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Abstract

How capable are diffusion models of generat-
ing synthetics texts? Recent research shows
their strengths, with performance reaching that
of auto-regressive LLMs. But are they also
good in generating synthetic data if the train-
ing was under differential privacy? Here the
evidence is missing, yet the promises from pri-
vate image generation look strong. In this pa-
per we address this open question by extensive
experiments. At the same time, we critically
assess (and reimplement) previous works on
synthetic private text generation with LLMs
and reveal some unmet assumptions that might
have led to violating the differential privacy
guarantees. Our results partly contradict pre-
vious non-private findings and show that fully
open-source LLMs outperform diffusion mod-
els in the privacy regime. Our complete source
codes, datasets, and experimental setup are pub-
licly available to foster future research1.

1 Introduction

How can we share sensitive textual data and protect
privacy of individuals in there at the same time? A
go-to method to circumvent this issue is synthetic
data generation, used mainly for tabular data (Her-
nandez et al., 2022), or images (Bissoto et al., 2018)
in the medical domain. However, synthetic data
generation alone is not sufficient to protect privacy
of the underlying data. For example, Stadler et al.
(2022) show that outliers in synthetic data suffer
from membership inference attacks.

Achieving formal privacy guarantees for the un-
derlying data is possible by combining a generative
model with differential privacy (DP, Dwork et al.
(2006)) where we trade off privacy for reduced
utility of the synthetic data. Yue et al. (2023) and
Mattern et al. (2022) demonstrated feasibility of
synthetic data generation with DP in NLP. However,

1https://github.com/trusthlt/
private-synthetic-text-generation

both Yue et al. (2023) and Mattern et al. (2022) vio-
late several assumptions about the underlying data
which casts doubts on the validity of their findings.

Recent advances also show the success of dif-
fusion models in private synthetic data generation
in images (Ghalebikesabi et al., 2023). Despite
recent achievements in conditional text generation
using diffusion models (Li et al., 2022; Gong et al.,
2023a; Lin et al., 2023), the capabilities of private
synthetic text generation with diffusion models re-
main unexplored.

We thus ask two research questions. First, what
performance on downstream tasks can we achieve
using diffusion models for synthetic text generation
with varying strengths of differential privacy? Sec-
ond, which factors might have artificially inflated
performance in previous works and can we mitigate
invalid assumptions in empirical experiments?

We address these questions as follows. Our first
hypothesis is that diffusion models for text gener-
ation might not suffer from noise added in DP, as
they inherently work with a de-noising objective.
We address this question empirically by conduct-
ing extensive (and expensive) experiments with
three state-of-the-art diffusion models. We address
the second research question by two arguments.
Our first argument is that previous experiments
mostly focused on ‘old’ public datasets, such as the
IMDb movie reviews (Maas et al., 2011). As these
datasets may very likely have been seen during pre-
training of the utilized LLMs (GPT-2), the reported
effectiveness of the privacy-preserving synthetic
texts may be overestimated. We factor out the po-
tential data leaking by introducing five new ‘fresh’
unseen datasets into the experiments. Our second
argument is the violation of DP by ignoring group
privacy in the datasets. We provide evidence in §4.

We strive for transparency, reproducibility, and
accountability—three key ingredients of privacy-
related research. Therefore we experiment with
fully open-source and transparent models, such as
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BLOOM (Le Scao et al., 2023). All our source
codes and datasets are also publicly available for
further scrutiny. Our main contributions are (1) ev-
idence of severe underestimation of DP guarantees
in previous works, (2) empirical evidence showing
that, unlike in image domain, diffusion models for
synthetic text generation suffer severely under DP
training, and (3) complete re-implementations of
unpublished previous works enabling transparency
and potentially increasing trust in privacy-oriented
research.

2 Theoretical background

2.1 Differential privacy (DP)

DP, introduced by Dwork (2006), is a mathemati-
cal framework aimed at protecting the privacy of
individuals in a dataset. Through adding a calcu-
lated amount of noise to data or statistical queries,
it provides formal guarantees that data contributors
can not be singled out easily, while still enabling
meaningful analysis. Abadi et al. (2016) apply
DP to stochastic gradient descent, called DP-SGD,
which allows us to put formal privacy guarantees
on trained neural networks.

As the theory of DP is considerably extensive,
we refer to Wood et al.’s (2018) work as an eas-
ily accessible introduction for the interested reader.
Furthermore, Habernal et al. (2023) present a tuto-
rial about how DP can be harnessed for NLP ap-
plications, while Cummings et al. (2024) provide
a comprehensive review about the current state of
the art in DP research.

2.2 Diffusion models for text

Diffusion models have risen in popularity as gen-
erative models recently, especially in the domain
of image synthesis (Yang et al., 2023). Diffusion
models can be described as "Markovian Hierarchi-
cal Variational Autoencoders" (Luo, 2022), that are
able to generate data from Gaussian noise. This is
achieved by utilizing two transitions during train-
ing, called forward and reverse process. Given
T steps, the forward process incrementally adds
a small amount of Gaussian noise to a data point
x0, creating a chain x0, x1, x2, ..., xT , where xT
resembles a Gaussian distribution. During the re-
verse process, the diffusion model learns how to
transition from xi to xi−1,∀i ∈ {0, 1, 2, ..., T}, es-
sentially learning how to ‘undo’ the corruption of
the forward chain, called ‘denoising’.

For a more mathematically founded description

of diffusion models, we point to Bishop and Bishop
(2024, chap. 20) and the background chapter of Ho
et al. (2020). The reverse process can be guided
by adding information that relates to the original
data. For example, in text-to-image generation, the
latent representation of an image description, using
a text encoder, steers the denoising of the diffusion
model (Ramesh et al., 2022). During inference,
the diffusion model is then able to generate images
from Gaussian noise that correspond to the input
text.

