constraints is provided in Table 6 in the appendix.

As shown in Table 1, our verifiable constraints
follow the formatting of the constraints provided in
IFEval — each constraint is accompanied by a set of
keyword arguments that are needed to actualize the
constraint for the given prompt. For example, the
alliteration constraint is paired with a keyword
argument num_alliteration_words, which indi-
cates the number of words used for the alliteration.
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constraint

keyword args

description

alliteration

max_word_length
num_words_per_sentence

tldr_summary

num_alliteration_words

max_word_length
relation, num_words

n/a

the response should contain an alliteration, i.e. a sequence
of X words starting with the same letter, where X =
num_alliteration_words.

the maximum length of all words in the response should be at
most X characters, where X = max_word_length.

each sentence should contain R € {at least, at most} X words,
where R = relation and X = num_words.

the response should end with a “TL;DR” on a new line sum-
marizing the response.

Table 1: Examples of verifiable constraints used for our synthetic prompts. Some constraints require one or more
keyword arguments that materialize the constraint for its associated prompt, while others do not require any.

remove original constraints

seed prompts

base prompts

generate new prompts w/o constraints

remove duplicate prompts

new base
prompts

de-duplicated
base prompts

llama-3.1-70b-instruct

llama-3.1-70b-instruct

sentence transformer

combinations of
non-exclusive
constraints (k=4, 5, 6)

generate kwargs corresponding
to the given constraints

de-duplicated
base prompts

generate final prompts w/ constraints

Create a study guide for a test on the American
Revolution. Ensure that the eighth sentence is
entirely capitalized, and include exactly seven

parentheses in your response. Finish your
response with the final line including "TL;DR"
followed by a one-sentence summary of your
response. Begin the response with the
sentence "To ensure you are well-prepared for
the upcoming test on the American Revolution,

final prompts

llama-3.1-70b-instruct

itis crucial that you understand the causes, key
events, and consequences of this pivotal
moment in American history." (k=4)

llama-3.1-70b-instruct

Figure 2: Overview of our pipeline for generating synthetic prompts with verifiable constraints. We first take a set
of seed prompts from an existing dataset where the prompts contain constraints, and remove all constraints with an
LLM (11ama-3.1-7@b-instruct) to obtain base prompts corresponding to the original dataset. Next, we randomly
sample a small subset of the base prompts and use them as few-shot examples to generate new prompts without
any constraints. We remove duplicates among the newly-generated prompts and the existing base prompts using a
sentence transformer. Then, we randomly sample a combination of k € {4, 5,6} of our verifiable constraints that
are non-conflicting and use an LLM to generate the input parameters required for the set of selected constraints.
Finally, we merge the kwargs and the new base prompts, resulting in final prompts written in natural language.

3.2 Prompt Generation

We build a pipeline that generates synthetic
prompts for instruction-following, incorporating
combinations of verifiable constraints to create a
set of challenging prompts that stress-test models’
capabilities of following complex instructions. Our
pipeline is similar to Instruct-SkillMix (Kaur
etal., 2024), except that we have a preexisting set of
verifiable constraints functioning as the “skill” and
incorporate additional layers for generating the key-
word arguments before generating the final instruc-
tions. Our pipeline does not require human super-
vision and generates synthetic prompts only using
1lama-3.1-70b-instruct (Al at Meta, 2024).

Figure 2 provides a visual summary of our syn-

thetic prompt generation pipeline. Our pipeline
can be decomposed into five steps. First, we take
a set of seed instruction-following prompts (e.g.,
from IFEval) and remove the additional constraints
originally associated with the dataset. We few-shot
prompt 1lama-3.1-70b-instruct and obtain a
set of prompts from the seed dataset without con-
straints. Second, we take the base prompts and
use llama-3.1-70b-instruct to generate new
prompts in their base forms, taking an approach
similar to Self-Instruct (Wang et al., 2023) by
using the existing base prompts as few-shot exam-
ples and prompting the model to generate 20 new
prompts at a time. Third, we remove the newly
generated prompts that are semantically duplicates
either with any of the seed base prompts or the other
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constraints

prompt

ascending_num_words,
freq_long_words,
max_word_length,
nth_sent_first_word,
start_checker

nth_sent_first_word,
num_bold_words,
num_exclamations,
tldr_summary,
vowel_capitalization

Write a short story about a boy who gets lost in a shopping mall. Include at least 7 words that
are at least 12 characters long, and ensure that the sentences have an increasing number of
words, i.e. each sentence should contain more words than its previous one. Also, only include
words that are at most 12 characters long. Make sure that the fifth sentence starts with the
word "shouting", and begin your response with the sentence "As the sounds of loud chatter
and clinking of dishes filled the food court, little Tommy suddenly discovered that his parents
were nowhere to be seen.".

Write a motivational speech for a high school graduation ceremony. Capitalize the vowels in
your response, and include seven words that are bolded in HTML format (e.g., <b>word</b>).
Also, ensure that the sixth sentence starts with the word "today". Make sure that the response
contains exactly three exclamation marks, and finish the response with the final line including
"TL;DR" followed by a one-sentence summary of your response.

Table 2: Examples of synthetic prompts generated for £ = 5, which combines five verifiable constraints.

new prompts. We use all-mpnet-base-v2 (Song
et al., 2020), a lightweight sentence transformer,
to compute semantic embeddings and use the dot
product to compute similarity scores. Fourth, we
randomly sample a combination of k constraints
which do not contradict each other, and for each
constraint in this mixture, we randomly sample
or generate the associated keyword arguments.
We perform random sampling for keyword argu-
ments that can be randomly chosen without con-
sidering the prompt such as the relation argu-
ment in the num_words_per_sentence constraint
or the num_alliteration_words argument in the
alliteration constraint. Meanwhile, we use
llama-3.1-70b-instruct to generate the key-
word arguments that require more understanding of
the prompt, such as the sentence argument for the
required_sentence constraint. Fifth, we take the
constraints along with the keyword arguments for
each prompt and use 1lama-3.1-70b-instruct
to rewrite the base prompts into their final forms
which integrate the constraints and their keyword
arguments in natural language.

We use our pipeline to generate synthetic
prompts with mixtures of verifiable constraints
such that we can score the quality of any response
on a fine-grained level. Refer to Figure 2 for exam-
ples of the synthetic prompts. In contrast to IFEval
which uses at most three constraints, our pipeline
allows us to integrate any number of constraints to
synthesize prompts, resulting in more challenging
prompts and more diverse quality of responses. We
use k € {4,5,6} in our experiments. Our choice
of using higher values of k is to make our syn-
thetic training prompts maximally distinct from
IFEval (Zhou et al., 2023) for more reliable evalua-
tion. Refer to Appendix B for more examples and

more details on the generated prompts.

4 Preference Data Curation

Using the prompts obtained in Section 3, we gener-
ate responses and extract preference data using the
correctness scores. We employ two methods for
preference data curation: rejection sampling (RS)
and Monte Carlo Tree Search (MCTS). RS presents
a straightforward and efficient way to obtain pref-
erence data but the (chosen, rejected) responses
do not share any relationship. On the other hand,
MCTS is more expensive and slower to run, but
returns (chosen, rejected) responses that share a
common prefix with more nuanced contrast.

