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Abstract

In-context learning (ICL) enables Large Lan-
guage Models (LLMs) to perform tasks using
few demonstrations, facilitating task adapta-
tion when labeled examples are hard to ob-
tain. However, ICL is sensitive to the choice of
demonstrations, and it remains unclear which
demonstration attributes enable in-context gen-
eralization. In this work, we conduct a pertur-
bation study of in-context demonstrations for
low-resource Named Entity Detection (NED).
Our surprising finding is that in-context demon-
strations with partially correct annotated entity
mentions can be as effective for task transfer as
fully correct demonstrations.

Based off our findings, we propose Pseudo-
annotated In-Context Learning (PICLe), a
framework for in-context learning with noisy,
pseudo-annotated demonstrations. PICLe lever-
ages LLMs to annotate many demonstrations
in a zero-shot first pass. We then cluster these
synthetic demonstrations, sample specific sets
of in-context demonstrations from each cluster,
and predict entity mentions using each set inde-
pendently. Finally, we use self-verification to
select the final set of entity mentions. We eval-
uate PICLe on five biomedical NED datasets
and show that, with zero human annotation, PI-
CLe outperforms ICL in low-resource settings
where limited gold examples can be used as
in-context demonstrations.1

1 Introduction

With in-context learning (ICL), Large Language
Models (LLMs) can be adapted to perform many
tasks using few demonstrations (Brown et al., 2020;
Dong et al., 2022; Srivastava et al., 2023; Ye et al.,
2023). This emergent property of LLMs is particu-
larly beneficial in tasks where limited supervision
data is available for fine-tuning models, such as in

*Equal Supervision
1Our code can be found at https://github.com/

sMamooler/PICLe.

specialized domains where only expensive expert
annotations can be relied upon to produce quality
data (e.g., biomedical, clinical, and legal domains,
among many others), and in situations where in-
house proprietary datasets must be compiled with
few available experts to perform the annotation.

Despite its promise in these settings, ICL is
highly sensitive to the choice of the demonstrations
(Wang et al., 2024; Li and Qiu, 2023; Liu et al.,
2021), and it remains unclear which characteris-
tics of demonstrations are critical for successful
task adaptation. Consequently, prior work has ex-
plored which demonstration characteristics lead to
successful task adaptation in ICL (Min et al., 2022;
Yoo et al., 2022; Wei et al., 2023), but these studies
have focused on scalar-output tasks with a limited,
predefined label space, such as classification. As a
result, demonstration characteristics that optimize
performance remain unclear for tasks that require
structured, open-ended prediction such as Named
Entity Detection (NED).

In NED, the goal is to identify all mentions of
a specific type of entity within a given query, pro-
ducing a structured output, with a label space ef-
fectively bounded only by the number of domain
entities. In this work, we focus on NED given its
high number of use cases (Navarro et al., 2023; Sky-
laki et al., 2020; Ushio et al., 2022), particularly
in specialized domains where effective annotation
is challenging, as (1) it requires considerable do-
main expertise, and (2) entities can change over
time, introducing distribution shifts in supervised
datasets.

We conduct a thorough analysis of demonstra-
tion properties that impact in-context adaptation
in NED. First, we analyze the importance of the
context-label correspondence of in-context demon-
strations by introducing noise through various per-
turbations that preserve different aspects of this
mapping. Second, we investigate the effects of par-
tial correctness in demonstrations. In NED, partial
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correctness refers to annotations that differ from the
complete list of entity mentions in the input query
but still share some overlap with it. To explore this,
we apply various perturbation schemes to produce
demonstrations with different levels of correctness.
We find that while a semantic mapping between
the demonstration context and label is essential,
even weak semantic mappings can provide suffi-
cient signals for in-context task transfer. Moreover,
our analysis reveals that in-context learning is sur-
prisingly resilient to partially correct annotations,
provided that the demonstration labels include a
large number of entities.

Following this analysis, we introduce Pseudo-
annotated In-Context Learning (PICLe), a frame-
work for in-context NED with pseudo-annotated
demonstrations that requires no human labeling
effort. First, we exploit a pool of unlabeled sam-
ples to obtain pseudo-annotations through zero-
shot prediction from LLMs, followed by a self-
verification step in which the model is prompted to
verify the type of individual entities. Then, the
(noisy) pseudo-annotated samples are clustered,
and demonstration sets are sampled from each clus-
ter individually. These cluster-specific demonstra-
tions are used to predict the entities mentioned in
the test query. Predictions from all clusters are con-
solidated to obtain the final set of entity mentions.

In our evaluations with multiple LLMs across
5 biomedical entity detection datasets (Taboureau
et al., 2010; Li et al., 2016; Smith et al., 2008), we
show that PICLe is as effective as, and on average
outperforms, standard ICL that uses gold-labeled
demonstrations.

Contributions. In summary,

1. we conduct a perturbation study to identify
demonstration attributes that enable ICL in
low-resource NED. We find that above a sur-
prisingly low correctness threshold, partially
correct annotations are as effective for ICL as
demonstrations with fully correct gold anno-
tations.

2. we propose PICLe, a novel framework for in-
context learning that uses pseudo-annotated
demonstrations as in-context examples. We
show that without human-annotation effort,
PICLe competes and even outperforms ICL
with gold-labeled demonstrations in resource-
scarce settings.

