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Abstract

Preference optimization methods have been
successfully applied to improve not only the
alignment of large language models (LLMs)
with human values, but also specific natural lan-
guage tasks such as summarization and stylis-
tic continuations. This paper proposes using
preference optimization methods on Chain-of-
Thought steps in order to improve the math-
ematical reasoning performances of language
models. While the chosen answers are obtained
from datasets that include reasoning traces, we
propose two complementary schemes for gener-
ating rejected answers: weak LLM prompting,
and digit corruption. Our approach leads to
increased accuracy on the GSM8K and AQuA-
RAT mathematical reasoning benchmarks for
Falcon2-11B and Mistral-7B. Additionally, the
improved abilities transfer to non-mathematical
tasks, including the ARC benchmark and sym-
bolic reasoning challenges. For example, our
method can lead to up to relative 8.47% and
18.73% increases in accuracy on the GSM8K
and AQuA benchmarks respectively, without
any extra annotations. This work suggests that
the path towards better language reasoning abil-
ities goes through spending resources on creat-
ing high-quality datasets of reasoning traces.

1 Introduction

In recent years, Large Language Models (LLMs)
have been pivotal in democratizing Artificial Intel-
ligence (Al), given their ease of use and impres-
sive abilities in a broad spectrum of tasks. While
they have significantly contributed to the striking
progress of Al, their success has heavily relied
on scaling-up to ever-larger models and datasets.
Nonetheless, scaling has not proved sufficient for
achieving satisfying results on tasks involving rea-
soning. Reasoning has been a central theme in
the history of Al, defining goal posts that push
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the limits of intelligence. The term “reasoning” is
often used to refer to informal reasoning, that “re-
lies on intuition, experience, and common sense to
draw conclusions and solve problems”’(Huang and
Chang, 2022). The limits of scale in eliciting rea-
soning abilities has been confirmed by analyses in
Rae et al. (2021); Bommasani et al. (2021); Cobbe
et al. (2021), amongst others. One reason multi-
step reasoning still poses a challenge to LLMs is
that the next-word prediction objective used to train
them does not explicitly encourage step-by-step
reasoning. Chain-of-thought prompting (CoT; Wei
et al., 2022b), an augmented prompting strategy,
has been shown to improve LLM performances
on reasoning tasks, by guiding them to generate
sequences of intermediate steps. It should be unsur-
prising however that solely prompting a language
model to “think step by step”, whether alongside a
handful of correct rationales (Wei et al., 2022b) or
not (Kojima et al., 2022), does not necessarily elicit
actual system-2-like (Stanovich et al., 2000; Kah-
neman, 2003) reasoning abilities, but at best only
mimics humans’ thought processes. Despite claims
of the type “LLMs are decent zero-shot reasoners’
(Kojima et al., 2022), the emergent ability of rea-
soning appears consistently for very large models
(> 100B parameters) only (Wei et al., 2022a).

A major limitation of CoT prompting is its re-
liance on large models (Wei et al., 2022b; Kojima
et al., 2022). Ho et al. (2022) propose to bypass
this limitation by generating rationales from very
large teacher models and using them to fine-tune
smaller student models. In the same line of work,
Uesato et al. (2022) perform a comprehensive com-
parison between outcome-based supeversied fine-
tuning (SFT), which supervises the final result, and
process-based SFT, which supervises the reasoning
process, and find that process-based supervision
significantly helps language models in mathemat-
ical reasoning tasks. However, solely relying on
high-quality rationales is costly as it requires hu-
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Figure 1: Illustration of the creation process of a preference dataset with two complementary approaches to
generate rejected answers. The preference dataset is used to fine-tune a reference model using a Direct Preference
Optimization (DPO) or one of its variants, after a supervised fine-tuning (SFT) step.

mans or very large language models to generate the
reasoning paths. Furthermore, as evidenced by Ni
et al. (2023), SFT alone tends to make the language
model overfit on the rationales seen during training,
thus assigning low probabilities to alternative but
correct reasoning paths, and as shown in Hong et al.
(2024), SFT can still lead the language model to
assign high-probabilities to undesired sequences.

A notable advancement in the development of
LLMs is a refinement step that elicits more fa-
vorable behaviors. This refinement step is usu-
ally performed to align Al systems with human
values (Gabriel, 2020; Ji et al.,, 2023; Klinge-
fjord et al., 2024). The simplest refinement strat-
egy requires a set of demonstrations, or human-
made prompt-response examples, and fine-tunes a
model on the dataset using supervised fine-tuning.
Preference-based approaches on the other hand,
rely on datasets of comparisons of potential model
outputs. They include reinforcement learning from
human feedback (RLHF; Christiano et al., 2017;
Ouyang et al., 2022; Bai et al., 2022), where a
reward model is learned and then optimized us-
ing the language model as a policy with reinforce-
ment learning algorithms such as the proximal pol-
icy optimization algorithm (PPO; Schulman et al.,
2017). More recently, methods that bypass both the
need of explicitly modeling the reward function and
the need for online interactions as in RLHF, have
become increasingly popular. These include Di-
rect Preference Optimization (DPO; Rafailov et al.,
2024), Identity Preference Optimization (IPO; Azar
et al., 2023), Sequence Likelihood Calibration with

Human Feedback (SLIC; Zhao et al., 2023), and
the prospect theory-based Kahneman-Tversky Op-
timization (KTO; Ethayarajh et al., 2024). Prefer-
ence optimization techniques have been utilized to
improve specific tasks such as summarization and
stylistic continuations (Ziegler et al., 2019; Stien-
non et al., 2020), but to the best of our knowledge,
have never been used to tackle reasoning tasks.

In this paper, we propose to apply preference
optimization techniques to chain-of-thought math-
ematical reasoning. More specifically, we pro-
pose two complementary schemes of constructing
preference pairs from datasets that include valid
mathematical reasoning paths, such as the GSM8K
(Cobbe et al., 2021) and AQuA (Ling et al., 2017).
The contributions of the paper are the following:

 Using Falcon2-11B (Malartic et al., 2024) as our
base model, we show that the scheme that relies
on corrupting digits to create wrong reasoning
steps, can lead to up to 8.47% relative increase
in performances on the GSM8K benchmark, and
18.73% on the AQuA benchmark.

» We validate the robustness of our approach by ob-
taining favorable results using Mistral-7B (Jiang
et al., 2023) as a base model.

* We provide empirical evidence for the transfer
abilities of our approach: fine-tuning on mathe-
matical reasoning pairs improves commonsense
and symbolic reasoning abilities as well: weak
LLM prompting is useful for the ARC bench-
mark (Clark et al., 2018), and digit corruption is
useful for the LastLetterConcat task. (Wei et al.,
2022b)
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* We compare the two schemes and various mix-
tures thereof and provide recommendations of
which data mixtures are more susceptible to im-
prove the reasoning abilities.

