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Abstract

Health-related misinformation claims often
falsely cite a credible biomedical publication as
evidence. These publications only superficially
seem to support the false claim, when logical
fallacies are applied. In this work, we aim to
detect and to highlight such fallacies, which
requires assessing the exact content of the mis-
represented publications. To achieve this, we
introduce MISSCIPLUS, an extension of the fal-
lacy detection dataset MISSCI. MISSCIPLUS
extends MISSCI by grounding the applied fal-
lacies in real-world passages from misrepre-
sented studies. This creates a realistic test-bed
for detecting and verbalizing fallacies under
real-world input conditions, and enables new
and realistic passage-retrieval tasks. MISSCI-
PLUS is the first logical fallacy dataset which
pairs the real-world misrepresented evidence
with incorrect claims, identical to the input to
evidence-based fact-checking models. With
MISSCIPLUS, we i) benchmark retrieval mod-
els in identifying passages that support claims
only with fallacious reasoning, ii) evaluate how
well LLMs verbalize fallacious reasoning based
on misrepresented scientific passages, and iii)
assess the effectiveness of fact-checking mod-
els in refuting claims that misrepresent biomed-
ical research. Our findings show that current
fact-checking models struggle to use misrep-
resented scientific passages to refute misinfor-
mation. Moreover, these passages can mislead
LLMs into accepting false claims as true.1

1 Introduction

Health-related misinformation has caused signif-
icant harm in our society (Zarocostas, 2020).
Human fact-checking (HFC), which is time-
consuming, must prioritize the most impactful
claims and struggles with the rapid spread of
misinformation (Arnold, 2020; Vosoughi et al.,
2018). Two main approaches can automatically

1Code and data are available at https://github.com/
UKPLab/naacl2025-missciplus

Accurate premise ( ): Chloroquine
reduced infection of the coronavirus.

Publication context ( ): The study
used cell cultures for their experiments.
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Hydroxychloroquine is
a cure for COVID-19.

Figure 1: We link the paraphrased context from MISSCI
to real-world passages. The LLM must (i) find relevant
passages from the original study and (ii) generate a
fallacious premise to (falsely) support the claim.

combat health-related misinformation: Scientific
automated fact-checking (AFC) retrieves scientific
evidence documents to support or to refute a claim,
but faces challenges with mismatched specificity
between claim and evidence (Wadden et al., 2022),
and the reliance on the availability of refuting ev-
idence (Glockner et al., 2022). Reason-checking
(Musi et al., 2023) rejects claims that use falla-
cious reasoning, which is particularly relevant since
facts are often misrepresented or skewed (Brennen
et al., 2020). Unlike most logical fallacy detection
datasets, which assume that fallacious reasoning
is explicitly stated (Jin et al., 2022; Alhindi et al.,
2022), real-world scenarios often involve fallacies
that are not explicitly articulated.

The MISSCI dataset (Glockner et al., 2024a) ad-
dresses implicit fallacious reasoning by reconstruct-
ing the fallacious logical argument, explicitly ver-
balizing the fallacies that led to the incorrect claim.
However, MISSCI provides pre-selected and sim-
plified short phrases (as shown in Figure 1) instead
of the actual misrepresented study as evidence. In
a real-world scenario the relevant parts of the mis-
represented study are not presented in this form.
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Here, the models must first (i) identify the relevant
passages within the entire misrepresented study
and (ii) verbalize the fallacious reasoning based
on the original scientific text. To address this, we
present MISSCIPLUS (§4), an extension of MISSCI

with 2,257 human-annotated links between the sim-
plified phrases from MISSCI and the real-world
passages from the misrepresented publications.