Text diffusion model variants Like in image
synthesis, diffusion models are also being ex-
plored in text generation. Li et al. (2022) propose
Diffusion-LM, a diffusion model capable of gen-
erating texts non-autoregressively. In contrast to
typical language models, where text sequences are
created token-by-token, Diffusion-LM generates
a text by gradually denoising a list of Gaussian
noise vectors into word embeddings. The genera-
tion process can be directly controlled by providing
conditions that the resulting text should fulfill, for
example syntactic features such as a predetermined
sequence of parts-of-speech tags.

Diffusion-LM’s code base also served as a basis
for other text diffusion models, such as DiffuSeq
(Gong et al., 2023a), a sequence-to-sequence text
diffusion model. Unlike Diffusion-LM, DiffuSeq
conditions the generated output on the input text.
This is accomplished through concatenating the
word vector sequences of the input and output, and
applying the diffusion process only to the output
vectors. Gong et al. (2023a) report that DiffuSeq
achieves similar text-to-text generation capabilities
as fine-tuned GPT2-base and -large (Radford et al.,
2019) models, despite of being non-autoregressive.
Therefore, we included DiffuSeq in our experi-
ments.

Interestingly, while the training and inference
method of text diffusion models differ fundamen-
tally from LLMs, their architecture is still based on
the Transformer (Vaswani et al., 2017).

3 Related work

To enable the privacy-preserving sharing of labeled
text data, Mattern et al. (2022) propose a method
called prompt-based DP fine-tuning, which they
utilize to train a GPT2-large model (Radford et al.,
2019). The process can be described as a ‘reverse’
classification task where instead of learning to pre-
dict the label for a text, the generative model is
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trained on generating texts suitable for a given la-
bel. The privacy of each author in the dataset is
protected by applying DP-SGD to the fine-tuning
procedure. Additionally, a mismatch loss is applied
during training by maximizing the negative log-
likelihood of purposely mislabeled texts. Mattern
et al. (2022) experiment on two publicly available
datasets to validate their approach. The reported
results claim that text classifiers trained on the pri-
vatized, synthetic data and evaluated on original
data experience no significant performance loss
compared to a classifier directly trained on the orig-
inal texts.

Yue et al. (2023) use the same methodology in
their approach, apart from the mismatch loss. In
contrast to Mattern et al. (2022), they include a
private customer feedback dataset in their exper-
iments, where the synthetic texts also proved to
be useful for downstream task classification per-
formance. Furthermore, they empirically evaluate
the privacy-preservation of the DP generation mod-
els by injecting ‘canaries’ into the training data,
as suggested by Carlini et al. (2019). After those
models generate a synthetic dataset, it is then pos-
sible to track if any canaries have been replicated,
which was not the case for models trained with DP
guarantees.

Although not in the text domain, diffusion mod-
els have also been explored for DP synthetic
data generation. Ghalebikesabi et al. (2023) train
diffusion models with DP-SGD on several low-
resolution image datasets, such as the MNIST
dataset of handwritten digits (LeCun et al., 2010)
and generate synthetic images for the downstream
classification task. Classifiers trained on the syn-
thetic data reportedly reach performances close
to the state of the art. Notably, in most experi-
ments, before the diffusion models were trained
with DP-SGD on smaller datasets, they were pre-
trained without DP on the large-scale ImageNet32
(Chrabaszcz et al., 2017) dataset.

So far, pretraining large models on public data
and fine-tuning those with DP-SGD on smaller, pri-
vate datasets seems to be an efficient method to pro-
duce privacy-preserving and useful synthetic data.
However, neither Diffusion-LM, nor DiffuSeq, nor
most other current diffusion model include pretrain-
ing in their methodology. One exception is GENIE,
introduced by Lin et al. (2023), which is the only
available diffusion model for text-to-text genera-
tion that is pretrained. GENIE is pretrained on a

large corpora of texts by using an objective similar
to span-based masked language modeling, How-
ever, instead of predicting the correct text span,
Gaussian noise is continuously added to the se-
lected token span, which GENIE learns to denoise.
When fine-tuned, the model outperforms the base
versions of T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020) in several natural language
generation (NLG) tasks.

4 Critical analysis of existing works

In the following, we explain in detail how DP syn-
thetic text generation has been accomplished in
prior work. We also critically assess their underly-
ing assumptions and evaluate their respective valid-
ity in regards to privacy protection.

Prompting LLMs trained with DP-SGD is cor-
rect. Both Yue et al. (2023) and Mattern et al.
(2022) describe a scenario, where a data holder
wishes to benefit from public research on their in-
house sensitive text resources (such as medical re-
ports or customer data), but cannot release them
due to privacy concerns. The first assumption is
that the sensitive documents are labeled (catego-
rized) and the task to be solved is classification.
The authors address this problem as follows.

First, they create prompts for each original text
based on the category to which it belongs. Sec-
ond, a pretrained language model is fine-tuned on
the prompt:text pairs (e.g., <write a positive
review: original review text>) from the
training part of the sensitive dataset, learning to
create texts resembling the data from the instructed
category. Since synthetic data generation alone is
not enough to protect privacy (recall the discussion
in Section 1), both authors train their models with
DP-SGD. Afterwards, synthetic texts are sampled
from the resulting models using the prompts for-
mulated earlier. It is worth mentioning that the
DP guarantee remains the same regardless of the
amount of synthetic generated texts. The utility of
the resulting samples is then evaluated on a down-
stream classification task, namely by fine-tuning
BERT on the generated texts and testing it on the
original sensitive test data.

Multiple texts from the same person violates dif-
ferential privacy. The main requirement in DP
is that in the underlying dataset, there is a one-to-
one correspondence of a person and its data point.
From the ML perspective, this means that each ex-
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ample for training or fine-tuning belongs exactly
to a unique person. This allows us to spell out the
necessary notion of neighboring datasets and the
very guarantee of DP, such that the difference of
a private analysis will be ‘roughly the same’ (gov-
erned by ε and δ) on two datasets of size n and
n− 1, respectively.