2 Related Work

What matters in in-context learning? In-context
learning is remarkably effective for performing var-
ious NLP tasks with only a few task demonstra-
tions appended to the prompt (Brown et al., 2020).
However, despite a large body of work on design-
ing novel in-context learning methods (e.g., Gao
et al., 2021; Sorensen et al., 2022; Mishra et al.,
2022), it is not yet fully understood what makes
in-context learning effective, with multiple works
demonstrating surprising variables, such as the im-
pact of the demonstration order (Lu et al., 2022),
the term frequencies of test examples in pretraining
data (Razeghi et al., 2022), and basic output calibra-
tion (Zhao et al., 2021; Fei et al., 2023; Jiang et al.,
2023b). Consequently, recent works explore how
demonstration components might be separately re-
sponsible for in-context transfer. Min et al. (2022)
show that in-context demonstrations serve to show
the label space of demonstrations, the distribution
of their input text, and their overall format. How-
ever, Yoo et al. (2022) perform quantifiable analy-
sis on the impact of ground-truth label demonstra-
tions on a larger set of tasks and datasets and find
that ground-truth labels have substantial impacts
on ICL performance. Wei et al. (2023) continue
this line of work and show that the degree to which
the label mapping influences task transfer depends
on the scale of the model, and that smaller models
are more capable of ignoring misaligned label map-
pings. Wang et al. (2023a) show similar results for
CoT reasoning, finding that CoT is also possible
without valid demonstrations, and that demonstra-
tions that are relevant to the query and have the
correct order of reasoning steps are more important
for effective transfer.

However, these works focus on classification
tasks, which lack the concept of partial correctness;
a label is either fully correct or entirely incorrect.
In token-level tasks like NED, however, the list
of annotated entities can be partially correct. We
show that partially correct demonstrations can per-
form as effectively as fully correct ones—a result
not addressed by these prior works. Furthermore,
contrary to Min et al. (2022)’s findings for classi-
fication tasks, we show that ICL demonstrations
with fully incorrect labels are not effective in NED.

Pseudo-annotation. Pseudo-annotation is a pop-
ular semi-supervised learning method in many do-
mains (Yang et al., 2022; Ye et al., 2024). It has re-
cently been used for various NLP tasks to generate
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Source Name Entity type(s) #Train #Test Avg # words
per entity

Ratio null
samples (%)

ChemProt
(Taboureau et al., 2010)

ChemProt-Chem chemical
10,732 8,431

1.39 41.3
ChemProt-Gene gene/protein 1.62 45.0

BC5CDR
(Li et al., 2016)

BC5-Chem chemical
4,560 4,797

1.36 35.3
BC5-Disease disease/illness 1.70 41.7

BC2GM (Smith et al., 2008) gene/protein 12,575 5,039 2.45 48.9

Table 1: Datasets’ description and statistic: number of samples (sentences) in train and test splits, average number
of words per entity and null samples (samples with no labeled entities) ratio in train split. We use the versions
available in the HuggingFace library.2

demonstrations for ICL (Wan et al., 2023a,b) and
fine-tuning LLMs (Huang et al., 2023; Honovich
et al., 2023; Wang et al., 2023b). Demonstrations’
pseudo-annotations are either random (e.g. Z-ICL,
Lyu et al., 2023, for classification tasks) or partially
correct (Wan et al., 2023a; Chen et al., 2023b). In
particular, COSP (Wan et al., 2023a) selects and
builds a demonstration pool from an LLM’s zero-
shot outputs via multiple rounds of prediction with
high temperature and exceeds few-shot baselines
for a range of reasoning tasks. Most similar to our
work is Self-ICL (Chen et al., 2023b), which uses
zero-shot models to generate in-context demonstra-
tions for text classification. In our work, we con-
struct a pipeline for leveraging zero-shot predicted
labels for real test examples in named entity de-
tection, but ground our pseudo-annotation method
in analysis of how demonstration noise influences
downstream in-context learning performance.

Information extraction with ICL. Although
LLMs have achieved SOTA performance in many
tasks, their performance in information extraction
is still significantly below supervised baselines (Ma
et al., 2023). Recent works have designed dedi-
cated prompting techniques to improve in-context
NER for LLMs (Lee et al., 2022; Shen et al., 2023;
Chen et al., 2023a). Prompt-NER (Shen et al.,
2023) provides entity definitions to the model, and
prompts it for a list of potential entities with an
explanation justifying the compatibility of each en-
tity with the provided definition. Their approach
outperforms vanilla prompting, but still requires
human effort to annotate gold demonstrations that
may not be available in many application settings.
In our work, we adopt a similar task formulation as
Prompt-NER, but do not require labeled demonstra-
tions or explanations, as we use pseudo-annotation
to produce in-context learning examples.

3 Experimental setup

The task of Named Entity Detection (NED) re-
quires detecting all mentions of entities in a text.
We formulate the task such that the language model
is given a passage of text as part of a prompt and
must predict the list of entities that are mentioned
in the passage. Optionally, in few-shot settings
(i.e., in-context learning), the prompt also contains
several demonstrations, each including an exam-
ple passage and a corresponding list of mentioned
entities in the passage.

Datasets. We consider five biomedical NED
datasets with rich and comprehensive collections
of diverse specialized entity types (Table 1).
ChemProt contains annotations for extracting
chemical compounds (drugs) and gene and protein-
related objects (Taboureau et al., 2010). Originally,
each sample of this dataset is a paragraph, but we
split these paragraphs into sentences. We construct
two datasets from ChemProt: ChemProt-Chem and
ChemProt-Gene, for detecting chemicals and genes,
respectively. BC5CDR contains biomedical ab-
stracts annotated for chemical and disease extrac-
tion (Li et al., 2016). Similar to ChemProt, we
conduct our experiments on two sub-portions, BC5-
Chem and BC5-Disease. Finally, BC2GM contains
biomedical abstracts annotated for the extraction
of genes, proteins, and related entities (Smith et al.,
2008).