* We compare various preference optimization
schemes, and find that DPO leads to better re-
sults than its KTO and ORPO variants.

Our approach, exemplified by two schemes which

requires no external data as illustrated in Figure 1,

suggests that constructing high-quality chain-of-

thought datasets that span a wide range of domains
holds the promise of improving the emergent rea-
soning abilities of language models.

2 PORT: Preference optimization on
reasoning traces

2.1 Problem setup

Starting from a finite set of tokens V), called here-
after the vocabulary, an autoregressive language
model can be seen as a collection of probability dis-
tributions pr,\ over V conditioned on elements of
PST = U;—; V', i.e. sequences of up to T tokens.
We assume the existence of an end-of-sentence
(EOS) token in V, denoted EOS, that can represent
a full stop or a line-break for example.

To generate text, a pre-trained language model
prompted with an input ¢ € V=7 is queried au-
toregressively and samples tokens s; € ), where
si ~ prMm(. | gs1...si—1). The generation process
stops at the first index k for which s, = EOS!.
Here, ¢s1 ... s;_1 refers to the concatenation of the
tokens ¢, S1, ..., Si—1.

When interacting with language models, and more
specifically in CoT reasoning, we are interested
in generating sentences z, i.e. sequences from
V=T that end with the EOS token, rather than
an arbitrary amount of tokens. When prompted
with a sentence x or a sequence of sentences
w2 2% ... 2"~ the language model can therefore
autoregressively generate a new sentence zF ~

pim(. | z2t2? . 2k,

Given a question x (e.g., a math problem), we de-
fine a chain-of-thought as a sequence of n sen-
tences z', ..., 2", where 2" is the final answer. As-
suming the existence of a binary function (z, z)
n(x, z) that assesses the correctness of the sentence
z to the question x, our goal is to tune a pre-trained
model pry to generate a chain 21, Z"™ from a

question x such that n(x, 2") = 1.

Lor until the prompt ¢s; .. . s, exceeds T tokens, but we
disregard this case by assuming a very large context window.

2.2 Proposed approach

Our approach first requires access to a dataset of
reasoning traces, called a CoT dataset, Dyain =
{(zi, 2}, ..., 2") Y|, where each training ex-
ample includes a question z;, and a reasoning
trace (or rationale) comprised of n; sentences,
zll, ..., 2", of which the last element, z;"* is a valid
answer to the question x;, i.e., n(z;, 2;" ) = 1. Nat-
urally, the number of steps n; needed to reach the
answer to x; depends on the question itself.

Such datasets Dypain are generally human-made.
Examples of publicly available reasoning datasets
include the arithmetic datasets GSM8K (Cobbe
et al.,, 2021), AQuA-RAT (Ling et al., 2017),
MAWPS (Koncel-Kedziorski et al., 2016) as well
as the commonsense reasoning datasets Strate-
gyQA (Gevaetal., 2021), Creak (Onoe et al., 2021),
e-SNLI (Camburu et al., 2018), ECQA (Aggar-
wal et al., 2021), QASC (Khot et al., 2019), QED
(Lamm et al., 2021), Sen-Making (Wang et al.,
2019).

SFT data: From such a dataset, we can construct
a dataset Dtsrlzfl of prompt- response pairs, where
each example (z;, 27, . . ., 2"*) contributes n; pairs:
1 1,2 1 ni—1 _n;

(@i, 2), (@izy, 27)s ooy (Tazg o 20, 2.

Such a dataset can be used for supervised fine-
tuning, during which the parameters 8 of the base
language model pr\; are updated to minimize the

SFT loss:

Lspr(0) = — NSFT Yy Sry pe(aF [ @iz, (1)

where Ngpr = Zf\i 1= |D§£EJ In principle, if

the data is representative of the target task and if
the model generalizes well, the SFT phase should
increase the likelihood of valid reasoning steps. Put
differently, because each 2% in the training dataset
is a step towards a valid answer z;", then after
supervised-fine-tuning, on similar examples, the
model should encourage the sentences that unroll
the reasoning and help discover a valid answer to
the initial question.

DSFT

orains WE also construct

From

a preference dataset Dfrr;fn, comprised of triplets

of the form (prompt, chosen, rejected). The
prompt and the chosen answers are obtained di-
rectly from DPET | but for each prompt (which is
actually either a question or a concatenation of a
question and a certain number of initial reasoning
steps), we need an invalid reasoning step. Naturally,

an arbitrary sequence of tokens would be invalid,

Preference data:
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but it will provide no useful signal to the model
if it is fine-tuned with RLHF or with preference
optimization methods such as DPO using such a
preference a dataset. Ideally, the rejected answers
should be almost correct reasoning steps, or con-
tain errors that either a language model or a human
are expected to make. Naturally, the rejected an-
swers can be obtained using human annotators ex-
plicitly asked to generate wrong but close-enough
answers. In this work however, we investigate two
simple and complementary ways of defining such
a dataset:
« LLM generation: For each pair (2,271, 2F)
from Dtsrga, we prompt a smaller language
model (hereafter also referred to as weak LLM)
with xiz}:k_l and use the response to define the
corresponding rejected answer 2*. By incorporat-
ing the resulting triplet in the preference dataset,
we naturally incentivize the base model to avoid
errors of the type made by the weak LLM. This
process can be used to generate multiple rejected
answers 2* per prompt xizilzk_l.
* Digit corruption: In datasets that involve math-
ematical reasoning, most reasoning steps z" in-
clude digits. Without modifying any non-digit
character of z*, we replace each digit with one
from 0 to 9 with equal probability. Similarly,
this approach can be used to generate multiple
rejected answers Z* per prompt xizil:k_l.
An illustration of this dataset creation process is
provided in Table 5 of Appendix A.
After an SFT phase where pry is fine-tuned into
PSFT USing DtSrFaEl by minimizing the loss in (1),
any preference optimization method can be used
on Dfrr;i. For instance, DPO (Rafailov et al., 2024)
fine-tunes pspT into a model pg that minimizes the
following loss:

EDPO(G) - _E(x7yw7yl)ND$rr§ifn [l(:(}7 y’LU7 yl7 0)] ,
()
where
Wz, Yuw, y1; 0) = logo <ﬁlog Py | 2)
pSFT(yw | ZL‘)

po(yi | =) > .3
psET (Y1 | )

Here o is the sigmoid function and 5 is a scaling
hyperparameter.