This assumption is violated when a textual
dataset contains multiple examples from the same
author. Due to unique writing style, vocabulary
or other implicit features, those texts may corre-
late with each other even though they do not share
the same explicit information. A workaround for
this issue is group privacy (Dwork and Roth, 2014,
Theorem 2.2), which translates to the following:
When assuming that each author provides at most
k contributions to a dataset and texts of different
authors do not correlate with each other, the pri-
vacy bounds of any (ε, δ)-DP mechanism increase
to (kε, k exp((k − 1)ε), δ)-DP. However, to the
best of our knowledge, no works utilizing DP-SGD
have ever used group privacy, and it is actually
unclear whether the DP-SGD is compatible with
it.2 We offer additional perspectives on this matter
in the “Limitations and ethics statement” section
below.

Our analysis of the datasets used in previous
works reveals that there is a clear violation of this
DP assumption. In the book reviews from the
Amazon Multi Domain data (Blitzer et al., 2007),
used in Mattern et al.’s (2022) experiments, users
‘Shalom Freedman’, ‘Prairie Pal’ and 52 more con-
tributed at least more than one review. Similarly,
the Yelp Open Dataset3 provides concrete proof
in its documentation that some users have written
more than one review. Nonetheless, the dataset
was part of the experiments carried out by Yue et al.
(2023).

Given these violated assumptions, we cannot
really tell whether or not previous works truly guar-
antee the reported privacy strength. We suspect
that under fair conditions the protection would be
much lower.

No evidence that the sensitive data were not part
of LM pretraining. Another assumption in Mat-
tern et al.’s (2022) and Yue et al.’s (2023) work is
that the ‘sensitive’ data (in this case IMDb, Yelp,

2Most DP-SGD implementations rely on the amplification
theorem by subsampling, so called Poisson sampling, which
was only proven for non-group privacy by Li et al. (2012).

3https://www.yelp.com/dataset/documentation/
main

etc.) have not been ‘seen’ during pretraining of
the generative language model. We identify two
potential issues here.

First, any data point accessed during LLM pre-
training can be potentially leaked by adversarial
prompting (Carlini et al., 2021; Nasr et al., 2023).
If the sensitive data were used both in (1) LLM
pretraining and in (2) private fine-tuning, privacy
had been breached in (1) already and no claims
about protection in (2) are valid.

Second, pre-training and fine-tuning on the same
data will most likely boost the effectiveness of the
synthesized texts, as opposed to synthesizing out-
of-domain ‘fresh’ data. This has been demonstrated
in previous work by Igamberdiev et al. (2022) who
found that such leaking led to unrealistically good
results in other works.

Since Yue et al. (2023) and Mattern et al. (2022)
use GPT2 (Radford et al., 2019) in their method,
and the pretraining data of that model is not dis-
closed, we doubt that the performance reported on
the YELP and IMDb dataset is fully transferable.
Hence, in our experiments we only include datasets
that are guaranteed not to be part of the pretraining
data.

Lack of transparency and reproducibility. De-
spite claims to publish their code, Mattern et al.
(2022) have yet to follow through on this promise
(requests from our side to gain access to their
source code have unfortunately been evaded).4 For
the sake of reproducibility, we therefore partly im-
plement their approach based on the information
provided in their paper. We decide against utiliz-
ing the proposed mismatch loss in our experiments
in Section 5, as the increase in downstream task
performance was disproportionally low compared
to the increase in computation time and memory
usage. Moreover, we publicly release our imple-
mented version of Mattern et al.’s (2022) work to
make it available for the NLP community (please
refer to the submission supplementary materials for
now).

5 Experiments

We investigate the capabilities of diffusion mod-
els to generate synthetic texts under DP with the
following experimental setup.

4https://github.com/justusmattern/
private-datasets-with-llms
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5.1 Why diffusion for private text generation?

When training a neural network with DP-SGD, the
gradients of the model are modified through gradi-
ent clipping and adding Gaussian noise, to prevent
it from learning "too much" about a given data
sample. In the case of synthetic text generation
with LLMs, this may lead to incoherent text sam-
ples, as described by Mattern et al. (2022). In the
image domain, however, Dockhorn et al. (2023)
argue that the denoising module of diffusion mod-
els reacts less sensitive to the gradient modifica-
tions caused by DP-SGD, at least in comparison
to a generative adversarial network (GAN). This
claim is supported by the promising results that
both Dockhorn et al. (2023) and Ghalebikesabi
et al. (2023) accomplished for their DP synthetic
image synthesis approaches. We therefore hypoth-
esize that text diffusion models, due to their unique
training and inference methodology, may be more
resilient towards the noise introduced by DP than
their LLM counterparts. However, to the best of
our knowledge, text diffusion models have not yet
been explored for privacy-preserving methods. For
this reason, we compare the non-autoregressive dif-
fusion models to the conventional token-by-token
producing LLMs for DP synthetic text generation.

5.2 Data

As we discussed the disadvantages of using data
that potentially has been encountered during pre-
training, we do not experiment on any of the
datasets from previous works. Instead, we train
our models on the following four datasets.

First, we include a collection of non-spam and
spam emails in our experiments, published by Al-
Subaiey et al. (2024), termed SPAM dataset in this
work. It combines several spam detection datasets
into one corpus of 82k mails (66k train, 16k test;
43k spam, 40k "ham"). The data is interesting
from a privacy sensitive viewpoint, as it also con-
tains company-internal mails from the Enron email
dataset (Klimt and Yang, 2004). While standard
text classifiers already achieve high performances
on this SPAM dataset, it is challenging for synthetic
text generation, due to the noisiness of the spam
emails.

Second, we incorporate a dataset addressing
mental health issues in our research, specifically
the "Reddit SuicideWatch and Mental Health Col-
lection" (Ji et al., 2021), and referred to as SWMH.
The 54k (35k train, 9k validation, 11k test) data

samples were collected from five subreddits revolv-
ing around mental health challenges and suicidal
ideation, often containing personal details about
the life of the respective authors. Consequently, the
access to this data is restricted to research purposes
only. As each post is labeled by the name of its
original forum (subreddit), the dataset is suitable
for text classification.