Models. We use three LLMs in our experi-
ments: the proprietary GPT-3.5-Turbo model, and
the open-source Mistral-7b-instruct (Jiang et al.,
2023a) and Llama-2-7b-Chat (Touvron et al.,
2023) models. In the remainder of the paper, we
refer to them as Mistral and Llama2, respectively.

2https://huggingface.co/bigbio
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Text This pretreatment had no effect on the inhibition of GABA-T or the
elevation of brain GABA levels produced by VIG .

Gold Labels [GABA, GABA, VIG]

Random ID Labels [quinoxalines, W13, N-acetylcysteine]
Swapped ID Labels [AMG]
Random OOD Labels (from nltk) [unmeliorated, suddy, vista]
Random OOD Labels from Text [brain, pretreament, elevation]

Corrupted OOD Text This pretreatment had no effect on the inhibition of unmeliorated or
the elevation of brain suddy levels produced by vista.

Corrupted and Shuffled OOD Text of had by produced on elevation no . levels or effect the vista of the
This unmeliorated pretreatment brain inhibition suddy

Table 2: Examples of different text and labels corruption schemes. Source: ChemProt-Chem.

Metrics. Using each dataset’s original
IOB2 (Inside-Outside-Beginning) annotation
scheme, we compute the micro-averaged precision,
recall, and F1 score to measure entity mention
detection performance.3 We consider an entity as
correctly detected only if the model extracts the
exact span: if some tokens are added or missing
compared to the gold span, it is marked incorrect.

4 Do we need gold demonstrations?

In this section, we analyze which components of
ICL demonstrations are critical for task transfer by
studying the effect of fully incorrect (Section 4.1)
and partially incorrect (Section 4.2) demonstrations
in the in-context prompt. In all analyses, we use
kNN demonstration retrieval (Liu et al., 2022).4

4.1 Input-output correspondence of in-context
demonstrations

Prior research shows that correct demonstrations
are not imperative for priming models in classifi-
cation tasks (Lyu et al., 2023), and that incorrect
demonstrations are sufficient to show desired in-
context transfer behavior, including domain rele-
vance and annotation format.

In our analysis, we investigate essential demon-
stration attributes for successful in-context task
transfer in NED by designing various corruption
schemes, each targeting specific demonstration as-
pects (see Table 2 for examples). We compare per-
formance under these corruptions to zero-shot pre-
diction (No Demo) and standard ICL (Gold Label).
We compare all settings using the same test samples
and instructions prepended to the prompt.

3We use sequeval (https://github.com/
chakki-works/seqeval/) a widely-used Python library for
sequence labeling evaluation.

4A comparison of different retrieval methods is provided
in Appendix C, Figure 8.

Random ID Label: We replace ground-truth
entity labels with random in-distribution enti-
ties. For each input sentence, every entity in
the ground-truth annotation is replaced by an in-
distribution (ID) entity randomly sampled from all
labels in training samples of the dataset.
Swapped ID Labels: We swap entity labels in the
ground-truth demonstrations with the entity labels
of a randomly chosen sample in the training split.
Contrary to Random ID Label where the number
of entities is preserved, the number of entities in
each annotation changes compared to the original
ground-truth.
Random OOD Label: We replace entity labels in
the ground-truth demonstrations with a random out-
of-distribution (OOD) English word.5

Random OOD Label from Text: We replace
ground-truth entity labels with words randomly se-
lected from the sample’s text that are not included
in the ground-truth annotation (i.e., not a target
entity).
Corrupted OOD Text: We replace the entity men-
tions in the text with random OOD English words.5

Corrupted OOD Text and Label: Similar to
Corrupted OOD Text, but we replace ground-truth
labels as well, such that the entities in the text and
label match.
Corrupted and Shuffled OOD Text, Corrupted
and Shuffled OOD Text and Label: Same as
their non-shuffled counterpart, but with randomly
shuffling the words of the sentence.

Results When looking at Mistral’s performance
averaged over all datasets, we find as expected that
demonstrations with gold annotations consistently
improve the performance over no demonstration

5OOD words are randomly sampled from the English vo-
cabulary in the NLTK library (Bird et al., 2009).
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Figure 1: 10-shot ICL performance using various demonstration corruption schemes, with Mistral and kNN
demonstration retrieval. We compare to zero-shot and 10-shot with gold demonstrations, averaging over all datasets.

(Figure 1).6

However, corrupting demonstrations lowers the
performance, particularly for Random ID Label,
Swapped ID Label and Random OOD Label, which
are notably worse than zero-shot prediction. This
observation differs from the findings of Min et al.
(2022) for in-context text classification and mul-
tiple choice QA, as well as Wang et al. (2023a)’s
observations for QA with chain-of-thought reason-
ing, likely due to the open-endedness of the NED
predictions (i.e., predicting multiple labels from
a broad label space). In these three corruption
schemes, the contextual and semantic correspon-
dence between the input sentence and gold entities
is broken. As a result, the model learns spurious
text-label correspondences from these demonstra-
tions, leading to worse performance than in the
zero-shot setting. Random OOD Label from Text
outperforms Random OOD Label, likely because
it maintains a semantic correspondence between
inputs and labels, but still underperforms zero-shot
prediction due to misleading contextual associa-
tions.