Blog

3 Experiments

The goal of the experiments presented in this sec-
tion are threefold. First, we empirically investi-

gate the proposed approach, and show that unlike
SFT, it is less prone to task overfitting. Then, we
compare the two schemes above for constructing
rejected answers, along with different combina-
tions thereof. Next, we investigate the effect of
the preference optimization method by compar-
ing DPO to some of its variants. Finally, we vali-
date the robustness of our method to both the base
model and the training dataset.

Evaluation: To assess the approach, we need to
evaluate the models on informal reasoning tasks,
for which chains of thoughts can help reach the
valid answers. Our main evaluation task is the

GSMEK test dataset (Cobbe et al., 2021), that con-

tains 1319 high quality grade school math word

problems. To assess the transfer abilities of our ap-
proach, we also consider the three following evalu-
ation datasets:

* The Algebra Question Answering with Ratio-
nales dataset(AQuA; Ling et al., 2017), which
is a harder math word problem that includes ap-
proximately 100, 000 algebraic word problems,
each presented with a rationale leading to one
of five multiple-choice options (A to E). We use
the accompanying test set of 254 examples for
evaluation.

e The AI2’s Reasoning Challenge(ARC; Clark
et al., 2018) which is a commonsense reasoning
benchmark covering multiple science subjects.
The questions are split into Easy and Challenge
sets. Questions in the Challenge set cannot be
solved with retrieval or co-occurence methods.
Each question admits one valid answer amongst
a set of typically four options. We solely focus
on the Challenge part.We use the test set of the
ARC-Challenge set, that consists of 1172 exam-
ples, for evaluation.

¢ The LastLetterConcat dataset (Wei et al., 2022b)
which is a symbolic reasoning task where the
goal is to join together the last letters of individ-
ual words. The dataset contains a total of 500
examples.

More specifically, we use the Language Model

Evaluation Harness (Gao et al., 2023) to calculate

the accuracy (between O and 1) of the tested models.

To elicit the desired CoT behavior, we add few-shot

examples from the train set that contain rationales

to each question to be evaluated, extract from the
generated text the proposed answer, and compare it
to the ground truth. We report our results below as
percentages. We use 5-shot examples for GSMSK,
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AQuA, and LastLetterConcat. For ARC, we use
25-shot examples, but given that no rationale is pro-
vided in the train set, we use GPT-4 (et al., 2023)
to construct plausible rationales, and filter them
out manually. The used prompt is provided in Ap-
pendix B.

Base model: As a base model, we use the newly
released pre-trained Falcon2-11B (Malartic et al.,
2024) for all our experiments, except in Section 3.6,
where we confirm that our method is agnostic to
the base model by using Mistral-7B (Jiang et al.,
2023).

Training data: As previously mentioned, our
method requires using a CoT dataset. For all our
experiments, except in Section 3.7, we use the
GSMSK train dataset (Cobbe et al., 2021), that
consists of 7473 examples, given that it contains
solution steps, in order to construct the SFT and
preference datasets DSFT and D™ | as explained
in Section 2.2. Example tuples (z;, z7,. . ., z'")
from this dataset are provided in Appendix A. It is
important to note that throughout the training and
evaluation process, we only use the training set,

without any extra data or human annotation.

3.1 Supervised fine-tuning

From the GSMSK training dataset, we construct
the SFT dataset DSET as described in Section 2.2.
The train set of GSM8K consists of 7473 examples,
with an average of 4.57 reasoning step per example,
leading to to an SFT dataset of 34197 examples.
We then fine-tune the based model on this dataset
using low-rank adaptation (LoRA; Hu et al., 2021)
for efficient parameter updates, processing each ex-
ample 3 times. The learning rate used in 1.4x 1075,
and the batch size is 16. For LoRA, we use rank 64
matrices and a scaling parameter o = 16. It is note-
worthy that GSM8K examples contain calculation
annotations (between «», as shown in the examples
provided in Appendix A). These annotations can
be used to call external tools (e.g., python scripts
or calculators) to perform calculations, rather than
asking the LLLM to perform the calculation. While
we made no such usage of external tools, we tried
both keeping and removing the annotations from
the text before SFT, and found no significant differ-
ence in terms of performance. We thus decided to
process the dataset without annotations.

Details about the choice of the hyperparameters are
provided in Appendix C.

Model GSM8K AQuA ARC LastLetterConcat
Base model 54.66 31.50 76.11 16.67

SFT 55.43 30.71  75.60 17.34

DPO (ours) 58.91 35.04 76.02 18.6712%)

Table 1: Accuracy (in percentage) of the base, SFT,
and DPO models on the three considered tasks. For
both SFT and DPO, the Falcon2-11B base model is fine-
tuned on datasets obtained from the GSM8K training
set. The rejected answers for DPO are obtained using
digit corruption, as explained in Section 3.2

Results: In addition to testing the fine-tuned
model on the GSM8K’s test set, we assess SFT’s
out-of-distribution generalization, on the harder
math word problem AQuA, and on the non-
mathematical tasks ARC and LastLetterConcat.
We report the accuracies in Table 1. As expected,
and as confirmed by other studies (Uesato et al.,
2022), fine-tuning the model on the reasoning steps
helps improve the performances on questions re-
quiring reasoning that come from the same dis-
tribution. The performances on AQuA and ARC-
Challenge drop after the SFT stage, confirming
the overfitting issues of SFT, and their limited
generalization to unseen examples (Ni et al., 2023).
This is also confirmed by an additional experiment
shown in Table 6 in Appendix D, where we reduce
the number of training epochs (on GSM8K) and
observe better performances on AQuA.

In the next subsections, we investigate whether
preference optimization algorithms can lead to even
further performance boosts on the three evaluation
tasks.

3.2 Preference optimization with digit
corruption
DSFT

From train?

we construct a preference dataset
DP™! using digit corruption as explained in Sec-

train
tion 2.2. Given the stochasticity of the digit corrup-
tion approach, we ensure that the rejected answers
are indeed invalid, by repeatedly generating rea-
soning steps until they differ from the ground truth
reasoning steps. For reasoning steps that do not
include digits, we simply do not include them in
the preference dataset.

We fine-tune the SFT model on the obtained
preference dataset using DPO with a scale factor
B = 0.2, with the same LoRA configuration as
SFT. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 8 x 10~°
along with a linear schedule for the learning rate.
This choice of hyperparameters is explained in Ap-
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pendix C.