Rejection Sampling. Refer to Figure 1 (left) for
a visual overview. We first set a filtering criteria,
where the chosen response must achieve a score
of ¢ according to our verifier and the rejected re-
sponse must achieve a score of r. Then, we gen-
erate N responses independently with the policy
model and score each response with our verifier.
Given a prompt z, its associated set of verifiable
constraints C, the response r and our verifier V
which verifies whether the response satisfies any
given constraint ¢, we compute the score as

R(r|z,C) = = ZV(HL c)
el 2

We extract all preference pairs such that 1) the
chosen score equals c, 2) the rejected score equals
r, and 3) there are no overlapping responses.
Monte Carlo Tree Search. Refer to Figure 1
(right) for a visual overview. We conduct MCTS
at the token-sequence level — for a given prompt =
and the MCTS tree T, each node s; in T represents
a partial response generated for x, and each edge
(si,s5) in T', also known as an action, represents a
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sequence of tokens generated from s; — s;. In this
setup, we use an LLM II as the policy and our veri-
fier as the outcome reward model via three major
steps: selection, expansion and backpropagation.
Selection. Given the current node s; and K distinct
actions (a1, ..., ax ) generated by the policy from
s¢, we balance exploitation and exploration to se-
lect the next node. Each action is a sequence of
tokens under a pre-specified maximum length.

Our selection depends on Q(s¢, a) and N (s¢, a),
the g-value and visit count of each subsequent node
reached by taking action a from s;, respectively.
We use the Predictor+Upper Confidence bounds
applied to Trees (PUCT) and select the next node
s¢4+1 according to the following formula:

* VN (s¢)
S = argmax Qs,,ai + cpuet - (as|st) ———"—
o (st41=s¢—>a;) (e ) e (asl f)1+N(5t1ai)

Appendix C provides details on how to compute
the policy score II(a;|s;). Using PUCT, we pri-
oritize exploration during the initial stages of tree
building and prioritize exploitation during the later
stages of tree building as the visit counts increase.
This results in a balanced trade-off between explo-
ration and exploitation during our tree search.
Expansion. We perform expansion from the current
node s; and generate K new actions with the policy
II. For each new action, we perform M separate
rollouts and score each rollout using a linear combi-
nation of the score ) assigns and the self-evaluation
score assigned by II. We use self-evaluation, de-
noted as Ilgeifeval(st), in addition to the verifier
scores, to provide step-level feedback during the
tree search. Again, refer to Appendix C for more
information on how to compute gt evar (St )-

R(st) = (1-A)

| 2yl e LEZC V(I (st)|z, e) | + A selfeval (st)

After assigning reward scores to each rollout, we
average the scores across the rollouts for each new
action a; fori € [1,..., K] and add s;41 = (s —
a;) with the averaged reward score to the tree.
Backpropagation. After computing the reward
scores for the rollouts and adding new nodes, we
backpropagate the reward scores through the parent
nodes. We increment the visit counts and update
the Q-values of a given (state, action) pair based
on the Q-values and the visit counts of the children
nodes of s;+1 = (s¢,a), as the following:

N(st) =N(st)+1

S Q(seq1,ai) - N(seq1,ai) + R(seq)

Q(5i70’): Zf(:lN(St+1,ai)+1

We repeat the threefold process over multiple
iterations for each root node, and we traverse down
the tree until we reach a terminal node.

Finally, we curate preference data from pairs of
sibling nodes that satisfy the correctness criteria
and sample their rollouts to obtain complete re-
sponses. We only use the scores from V to ensure
that the correctness of the responses stay consistent
across both data curation methods. Appendix D
provides more details of our preference pairs.

S Experiments and Results

We examine three dimensions of the preference
dataset: the 1) existence of common prefixes be-
tween the (chosen, rejected) responses, 2) quality
of the chosen and rejected responses, and 3) diffi-
culty of the prompts used for training. We report
results for additional experiments in Appendix E.
Data curation setup. We implement RS by gener-
ating N = 64 outputs for each prompt in our train-
ing set with a temperature of 1.0, and score each
output using V. Meanwhile, we implement MCTS
with maximum depth of 5, number of actions 4,
number of rollouts 4, ¢;ue¢ = 1.0 and A = 0.2.
Training setup. We run our experiments with
1llama-3.1-8b-instruct (Al at Meta, 2024) and
finetune the model on the preference dataset using
DPO (Rafailov et al., 2023). We finetune the model
for one epoch with a maximum sequence length of
2048, learning rate of 5e-7 with a linear scheduler
and 4 gradient accumulation steps.
Evaluation setup. We evaluate our models on
IFEval (Zhou et al., 2023), as well as three differ-
ent synthetic evaluation sets designed to be more
challenging than IFEval. Our synthetic evaluation
sets are created using the same pipeline in Sec-
tion 3.2, but with the IFEval constraints. We use
k € {4,5,6} for our evaluation sets and synthesize
about 500 evaluation prompts for each value of k.
Using the finetuned models, we generate 16 re-
sponses to each prompt at temperature 0.7 and mea-
sure the average score. We use two metrics: 1) a
hard score measuring whether the response satisfies
all the constraints, and 2) a soft score measuring
the ratio of the constraints satisfied by the response.

5.1 Common Prefix

We investigate the effect of having a common pre-
fix between the (chosen, rejected) responses in the
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training k=4

training k=5

Method IFEval Oursp—4 Oursg—s Oursp—e Method IFEval Oursg—4 Oursg—s Oursp—g
RS, (c=4, r=1) 79.24 3749 20.54 1378 RS, (c=5,r=2) 7632 35.70 19.46 12.61
MCTS, (c=4, r=1) 79.48  39.16 20.39 14.11  MCTS, (c=5, r=2) 76.59  37.81 20.06 12.93
RS, (c=4, r=2) 78.86  38.56 21.66 1471 RS, (c=5,1r=3) 76.25 3528 18.91 12.24
MCTS, (c=4, 1=2) 79.68  39.22 2243 15.75  MCTS, (c=5, r=3) 76.47  36.73 19.94 13.62
RS, (c=4, 1=3) 76.74  35.02 19.40 12.85 RS, (c=5,1=4) 74.18  33.38 17.35 10.38
MCTS, (c=4, r=3) 79.59  39.05 21.61 1496 MCTS, (c=5,r=4) 75.15  34.88 18.75 11.74
RS, (c=3, r=0) 80.06  39.25 21.54 1437 RS, (c=4,r=1) 7895 3940 21.74 14.58
MCTS, (c=3, r=0) 7939  39.15 21.56 13.61 MCTS, (c=4,r=1) 78.63  39.21 21.19 14.63
RS, (c=3,r=1) 80.06  39.15 21.90 1520 RS, (c=4,1r=2) 78.07  37.02 20.17 13.05
MCTS, (c=3, r=1) 7994  39.23 22.15 1493  MCTS, (c=4, r=2) 78.48  38.53 22.12 15.22
RS, (c=3,1=2) 7752 36.20 19.52 12.48 RS, (c=4,r=3) 75.64 3298 17.83 11.19
MCTS, (c=3, 1=2) 77.89  38.89 21.51 13.97 MCTS, (c=4, r=3) 7740  37.63 20.84 14.06
RS, (c=4, r=1/2/3) 7870  36.68 20.20 13.57 RS, (c=4,r=1/2/3) 79.08  37.98 20.50 13.42
MCTS, (c=4, r=1/2/3) 79.97  39.31 22.19 15.89  MCTS, (c=4, r=1/2/3) 78.47  39.03 22.63 15.25
RS, (c=3/4, r=0/1/2/3) 79.10  37.62 20.98 13.99 RS, (c=4/5, r=0/1/2/3) 78.18  36.81 19.72 13.29
MCTS, (c=3/4, r=0/1/2/3) 79.42  39.37 22.24 1520  MCTS, (c=4/5,r=0/1/2/3) 77.89  38.17 22.00 14.38

Table 3: Evaluation results comparing preference data without common prefixes (RS) and with common prefixes
(MCTS). We show results for different training data configurations for k € {4,5}. Each (¢ = n1,r = ng) indicates
that the chosen response addresses 1, constraints and the rejected response addresses ny constraints. The results for
k = 6 and the soft score metrics for all experiments are provided in Tables 11, 12 and 13 in the appendix.