Interestingly, both shuffled and unshuffled text
corruption schemes (Corrupted (and Shuffled)
OOD Text) exhibit no substantial performance
drops, maintaining an edge over zero-shot prompt-
ing (despite the input prompt being the same for
all corruptions in Table 2). We hypothesize that
the model relies less on word order in the demon-
strations to adapt to NED. Similar to how previous
work showed that models no longer represent lo-

6For detailed results per dataset, and similar performance
of GPT-3.5-Turbo, see Appendix B (Figure 5).

cal word order in long contexts (Sun et al., 2021),
we infer that the model does not need to repre-
sent explicit word order in exemplars to use them
for transfer for a non-shuffled test sample. More-
over, despite the label corruption in Corrupted
(and Shuffled) OOD Text and Labels, the
performance only slightly decreases compared to
schemes with intact labels, still outperforming the
zero-shot setting. This finding suggests that the
model can induce entity presence from the global
context, as ICL with these demonstrations still out-
performs zero-shot predictions by up to 10%.

Based off these findings, we conclude that for ef-
fective in-context task transfer in NED, the demon-
strations must retain a degree of semantic corre-
spondence between the input text and the extracted
entities, but that the model’s ability to adapt in-
context is robust to noise in the demonstrations.

4.2 Partially Correct ICL demonstrations

To further investigate the findings above, we per-
form a second study where we perturb demonstra-
tions by modifying the context-label correspon-
dence in a controlled manner. Specifically, we
vary the correctness of the gold labels by apply-
ing different heuristic perturbations to the gold
entity labels according to a perturbation factor
p ∈ {0.1, 0.2, ...0.9}:
Deletion: each entity in the ground-truth annota-
tion is deleted with probability p.
Substitution: each entity in the ground-truth
annotation is substituted with a random in-
distribution entity chosen from the dataset’s label
space with probability p.
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Figure 2: 10-shot ICL performance with perturbed demonstrations with different perturbation schemes and
using Mistral and kNN demonstration retrieval. We report the prediction F1 as a function of the precision, recall,
and F1 of the perturbed demonstration label sets (relative to the gold demonstrations) averaged over all datasets.
The size of the points shows the average number of entities in the label sets of the perturbed demonstrations.

Addition and Substitution: for each entity in
the ground-truth, an entity chosen randomly from
the dataset’s label space is added to the annotation
with probability p; additionally, each ground-truth
entity is substituted with a random entity from the
same label space with probability p.
Deletion and Substitution: each entity in the
ground-truth is removed with probability p. The
remaining entities are substituted with a random
entity from the dataset with probability p.
Following these perturbations, we report the pre-
cision, recall, and F1 score of the perturbed
demonstrations (evaluated based off the initial gold
demonstration labels) against the F1 score of down-
stream predictions for test samples that contain at
least one entity in their gold annotations.

Results Demonstrations subject to different per-
turbations may have similar demonstration F1
scores, but result in considerably different predic-
tion F1 scores (Figure 2). Specifically, we note that
for a fixed demonstration F1 score, the perturbed
demonstrations that retain a higher number of en-
tities in the demonstration achieve much greater
performance (i.e., Substitution and Addition
and Substitution). Even with heavily perturbed
demonstration labels, the prediction F1 stays above
zero-shot performance and even remains close to
the performance of 10-shot ICL (with gold labels)
so long as some of the gold entities remain in the
demonstration labels. Based off our findings, we
hypothesize that demonstrations with noisy but
partially correct labels (such as those predicted
by a zero-shot model) could benefit ICL for named
entity detection.

Further results about the number of entities in
the demonstration and perturbation factor, along
with a comparison of the precision and recall of
demonstrations against predictions, can be found

in Appendix Figures 6 and 7. These analyses show
that for a given perturbation factor, changes that
preserve or increase the total number of entities
in the demonstration (such as Substitution or
Addition and Substitution) cause a less pro-
nounced performance drop.

5 In-context NED with pseudo-annotated
demonstrations

In this section, we propose PICLe, a framework
for pseudo-annotating unlabeled samples that can
be leveraged for in-context learning. This frame-
work consists of two stages (Figure 3). In the first
stage, we start with a set of unlabeled samples and
prompt the model in a zero-shot pass to extract
entities in each sample. Then, we improve the
quality of these pseudo-annotations by prompting
the model to verify each predicted entity (i.e., self-
verification; Weng et al., 2023), and filter entities
that are not of the correct entity type. We use k-
means clustering to group the pseudo-annotated
samples into K clusters based off the embedding
of their text and pseudo-annotations.7 Each cluster
is used as an individual pool of demonstrations for
the downstream NED task. In the second stage,
we prompt the model K times, each time choos-
ing the demonstrations from one cluster of pseudo-
annotated samples (a sampling method we refer to
as Sp-k-means, i.e., Specialized k-means). Then,
for each entity in the K lists of predictions, we
perform a self-verification step to verify if the en-
tity has the correct type or not, and retain the ex-
tracted entities that have the correct entity type. In
all of our experiments, we pseudo-annotate 1000
samples from the training set of the datasets with
greedy decoding.

7We embed the text and entities of samples using the
S-PubMedBert-MS-MARCO sentence transformer (https://
huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO).
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Figure 3: PICLe pipeline. Unlabeled samples are pseudo-annotated through a zero-shot prediction and self-
verification pass. Subsequently, they are clustered, and cluster-specific sets of ICL demonstrations are chosen at
random from each group. Each set is independently used to find entity mentions in the query, and the final set of
entity mentions is obtained by aggregating these independent sets and asking the model to verify the type of each
predicted entity.
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Figure 4: Performance of PICLe, zero-shot, and 10-shot ICL with gold demonstrations selected from 10, 50, 100
gold examples using Mistral. The error bars show the variance across 5 seeds for sampling subsets of gold examples.
All methods are followed by self-verification.