Results: We report the accuracies post DPO tun-
ing in Table 1. The significant performance in-
crease in GSMS8K (a relative 7.77%) shows how
merely corrupting digits to create rejected reason-
ing steps improves the mathematical reasoning abil-
ities of Falcon2-11B. Our approach helps boost
performances on the AQuA task, with a relative
increase of 14.41%, and on the LastLetterConcat
task, with a relative increase of 12%, even without
using any example from the AQuA train set or from
LastLetterConcat during training. These results
clearly indicate that, unlike SFT, DPO fine-tuning
using digit corruption to construct rejected answers
instills reasoning skills in the base model. We
note however, that there is no benefit on the ARC-
Challenge task. We suspect that it is because it
does not require the same type of skills as GSM8K
and AQuA. In Section 3.3, we investigate whether
other schemes could boost ARC performances.

3.3 Preference optimization using weak LLMs

Unlike Section 3.2, when constructing DP™ us-
ing weak LLLM generation, as described in Sec-
tion 2.2, there are a few parameters to take into
account: which weak LLM to use? how to prompt
said LLM? how to post-process the resulting se-
quences?

We first consider the instruct version of the Gemma
model (Team et al., 2024), Gemma-2B-it, to gen-
erate answers. We use the prompt provided in Ap-
pendix B. We then filter out the responses that do
not start with “Next step: ”, and simply do not
create the corresponding triplet in the preference
dataset. The generation stops at the first line-break
or full stop. We also consider the larger Llama-7B
(Touvron et al., 2023) and its chat version, to assess
the effect of the weak LLM size.

When using a weak LLM to generate rejected an-
swers, it is not unlikely that the LLM outputs valid
reasoning steps, in which case, including the re-
sulting triplet in the preference dataset might hurt
generalization of the resulting model. We experi-
mented with the robust version of DPO (Chowd-
hury et al., 2024), which accounts for the ambi-
guity in the preferences, but that did not result in
improved performances. We therefore consider
to corrupt the digits of the generated sequences
similar to the digit corruption scheme alone. In
Figure 5 of Appendix D, we study the effect of
post-generation digit corruption, and find that digit

corruption is essential for downstream tasks. We
also compare using the chat version of Llama-7B
with the prompt template of Appendix B to using
its base version with few-shot examples only, and
find that using the base version yields to better per-
formances.

Lastly, we consider an iterative approach, where
we use the Falcon2-11B fine-tuned with DPO as
described in Section 3.2 as a weak LLM. We re-
port in Table 2 the accuracies on the three tasks,
using the three weak LLMs with post-generation
digit corruption. While DPO with the weak LLM
scheme leads to improved results on the math word
problems, it does not perform as well as the sim-
pler digit corruption scheme, but it is noteworthy
that with Llama-7B and the iterative approach, the
performance on ARC-Challenge improves over the
base model. This suggests that larger models used
as weak LLMs are more likely to generate rejected
answers that are informative enough for DPO to
lead to better models.

Model GSMSK AQuA ARC
Base model 54.66 31.50 76.11
DPO - effect of weak LLM choice

Gemma-2B-it 53.68 29.92  75.94
Llama-7B 56.10 30.71  77.05
iterative 55.65 33.46 76.28
DPO - effect of preference data size

(digit corruption) x 3 59.29¢s.47%)  33.07  76.79
(Gemma-2B-it) x 3 51.40 35.04 76.45
(Llama-7B) x 3 54.51 29.58  76.19
Llama-7B + digit corruption 56.55 32.68 7747
(Llama-7B + digit corruption) x 3 56.48 30.31  T7.700 2%

Table 2: Accuracy (in percentage) of the DPO-finetuned
Falcon-11B using different schemes for rejected answer
generation. “(scheme) x 3” means that the preference
dataset contains 3 rejected answers per chosen answer,
obtained by scheme. “schemel + scheme2” means that
it contains 2 rejected answers per chosen answer, ob-
tained by concatenating two datasets obtained from
schemel and scheme?2 respectively. iterative corre-
sponds to Falcon2-11B fine-tuned with DPO as per Sec-
tion 3.2.

3.4 Increasing the size of the preference
dataset

A natural question at this point is to consider the
effect of the size of the preference dataset on the
resulting model fine-tuned with DPO. Given that
our proposed approach allows us to generate arbi-
trarily many wrong reasoning steps per valid rea-
soning step (e.g., we can corrupt the digits in many
ways, and prompt weak LLMs multiple times),
we can construct preference datasets with triplets
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Method DPO IPO KTO ORPO
Accuracy 58.91 56.40 54.59 55.42

Table 3: Comparison of alternatives to DPO - accuracy
on the GSMSK test set. The preference dataset is con-
structed using digit corruption only, as in Section 3.2.

(prompt, chosen, rejected) that contain re-
dundant (prompt, chosen) pairs, with different
rejected answers. We thus consider using three
rejected answers for the digit corruption, Gemma-
2B-it, and Llama-7B experiments. We also con-
sider fine-tuning on a dataset consisting of both
digit corrupted answers and Llama-7B-generated
answers (themselves digit corrupted), and a dataset
containing three times as many rejected answers.
The source dataset is GSMS8K.

We report in Table 2 the results of the different
schemes on GSMS8K, AQuA, ARC. These results
suggest that increasing the preference dataset
size or mixing has the potential of further improv-
ing the reasoning abilities of the base language
model, and that diversifying the sources of re-
Jjected answers might help with generalization to
other tasks. For example, simply tripling the num-
ber of rejected answers for the digit corruption
scheme leads to a an accuracy of 59.29% on the
GSMBSK task, which represents a relative increase
of 8.47% over the base performances.

3.5 Benchmarking DPO and its variants

While DPO has emerged as the go-to method for
preference optimization, several variants (Azar
et al., 2023; Ethayarajh et al., 2024) claim to ad-
dress some of its shortcomings: overfitting, ineffi-
cient learning, memory utilization. In this section,
we make use of our constructed preference dataset
in Section 3.2 to further compare DPO to its vari-
ants. Unlike Saeidi et al. (2024), we also consider
ORPO (Hong et al., 2024) which combines both
SFT and preference optimization. We report the
accuracies on the GSMS8K test dataset in Table 3.
We find that the variants of DPO do not lead to
improved performances, even with extensive hy-
perparameter tuning for each method separately
(Appendix C). This confirms the recent observa-
tions from the benchmark study in (Saeidi et al.,
2024) that DPO still outperforms its variants on
a variety of tasks.

3.6 Robustness analysis: using Mistral as a
base model

In this section, we perform some of the experiments
above using Mistral-7B (Jiang et al., 2023) as a
base model, rather than Falcon2-11B. We report
the results in Figure 2, and find that all approaches
lead to better performances on the GSM8K bench-
mark than the base model, which scores 38.51%.
This experiment confirms the robustness of our
approach to the base model, as well as the the
strength of the digit corruption scheme.