Third, we also add the "Thumbs Up" dataset (Fer-
eidouni et al., 2022) to our experimental suite. It
consists of 2.1 million negative Google Play Store
app reviews (1.2M train, 420k validation, 570k
test), collected between October 2021 and March
2022. Each review is annotated based on the num-
ber of upvotes received from other users within a
month. According to Fereidouni et al. (2022), a
high number of upvotes may indicate an app issue
that multiple users encountered, while reviews with
few upvotes may be less relevant for app improve-
ment. The reviews are segmented into five classes
(0 votes, 1-5 votes, 6-25 votes, 26-100 votes, >100
votes). We estimate that the data is challenging for
synthetic text generation due to two reasons: First,
the label distribution is highly skewed towards the
lower classes. Second, a BERT classifier trained
on the original training data and evaluated on the
development set only achieved an accuracy of 0.66
and a macro F1-score of 0.34. More importantly,
the app reviews have been created after the release
of some popular LLMs, which automatically ex-
cludes them from the pretraining data of GPT2.

Last, but not least, we rely on a collection of drug
reviews from WebMD5 for our experiments, pub-
lished by Harode (2020). The web scrape provides
363k detailed user experiences with medical drugs:
each review is accompanied by the the user’s age,
gender and medical condition, the name of the drug,
and user ratings of satisfaction, ease of use and
drug effectiveness. Similar to the SWMH dataset,
the review texts may reveal personal information,
which necessitates privacy-preserving methods. In
our experiments, we use the satisfaction rating for
the text classification task.

Unfortunately, neither dataset discloses author-
ship information such as user names or unique
identification numbers, preventing us to create a
one-to-one relation between a review and its au-
thor. Therefore some of the critique from Section 4
can be raised against our main experiments on the
four adopted datasets; we are aware of this issue.

5https://www.webmd.com/
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Here we had to trade off accessibility and size (i.e.,
Thumbs Up being a large and publicly available
dataset) for strict privacy (such as working on truly
private in-house data which could not be shared
with the public). However, to overcome this in-
herent problem in existing datasets, we created an
additional fifth dataset from scratch similar to the
WebMD datasets originating from drugs.com, to
ensure a one-to-one relation between authors and
their texts. We report on this additional experiment
in Appendix E.

5.3 Tasks

We model our approach for synthetic text gener-
ation after the method proposed by Mattern et al.
(2022). Both the SPAM and SWMH dataset are
fairly balanced, so we utilize their provided training
sets. As the Thumbs-Up dataset is biased towards
app reviews with no upvotes, we balance the train-
ing set so that each label is represented by an equal
amount of samples. We also balance and split the
WebMD drug reviews into a training (80%) and test
set (20%). A detailed overview of all data splits is
provided in the Appendix Section C.

Guided by the label, instructions are created for
each text, following the format:

SPAM: "write a (spam | non-spam) e-mail:"
SWMH: "write a post to the (anxiety | bipolar | de-
pression | offmychest | suicidewatch) community:"
Thumbs-Up: "write a (mild | notable | concerning
| serious | hot) negative app review: "
WebMD: "write a (terrible | poor | neutral | good |
great) medicine review: "

We privately (DP-SGD) fine-tune each lan-
guage model in our experiments using the
instructions as input and the corresponding review
as output. After training, we sample 1,000
synthetic texts from each model, again with an
equal distribution of labels. We evaluate the utility
of the synthetic data with a BERT (Devlin et al.,
2019) classifier. The classifier is trained on the
synthetic texts for 5 epochs (learning rate = 2e−5),
aimed at predicting the label corresponding to the
instruction each sample was generated with. We
validate it after each epoch on either a subsample
(2k) of the validation set (Thumbs Up, SWMH) or
the original train data (SPAM, WebMD) and select
the best classifier in terms of macro F1-score. We
then measure the performance of each classifier

on the original test sets, based on accuracy and
macro F1-score, and evaluate the quality of the
synthetic texts with the perplexity score, using
BLOOM-560m (Le Scao et al., 2023) as base
model.

5.4 Diffusion models

For our experiments, we consider three text diffu-
sion models, DiffuSeq (Gong et al., 2023a), SeqD-
iffuSeq (Yuan et al., 2024) and GENIE (Lin et al.,
2023).

In contrast to other transformer-based language
models, most diffusion models are not pretrained.
While this does not seem to impact model perfor-
mance when training under non-private settings,
preliminary experiments with DiffuSeq demon-
strated that training the conditional diffusion model
from scratch with DP-SGD introduced too much
noise, and it was unable to generate any text.
Nonetheless, to enable private training, we use a
public checkpoint of DiffuSeq trained on the Quora
Question Pair (QQP) dataset 6 and fine-tune it with
DP-SGD on our selected data collections.

SeqDiffuSeq is an encoder-decoder-based dif-
fusion model. It achieves better text generation
capabilities than DiffuSeq due to using a self-
conditioning method from the image domain (Chen
et al., 2023) and a token-based adaptive noise
schedule. We also mitigate the noise introduced by
DP-SGD by pretraining SeqDiffuSeq on the com-
monsense dialogue dataset, following the settings
from Yuan et al. (2024).

Another model representing diffusion models in
our experiments is GENIE, the only classically pre-
trained text-to-text diffusion model to our knowl-
edge. GENIE is pretrained on the same text corpus
as BART (Lewis et al., 2020) and uses a span-based
masked language modeling objective. However,
rather than replacing the spans with mask tokens,
the forward diffusion process is applied to the spans
instead.