PICLe performance We evaluate PICLe on the
same biomedical NED datasets used for our analy-
sis in Section 4 and compare PICLe’s performance
with standard ICL using gold demonstrations sam-
pled from different demonstration pool sizes, repre-
senting various degrees of annotation scarcity. For
baselines that use gold annotations as in-context
examples, we initially sample demonstration pools
of size N from the full training set of each dataset,
which range in size from 4.5K to 12.5K examples
(Table 1). In scarce annotation settings, we then
sample demonstrations from these pools for gold
in-context learning using kNN (following ablation
study in Figure 8 in Appendix). We experiment
with N ∈ [10, 50, 100], reporting results for a di-
verse set of annotation budgets. We repeat all ex-
periments with 5 seeds and report the average per-
formance and standard deviation for these runs.

Our results in Figure 4 show that across most
datasets (with the exception of ChemProt-Chem),
PICLe significantly outperforms the zero-shot base-
line by an average of 10.7% (57.1% compared
to 46.4%). Furthermore, PICLe also matches or
outperforms in-context learning with gold demon-

strations in resource-scarce settings, even beating
an in-context learning baseline that has access to
100 human-annotated demonstrations (57.1% vs.
52.8%). We note that the dataset with the highest
performance, BC5chem (77.7% average F1 score
for PICLe), contains entity annotations whose sur-
face forms generally contain fewer tokens (see Ta-
ble 1). On the contrary, the dataset with the lowest
performance, BC2GM (50% F1 for PICLe), has en-
tity annotations that contain longer surface forms,
making it more difficult to match the exact span in
a generative manner.

We also compare PICLe with a supervised base-
line, fine-tuning a domain-specific language en-
coder, BiomedNLP-BiomedBERT-large, on vari-
ous numbers of gold annotations (see Table 9 in
Appendix). While the performance of fine-tuning
on 10 gold samples is low and shows high variance
between datasets, the performance with 50 gold
samples already outperforms all LLM baselines.
However, we note that the sequence labeling for-
mulation of the task for the supervised baseline
differs from the generative formulation for LLMs,
providing the supervised baseline with a simpler
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Pseudo-annotation Inference F1
Runs Post-

processing
Demo

retrieval
SV

1 10 merging ✓ 55.7
2 10 SV Sp-k-means ✓ 55.1
3 1 none ✓ 51.8

4 1 kNN ✓ 42.7
5 1 SV random ✓ 47.9
6 1 k-means ✓ 55.1

7 1
SV Sp-k-means

× 49.2
8 1 ✓ 57.1

9
NA NA

Zero-shot × 44.6
10 Zero-shot ✓ 46.4
11 10 Zero-shot ✓ 50.6

Table 3: Ablation of each component of PICLe, av-
eraged over all 5 datasets, using Mistral. SV refers to
the use of self-verification and 10 Zero-shot refers to 10
zero-shot passes with a non-zero temperature.

format for predicting entity spans, more adapted to
our strict exact match evaluation.

Ablation study In Table 3, we ablate each step
of the PICLe pipeline to evaluate the importance
of each component (see Appendix Table 7 for a de-
tailed version including precision and recall). For
pseudo-annotation, similarly to Wan et al. (2023a),
we compare our method with running zero-shot pre-
diction 10 times with non-zero temperature (T =
0.7) and filtering the 10 sets of extracted entities
using self-verification or merging (i.e., prompting
the LLM to aggregate the entity lists). Both lead
to a slightly lower F1 score (rows #1 and #2)
while being much more computationally expensive
than a single round of zero-shot prediction. We
also find that self-verification helps with improving
pseudo-annotations (row #3 vs. row #8). Ad-
ditional results demonstrating the effectiveness of
self-verification in the pseudo-annotation and infer-
ence steps are presented in Tables 5 and 6.

We also compare the effect of different demon-
stration retrieval methods: random sampling, kNN,
vanilla k-means, and specialized k-means (Sp-k-
means). kNN (k = 10), known for being sensitive
to noisy demonstrations (Zhang et al., 2022), scores
the lowest (row #4). For random retrieval, we sam-
ple demonstrations using 5 different seeds; the pre-
dicted entity lists are merged and post-processed
using self-verification (row #5). Similarly, for k-
means (row #6), we randomly sample one demon-

Demonstration retrieval Inference F1

Llama2 + PICLe

Llama2

51.9
Zero-shot 48.3
10 gold samples 45.5
100 gold samples + kNN 53.6

Mistral + PICLe

Mistral

57.1
Zero-shot 46.4
10 gold samples 42.6
100 gold samples + kNN 52.8
Full train set + kNN (oracle) 63.2

GPT-3.5-Turbo + PICLe Mistral 56.5

Table 4: Performance of PICLe using different LLMs
for pseudo-annotation and prediction, compared with
zero-shot and 10-shot ICL with gold annotations, aver-
aged over all 5 datasets.

stration per cluster, increasing the intra-run diver-
sity. Conversely, in Sp-k-means, demonstrations in
each round are all sampled from the same cluster,
maximizing inter-run diversity. We sample demon-
strations using 5 different seeds, leading to 5 infer-
ence runs. The predicted entity lists are merged and
self-verified. The diversity of demonstrations for
k-means leads to a higher recall than random (48.6
vs. 40%), but not as high as Sp-k-means (53.5%),
which benefits from having separate clusters that
lead to more varied predictions. Self-verification
improves performance during inference (rows #7
vs. #8), especially precision (+20%).