472,68 41.69
40 39.12

= Base model accuracy

20

SFT dlglt corr. IIama 7b IIama 7b + d|g|t corr

digit corr.

Figure 2: Robustness analysis, using Mistral-7B as

base model: GSM8K accuracy - Comparison of differ-

ent corruption schemes.

3.7 Robustness analysis: using AQuA as
source dataset

In this section, we consider using the AQuA train-
ing set to create DEET and DP™ . We use Falcon2-
11B as a base model. For SFT and DPO, we fine-
tune with the same hyper-pararameters as the ones
we found best for the experiments on GSMSK. We
report the results in Table 4. The results confirm
that using the AQuA training set is more help-
ful for the AQuA benchmark (18.73% relative in-
crease) than using the GSMS8K training set. This
experiment also confirms the robustness of our
approach to the training set, as well as the the

strength of the digit corruption scheme.

Model GSMS8K AQuA ARC
Base model 54.66 31.50 76.11
SFT on AQUA 54.89 31.50 75.68
DPO - digit corr.  57.70 37.40118.73%) 76.88
DPO - Llama-7B  55.57 33.86 76.71

Table 4: Robustness analysis, using AQuA for train-
ing: Accuracy of the base, SFT, and DPO models (with
different schemes).

4 Related work

What is reasoning? Reasoning can be thought
of as the process of logically and systematically an-
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alyzing information, drawing on evidence and past
experiences to form conclusions or make decisions
(McHugh and Way, 2018). Using the taxonomy of
Huang and Chang (2022), reasoning can be either
deductive (a conclusion is drawn based on the truth
of the premises), inductive (a conclusion is drawn
based on observations or evidence), or abductive (a
conclusion is drawn based on the best explanation
for a given set of observations). Bronkhorst et al.
(2020) also make the distinction between formal
reasoning, akin to what is used in mathematics, in
which a fixed set of rules is followed, and informal
reasoning that is less structured, and is akin to what
is used in everyday life.

Reasoning in LLMs: Mathematics, science, and
code benchmarks (Austin et al., 2021; Hendrycks
et al., 2021; Liang et al., 2023; Clark et al., 2018)
are becoming increasingly popular to study the
emergent reasoning abilities of language models
trained on next token prediction. Chain-of-Thought
prompting (Wei et al., 2022b) and related tech-
niques such as Tree-of-Thought (Yao et al., 2024)
and Graph-of-Thought (Besta et al., 2024) have
shown to improve language model performances
on reasoning tasks, simply by prompting them to
generate intermediate computations required for
solving the problems. It is not clear however
whether the improved performances brought about
by chain-of-thought prompting are due specifically
to human-like task decomposition, or more gener-
ally to the increased computation that additional
tokens allow (Pfau et al., 2024). An orthogonal di-
rection for boosting language model performances
on reasoning tasks is reasoning-enhanced training.
For example, Lewkowycz et al. (2022); Taylor et al.
(2022); Chen et al. (2021) show that training or
fine-tuning LLMs on datasets containing scientific,
math, or code data helps improve downstream per-
formances on reasoning tasks. Another line of
work (Zelikman et al., 2022; Huang et al., 2022;
Gulcehre et al., 2023; Yuan et al., 2023; Singh
et al., 2023; Hosseini et al., 2024) consists of us-
ing LLMs to self-improve their reasoning abilities
via bootstrapping, where rationales generated by
the model that lead to the correct answer are fur-
ther used to fine-tune the model itself. Aligned
with this direction, and more closely related to our
work, Ni et al. (2023) propose to use intermediate
steps as supervision signal. Lightman et al. (2023)
conduct a systematic comparison between process
supervision (feedback on intermediate steps) and

outcome supervision (feedback on final results) for
training models on mathematical reasoning, find-
ing that process supervision leads to significantly
better performance on the MATH dataset. Another
popular set of approaches make use of verifiers,
that classify or score reasoning traces (Cobbe et al.,
2021; Uesato et al., 2022). As an example of such
approaches, GRACE (Khalifa et al., 2023) trains a
discriminator with a contrastive loss over correct
and incorrect steps, and uses it when generating
answers to questions requiring reasoning, to score
next-step candidates based on their correctness.

Preference optimization: To make the most
out of a preference dataset, Reinforcement learn-
ing with human feedback commonly applies the
Bradley-Terry model (Bradley and Terry, 1952)
to train a reward model that scores instances, and
use it to fine-tune the language model to maximize
the score of the reward model for the prefered re-
sponses using algorithms such as PPO (Schulman
et al., 2017). More recently, advances in offline
methods such as DPO (Rafailov et al., 2024) and
its variants (Azar et al., 2023; Zhao et al., 2023;
Cai et al., 2023; Ethayarajh et al., 2024) that di-
rectly align the language models without the need
for an explicit reward function, have proven suc-
cessful in practice. These methods however require
an SFT phase to achieve convergence to desired
results (Rafailov et al., 2024; Tunstall et al., 2023).
ORPO (Hong et al., 2024) on the other hand, by-
passes the need for the multi-stage process, and
uses a loss that combines both supervised fine-
tuning and preference optimization. In our work,
we use these methods as part of the pipeline and
compare them thoroughly. Concurrent works (Pang
et al., 2024; Lai et al., 2024) have also applied pref-
erence optimization techniques on reasoning data.
Our work differs from these concurrent works in
both methodology and scope. While Pang et al.
(2024) focuses on iteratively optimizing between
competing CoT candidates and Lai et al. (2024) pro-
poses step-level preference optimization requiring
fine-grained process supervision, our work intro-
duces two novel and complementary schemes for
generating rejected answers (weak LLM prompting
and digit corruption) that require no additional an-
notations or external data. Furthermore, we provide
a comprehensive empirical study comparing differ-
ent preference optimization variants (DPO, IPO,
KTO, ORPO) for reasoning tasks. Unlike these
works which focus solely on mathematical reason-
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ing, we demonstrate that our approach transfers to
non-mathematical tasks, including commonsense
and symbolic reasoning, suggesting broader impli-
cations for improving general reasoning abilities in
language models.

5 Conclusion

We considered the question of using preference op-
timization to boost reasoning abilities of language
models. More specifically, we proposed two dif-
ferent schemes for constructing preference datasets
of reasoning steps from datasets that include valid
reasonign traces. We showed that by using DPO
on these datasets, we are able to improve the rea-
soning abilities of Falcon2-11B and Mistral-7B,
even on tasks unseen during training. We also com-
pared DPO to several of its variants. Our work
suggests that constructing high-quality reasoning
traces datasets can boost general informal reason-
ing abilities.