training k=4

training k=5

Method IFEval  Oursg—4 Oursg—5 Oursi—g Method IFEval  Oursp—4 Oursg—5 Oursi—g
RS, (c=3, r=0) 79.04 39.45 20.86 13.82 RS, (c=4, r=1) 76.56 36.08 19.44 11.88
RS, (c=3,r=1) 78.66 38.47 20.56 14.02 RS, (c=4,r=2) 74.57 34.09 17.95 10.93
RS, (c=3,1=2) 74.60 33.59 18.46 11.23 RS, (c=4,1=3) 72.80 31.50 16.68 10.01
RS, (c=4,r=1) 79.24 37.49 20.54 13.78 RS, (c=5,1=2) 76.32 35.70 19.46 12.61
RS, (c=4,r=2) 77.44 37.69 20.33 13.77 RS, (c=5, r=3) 74.13 33.30 17.31 11.21
RS, (c=4, r=3) 74.09 33.38 17.65 10.73 RS, (c=5, r=4) 72.40 30.72 16.26 9.51
MCTS, (c=3, r=0) 78.30 37.86 20.52 12.81 MCTS, (c=4, r=1) 76.71 37.24 19.49 12.37
MCTS, (c=3, r=1) 77.58 38.03 19.76 13.71 MCTS, (c=4, r=2) 75.23 35.65 18.74 12.17
MCTS, (c=3, r=2) 75.05 34.96 18.69 11.53 MCTS, (c=4, r=3) 74.23 32.39 17.22 9.73
MCTS, (c=4, r=1) 79.48 39.16 20.39 14.11 MCTS, (c=5, r=2) 76.59 37.81 20.06 12.93
MCTS, (c=4, r=2) 77.76 38.25 20.00 14.26 MCTS, (c=5, r=3) 76.14 36.04 19.39 12.37
MCTS, (c=4, r=3) 75.65 35.03 18.80 12.36 MCTS, (c=5, r=4) 74.06 32.14 17.81 10.52

Table 4: Evaluation results studying the effects of (chosen, rejected) response quality. We provide results for training
prompt difficulties with & € {4, 5}, and for both RS- and MCTS-based data curations. Each (¢ = ny,r = ng)
indicates that the chosen response correctly addresses n; constraints and the rejected response correctly addresses
ng constraints. The soft score metrics for all experiments are provided in Tables 14 and 15 in the appendix.

preference dataset. Recent techniques utilize tree
search to curate fine-grained preference pairs where
the (chosen, rejected) responses differ after a com-
mon prefix — we examine the effect of utilizing such
preference pairs as exploited by recent methods. To
this end, we use rejection sampling (RS), which
returns responses without common prefixes, and
Monte Carlo Tree Search (MCTS), which returns
responses with common prefixes.

Table 3 shows the results of our experiments.
For each comparison, we fix the size of the training
dataset and the number of unique prompts in each
training set. Meanwhile, we vary the the correct-
ness of the (chosen, rejected) responses and the
training prompt difficulties as measured by k.
MCTS outperforms RS by a small margin con-

sistently over different training configurations.
However, the difference is not enough to warrant
the complexity of MCTS in ordinary settings.
MCTS offers more consistent performance over
different training configurations than RS. This
implies that for cases where the correctness of the
response is difficult to quantify, it may be effective
to use the preference dataset curated via MCTS.

5.2 Response Quality

We investigate the effects of controlling the correct-
ness of the (chosen, rejected) responses in the pref-
erence dataset. Here, we maintain the same train-
ing dataset size and the number of unique prompts
given a fixed curation method and training prompt
difficulty. Our results are shown in Table 4.
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Figure 3: Evaluation results showing the effects of mixing preference pairs with different margins between the
(chosen, rejected) responses. The rows correspond to the number of verifiable constraints in each prompt (values
of k), and each columns corresponds to an evaluation set. The x-axis indicates the correctness of the (chosen,
rejected) responses with lower-margin pairs mixed in while keeping the same training size. The y-axis represents
the accuracies. Results for more experiments are provided in Tables 16 and 17 in the appendix.

We also study the effects of having a mixture of
high- and low-contrast pairs. To compare its perfor-
mance to those of using only high- or low-contrast
pairs, we fix the training dataset size and the num-
ber of unique prompts, and switch some rejected
responses with low correctness scores to ones with
higher correctness scores. For this experiment, we
use MCTS for data curation along with £ = 4 or 5
for the complexity of the training prompts.

The results of our experiments are visualized in

Figure 3. We show the composition of the (chosen,
rejected) responses in terms of their correctness on
the x-axis, and the evaluation metric on the y-axis
for each subplot. For example, for a training set
with & = 4 constraints, we begin with (c,r) = (4, 1)
and then mix in r=2 to obtain (c, r) = (4, 1/2), and
then mix in r=3 to obtain (c, r) = (4, 1/2/3).
When used alone, high-contrast preference pairs
is more helpful than low-contrast preference
pairs. Our results in Table 4 show that for a fixed
correctness of the chosen response, increasing the
correctness of the rejected response decreases the
performance consistently. This trend holds across
both RS- and MCTS-based data curations, as well
as across the difficulty of the training prompts.

The margin between the (chosen, rejected) re-
sponses have a bigger impact than the absolute
scores themselves. Table 4 demonstrates that pref-
erence datasets with the same value of ¢ — r result
in similar performances across our evaluation sets.

The margin between the preference pairs seems
to have more influence on the downstream perfor-
mance than the absolute correctness as long as the
chosen responses are reasonably correct.

Having a mixture of both high-contrast and
low-contrast pairs sometimes demonstrates bet-
ter performance than only using high-contrast
pairs. Our results in Figure 3 indicate that given
the same training dataset size, mixing high-contrast
and low-contrast preference pairs sometimes return
better results than only using high-contrast pairs.
Our results in Tables 16 and 17 in the appendix
also hint that having a mixture of contrasts often
helps, but the results are somewhat mixed.

5.3 Prompt Difficulty

We examine how the difficulty of training prompts
in a preference dataset affects performance. For
each comparison, we fix the data curation method
and the margin between the (chosen, rejected) re-
sponses while comparing the difficulties of our
training prompts with k£ € {4,5,6} with a fixed
training data size. Then, we repeat our experiments
across the other two dimensions. Table 5 summa-
rizes the results of our experiments.

Training on moderately difficult prompts is over-
all more helpful than training on extremely dif-
ficult prompts. We find that models trained on
moderately difficult prompts perform better than
models trained on extreme difficulty prompts in all
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Rejection Sampling (RS)

Monte Carlo Tree Search (MCTS)

Method IFEval  Oursg—4  Oursp—s  Oursp—g  Method IFEval  Oursp—g4 Oursgy—s  Oursp—g
k = 4, (c=3, r=0) 79.70 38.41 21.15 14.27 k = 4, (c=3, r=0) 78.94 39.00 21.60 14.40
k =5, (c=4,r=1) 79.51 38.66 21.48 14.70 k =5, (c=4,r=1) 78.72 39.42 21.43 14.25
k = 6, (c=5,1=2) 77.83 36.42 20.15 12.28 k = 6, (c=5,r=2) 78.13 38.55 21.64 14.45
k = 4, (c=3,r=1) 79.36 39.22 22.00 14.78 k = 4, (c=3,r=1) 79.12 38.81 21.72 15.66
k =5, (c=4,1=2) 78.58 37.70 2142 13.61 k =5, (c=4,1=2) 77.53 38.93 21.69 15.20
k = 6, (c=5,r=3) 76.73 36.16 19.96 12.87 k = 6, (c=5,r=3) 77.18 37.06 20.16 12.84

Table 5: Evaluation results investigating the effects of training prompt difficulty (k € {4,5,6}) on downstream
performance for evaluation sets of varying difficulties. We provide results for both RS- and MCTS-based preference
data curation methods, as well as for different margins between the (chosen, rejected) responses. Each (¢ =
ny,r = ng) indicates that the chosen response correctly addresses n; constraints and the rejected response correctly
addresses no constraints. The soft score metrics for all experiments are provided in Tables 18 and 19 in the appendix.

our evaluation sets. This holds across both RS- and
MCTS-based preference data curation methods.
Training on moderately difficult prompts is
more helpful even for performing well on ex-
tremely difficult prompts at test time. Sur-
prisingly, models trained on moderately difficult
prompts (kK = 4) outperform models trained on
extremely difficult prompts (k = 6) even for evalu-
ations with £ = 6. Our results indicate that training
prompts with moderate difficulties help the model
to achieve generalization to more difficult prompts,
even more so than overly difficult prompts.