Finally, to validate the importance of pseudo-
annotations on the downstream performance, we
run zero-shot inference 10 times with temperature
0.8, and pool all predictions before applying self-
verification (rows #9-#11 of Table 3). This base-
line improves compared to vanilla zero-shot fol-
lowed by self-verification, but underperforms PI-
CLe, showing that pseudo-annotations not only
provide seeds for diversity but also promote task
transfer.

Model Generalization We measure the perfor-
mance of PICLe when using different models to
generate pseudo-annotations: Llama2 and GPT-
3.5-Turbo. All experiments with gold samples are
performed by randomly sampling demonstrations
with 5 seeds and averaging the results. On aver-
age over all datasets, Llama2 exhibits the same
behavior as Mistral, outperforming zero-shot and
10-shot with scarce gold demonstrations (Table 4,
and Table 8 in Appendix). We note that for Mis-
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tral, PICLe outperforms gold demonstrations in all
resource-scarce settings (i.e., N = 100). However,
the performance is lower than gold demonstrations
when we can sample demonstrations from the full
training set (i.e., Full train set + kNN). We consider
this performance to be an oracle ICL setting given
the large number of available training examples,
which would not be realistic for low-resource set-
tings, and might question the necessity of using
ICL compared to fine-tuning a NED model.

Given the cost to use GPT-3.5-Turbo, we only
use it for the pseudo-labeling step of PICLe. Since
the pseudo-annotated samples are generated from
the training set of each dataset, we measure the
F1 score of samples pseudo-annotated by each
model: Mistral’s score is 45.8%, Llama2 reaches
48%, while GPT-3.5-Turbo achieves 62.7%. Con-
sequently, we experiment with using the pseudo-
annotations from GPT-3.5-Turbo as a demonstra-
tion pool for performing inference with Mistral,
whose inference cost is lower. Using a higher-
quality demonstration pool results in higher pre-
cision (65.2% vs. 61.8%) but comparable F1 score
on average. This result is in line with our findings
in Section 4.2, where the prediction F1 score curve
becomes more flat with high values of demonstra-
tion F1 score (Figure 2). More specifically, our
inference method Sp-k-means succeeds in leverag-
ing the noisy demonstrations generated by Mistral,
and slight improvements in the demonstration F1
score from using GPT-3.5-Turbo demonstrations
do not improve results.

6 Conclusion

In this work, we study the demonstration attributes
that enable in-context generalization for named en-
tity detection. We find that the context-label se-
mantic correspondence is crucial for effective in-
context NED, and without this correspondence, in-
context examples hurt performance, pushing it be-
low zero-shot NED. However, our analysis demon-
strates that partially correct demonstration label
sets are just as effective as gold label sets, pro-
vided a sufficient number of correct label mappings
are found in the demonstration. Based off these
findings, we design an ICL framework, PICLe, for
named entity detection that leverages LLMs to pro-
duce pseudo-annotated examples that can be used
for in-context transfer. Our results on five biomedi-
cal NED datasets demonstrate that PICLe is more
effective than zero-shot prediction and outperforms

in-context learning with gold demonstrations when
gold demonstrations are scarce.

7 Limitations

Single Task. This work introduces a method to
alleviate annotation effort for named entity detec-
tion (NED) while achieving comparable perfor-
mance to few-shot NED with human-labeled anno-
tations. While this pipeline could be generalized
to other tasks besides NED, the experiments pre-
sented in this paper are limited to this particular
task. However, we demonstrate its effectiveness
over a broad set of entity types. Similarly, fur-
ther work is needed to generalize our conclusions
on the partial correctness of demonstrations to all
structured output tasks.

Sensitive applications. We apply our system to
documents from the biomedical domain. The evalu-
ation sets are drawn from abstracts from published
articles. However, the tools we develop can be
used to extract the same type of entities in sensitive
documents. Our tools were not tested for these ap-
plications, and practitioners should be aware that
performance on such different types of documents
is not guaranteed to transfer.

Annotation bias. Annotated data can contain var-
ious forms of annotation bias, which lead trained
models to make biased predictions when labeling
entities based on the knowledge and beliefs of the
annotators. This bias is usually alleviated following
common annotation practices such as computing
inter-rater agreement and having detailed annota-
tion guidelines discussed with the annotators. How-
ever PICLe only uses models’ pseudo-annotations,
since we focus on domains for which expert an-
notation is challenging to obtain. Consequently,
given the lack of interpretability and training data
openness of the used LLMs, we cannot assess the
reliability and fairness of the demonstrations.
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A Reproducibility statement

Code. We plan to share the code for PICLe and
all of our experiments. The decoding temperature
is specified for each experiment in their correspond-
ing section. For experiments with non-zero tem-
perature, we use top_p=1, and max_tokens=512
in all experiments. All models were run on a single
NVIDIA A100 GPU with 80 GB Memory, each
inference run taking between 5 and 20 minutes
depending on the dataset.

Data. The datasets we use are publicly available
on the Huggingface platform.8

Models. As described in Section 3, we
use two open-source models for our stud-
ies whose checkpoints can be found in the
Huggingface model library: Mistral-7b-instruct9

and Llama-2-7b-Chat.10 We also conduct exper-
iments using a proprietary LLM from OpenAI,
gpt-3.5-turbo-0125,11 which unfortunately is
subject to be updated (or removed from the API
entirely) at any moment, limiting the long-term
reproducibility of the results obtained with this
tool. For supervised fine-tuning, we use the text
encoder BiomedNLP-BiomedBERT-large.12

Random seeds We repeat all of our experiments
that involve randomization 5 times with the follow-
ing seeds: 12345, 24690, 37035, 49380, 61725.