Limitations

We considered two schemes for wrong reasoning
step generation in this work: digit corruption, and
LLM generation. There are several other ways
that could be considered. For instance, it could
be beneficial to consider prompting an LLM to
slightly tweak the ground-truth reasoning steps
until they become wrong. We leave the study of
other schemes to future work, along with scaling
to models over 11B. Additionally, when using the
weak LLM scheme, there is an overhead incurred
when creating the dataset. Finally, our work has fo-
cused on mathematical reasoning, and future work
should explore using other sources of reasoning
data. Perhaps mixing between different sources
of data, as suggested by recent work from Chung
et al. (2024), could lead to improved abilities in
out-of-distribution reasoning benchmarks.

Acknowledgments

The authors would like to thank Mohamed El
Amine Seddik and Reda Alami for fruitful discus-
sions that helped improve this manuscript.

References

Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet
Agrawal, Dinesh Khandelwal, Parag Singla, and Di-
nesh Garg. 2021. Explanations for commonsenseqa:
New dataset and models. In Annual Meeting of the
Association for Computational Linguistics.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Etienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models. arXiv preprint arXiv: 2311.16867.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682-17690.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, et al. 2021. On the
opportunities and risks of foundation models. arXiv
preprint arXiv: 2108.07258.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Hugo Bronkhorst, Gerrit Roorda, Cor Suhre, and Martin
Goedhart. 2020. Logical reasoning in formal and
everyday reasoning tasks. International Journal of
Science and Mathematics Education, 18:1673-1694.

Tianchi Cai, Xierui Song, Jiyan Jiang, Fei Teng, Jin-
jie Gu, and Guannan Zhang. 2023. Ulma: Uni-
fied language model alignment with demonstration
and point-wise human preference. arXiv preprint
arXiv:2312.02554.

Oana-Maria Camburu, Tim Rocktischel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language explana-
tions. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

10997


https://api.semanticscholar.org/CorpusID:236459873
https://api.semanticscholar.org/CorpusID:236459873
https://arxiv.org/abs/2108.07258v3
https://arxiv.org/abs/2108.07258v3
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv: 2107.03374.

Sayak Ray Chowdhury, Anush Kini, and Nagarajan
Natarajan. 2024. Provably robust dpo: Aligning lan-
guage models with noisy feedback. arXiv preprint
arXiv: 2403.00409.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv: 1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

OpenAl et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv: 2303.08774.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv: 2402.01306.

Tason Gabriel. 2020. Artificial intelligence, values, and
alignment. Minds and machines, 30(3):411-437.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,

Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
D. Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. An-
nual Meeting of the Association for Computational
Linguistics.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo:
Monolithic preference optimization without refer-
ence model. arXiv preprint arXiv: 2403.07691.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. arXiv preprint arXiv:2402.06457.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:
2106.09685.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang,
Hantao Lou, Kaile Wang, Yawen Duan, Zhonghao
He, Jiayi Zhou, Zhaowei Zhang, et al. 2023. Ai
alignment: A comprehensive survey. arXiv preprint
arXiv:2310.19852.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,

10998


https://arxiv.org/abs/2402.01306v1
https://arxiv.org/abs/2402.01306v1
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.48550/arXiv.2212.10071
https://arxiv.org/abs/2403.07691v2
https://arxiv.org/abs/2403.07691v2
https://arxiv.org/abs/2403.07691v2

and William EI Sayed. 2023. Mistral 7b. arXiv
preprint arXiv: 2310.06825.

Daniel Kahneman. 2003. Maps of bounded rationality:
Psychology for behavioral economics. American
economic review, 93(5):1449-1475.

Muhammad Khalifa, Lajanugen Logeswaran, Moon-
tae Lee, Ho Hin Lee, and Lu Wang. 2023. Grace:
Discriminator-guided chain-of-thought reasoning.
Conference on Empirical Methods in Natural Lan-
guage Processing.

Tushar Khot, Peter Clark, Michal Guerquin, Pe-
ter Alexander Jansen, and Ashish Sabharwal. 2019.
Qasc: A dataset for question answering via sentence
composition. AAAI Conference on Artificial Intelli-
gence.

Oliver Klingefjord, Ryan Lowe, and Joe Edelman. 2024.
What are human values, and how do we align ai to
them? arXiv preprint arXiv: 2404.10636.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152—-1157, San
Diego, California. Association for Computational
Linguistics.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
1Ims. arXiv preprint arXiv: 2406.18629.

Matthew Lamm, Jennimaria Palomaki, Chris Alberti,
Daniel Andor, Eunsol Choi, Livio Baldini Soares,
and Michael Collins. 2021. Qed: A framework
and dataset for explanations in question answering.
Transactions of the Association for computational
Linguistics, 9:790-806.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843—
3857.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2023. Holistic evaluation of language mod-
els. Transactions on Machine Learning Research.

Hunter Lightman, V. Kosaraju, Yura Burda, Harrison
Edwards, Bowen Baker, Teddy Lee, J. Leike, John
Schulman, I. Sutskever, and K. Cobbe. 2023. Let’s
verify step by step. International Conference on
Learning Representations.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167, Vancouver,
Canada. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Quentin Malartic, Nilabhra Roy Chowdhury, Ruxan-
dra Cojocaru, Mugariya Farooq, Giulia Campesan,
Yasser Abdelaziz Dahou Djilali, Sanath Narayan,
Ankit Singh, Maksim Velikanov, Basma El Amel
Boussaha, Mohammed Al-Yafeai, Hamza Alobei-
dli, Leen Al Qadi, Mohamed El Amine Seddik, Kir-
ill Fedyanin, Reda Alami, and Hakim Hacid. 2024.
Falcon2-11b technical report. arXiv preprint arXiv:
2407.14885.

Conor McHugh and Jonathan Way. 2018. What is rea-
soning? Mind, 127(505):167-196.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex
Polozov, Christopher Meek, Dragomir Radev, and
Jianfeng Gao. 2023. Learning math reasoning from
self-sampled correct and partially-correct solutions.
In The Eleventh International Conference on Learn-
ing Representations.

Yasumasa Onoe, Michael J.Q. Zhang, Eunsol Choi, and
Greg Durrett. 2021. Creak: A dataset for common-
sense reasoning over entity knowledge. NeurIPS
Datasets and Benchmarks.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.
arXiv preprint arXiv: 2404.19733.

Jacob Pfau, William Merrill, and Samuel R. Bowman.
2024. Let’s think dot by dot: Hidden computation in
transformer language models. arXiv preprint arXiv:
2404.15758.