6 Conclusion

We systematically investigate the effects of vari-
ous attributes of preference datasets on model ca-
pabilities via instruction-following. To this end,
we first build a data generation pipeline that com-
bines general prompts with mixtures of verifiable
constraints to synthesize challenging instruction-
following prompts. We then automatically curate
preference pairs using rejection sampling (RS) and
Monte Carlo Tree Search (MCTS). Using the pref-
erence pairs, we examine the effects of (1) the ex-
istence of shared prefixes between the chosen and
rejected responses, (2) the contrast and quality of
the responses, and (3) the complexity of the training
prompts. Our results indicate that having a com-
mon prefix in the preference pairs offers marginal
yet consistent improvements, high-contrast pref-
erence pairs outperform low-contrast pairs but a
mixture is sometimes better than both, and train-
ing on moderately difficult prompts is more helpful
than training on extremely difficult prompts. Our
work provides a systematic framework for curating
different types of preference datasets and sets the
groundwork for future studies that extend the scope
beyond verifiable instruction-following constraints
to more general constraints.

7 Limitations

Our work contains several limitations. First, we
restrict our analysis to instruction-following with
verifiable constraints. As discussed in the paper,
we focus on 1) instruction-following in order to in-
tegrate multiple constraints in each prompt which
allows us to assign fine-grained scores to any re-
sponse, and 2) verifiable constraints in order to
evaluate the quality of each response with high reli-
ability and efficiency. Future work should explore
training high-quality reward models that assign re-
liable scalar scores for more abstract constraints
(e.g., does the response follow the topic indicated
in the prompt) such that the ontology of constraints
can be expanded beyond computationally verifiable
constraints. Second, we perform our experiments
only with models at the 8B scale. The number of
different training configurations in our experiments,
in addition to the number of outputs generated per
prompt during evaluation, makes it difficult to scale
our experiments to 70B and beyond. We expect
that experiments at the 70B scale would provide
further useful signals for curating preference data
with larger models. Third, we restrict our prefer-
ence data curation methods to rejection sampling
and Monte Carlo Tree Search. Our purpose is not
to exhaustively verify all methods for automatic
preference data curation, but to compare two pop-
ular yet contrastive data curation methods: one
which is quick and efficient but does not have any
control over the structure of the preference pairs,
and another which consumes more compute and
is tricky to implement but generates fine-grained
preference pairs with shared prefixes that can be
controlled. Future work should investigate more di-
verse types of data curation methods to specifically
examine which method offers the best performance
improvements given the same constraints.
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A Verifiable Constraints

We present the complete ontology of our 23 verifi-
able constraints in Table 6.

B Synthetic Prompt Details

We generate instruction-following prompts for
combinations of k& € {4,5,6} constraints using
vLLM !. Table 7 shows the statistics that describe
the prompts that we generate. For each value of k,
we generate about 16K synthetic prompts, resulting
in a total of about 48K prompts being used in our
experiments. The average length of the prompts
increases as the number of constraints increases, as
the complexity of the prompts increases with larger
numbers of constraints.

Table 8 displays examples of synthetic prompts
generated using our pipeline for a given combina-
tion of verifiable constraints. Each prompt con-
tains a general-purpose base instruction such as
writing a short story or a speech, and is accom-
panied by a combination of verifiable constraints
defined in our ontology with keyword arguments
that satisfy the context of the instruction — for ex-
ample, the first example uses the word "shouting"
for the nth_sent_first_word constraint, which
is appropriate for the context of the base instruction
involving a boy lost in a shopping mall. For any
arbitrary response to a given prompt, we can use
the associated constraints and keyword arguments
to automatically assign a score indicating whether
the response follows each constraint and aggregate
the scores to assign an overall correctness score to
the response.

C MCTS Details

Computing the policy score. We compute the
policy score II(a;|s;) by computing the average of
the log probabilities of tokens generated for action
a; from state s;, with the denominator moderated
by a hyperparameter -y, which we set to 1.0 for our
experiments. Refer to the formula below for the
exact definition:

[laill

(ai|st) = exp el > T(tjls,tr 1)
(2 ]:1

Note that ¢; denotes the jth token in action a;.

Computing the self-evaluation score. We com-
pute the self-evaluation score [lggjf.eyar by prompt-
ing the policy with a self-evaluation prompt

"https://github.com/vllm-project/vilm

Pieifeval, coupled with the response generated by
the model so far, and obtaining the log probabili-
ties of the final token of the response, denoted as
tinal € {yes,no}. We use self-consistency (Wang
et al., 2022) to obtain multiple self-evaluations of
the policy of its own output over L generations and
average the scores in order to improve the relia-
bility of our self-evaluation scores via increased
compute.

o _ l i 1+ exp(H(tﬁnal = yesl-Pself-evah St))
self-eval L — 2

_ exp(I(tsina = 10| Peelf-evat, St))
2

Our formula normalizes the score between 0 to
1, with 0.5 indicating a neutral state where the con-
fidence scores for II(tfna = yes|Pielfeval; St) =
II(tfinar = no|Pielfeval, St). We provide the self-
evaluation prompt Pejf.evq in Figure 5.

D Preference Pair Details

We curate preference pairs using both RS- and
MCTS-based methods for our synthetic prompts
with k£ € {4,5,6}, again using vLLM. Figure 4
shows the number of preference pairs obtained via
both methods for £ = 5 when the correctness crite-
ria for (chosen, rejected) pairs is set as (5 correct, 0
correct), (5 correct, 1 correct), (5 correct, 2 correct),
(5 correct, 3 correct) and (5 correct, 4 correct) pairs.
The left subfigure depicts the number of unique
prompts corresponding to the preference pairs ex-
tracted for each filtering criteria. Using rejection
sampling (RS) returns a higher yield of preference
pairs with high contrast between the (chosen, re-
jected) responses, while using Monte Carlo Tree
Search (MCTS) returns a higher yield of preference
pairs with low contrast between the responses. The
right subfigure depicts the total number of prefer-
ence pairs extracted for each criteria — the same
observation can be made about the relative yield,
with MCTS yielding a large number of preference
pairs due to its tree structure. We use preference
pairs collected for k € {4, 5,6} using both meth-
ods over different filtering criteria to perform our
experiments.
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constraint

keyword args

description

alliteration

ascending_num_words
edit_response
end_quotation
first_letter_capital
frequency_long_words
keywords_ordered
max_word_length

no_period
nth_sentence_capital

nth_sentence_first_word

num_words_per_sentence

number_bold_words

number_exclamations

number_italic_words
number_parentheses

number_parts

numbered_headers
required_sentence

start_checker
tldr_summary

variable_placeholder_format

vowel_capitalization

num_alliteration_words

n/a

n/a

n/a

n/a
relation,
word_length

num_words,

keywords
max_word_length

n/a
nth_sentence

first_word,
num_sentences,
nth_sentence
relation, num_words

num_words

relation,
num_exclamations

num_words
num_parentheses

part_splitter,
num_parts

num_headers
sentence

first_sentence
n/a

relation,
num_placeholders

n/a

the response should contain an alliteration, i.e. a se-
quence of X words starting with the same letter, where
X =num_alliteration_words.