5.5 Baselines

Albeit both Mattern et al. (2022) and Yue et al.
(2023) use GPT2-XL (Radford et al., 2019), we
do not include it as baseline in our experiments to
avoid potential pretraining data leakage. Since GE-
NIE and BART (Lewis et al., 2020) share the same
pretraining data, we add BART-large as second

6https://www.kaggle.com/c/
quora-question-pairs
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SPAM ε = 3 ε = 8 ε = ∞
Acc MF1 PPL Acc MF1 PPL Acc MF1 PPL

BART 0.77 0.77 55 0.82 0.81 192 0.81 0.81 133
BLOOM 0.55 0.44 55 0.49 0.47 61 0.94 0.94 165
PHI-1.5 0.78 0.77 40 0.85 0.85 45 0.80 0.79 230

DIFFUSEQ 0.45 0.31 - 0.55 0.35 - 0.94 0.93 1686
SEQDIFFUSEQ 0.58 0.49 454 0.57 0.57 330 0.57 0.43 2547
GENIE 0.63 0.63 8e+10 0.53 0.50 2e+4 0.83 0.82 2e+5

SWMH ε = 3 ε = 8 ε = ∞
Acc MF1 PPL Acc MF1 PPL Acc MF1 PPL

BART 0.29 0.29 1184 0.32 0.33 10 0.23 0.20 102
BLOOM 0.34 0.32 3e+4 0.49 0.42 819 0.58 0.57 32
PHI-1.5 0.26 0.24 24 0.46 0.48 26 0.43 0.47 38

DIFFUSEQ - - - - - - 0.50 0.45 475
SEQDIFFUSEQ 0.21 0.17 9e+11 0.34 0.19 2e+7 0.31 0.26 1+e12
GENIE 0.40 0.40 2e+5 0.43 0.41 3e+5 0.39 0.37 2e+5

THUMBSUP ε = 3 ε = 8 ε = ∞
Acc MF1 PPL Acc MF1 PPL Acc MF1 PPL

BART 0.21 0.14 7e+5 0.18 0.15 1e+5 0.15 0.14 20
BLOOM 0.22 0.13 176 0.21 0.17 119 0.22 0.16 42
PHI-1.5 0.21 0.18 35 0.21 0.14 35 0.20 0.18 119

DIFFUSEQ 0.20 0.15 - 0.20 0.09 - 0.30 0.28 9e+13
SEQDIFFUSEQ 0.23 0.22 7e+12 0.17 0.16 4e+12 0.20 0.07 3e+6
GENIE 0.24 0.19 2e+13 0.27 0.23 6e+11 0.36 0.33 1e+13

WEBMD ε = 3 ε = 8 ε = ∞
Acc MF1 PPL Acc MF1 PPL Acc MF1 PPL

BART 0.22 0.12 3e+13 0.21 0.14 3e+14 0.23 0.17 2e+14
BLOOM 0.19 0.17 85 0.21 0.15 66 0.22 0.21 37
PHI-1.5 0.21 0.11 26 0.20 0.11 26 0.21 0.17 60

DIFFUSEQ 0.20 0.07 - 0.20 0.14 - 0.22 0.20 9e+12
SEQDIFFUSEQ 0.21 0.16 1e+11 0.20 0.19 5e+5 0.30 0.26 4e+6
GENIE 0.22 0.17 1e+13 0.22 0.15 5e+12 0.21 0.19 4e+12

Table 1: Accuracy (Acc) and macro F1-score (MF1) results of the BERT classifier trained on synthetic data and
tested on the original test sets. We also display the average perplexity (PPL) of the synthetic data. For each ε value,
we highlight the best Acc(↑) and MF1(↑) score for the SPAM and SWMH dataset, while the best PPL(↓) score is
emphasized across all datasets.

baseline. Additionally, BARTs pretrained check-
points were published before the "Thumbs Up"
dataset.

Another large language model we utilize as base-
line is BLOOM (Le Scao et al., 2023). Even though
it released after the data collection of "Thumbs Up",
due to the transparency of BLOOM and the option
to scour its corpus with the ROOTS search tool
(Piktus et al., 2023), we are able to conclude that
none of our selected datasets are present in its pre-
training data. We ensure that BLOOM is of similar
size in regards to BART-large by selecting the 560
million parameter version of BLOOM as another
baseline.

Our final baseline is Phi-1.5 (Li et al., 2023),
a 1.3 billion transformer-based model, pretrained
on synthetically generated text data, which en-

sures that it has not encountered any of our chosen
datasets before fine-tuning.

5.6 Fine-Tuning

All models were fine-tuned with an 80 GB NVIDIA
A100 Tensor Core GPU. Utilizing the Opacus
(Yousefpour et al., 2021) library and with some
modifications, we are able to train all baselines
and diffusion models on our data with DP-SGD.
For the interested reader, we provide a detailed de-
scription of our implementation in the Appendix
D. As for our privacy budgets, we decide on
ε = 3 and ε = 8, using Mattern et al. (2022)’s
work as reference. However, we select a stronger
δ = (10 ∗# of training samples)−1 to effectively
reduce the chance of accidentally leaking any pri-
vate information of a single individual. In addition,
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we also fine-tune all models without DP, to measure
how much utility is lost when protecting privacy.
For detailed hyperparameter settings, please refer
to the Appendix Section A. In general, training
BLOOM and PHI-1.5 with DP-SGD on our largest
dataset takes 1.5 days, while DP finetuning Dif-
fuSeq takes 3 days.

5.7 Results

The experimental results are presented in Table 1.
We also offer randomly sampled texts from all mod-
els as well as the classifier performance on the orig-
inal data in Appendix B.

For the SPAM and SWMH dataset, non-DP train-
ing usually outperforms all DP approaches. The
utility drop-off when using DP varies often, im-
pacting BLOOMs performance negatively on both
SPAM and SWMH, while BART and Phi-1.5 are
almost unaffected on SPAM. All text diffusion mod-
els are usually outclassed by their LLM baselines
on the SPAM dataset, except for DiffuSeq in the
non-DP setting. This is also supported by our sup-
plementary experiment in Appendix E, where GE-
NIE is surpassed by BART and PHI-1.5 under DP
constraints. The SWMH dataset displays a more
leveled field, albeit BLOOM mostly achieves better
scores than the diffusion models.