Prompts Examples of the prompts used for the
self-verification pass and NED are shown in Fig-
ures 9 and 10 respectively.

B Additional analysis for ICL
demonstration

B.1 Corrupted random demonstrations
Figure 5 shows results per dataset for all corrup-
tion schemes with Mistral and GPT-3.5-Turbo. We
observe a similar trend for both models.

B.2 Partially correct demonstrations
Figure 6 shows the evolution of the downstream
F1 score depending on the number of entities in

8https://huggingface.co/datasets/bigbio/
9https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.1
10https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
11https://platform.openai.com/docs/models/

gpt-3-5-turbo
12https://huggingface.co/microsoft/

BiomedNLP-BiomedBERT-large-uncased-abstract

the demonstrations and the perturbation factor. As
expected, an increased perturbation factor leads
to a lower demonstration F1 and a lower down-
stream F1 (right side of the figure). Similarly,
adding or removing entities in the demonstration
labels leads to a lower downstream F1. However,
with the same perturbation factor, perturbations
that do not decrease the number of entities in the
demonstration (Substitution and Addition and
Substitution) lead to a much softer rate of per-
formance loss. Similarly, to reach the same down-
stream performance as zero-shot (around 0.5 on
average), removing one entity is enough, while
at least two entities need to be added. This re-
sult supports the hypothesis that a way to increase
downstream performance is to give preference to a
higher recall and number of entities in the demon-
stration set. Figure 7 compares the precision and
recall of demonstrations against the precision and
recall of predictions.

C Additional results for PICLe

Ablation study We ablate each component of
PICLe’s pseudo-annotation and inference steps in
Table 7. These results show the importance of
the self-verification step in pseudo-annotation (row
#3 vs #8), and inference (row #7 vs #8) for the
downstream precision. Additionally, we observe
that our proposed Sp-k-means leads to a higher re-
call and F1 compared to other demonstration sam-
pling methods (rows #4-6 vs #8).

Results with different models Table 8 evalu-
ates PICLe with different base language models for
pseudo-annotation and inference. We observe that
for both Llama2 and Mistral, PICLe obtains higher
recall and F1 than zero-shot and almost all 10-shot
with gold demonstration methods.

Impact of demonstration retrieval Here, we
compare random, k-means, and kNN demonstra-
tion retrieval methods for gold demonstrations with
and without the self-verification step. Figure 8
shows that demonstration retrieval performance be-
tween methods varies across datasets. However,
kNN outperforms the other two methods on three
out of five datasets.

Impact of self-verification We evaluate PI-
CLe’s pseudo-annotations before and after self-
verification and report the results per dataset in
Table 5. We also report the performance of zero-
shot NED before and after the self-verification pass
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Figure 5: 10-shot ICL performance using various demonstration corruption schemes, compared with zero-
shot and ICL with gold annotations, for each dataset. Experiments performed using Mistral (top) and GPT-3.5-
Turbo (bottom) and kNN demonstration retrieval. (Best viewed in color.)

Dataset SV Precision Recall Micro F1

BC2GM
× 51.9 27.7 36.1
✓ 58.4 22.2 32.2

BC5-Chem
× 60.2 71.7 65.4
✓ 81.5 65.6 72.7

BC5-Disease
× 57.1 33.3 42.1
✓ 69.9 31.3 43.2

ChemProt-Chem
× 34.6 54.7 42.4
✓ 53.1 49.9 51.5

ChemProt-Gene
× 69.1 20.7 31.9
✓ 77.6 18.3 29.6

Average × 54.6 41.6 43.6
✓ 68.1 37.5 45.8

Table 5: Evaluation of pseudo-annotated samples
with and without self-verification. The pseudo-
annotations are obtained via zero-shot with Mistral with
greedy decoding. SV refers to the use of self-verification.

in Table 6. It is observed that self-verification re-
duces the recall and significantly increases the pre-
cision, and on average leads to a higher F1 score,
thereby improving the overall pseudo-annotation
and prediction performance.

Fine-tuning results We report the performance
of fine-tuned BioMedBERT in Table 9. As expected
with 10 gold samples fine-tuning results in low
performance and high variance. However, the per-
formance with 50 samples already outperforms all
in-context learning baselines.

Dataset SV Precision Recall Micro F1

BC2GM
× 53.0 29.2 37.6
✓ 59.7 23.6 33.9

BC5-Chem
× 60.4 71.2 65.3
✓ 82.3 65.2 72.8

BC5-Disease
× 53.9 34.9 42.4
✓ 67.3 31.9 43.3

ChemProt-Chem
× 39.4 56.1 46.3
✓ 56.7 49.7 53.0

ChemProt-Gene
× 68.8 20.4 31.4
✓ 77.4 18.0 29.2

Average × 55.1 42.4 44.6
✓ 68.7 37.7 46.4

Table 6: Evaluation of zero-shot inference with and
without self-verification using Mistral with greedy de-
coding. SV refers to the use of self-verification.