the response should contain sentences such that the num-
ber of words in each sentence is in ascending order.

the response should be separated by dashes ‘——’ sepa-
rating two responses with the second response improv-
ing upon the first response.

the last sentence should be wrapped in quotation marks.
the first letter of each word should be capitalized.

the response should contain R € {at least, at most} X
words that are at least Y characters long each, where R
= relation, X = num_words and Y = word_length.
the response should contain a set of keywords in the
given order and not in any other order.

the maximum length of all words in the response should
be at most X characters, where X = max_word_length.
the response should contain no periods.

the nth_sentence in the response should be all capital-
ized (and only the nth sentence).

the first word of the nth_sentence should be the given
word W in the instruction, where W = first_word.

each sentence in the response should contain R €
{at least, at most} X words, where R = relation and
X = num_words.

the response should bold exactly X words in HTML
format <b>word</b>, where X = num_words.

the response should contain R € {at least, at most} X
exclamation marks, where R = relation and X =
num_exclamations.

the response should italicize exactly X words in textile
format ‘_word_’, where X = num_words.

the response should contain exactly X parentheses (),
where X = num_parentheses.

the response should contain X parts such as “Part
17, “PART 17, “Part 27, “PART 27, where
part_splitter € {Part, PART} and X = num_parts.
the response should contain X enumerated headings
starting with 1., 2., 3., ..., where X = num_headers..
the response should contain a sentence S, where S =
sentence.

the response should begin with first_sentence.

the response should end with a “TL;DR” on a new line
summarizing the response.

the response should contain R € {at least, at most} X
variable placeholders in curly brackets, where R =
relation and X = num_placeholders.

the response should capitalize all vowels in the response.

Table 6: Complete list of verifiable constraints used for our synthetic prompts.

k=4 k=25 k=6
num_prompts  mean_words std_words num_prompts  mean_words std_words num_prompts mean_words std_words
15,900 70.62 14.37 15,739 84.17 15.61 15,559 97.95 16.91

Table 7: Statistics of synthetic prompts generated by our pipeline. We generate about 16K prompts for each value
of k£, resulting in 48K prompts total across all our experiments. Note that num_prompts refers to the number of
prompts, mean_words refers to the average number of words in each prompt, and std_words refers to the standard
deviation of the number of words in each prompt. The number of words in each prompt increases with the number

of constraints.
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Figure 4: Number of preference pairs for different correctness filtering criteria at k = 5. The light blue color
indicates preference pairs obtained via rejection sampling (RS), and the dark blue color indicates preference pairs
obtained via Monte Carlo Tree Search (MCTS). The left subfigure shows the number of unique prompts with
(chosen, rejected) responses associated with each filtering criteria, and the right subfigure shows the total number of
preference pairs with (chosen, rejected) responses associated with each filtering criteria.

<|start_header_id|>user<|end_header_id|>

Evaluate whether the assistant's (partial) response to the given instruction follows the conditions
specified in the instruction so far and does not violate any of the conditions. Complete the
evaluation by using the words "yes” or "no"”, followed by an explanation for why the assistant's
response follows or does not follow the given instruction so far.

Do NOT evaluate the conditions that can be checked automatically with Python code, including the ones
listed below.
- DON'T EVALUATE: number of paragraphs/sentences/words/sections
- DON'T EVALUATE: existence of certain phrases/words/characters
- DON'T EVALUATE: capital or lowercase
Make sure to only evaluate the conditions that can be checked so far. For example, you cannot check
if the response contains at least 20 sentences- this is because the given response is a partial,
incomplete response and the full response later may possibly contain at least 20 sentences.
Also, this can be checked automatically, so it corresponds to the first ”"DO NOT"” condition
listed above.

Instead, focus on the conditions that cannot be checked automatically and is more related to the
content itself, as listed below.

- DO EVALUATE: whether the response follows the topic so far

- DO EVALUATE: whether the response matches the description of the characters/location/theme/etc laid

out in the instruction so far

- DO EVALUATE: whether the response follows the tone requested in the instruction (e.g., persuasive,
solemn, lively, etc.)

For example, if the response asks to write a conversation between a software engineer and a research
scientist, make sure that there are two characters who are each software engineer and research
scientist, respectively.

Instruction: %s
Response so far: %s

Begin your response by listing such content-based conditions and analyzing whether each condition has
been satisfied on separate lines.

Be generous in terms of the evaluation criteria - only say "no” when you are sure that the partial
response does not adhere to the content-based conditions. Otherwise, answer "yes" to each

condition.
Most importantly, make sure to finish your evaluation with the phrase "Based on these evaluations, my
overall evaluation is: ", followed by either "yes” or "no”.

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Figure 5: Our self-evaluation prompt Pyjreva- We allow the policy to focus on the soft content of the response
rather than the hard constraints that are verifiable by code.
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constraints

prompt

ascending_num_words,
freg_long_words,
max_word_length,
nth_sent_first_word,
start_checker

nth_sent_first_word,
num_bold_words,
num_exclamations,
tldr_summary,
vowel_capitalization

alliteration,
keywords_ordered,
nth_sent_first_word,
number_bold_words,
vowel_capitalization

alliteration,
number_italic_words,
number_parts,
required_sentence,
start_checker

edit_response,
num_exclamations,
start_checker,
tldr_summary,
vowel_capitalization

alliteration,
ascending_num_words,
nth_sentence_capital,
number_italic_words,
number_parentheses

max_word_length,
number_parentheses,
number_parts,
tldr_summary,
vowel_capitalization

alliteration,

nth_sentence_first_word,
num_words_per_sentence,

number_bold_words,
vowel_capitalization

Write a short story about a boy who gets lost in a shopping mall. Include at least 7 words that
are at least 12 characters long, and ensure that the sentences have an increasing number of
words, i.e. each sentence should contain more words than its previous one. Also, only include
words that are at most 12 characters long. Make sure that the fifth sentence starts with the
word "shouting", and begin your response with the sentence "As the sounds of loud chatter
and clinking of dishes filled the food court, little Tommy suddenly discovered that his parents
were nowhere to be seen.".

Write a motivational speech for a high school graduation ceremony. Capitalize the vowels in
your response, and include seven words that are bolded in HTML format (e.g., <b>word</b>).
Also, ensure that the sixth sentence starts with the word "today". Make sure that the response
contains exactly three exclamation marks, and finish the response with the final line including
"TL;DR" followed by a one-sentence summary of your response.

Write a scene where a character walks into a room and is surprised by what they see. Capitalize
the vowels in your response and include exactly six words that are bolded in HTML format
(e.g., <b>word</b>). Include an alliteration of five consecutive words beginning with the
same letter of the alphabet, and include the words *door’, ’space’, *chaos’ in your response in
the exact order provided. Moreover, make sure that the fourth sentence starts with the word
"suddenly".

Write a short essay on the importance of vitamin D in human health. Start your response with
the sentence "Vitamin D is an essential nutrient that has been gaining increasing attention in
recent years, primarily due to its significant role in preventing various health issues, ranging
from bone diseases to certain cancers." Include the sentence "Research has shown that vitamin
D deficiency is associated with an increased risk of cardiovascular disease, diabetes, and
osteoporosis.” in your response, and include one word that is italicized in textile format,
wrapped between underscore characters (e.g., _word_). Divide your essay into one part
marked with *Part 1°, and include an alliteration of five consecutive words beginning with the
same letter of the alphabet.