The metric results for the Thumbs-Up and
WebMD dataset indicate that these tasks are more
challenging, as all classifiers perform close to ran-
dom chance when DP is applied. We even ob-
serve higher metrics for non-DP DiffuSeq and GE-
NIE on the Thumbs-Up dataset, while SeqDiffuSeq
performs slightly better than all other models on
WebMD.

When considering perplexity, Phi-1.5 often dis-
plays lower across all settings than all other mod-
els, while the text diffusion models have orders of
magnitudes higher perplexity scores than the LLM
baselines.

Overall, the results do not meet the expectations.
In Section 5.1, we hypothesized that the diffusion
models are less impacted by the noise introduced by
DP-SGD due to their unique training and inference
based on Gaussian noise. On the contrary, when
using DP, DiffuSeq often repeats a single word over
and over again, and does not generate any text for
the SWMH dataset. Reading the texts generated by
the text diffusion models also reveals that they are
often incoherent, even in the non-private setting, as
estimated by their high perplexity scores.

6 Discussion

In contrast to our experiments, the samples pro-
vided in Lin et al. (2023, Table 9) demonstrate
that diffusion models are capable of generating
semantically and syntactically correct texts. This
may be mainly caused by the task differences be-
tween our works. Lin et al. (2023, Table 9), Gong
et al. (2023a, Table 1) and Yuan et al. (2024, Ta-
ble 1) fine-tune their models on single-sentence
datasets, e.g. XSUM (Narayan et al., 2018) for
GENIE: The average sequence output length of
this particular text summarization dataset is sig-
nificantly lower (19.77 words ) than those of our
utilized SPAM (264.15 words), SWMH (208.05
words) and WebMD (62.00 words) datasets. Con-
sequently, a manual comparison of the generated
texts (Appendix B) shows that the LLMs are able
to generate coherent texts even under DP condi-
tions, while the diffusion models struggle to do so.
Another advantage our LLM baselines have over
diffusion models is inference speed, as they gener-
ate 1,000 text samples on average 36 times faster
than GENIE, and 250 times faster than DiffuSeq.

Albeit the experimental results of combining DP
with text diffusion models are not promising, we
still encourage the exploration of this method in
future work. We believe that major improvements
to this model class are possible, as demonstrated
by Gong et al. (2023b), which drastically improved
the training and inference speed of DiffuSeq.

For privacy-preserving NLP research involving
DP, we recommend to take Section 4 into consider-
ation for their experiments. Future research should
not fine-tune LLMs with DP-SGD without justify-
ing how the main requirements of DP are met in
their work.

7 Conclusion

We explored the capability of three text-to-text dif-
fusion models to generate private synthetic texts.
We also revealed that reported DP guarantees are
severely underestimated by previous works for syn-
thetic text generation, due to omitting group pri-
vacy rules and potential leakage of the employed
datasets into the pretraining data of the involved
LLMs. While our experiments demonstrate that
diffusion models do not exceed their baselines for
private synthetic text generation, we are the first
to train a text diffusion model with DP constraints.
Hopefully, this enables further exploration of pri-
vacy methods incorporating these type of models.
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Limitations and ethics statement

While fine-tuning strategies for LLMs are widely
explored, the same is not the case for the just up-
coming text diffusion models. Especially when
DP-SGD is involved, it can be challenging to select
a working hyperparameter setting. We therefore
cannot guarantee that we utilized the optimal hy-
perparameters for our diffusion models, which may
have influenced the experimental results unfavor-
ably.

Unfortunately, due to high computation costs of
training text diffusion models and slow inference
time (1,000 samples from DiffuSeq took almost
two days), we were unable to generate larger quan-
tities of synthetic texts and are limited to 1,000
samples per synthetic dataset, which may lower
their viability as replacement for the original data.

The underlying dependency of the "Thumbs Up"
data labels on user upvotes makes it more challeng-
ing for training any classifier, especially consider-
ing that the distribution of upvotes onto negative
app reviews addressing the same issue can highly
vary. As the "Thumbs Up" dataset also provides
the exact amount of user upvotes for each review,
exploring the task as regression might have been
more suitable.

To the best of our knowledge, no published text
classification research has utilized the WebMD and
SWMH dataset, which is why we default to the
standard classification procedure for NLP. A more
sophisticated text classification approach may have
resulted in stronger experimental results, however,
this was not the main focus of our research.

Although the synthetic texts generated by our
models trained on SWMH are particularly inter-
esting, we decided against sharing them publicly,
as the dataset has a restrictive access policy, and,
as we stated in our critique of previous works in
Section 4, the provided privacy guarantees by our
own experiments may also be overestimated.

As mentioned in Section 6, the original ex-
periments of DiffuSeq and SeqDiffuSeq explore
text generation tasks with target sequences much
shorter than found in our selected datasets. While
their architectures allow output sequences of up to
256 tokens, their generation capabilities for texts
beyond the length of a single sentence are underex-
plored. GENIE, on the other hand, was pretrained
with target sequences with up to 153 tokens, and
did not perform significantly better than its text
diffusion peers in the measured utility metrics. It

could be possible to decrease the noise introduced
through DP-SGD by increasing the number of dif-
fusion steps beyond 2000. We left this value un-
touched to not further increase inference time, con-
sidering our computational budget, but it should be
worthwhile to explore it in future work.