Efficiency analysis Compared to the 10-shot
baseline with gold demonstrations, PICLe has a
zero-shot pass followed by the self-verification
step for pseudo-annotation, 10 additional rounds
in the Sp-k-means component, and one final self-
verification step. This is while PICLe requires no
human annotation which is crucial in low-resource
domains.
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Figure 6: 10-shot ICL performance with partially correct demonstrations with different perturbation schemes
using Mistral and kNN demonstration retrieval. We observe the impact on prediction F1 score of the perturbation
factor and the number of entities in the demonstrations for different perturbation types, averaged over all datasets.
The size of the points shows the demonstrations’ F1 score.
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Figure 7: 10-shot ICL performance with partially correct demonstrations with different perturbation schemes
using Mistral and kNN demonstration retrieval. We observe the impact of the demonstration precision and recall
on the downstream prediction precision and recall, respectively, averaged over all datasets. The size of the points
shows the demonstrations’ number of entities in the annotations.
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Pseudo-annotation Inference Precision Recall F1
Runs Post-processing Demo retrieval Self-verification

1 10 LLM-merging Sp-k-means ✓ 56.7 55.1 55.7
2 10 self-verif Sp-k-means ✓ 56.3 54.2 55.1
3 1 none Sp-k-means ✓ 55.2 49.4 51.8

4 1 self-verif kNN ✓ 72.5 32.8 42.7
5 1 self-verif random ✓ 68.1 39.8 47.9
6 1 self-verif k-means ✓ 64.8 48.6 55.1

7 1 self-verif Sp-k-means × 41.8 60.7 49.2
8 1 self-verif Sp-k-means ✓ 61.8 53.5 57.1

Table 7: Ablation of each component of PICLe, averaged over all datasets, using Mistral for pseudo-annotation
and inference.

Demonstration pool Demo retrieval Inference model Precision Recall F1

PICLe (Llama2) Sp-k-means

Llama2

47.0 59.9 51.9
zero-shot 59.5 40.8 48.3

10 gold samples - 59.2 38.6 45.5
100 gold samples kNN 60.0 48.7 53.6

PICLe (Mistral) Sp-k-means

Mistral

61.8 53.5 57.1
zero-shot 68.7 37.7 46.4

10 gold samples - 65.7 34.9 42.6
100 gold samples kNN 73.6 42.5 52.8

PICLe (GPT-3.5-Turbo) Sp-k-means Mistral 65.2 50.1 56.5

Table 8: Performance of PICLe using different LLMs for pseudo-annotation and prediction, compared with
zero-shot and 10-shot ICL with gold annotations, averaged over all 5 datasets.
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Figure 8: 10-shot NED with gold annotations with Mistral using different demonstration retrieval methods:
k-means, kNN, and random.
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Train set size BC2GM BC5-Chem BC5-Disease ChemProt-Chem ChemProt-Gene Average

10 9.8 59.0 15.1 64.3 50.1 39.7
50 55.7 79.1 53.0 79.6 72.4 67.9
100 63.9 83.4 65.6 83.4 77.6 74.8
Full 87.0 94.3 85.4 90.8 89.8 89.5

Table 9: Micro-F1 score of BioMedBERT-large fine-tuned on various numbers of gold annotations. For 10, 50
and 100 gold annotations, random sets are sampled with 5 different seeds, and the fine-tuning performances are
averaged.

user: Given the context and definition of chemical entity, answer the following question. Please
reason about your answer and include YES or NO in your response. YES if the given phrase is a
chemical entity, and NO if it is not. If you are not sure, you can say I don’t know.
Context: p75NTR expression in rat urinary bladder sensory neurons and spinal cord with
cyclophosphamide-induced cystitis.
Chemical definition: Chemical refers to any substance having a distinct molecular composition
that is produced by or used in a chemical process. Chemicals can be elements or compounds, and
they can exist in various forms—solid, liquid, or gas.
Based off this context and definition, does cyclophosphamide correspond to the name of a chemical
entity?

Figure 9: Example of prompt used for self-verification. Dataset: BC5-Chem.
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user: Your task is to extract all of the chemicals mentioned in a given abstract published in PubMed.
Chemical refers to any substance having a distinct molecular composition that is produced by
or used in a chemical process. Chemicals can be elements or compounds, and they can exist in
various forms—solid, liquid, or gas.
Please extract all of the entities corresponding to chemicals from the following paragraph, the
same way as they are marked in the examples. Make sure to include all and only the chemicals
mentioned in the text, but not the genes and proteins, and diseases. If there are no chemical
entities in the text output ’None’. You will be penalized if you include an entity more or less than
the number of times it appears in the text.

## Here are some examples:

user: Input: No statistically significant changes in behavior or receptor binding were found in PD
males with the exception of increased ( 3 ) H - MK - 801 binding in cortex. Chemical entities:
assistant:
H | yes | because it is a chemical
MK - 801 | yes | because it is a chemical

user: Input: The normalized reflex amplitude was significantly higher during pain, but
only at faster stretches in the painful muscle. Chemical entities:
assistant:
...
user: Input: NRA0160 has negligible affinity for the human cloned dopamine D3 receptor ( Ki =
39 nM ) , rat serotonin ( 5 - HT ) 2A receptors ( Ki = 180 nM ) and rat alpha1 adrenoceptor ( Ki =
237 nM ). Chemical entities:
assistant:
NRA0160 | yes | because it is a chemical
dopamine | yes | because it is a chemical
serotonin | yes | because it is a chemical
5 - HT | yes | because it is a chemical

user: Input: p75NTR expression in rat urinary bladder sensory neurons and spinal cord with
cyclophosphamide-induced cystitis. Chemical entities:

Figure 10: Example of prompt used for NED. Dataset: BC5-Chem.
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