Write a short script of a news anchor introducing a breaking news story. Capitalize the vowels
in your response, provide two responses separated by six plus signs ++++++, and include at
least nine exclamation marks. Also, include a "TL;DR" summarizing the breaking news story
at the end of your response. Begin the response with the sentence "We interrupt your regular
programming to bring you this breaking news story coming in from the White House.".

Create a data model for a medical records database, including at least one relationship and
one constraint. Write the first sentence of the response in all capital letters, include eight
words that are italicized in textile format, and include an alliteration of five consecutive words
beginning with the same letter of the alphabet. Ensure that the sentences in the response have
an increasing number of words, i.e. each sentence should contain more words than its previous
one. Include exactly six parentheses in the response.

Write a list of 10 ways to improve your public speaking skills. Capitalize the vowels in
the response. Have one part marked with PART 1. Finish your response with the final line
including "TL;DR" followed by a one-sentence summary of your response. Only include
words that are at most 14 characters long, and include exactly eight parentheses in the response.

Write a letter to a historical figure, asking for their advice on a modern issue. Ensure that
the vowels in the response are capitalized and there are eight words that are bolded in HTML
format (e.g., <b>word</b>). Include an alliteration of three consecutive words beginning
with the same letter of the alphabet. Make sure that the sixth sentence starts with the word
"nonetheless", and that each sentence in the response is less than 15 words long.

Table 8: Examples of synthetic prompts generated for k = 5, which combines five verifiable constraints.
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E Additional Experiments

We perform two additional experiments to con-
firm that preference learning helps our models
gain instruction-following skills, and investigate
the limitations of our simpler RS-based data cu-
ration method. To this end, we 1) compare the
performances of SFT and DPO to ensure that our
preference datasets teach meaningful skills to our
models, and 2) examine how RS-based preference
data curation methods scale by varying the value
of N, the number of samples generated for each
prompt during rejection sampling.

E.1 SFT vs. DPO

We demonstrate that our preference learning setup
teaches meaningful skills to the models and hence
provide a solid ground upon which to perform the
comparison experiments shown in Sections 5.1, 5.2
and 5.3. To this end, we compare the performances
of the models trained via DPO with the base policy
model (11ama-3.1-8b-instruct) and the policy
model trained via supervised fine-tuning (SFT) on
the chosen responses only. For SFT, we train each
model in bf16 for three epochs with a maximum se-
quence length of 2048, learning rate of 2e-6 with a
linear scheduler and 4 gradient accumulation steps
with a total batch size of 32. We fix the training
dataset size for all experiments.

Tables 9 and 10 shows the results of our experi-
ments. First, we check that DPO significantly im-
proves over the base policy model even though the
verifiable constraints in the training and evaluation
sets are distinct — this indicates that training on a set
of verifiable constraints can be helpful for general-
izing to another set of verifiable constraints as long
as they involve transferable skills. Moreover, we
observe that DPO outperforms SFT across all train-
ing configurations, demonstrating the importance
of our preference learning setup with the rejected
responses in addition to the chosen responses.

E.2 Scaling Rejection Sampling

We investigate how different values of N during
rejection sampling affect its overall quality and
ensure that our RS-based method is designed to
be competitive against MCTS. To this end, we re-
run the rejection sampling curation pipeline for
N € {4,8,16, 32,64} for a fixed difficulty £k = 5
and correctness scores of (¢, r) = (4, 1) and (4,
2) and measure the performance across all of our
evaluation sets.

Figure 6 shows the results of our experiments.
We observe that the performance of the models
trained on preference pairs curated with RS-based
methods increases with NV, but also saturate around
N = 32 and do not observe significant perfor-
mance improvements afterward. This indicates
that curating preference data via rejection sam-
pling, while efficient and straightforward to scale,
has limitations that cannot be solved by simply
scaling the number of generated outputs, and fur-
ther improvements may require more sophisticated
search strategies such as the MCTS-based curation
method implemented in this work.

F Full Experiment Results

F.1 Common Prefix Results

We provide the full results of our experiments in-
vestigating the effects of common prefixes in pref-
erence pairs in Tables 11, 12 and 13.

F.2 Response Quality Results

(chosen, rejected) response quality (unmixed).
We provide the full results of our experiments in-
vestigating the effects of the response correctness
(or quality) in preference pairs in Tables 14 and 15.
(chosen, rejected) response quality (mixed). We
provide the full results of our experiments exam-
ining the effects of mixing preference pairs with
different margins between the (chosen, rejected)
responses in Tables 16 and 17.

F.3 Prompt Difficulty Results

We provide the full results of our experiments in-
vestigating the effects of varying the difficulty of
the training prompts, as measured by the number
of verifiable constraints, in Tables 18 and 19.
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Rejection Sampling (RS)
Method IFEval Oursp—4 Oursi—5 Oursi—g

policy (11ama-3.1-8b-instruct) 71.71/80.12 27.77171.53 14.15/67.76 7.34/64.43

SFT, k = 4, (c=4,1=1/2/3) 74.77182.58 28.17/72.40 15.10/68.04 7.10/64.36
DPO, k = 4, (c=4, r=1/2/3) 78.70/ 85.48 36.68/76.78 20.20/70.71 13.57/ 68.45
SFT, k = 5, (c=4, r=1/2/3) 74.75 1 82.59 28.36/72.42 14.53/68.37 7.74165.07
DPO, k = 5, (c=4, r=1/2/3) 79.08 / 85.56 37.98/77.83 20.50/71.48 13.42/ 68.86

Table 9: Evaluation results comparing the performance of training on our preference datasets via DPO compared to
the base policy model or running SFT on the chosen responses only. We provide results for RS-based preference data
curation, as well as for different training prompt difficulties (¢ = 4 or k = 5). Each (¢ = n1,r = ns) indicates that
the chosen response correctly addresses ny constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).

Monte Carlo Tree Search (MCTS)
Method IFEval Oursg—4 Oursg—5 Oursi—g

policy (11ama-3.1-8b-instruct) 71.71/80.12 27.77171.53 14.15/67.76 7.34/64.43

SFT, k = 4, (c=4, r=1/2/3) 73.30/81.83 29.70/73.48 15.02/69.16 7.50/65.56
DPO, k = 4, (c=4,1=1/2/3) 79.97/86.51 39.31/78.22 22.19/72.14 15.89/70.36
SFT, k = 5, (c=4,1=1/2/3) 73.87/81.89 28.54/72.37 13.49/67.54 6.68 /64.13
DPO, k = 5, (c=4,r=1/2/3) 78.47/85.25 39.03/78.06 22.63/72.49 15.25/70.05

Table 10: Evaluation results comparing the performance of training on our preference datasets via DPO compared to
the base policy model or running SFT on the chosen responses only. We provide results for MCTS-based preference
data curation, as well as for different training prompt difficulties (¢ = 4 or k = 5). Each (¢ = ny,r = n»)
indicates that the chosen response correctly addresses 11 constraints and the rejected response correctly addresses
ng constraints. The left score indicates the hard score (i.e., the proportion of responses that get all constraints
correct), and the right score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the
responses).
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Figure 6: Evaluation results for increasing the number of outputs generated for rejection sampling (RS) from
N = 4to N = 64, given a set of training prompts with £ = 5 and (c, r) = (4, 1) or (4, 2). We observe a steady
improvement in performance as more outputs are generated per prompt until N = 32, where it begins to saturate or
even deteriorate.
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training k=4