Our view on the one-to-one correspondence of
a person and the data sample is very strict but it
is based on our understanding of the foundations
of DP. For example, Blum et al. (2005, p. 130)
clearly stated the underlying assumptions about
a datasets to be processed by a DP analysis—it
is a table where each row corresponds to a per-
son. Thus having a dataset where multiple rows
(ie. samples) belong to one person violates this
assumption. However, the NLP research some-
how implicitly moved away from this assumption
(which has not been much emphasized in the later
literature on NLP/ML with DP) and proposed, for
example, document-level privacy. Without debat-
ing the underlying philosophy what privacy is, in
our view what we DP really cares for is privacy
of entities (e.g., persons, groups) and not objects
(e.g., documents, words). Some recent examples
from different communities also discuss the pri-
vacy notion very explicitly, e.g., protecting users in
Wikipedia edits at TPDP’23 (Adeleye et al., 2023).
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A Hyperparameter Settings

We present the hyperparameter settings of our ex-
periments in Table 2.

B Synthetic Texts and Classifier
Performance

As the metric scores for the synthetic data, espe-
cially for the Thumbs-Up and WebMD dataset are
close to random chance, we also report the results
we achieved by training a BERT classifier on a bal-
anced, random subsample of the original training
data, evaluated on the test set, in Table 3.

We present synthetic texts generated from mod-
els trained on the Thumbs-Up dataset, across all
privacy budgets in Figures 1, 2 and 3.

C Dataset details

We display the number of samples per label in each
of our processed data splits in Table 4.
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DP non-DP
Epoch*/Steps BSZ* LR Epoch/Steps BSZ LR

BART 8 32 2e-5 4 32 2e-5
BLOOM 8 16 2e-5 4 16 2e-5
PHI 8 8 2e-5 4 8 2e-5

DIFFUSEQ 200,000 128 1e-4 100,000 128 1e-4
SEQDIFFUSEQ 400,000 128 1e-4 200,000 128 1e-4
GENIE 50,000 256 1e-5 50,000 128 50000

Table 2: Hyperparameter settings for all datasets and (non-) privacy setting (BSZ = batch size, LR = learning
rate). Epoch* in DP describes the number of steps taken in the usual non-privacy setting, even though the data
loader performs random sampling with replacement. BSZ*: During DP training, the data loader also performs
poisson-sampling on the batch size, so that each batch is possibly different in size for each training step. We display
the number of epochs for the baselines and number of training steps for the text diffusion models

Dataset Acc MF1 PPL

SPAM 0.98 0.98 475
SWMH 0.63 0.63 234
THUMBSUP 0.39 0.39 3e+16
WEBMD 0.39 0.39 4e+13

Table 3: Accuracy (Acc) and macro F1-score (MF1)
results of the BERT classifier trained on a random sub-
sample of the original training data and tested on the
original test sets, as well as the average perplexity (PPL)
of the subsample.

D DP-SGD implementation details

While the Opacus library almost supports all stan-
dard layers by the PyTorch (Ansel et al., 2024)
library, it often has conflicts with custom layers
from transformer-based models, especially posi-
tional embedding layers. We therefore detail in this
section our workarounds for training our LLMs
and diffusion models when unsupported layers are
encountered.

BART In our experiments, we utilize the condi-
tional text generation version of BART provided
by the transformers (Wolf et al., 2020) library. As
all layers except the positional embedding layer
of BARTs decoder are compatible with Opacus,
we decide to freeze the positional embeddings dur-
ing DP-SGD fine-tuning, which allows Opacus to
correctly calculate the gradients for all other lay-
ers, while leaving the positional embeddings in its
pretrained state. The metric results of the SPAM
dataset in Table 1 show that this does not negatively
impact our experimental results.

BLOOM and Phi-1.5 For Phi-1.5 and BLOOM,
we use the causal language models from the trans-
formers library, which do not conflict with Opacus,
so no change was necessary to train both models

Instruction: write a mild app review:

BART i love this game but i can’t play it

BLOOM slop like for a game. im willing to pay to play.
but i’m so dumb in all way to play it. u want to
get back coins? i’m dumb enough to let it go. i’d
rather want to play a game and still be good since
nis won’t fix and won’t fix me...

PHI-1.5 Since Kevin was on a strict diet for the past
month, he ate his usual ice cream without realizing
that it was loaded with sugar and empty calories.
Once he finally broke this habit, he felt great, but
couldn’t stop thinking about the old unhealthy re-
lationship habits that kept him captive...

DiffuSeq ??????????????????????????????????
??????????????????????????????????????
????????????????????????????????????...

SeqDiffuSeq . work for there though.

GENIE , we put up a game game and the rest of the
game.

Figure 1: Exemplary synthetic texts generated by mod-
els trained on Thumbs Up with ε = 3. Some texts are
truncated to fit into the scope of this paper, indicated
"..." at the end.

with DP.

DiffuSeq DiffuSeq also relies on a custom posi-
tional embedding. While Opacus is able to capture
the gradient of this layer, it does not correctly ex-
pand it along the first dimension to the current batch
(lot) size. Manually expanding the gradient of the
positional embedding weights to the current batch
(lot) size, enables DP-SGD training with DiffuSeq,
as all other layers are compatible.
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SPAM non-spam spam

Train 19,043 23,132
Test 4,761 5,783

SWMH anxiety bipolar depression offmychest suicidewatch

Train 6,136 4,932 11,940 6,550 5,265
Test 1,911 1492 3,774 1,687 2,018

THUMBSUP mild notable concerning serious hot

Train 30,933 30,933 30,933 30,933 30,933
Test 403,534 110,172 33,282 15,474 7,862

WEBMD terrible poor neutral good great

Train 28273 28273 28274 28274 28274
Test 7069 7068 7069 7068 7068

Table 4: Data distribution of our processed datasets

Instruction: write a mild app review:

BART good game, but it doesn’t work very well. i’ve
been playing for a few months now and every time
i try to start the game, it won’t load.

BLOOM ive lost my payment when my game was out
but if an app used to be available then then i now
have lost it for this type of game. now the app will
return to my bank account and money but i i lost
my money but it did return. i can get to my apps
though with the issue...

PHI-1.5 ! i am happy you like this game. Two co-
workers, Tom and Lisa, have been working to-
gether at a clothing store for several months. Last
week, their boss announced a company-sponsored
event that involved team building and outdoor ac-
tivities...