10999


https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.1609/AAAI.V34I05.6319
https://doi.org/10.1609/AAAI.V34I05.6319
https://arxiv.org/abs/2404.10636v2
https://arxiv.org/abs/2404.10636v2
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=4D4TSJE6-K
https://openreview.net/forum?id=4D4TSJE6-K
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2404.15758v1
https://arxiv.org/abs/2404.15758v1

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Amir Saeidi, Shivanshu Verma, and Chitta Baral. 2024.
Insights into alignment: Evaluating dpo and its vari-
ants across multiple tasks. arXiv preprint arXiv:
2404.14723.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jachoon Lee, Kelvin Xu,
Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Elsayed, Hanie Sedghi, Igor Mordatch,
Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jef-
frey Pennington, Jiri Hron, Kathleen Kenealy, Kevin
Swersky, Kshiteej Mahajan, Laura Culp, Lechao
Xiao, Maxwell L. Bileschi, Noah Constant, Roman
Novak, Rosanne Liu, Tris Warkentin, Yundi Qian,
Yamini Bansal, Ethan Dyer, Behnam Neyshabur,
Jascha Sohl-Dickstein, and Noah Fiedel. 2023. Be-
yond human data: Scaling self-training for problem-
solving with language models. arXiv preprint arXiv:
2312.06585.

Keith E Stanovich, Richard F West, and JE Alder. 2000.
Individual differences in reasoning: Implications for
the rationality debate?-open peer commentary-three
fallacies. Behavioral and Brain Sciences, 23(5):665—
665.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan J. Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2020. Learning
to summarize from human feedback. Neural Infor-
mation Processing Systems.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv: 2211.09085.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Tijmen Tieleman. 2012. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine
learning, 4(2):26.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:
2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of Im alignment. arXiv preprint
arXiv:2310.16944.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solving
math word problems with process- and outcome-
based feedback. arXiv preprint arXiv: 2211.14275.

Cunxiang Wang, Shuailong Liang, Yue Zhang, Xiaonan
Li, and Tian Gao. 2019. Does it make sense? and
why? a pilot study for sense making and explana-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4020-4026, Florence, Italy. Association for Compu-
tational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

11000


https://arxiv.org/abs/2211.14275v1
https://arxiv.org/abs/2211.14275v1
https://arxiv.org/abs/2211.14275v1
https://doi.org/10.18653/v1/P19-1393
https://doi.org/10.18653/v1/P19-1393
https://doi.org/10.18653/v1/P19-1393
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Yao Zhao, Rishabh Joshi, Tianqgi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv: 1909.08593.

11001


https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI

A Dataset examples

We provide in the following box two examples from
the training dataset of GSMS8K, the main source
of data used in our experiments. We also provide
in Table 5 the preference triplets obtained from
one example from the GSM8K (a third one). The
ground truth rationale for this particular example
contains three sentences, and thus contributes three
examples to the preference dataset.

Question: John puts $25 in his piggy bank
every month for 2 years to save up for a
vacation. He had to spend $400 from his
piggy bank savings last week to repair his
car. How many dollars are left in his piggy
bank?

Rationale: He saved money for 2 years,
which is equal to 12 x 2 = «12%2=24»24
months. The amount of money he saved is
$25%24 = $«25%24=600»600. But he spent
some money so there is $600 - $400 = «600-
400=200»200 left. #### 200.

Question: Five coaster vans are used to
transport students for their field trip. Each
van carries 28 students, 60 of which are
boys. How many are girls?

Rationale: There are a total of 5 vans x 28
students = «5%28=140»140 students. If 60
are boys, then 140 - 60 = «140-60=80»80
of these students are girls. #### 80

the weak LLMs to generate rejected answers to
create the preference dataset for Section 3.3.

You are an obedient assistant. Your task
is to reason about the following question.
Write only the next step of the reasoning
chain. Your answer should include exactly
one following reasoning step and has to
be exactly one sentence long! The answer
should start with "Next step: ". Here are
two examples:

Question: {prompt_example_1}

Next step: {first_step_example_1}
Next step: {second_step_example_1}
Next step: {third_step_example_1}
Next step: {fourth_step_example_1}
Next step: {final_answer_example_1}

Question: {prompt_example_2}

Next step: {first_step_example_2}
Next step: {second_step_example_2}
Next step: {third_step_example_2}
Next step: {fourth_step_example_2}
Next step: {fifth_step_example_2}
Next step: {sixth_step_example_2}

Next step: {final_answer_example_2}

Question: {prompt}
Next step: {first_step_ground_truth}

B Used prompts

In the following box, we provide the prompt used
to generate plausible rationales for the 25 few shot
examples of ARC-Challenge, using GPT-4.

You are expert grade-school science teacher.
Given the following question, provide justi-
fication for the answer.
Question: question.
options. Answer:
answer letter.

You need to add a two to three sentences
rationale before “The answer is answer
letter”, justifying the correct answer.

Answer Choices:
The Answer is

Next, we provide the template used to prompt

C Training details

Number of epochs used for SFT: An important
hyperparameter when doing supervised fine-tuning
on small datasets is the number of times each ex-
ample is processed. We optimized this hyperpa-
rameter independently using the smaller Falcon-7B
(Almazrouei et al., 2023) as a base model, with
the GSMS8K accuracy as a metric, trying values
{1,2,3,4,5}. We ended up using 3 epochs for all
subsequent SFT experiments (using Falcon2-11B
as a base model).

SFT learning rate: Similarly, using the GSM8K
accuracy as a metric, and with a random search of a
handful of learning rates in the range [10~8,1074],
we ended up using the learning rate of 1.4 x 107°.
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How many clips did Natalia sell altogether in

prompt chosen rejected(1) rejected(2)
Natalia sold clips to 48 of her friends in April, | Natalia sold 48/2 =24 | Natalia sold 32/4 =19 | Natalia sold 48 clips
and then she sold half as many clips in May. | clips in May. clips in May. in April, and half as

many clips in May,

April and May? Natalia sold 48/2 = 24 clips in
May. Natalia sold 48+24 = 72 clips altogether
in April and May.

April and May? which is 24 clips
Natalia sold clips to 48 of her friends in April, | Natalia sold 48+24 = | Natalia sold 25+98 = | Natalia sold 24 clips in
and then she sold half as many clips in May. | 72 clips altogether in | 12 clips altogether in | April.

How many clips did Natalia sell altogether in | April and May. April and May.

April and May? Natalia sold 48/2 = 24 clips

in May.

Natalia sold clips to 48 of her friends in April, | The solution to the | The solution to the | Nataliasold 24 clipsin
and then she sold half as many clips in May. | problem is 72. problem is 13. April, so she sold 24
How many clips did Natalia sell altogether in clips in May.