Method IFEval Oursg—4 Oursg—5 Oursi—g

RS, (c=4, r=1) 79.24/85.78 37.49/77.50 20.54 /72.06 13.78 /70.23
MCTS, (c=4, r=1) 79.48 /1 85.92 39.16/78.11 20.39/72.04 14.11/70.10
RS, (c=4,r=2) 78.86/85.74 38.56/78.02 21.66/72.34 14.71/70.00
MCTS, (c=4, r=2) 79.68 / 86.36 39.22/78.20 22.43/72.64 15.75/70.61
RS, (c=4,1=3) 76.74 / 83.92 35.02/76.25 19.40/71.00 12.85/68.63
MCTS, (c=4, 1=3) 79.59/86.30 39.05/77.86 21.61/72.28 14.96/70.22
RS, (c=3, r=0) 80.06 / 86.69 39.25/78.55 21.54/72.44 14.37/70.32
MCTS, (c=3, r=0) 79.39/85.86 39.15/78.02 21.56/72.26 13.61/69.42
RS, (c=3, r=1) 80.06 / 86.42 39.15/78.35 21.90/72.01 15.20/70.09
MCTS, (c=3, r=1) 79.94/ 86.37 39.23/78.37 22.15/72.34 14.93/70.00
RS, (c=3, 1=2) 77.52/84.27 36.20/76.86 19.52/70.96 12.48 / 68.68
MCTS, (c=3, r=2) 77.89 / 84.85 38.89/78.02 21.51/71.93 13.97/69.58
RS, (c=4, r=1/2/3) 78.70/ 85.48 36.68/76.78 20.20/70.71 13.57/68.45
MCTS, (c=4, r=1/2/3) 79.97 /1 86.51 39.31/78.22 22.19/72.14 15.89/70.36
RS, (c=3/4, r=0/1/2/3) 79.10/85.72 37.62/77.59 20.98/71.28 13.99 / 68.65
MCTS, (c=3/4, r=0/1/2/3) 79.42/85.84 39.37/78.38 22.24/72.48 15.20/70.26

Table 11: Evaluation results comparing preference data without common prefixes (RS) and with common prefixes
(MCTS). We show results for different training data configurations for k¥ = 4. Each (¢ = ny, 7 = n2) indicates that
the chosen response correctly addresses ny constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).

training k=5

Method IFEval Oursg—4 Oursg—5 Oursg—g

RS, (c=5, r=2) 76.32/83.55 35.70/76.64 19.46/71.51 12.61/69.39
MCTS, (c=5, 1=2) 76.59 /83.81 37.81/77.58 20.06/72.01 12.93/69.85
RS, (c=5,1=3) 76.25/83.63 35.28/76.23 18.91/70.03 12.24/68.75
MCTS, (c=5, r=3) 76.47/83.84 36.73/77.10 19.94/71.82 13.62/69.52
RS, (c=5, r=4) 74.18/81.79 33.38/75.10 17.35/70.05 10.38/67.54
MCTS, (c=5, r=4) 75.15/82.73 34.88/76.06 18.75/71.06 11.74/69.03
RS, (c=4, r=1) 78.95/85.57 39.40/78.60 21.74172.48 14.58 /70.02
MCTS, (c=4, r=1) 78.63 /85.49 39.21/78.33 21.19/72.24 14.63/70.07
RS, (c=4, r=2) 78.07 / 84.87 37.02/77.35 20.17/71.02 13.05/68.48
MCTS, (c=4, r=2) 78.48 /1 85.24 38.53/77.91 22.12/72.16 15.22769.69
RS, (c=4, r=3) 75.64/82.97 32.98/75.32 17.83769.95 11.19/67.40
MCTS, (c=4, r=3) 77.40/84.28 37.63/77.41 20.84/71.72 14.06/69.42
RS, (c=4, r=1/2/3) 79.08 / 85.56 37.98/77.83 20.50/71.48 13.42/68.86
MCTS, (c=4, r=1/2/3) 78.47/85.25 39.03 /78.06 22.63/72.49 15.25/70.05
RS, (c=4/5, r=0/1/2/3) 78.18/85.05 36.81/77.06 19.72/71.13 13.29/68.67

MCTS, (c=4/5, r=0/1/2/3) 77.89/84.82 38.17/77.81 22.00/72.19 14.38/69.63

Table 12: Evaluation results comparing preference data without common prefixes (RS) and with common prefixes
(MCTS). We show results for different training data configurations for & = 5. Each (¢ = n1, 7 = n») indicates that
the chosen response correctly addresses ny constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).
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training k=5

Method IFEval Oursg—4 Oursg—5 Oursi—g

RS, (c=6, 1=2) 75.17182.74 33.45/75.19 17.00/ 69.84 10.19/67.39
MCTS, (c=6, r=2) 75.70/ 83.11 34.06/75.71 17.07/70.27 1046/ 67.64
RS, (c=6, r=3) 77.47/84.44 36.99/77.22 20.05/71.16 13.27/68.39
MCTS, (c=6, r=3) 78.06 / 85.04 38.68/77.96 21.63/72.21 14.94/70.02
RS, (c=6, r=4) 76.09/83.51 35.68/75.63 19.07/71.01 11.99 /68.47
MCTS, (c=6, r=4) 76.26 / 83.58 35.81/75.63 18.41/71.05 11.56/ 68.64
RS, (c=5, r=1) 75.13/82.77 34.17/75.56 18.48/70.93 11.93/68.49
MCTS, (c=5, r=1) 76.09 / 83.47 36.34/76.52 19.04/71.33 12.70/ 68.62
RS, (c=5, 1=2) 75.01/ 82.68 34.48/75.88 18.10/70.64 11.21/68.60
MCTS, (c=5, r=2) 76.57/83.83 36.03/76.72 18.75/70.93 11.62/68.68
RS, (c=5, r=3) 76.73 / 83.89 36.16/76.62 19.96 /70.97 12.87/68.15
MCTS, (c=5, r=3) 77.18/84.53 37.06/77.10 20.16/71.25 12.84/68.57
RS, (c=5, r=1/2/3) 78.10/ 84.97 37.66/77.61 21.45/71.49 13.69 / 68.84
MCTS, (c=5, r=1/2/3) 78.33/85.17 40.12/78.34 23.12/72.32 15.28/69.73
RS, (c=5/6, r=1/2/3/4) 78.48/85.28 37.82/77.86 22.73/72.02 14.39/69.48
MCTS, (c=5/6, r=1/2/3/4) 79.01/85.72 40.58/78.93 23.04/73.18 16.00/70.57

Table 13: Evaluation results comparing preference data without common prefixes (RS) and with common prefixes
(MCTS). We show results for different training data configurations for & = 6. Each (¢ = n1, 7 = n2) indicates that
the chosen response correctly addresses ny constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).

training k=4

Method IFEval Oursg—4 Oursi—5 Oursi—g

RS, (c=3, r=0) 79.04 / 85.87 39.45/78.30 20.86/72.23 13.82/70.45
RS, (c=3,r=1) 78.66/85.51 38.47/78.15 20.56/72.37 14.02/70.13
RS, (c=3,1=2) 74.60/ 82.39 33.59/75.58 18.46/70.62 11.23/68.15
RS, (c=4,r=1) 79.24/85.78 37.49/77.50 20.54 /72.06 13.78 /70.23
RS, (c=4, r=2) 77.44 /8443 37.69/77.68 20.33/72.06 13.77/70.04
RS, (c=4, r=3) 74.09/82.16 33.38/75.30 17.65/70.21 10.73/67.79
MCTS, (c=3, r=0) 78.30/85.19 37.86/77.42 20.52/71.92 12.81/69.30
MCTS, (c=3, r=1) 77.58 / 84.69 38.03/77.74 19.76 /71.84 13.71/70.08
MCTS, (c=3, 1=2) 75.05/82.63 34.96/76.33 18.69/71.25 11.53/68.67
MCTS, (c=4, r=1) 79.48 /85.92 39.16/78.11 20.39/72.04 14.11/70.10
MCTS, (c=4, 1=2) 77.76 / 84.65 38.25/77.63 20.00/71.92 14.26 /1 69.91
MCTS, (c=4, r=3) 75.65/82.99 35.03/75.68 18.80/71.88 12.36 / 68.81