DiffuSeq nguyen nguyen nguyen nguyen nguyen
nguyen nguyen nguyen nguyen nguyen nguyen
nguyen nguyen nguyen nguyen nguyen nguyen
nguyen nguyen nguyen nguyen nguyen ...

SeqDiffuSeq it’s true.

GENIE to have to argue that it’s going to be happy off,
and so

Figure 2: Exemplary synthetic texts generated by mod-
els trained on Thumbs Up with ε = 8. Some texts are
truncated to fit into the scope of this paper, indicated
"..." at the end.

SeqDiffuSeq As SeqDiffuSeq is built upon the
BART model from the transformers library, the
same method we applied to BART works here:
Simply freezing the weights of the positional em-

Instruction: write a mild app review:

BART i love this game. i’ve been playing it for over a
year now. i used to love it. but lately it’s been so
laggy. i don’t know if it’s my phone or the game
but it’s not my internet connection. i’m on a new
phone and i can’t even get into the game anymore...

BLOOM ive been having a problem where this app
randomly freezes and i cant access my stuff. i’ve
been really mad about this but not sure why. i keep
going through this process to get my rewards and
now it’s finished!...

PHI-1.5 ive started this game before and i got to level
30 or 31 but when i uninstalled it and reinstalled
it i had to start from level one, it deleted all of my
progress please fix this ive played this game every
day for like 2 years and just recently played it for
the first time i reinstled it...

DiffuSeq i can’t get into the game. uninstall and rein-
stall the game, i’m not anymore.

SeqDiffuSeq this game is trash. deleted it to download
and played after 3 hours. not worth it.

GENIE this one is the most worst game. i ever did

Figure 3: Exemplary synthetic texts generated by mod-
els trained on Thumbs Up with ε = ∞. Some texts are
truncated to fit into the scope of this paper, indicated
"..." at the end.

bedding layer does the trick.

GENIE Similar to SeqDiffuSeq, GENIE con-
tains two positional embedding layers where the
gradient is captured by Opacus, but not correctly
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DRUGS ε = 3 ε = 8 ε = ∞
n = 1000 Acc MF1 Acc MF1 Acc MF1

BART 0.56±0.13 0.54±0.15 0.61±0.03 0.61±0.03 0.69+±0.09 0.69±0.09
PHI-1.5 0.57±0.10 0.42±0.05 0.46±0.12 0.41±0.12 0.73±0.05 0.61±0.11

GENIE 0.44±0.01 0.43±0.02 0.46±0.02 .45±0.02 0.79±0.02 0.75±0.05
DRUGS ε = 3 ε = 8 ε = ∞
n = 5000 Acc MF1 Acc MF1 Acc MF1

BART 0.51±0.12 0.39±0.03 0.63±0.06 0.63±0.06 0.73±0.03 0.73±0.03
PHI-1.5 0.77±0.03 0.75±0.02 0.76±0.01 0.75±0.01 0.79±0.02 0.73±0.03

GENIE 0.45±0.02 0.44±0.03 0.46±0.03 0.46±0.03 0.79±0.01 0.78±0.01
DRUGS ε = 3 ε = 8 ε = ∞
n = 10000 Acc MF1 Acc MF1 Acc MF1

BART 0.52±0.12 0.49±0.14 0.65±0.11 0.60±0.14 0.69±0.06 0.69±0.06
PHI-1.5 0.73±0.05 0.67±0.14 0.77±0.02 0.76±0.02 0.81±0.02 0.76±0.03

GENIE 0.45±0.01 0.45±0.01 0.44±0.02 0.43±0.02 0.79±0.03 0.78±0.02

Table 5: Mean (± standard deviation) Accuracy (Acc) and macro F1-score (MF1) results of BERT classifiers
trained on synthetic data and tested on the original test sets. The best Acc and MF1 values per sample size and
privacy budget are highlighted.

expanded. We therefore again expand the two po-
sitional embedding weight gradients to the batch
(lot) size, which solves the incompability issues
with Opacus.

E Supplementary experiments

It turned out to be surprisingly hard to find a pub-
licly available data set that (1) discloses unique
authorship information and (2) is not part of the
pretraining of any of the models in our main ex-
periments. Nonetheless, to investigate how text
diffusion models and LLMs perform under DP
when a one-to-one relation between authors and
data points is ensured, we conduct the following
supplementary experiment.

We create a dataset fulfilling both conditions
by collecting 50K reviews from the Drugs.com®7

website. Here, users can write text reviews about
medications they took, accompanied by a recom-
mendation score scaling from 1 to 10. While users
can submit anonymous reviews, they can also reg-
ister a user name which is displayed in their re-
spective review. We use this feature to uniquify
our collected reviews and a dataset of 21K reviews
remains. We decide to perform binary sentiment
analysis on the data by labeling reviews with a
score of 5 or below as negative, and reviews with
a score above 5 as positive. The resulting label
distribution is 67% positve and 33% negative. We
also split the data into a train, development and test

7https://www.drugs.com

set (8:1:1) for our experiment.
In contrast to our main experiments, we also

measure how the amount of synthetic texts impacts
their utility. Therefore, we decide to generate 10K
samples per model and privacy budget. We conduct
our experiments on BART, PHI-1.5 and GENIE, as
parts of Drugs.com®may have been in the pretrain-
ing data of BLOOM, and generating 10K texts with
DiffuSeq and SeqDiffuSeq exceeds our computa-
tional budget. The text classifiers are trained on the
synthetic data with five random seeds to improve
the stability of the supplementary experiment.

The results are displayed in Table 5. We observe
that (1) utility metrics generally improve when
more samples are introduced, (2) GENIE outper-
forms BART and PHI-1.5 in terms of MF1 when
not finetuned with DP, but falls behind significantly
when it was. This strengthens our main conclusion
that text diffusion models do not outperform LLMs
in synthetic text generation under DP constraints.
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