Table 5: Example of preference dataset obtained from the question “Natalia sold clips to 48 of her friends in April,
and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?”, and
the corresponding rationale “Natalia sold 48/2 = 24 clips in May. Natalia sold 48 + 24 = 72 clips altogether in
April and May. The solution to the problem is 72.” This example is obtained from the GSM8K dataset (Cobbe et al.,
2021). The chosen column represents steps from ground-truth rationale, rejected (1) are examples obtained by digit
corruption, and rejected (2) are examples obtained by prompting the Llama-2-7B-chat model (Touvron et al., 2023)

SFT batch size: It is commonly agreed upon that
larger batch sizes are more desirable when fine-
tuning language models. We used a batch size of
16 as it was the largest that did not lead to memory
issues on the GPUs we used.

LoRA parameters: Given the computational
cost of fine-tuning LL.Ms, we chose not to tune
the hyperparameters of LoRA (Hu et al., 2021),
and resorted to using the popular values of o = 16
and rank = 64.

Optimizer: For DPO, we used a linear sched-
ule for the learning rate, and first jointly opti-
mized the maximal learning rate and number of
warm-up steps for the linear schedule, using RM-
SProp (Tieleman, 2012) as an optimizer. Optimiz-
ing this couple of hyperparameters was done on
Falcon-7B using a preference dataset with digit
corrupted rejected answers only, with the GSM8K
accuracy as a metric. After settling on 10 warm-
up steps, we tuned the maximal learning rate and
the optimizer (choosing between RMSProp and
AdamW (Loshchilov and Hutter, 2019)) on the
same (model, task, metric) triplet. We ended up us-
ing the AdamW optimizer with a maximal learning
rate of 8 x 1076,

Further DPO hyperparameters: We further op-
timized the learning rate, as well as the number of
training epochs and the value of the 5 hyperparam-
eter on the preference dataset Dar:; constructed

from GSMB8K, and using digit-corrupted Llama-7B

(Touvron et al., 2023), as explained in Section 3.3,
to generate wrong answers. Using the resulting
model’s performance on the GSMS8K task, with
the evaluation protocol described in Section 3, we
report the results of our hyperparameter sweep in
Figure 3. This led to a universal choice of 8 = 0.2,
learning rate of 8 x 1075, and number of epochs
equal to 1 for all DPO experiments with Falcon2-
11B.

Hyperparameters for DPO variants: Similar
to DPO, the KTO (Ethayarajh et al., 2024) loss re-
quires the specification of a hyperparameter 3 that
controls how far the fine-tuned model drifts from
the SFT model. IPO (Azar et al., 2023) needs a reg-
ularization parameter 7, for which the inverse 7!
is usually denoted by g as well. For both methods,
the value of 3 is critical and needs to be carefully
tuned. We report in Figure 4 the results of our hy-
perparameter search. We consider the preference
dataset DP"! constructed from GSMSK, and us-
ing digit corruption, as explained in Section 3.2, to
generate wrong answers.

For ORPO (Hong et al., 2024), an important param-
eter is the weighing hyperparameter A in ??, that
specifies the relative importance of the negative
log-likelihood of the chosen answer with respect
to the odds ratio part of the loss. We tried the
values in the set {0.001, 0.005,0.01,0.1,0.2,0.3}
along with learning rates from the set {1078, 8 x
1078,8 x 1079}, and found that 3 = 0.001 and
10~® as a learning rate lead to the best results,
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_learning rate = 8 x 107°, 1 epoch , learning rate = 8 x 107°% 8=0.2 .

1 epoch, B=0.2
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Figure 3: DPO hyperparameter search. The y axis corresponds to the accuracy on the test set of GSM8K.

which is what we report in Table 3.

55 -
207 ./ —e— IPO
KTO
45 T T T T T
0.2 0.4 0.6 0.8 1.0
B

Figure 4: DPO variants hyperparameter search. The
y axis corresponds to the accuracy on the test set of
GSMSK. The learning rate 8 x 10~% and number of
epochs (1) used are the same as DPO.

D Additional Results

In Table 6, we study how the number of times each
example from the GSM8K training dataset is vis-
ited during training affects the downstream perfor-
mance on the related but different AQuA evaluation
task. The table shows that reducing the training
time could help dampen the overfitting issues of
SFT.

1 epoch 3 epochs
AQuA accuracy 33.46 30.71

Table 6: Accuracy (in percentage) on the AQuA test
dataset of Falcon2-11B fine-tuned on DSET obtained

train

from the GSMS8K train dataset, as explained in Sec-
tion 3.1. Comparison of the effect of number of epochs.

When using a weak LLM to generate rejected an-
swers, it is not unlikely that the LLM outputs valid
reasoning steps, in which case, including the re-
sulting triplet in the preference dataset might hurt

generalization of the resulting model. We there-
fore consider to corrupt the digits of the generated
sequences similar to the digit corruption scheme
alone. In Figure 5, we study the effect of post-
generation digit corruption, and find that digit cor-
ruption is essential for downstream tasks. We also
compare using the chat version of Llama-7B with
the prompt template of Appendix B to using its
base version, and find that using the base version
yields to better performances.

58
—-=—=- SFT accuracy
6 o] 56.20]- ~—————m—m e 1
541 (54.51
53.45
52 1
50 T T T
Llama-7b Digit-corrupted  Digit-corrupted
(uncorrupted) Llama-7b Llama-7b-chat

Figure 5: DPO with weak LLM generation for rejected
answers. Comparison of different versions of Llama-7B.
The y axis corresponds to the accuracy on the test set of
GSMSK. The learning rate use is 8 x 10~% and number
of epochs is 1.

D.1 Ablations

We hypothesized that fine-tuning a language model
to predict the next reasoning step only should help
improve performances on reasoning benchmarks.
Our results in the main paper confirm this hypothe-
sis. However, it is natural to wonder whether using
multiple reasoning steps to predict could be benefi-
cial. More specifically, for SFT, we compare our ap-
proach (which requires fine-tuning on (zz'#~1, 2¥)
pairs) to fine-tuning on (zz%#~1 2¥") pairs. Sim-
ilarly, for DPO, we compare our approach (that
requires fine-tuning on (zz'*~1, 2* z¥) triplets)
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to fine-tuning on (zz"*~1, 2 triplets.

Using Falcon2-11B as a base model, and GSM8K
as a data source and for evaluation, we found that
with this change, the performance drops from 55.43
to 54.81 for SFT, and from 58.30 to 57.01 for DPO
with digit corruption.

We also tested replacing the inputs zz'*~! with
uxz'* =1, where u is a sequence corresponding
to 3-shot examples, and found that while the SFT
performance slightly increases to 55.95, the DPO
performance significantly drops to 50.11.

k:n, 2k2k+1:n)
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