Table 14: Evaluation results studying the effects of (chosen, rejected) response quality. We provide results for & = 4,
as well as for both RS- and MCTS-based data curation methods. Each (¢ = ny,r = ngy) indicates that the chosen
response correctly addresses nq constraints and the rejected response correctly addresses ny constraints. The left
score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right score
indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).
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training k=5

Method IFEval Oursg—4 Oursi—5 Oursi—g

RS, (c=4,r=1) 76.56 / 83.74 36.08/76.81 19.44/71.42 11.88/68.84
RS, (c=4,1=2) 74.57182.17 34.09/75.82 17.95/70.71 10.93 / 68.35
RS, (c=4,r=3) 72.80/80.97 31.50/74.37 16.68 / 69.94 10.01/67.19
RS, (c=5,1=2) 76.32/83.55 35.70/76.64 19.46/71.51 12.61/69.39
RS, (c=5,r=3) 74.13/81.92 33.30/75.35 17.31/70.15 11.21/68.08
RS, (c=5, r=4) 72.40/ 80.42 30.72/73.75 16.26 / 69.31 9.51/66.76
MCTS, (c=4, r=1) 76.71/ 83.90 37.24/77.23 19.49/71.52 12.37/69.19
MCTS, (c=4, 1=2) 75.23/82.86 35.65/76.47 18.74/71.32 12.17/ 69.06
MCTS, (c=4, r=3) 74.23/82.16 32.39/74.63 17.22/69.78 9.73/67.25
MCTS, (c=5, r=2) 76.59 / 83.81 37.81/77.58 20.06/72.01 12.93/69.85
MCTS, (c=5, r=3) 76.14/ 83.50 36.04/76.61 19.39/71.49 12.37/69.32
MCTS, (c=5, r=4) 74.06/81.84 32.14/74.62 17.81/70.37 10.52/67.89

Table 15: Evaluation results studying the effects of (chosen, rejected) response quality. We provide results for & = 5,
as well as for both RS- and MCTS-based data curation methods. Each (¢ = ny,r = ny) indicates that the chosen
response correctly addresses nq constraints and the rejected response correctly addresses ny constraints. The left
score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right score
indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).

training k=4

Method IFEval Oursy—4 Oursy—5 Oursy—g

MCTS, (c=4, r=1) 78.49/85.36 39.03/77.76 22.19/72.10 14.89/69.76
MCTS, (c=4, r=(1,2)) 79.77 1 86.31 38.97/78.03 21.99/71.91 15.24/70.26
MCTS, (c=4, r=(1,2,3)) 79.97 /1 86.51 39.31/78.22 22.19/72.14 15.89/70.36
MCTS, (c=(3.4), r=(0,1)) 78.60 / 85.31 39.01/77.06 22.90/71.89 14.01 / 69.06
MCTS, (c=(3.4), r=(0,1,2)) 79.60 / 86.05 39.89/78.71 22.69/72.70 16.10/70.60
MCTS, (c=(3,4), r=(0,1,2,3)) 79.42/85.84 39.37/78.38 22.24/72.48 15.20/70.26

Table 16: Evaluation results studying the effects of mixing preference pairs with different margins between the
(chosen, rejected) responses. We provide results for £k = 4 with MCTS-based data curation methods. Each
(¢ = ng,r = (n1,n9,n3)) indicates that the chosen response correctly addresses ng constraints and the rejected
response correctly addresses either nq, no or ng constraints. The left score indicates the hard score (i.e., the
proportion of responses that get all constraints correct), and the right score indicates the soft score (i.e., the
proportion of all constraints that are satisfied by the responses).

training k=5

Method IFEval Oursp—4 Oursi—5 Oursi—¢

MCTS, (c=4, r=1) 78.88 / 85.69 39.55/78.35 21.88/71.98 14.59 / 69.56
MCTS, (c=4, r=(1,2)) 78.50/85.30 37.67/717.55 21.29/71.51 14.39/69.15
MCTS, (c=4, r=(1,2,3)) 78.47/85.25 39.03/78.06 22.63/72.49 15.25/70.05
MCTS, (c=(4,5), r=(1,2)) 78.82/ 85.60 39.28/78.37 22.31/72.30 14.50/69.71
MCTS, (c=(4.5), r=(1,2,3)) 78.99/85.57 38.74/77.89 21.85/71.87 13.89/69.00
MCTS, (c=(4,5), r=(1,2,3,4)) 77.89/84.82 38.17/77.81 22.00/72.19 14.38 / 69.63

Table 17: Evaluation results studying the effects of mixing preference pairs with different margins between the
(chosen, rejected) responses. We provide results for & = 5 with MCTS-based data curation methods. Each
(¢ = ng,r = (n1,n2,n3)) indicates that the chosen response correctly addresses ng constraints and the rejected
response correctly addresses either ny, no or ng constraints. The left score indicates the hard score (i.e., the
proportion of responses that get all constraints correct), and the right score indicates the soft score (i.e., the
proportion of all constraints that are satisfied by the responses).
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Rejection Sampling (RS)
Method IFEval Oursg—4 Oursy—5 Oursi—¢

k =4, (c=3,r=0) 79.70/ 86.13 38.41/77.93 21.15/72.36 14.27/69.90
k=25,(c=4,r=1) 79.51/86.02  38.66/78.17 21.48/72.23 14.70/70.04
k =6, (c=5,r=2) 77.83/84.86  36.42/77.23 20.15/71.18 12.28 / 68.34

4, (c=3,r=1) 79.36/85.95 39.22/78.51 22.00/72.54 14.78 /70.07
5, (c=4, r=2) 78.58 /1 85.46 37.70/77.60 21.42/71.84 13.61/69.14
6, (c=5, r=3) 76.73 / 83.89 36.16/76.62 19.96 /70.97 12.87/68.15

k
k
k

Table 18: Evaluation results investigating the effects of training prompt difficulty (k € {4, 5,6}) on downstream
performance for evaluation sets of varying difficulties. We provide results for RS-based preference data curation, as
well as for different margins between the (chosen, rejected) responses. Each (¢ = ny,r = ny) indicates that the
chosen response correctly addresses n1 constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).

Monte Carlo Tree Search (MCTS)
Method IFEval Oursg—4 Oursy—5 Oursi—¢

k=4,(c=3,r=0) 7894/85.62 39.00/78.10  21.60/72.54 14.40/70.04
k=25,(c=4,r=1) 78.72/8540 3942/78.36  21.43/72.27 14.25/69.95
,(c=5,r=2)  78.13/85.05 38.55/77.88  21.64/72.23 14.45/69.81

6
4, (c=3,r=1) 79.12/85.83 38.81/78.24 21.72172.48 15.66 /70.45
5
6

, (c=4, r=2) 77.53 / 84.65 38.93/78.16 21.69/72.41 15.20/70.62
, (c=5, r=3) 77.18 /84.53 37.06/77.10 20.16/71.25 12.84 / 68.57

Table 19: Evaluation results investigating the effects of training prompt difficulty (k € {4,5,6}) on downstream
performance for evaluation sets of varying difficulties. We provide results for MCTS-based preference data curation,
as well as for different margins between the (chosen, rejected) responses. Each (¢ = ny,r = ng) indicates that the
chosen response correctly addresses nq constraints and the rejected response correctly addresses no constraints.
The left score indicates the hard score (i.e., the proportion of responses that get all constraints correct), and the right
score indicates the soft score (i.e., the proportion of all constraints that are satisfied by the responses).
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