Figure 1 shows (parts of) a fallacious logical
argument from MISSCI for the claim that “hydrox-
ychloroquine is a cure for COVID-19”. Each claim
in MISSCI has a kernel of truth which is anchored
in the study’s content (“Chloroquine reduced infec-
tion of the coronavirus”), denoted as the accurate
premise in green. However, additional information
from the same study (“The study used cell cultures
for their experiments”) undermines the claim’s va-
lidity and reveals a reasoning gap. The relevant
content from the study that is needed to identify
this reasoning gap between claim and study is re-
ferred to as the publication context. The reasoning
gap between the study’s content and the claim as a
conclusion indicates the fallacious reasoning. To
bridge this reasoning gap the model must verbalize
a fallacious premise (“The results can be trans-
ferred to humans because the human body consists
of cell structure.”), blue in Figure 1, and classify
the fallacy associated with this fallacious premise
(“fallacy of composition”). Unlike MISSCI, where
the accurate premise and publication context are
provided directly, MISSCIPLUS requires LLMs to
retrieve the required real-world passages from the
misrepresented study and reason over them. A com-
plete fallacious argument, including the misrepre-
sented study passages, is provided in §B. MISSCI-
PLUS is the first fallacy dataset to pair real-world
misinformation claims with publication passages
as evidence. This setup is identical to the input
used by evidence-based scientific AFC models and
enables their evaluation over real-world fallacious
misinformation. We use MISSCIPLUS to answer
the following research questions:

1. How well can existing ranking approaches
select the required publication passages (§5)?

2. How well can LLMs reconstruct fallacious
arguments using original studies compared to
the simplified content in MISSCI (§6)?

3. Can evidence-based scientific AFC models
use the content of misrepresented publications
to detect the claims as misinformation (§7)?

Our findings suggest that lexical and semantic sim-

ilarity based ranking models perform the best at
identifying the required evidence passages. How-
ever, all models cannot leverage these passages to
refute misinformation. In summary, we contribute
MISSCIPLUS, an extension of MISSCI to ground
fallacies in real-world evidence, which bridges the
gap to AFC. We propose novel task definitions,
along with extensive experiments on retrieving the
required passages from the misrepresented study
needed to detect misrepresented publications in the
wild, as well as experiments using AFC models
and LLMs in detecting science distortions.

2 Related Work

Fallacy detection Much research on fallacy de-
tection has primarily focused on surface-level falla-
cies (Habernal et al., 2017, 2018; Da San Martino
et al., 2019; Sahai et al., 2021; Piskorski et al.,
2023; Salman et al., 2023). Other works extended
these inventories to include logical fallacies that
may require additional context for detection. How-
ever, all of this research relied on educational
examples, fake news websites (Jin et al., 2022),
or fact-checking articles (Musi et al., 2022; Al-
hindi et al., 2022) and assumed that the explic-
itly stated text was sufficient to detect the fallacies.
MISSCI (Glockner et al., 2024a) developed mod-
els to verbalize the implicit fallacious reasoning.
MISSCIPLUS differs from existing fallacy datasets
by grounding implicit fallacies in real-world evi-
dence documents.

Scientific AFC A large body of research on sci-
entific AFC used scientific documents as evidence
to assess the veracity of claims (Wadden et al.,
2020; Saakyan et al., 2021; Sarrouti et al., 2021;
Kotonya and Toni, 2020; Lu et al., 2023; Vladika
and Matthes, 2023, 2024). These approaches face
challenges with fine-grained differences, such as
specificity mismatches (Wadden et al., 2022). Our
work bridges the gap between scientific AFC and
fallacy detection and sheds light on the abilities of
AFC models to reason over claims and misrepre-
sented evidence passages.

Science communication A very related research
area concerns science communication research (Au-
genstein, 2021), which compares claims and the
cited evidence document across various dimen-
sions such as claim strength (Li et al., 2017),
certainty of the used language (Pei and Jurgens,
2021), sentence-level causal exaggerations (Yu
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et al., 2020), quantification of the information
match (Wright et al., 2022), or combinations of
multiple dimensions (Wuehrl et al., 2024). Our
work differs by focusing on harmful misinforma-
tion and tasks that involve retrieving relevant pas-
sages and articulating the fallacious reasoning.

3 Background

3.1 Preliminaries

MISSCI (Glockner et al., 2024a) comprises 208
inaccurate health-related claims that misrepresent
scientific publications. Each claim is modeled as
a fallacious logical argument where a claim is the
(wrong) conclusion of its premises. Formally, each
argument comprises exactly one accurate premise
(p0) based on which the claim was made, and at
least one fallacious premise pi with the fallacy class
fi (cf. §A for details of all nine fallacy classes),
that is needed to (falsely) conclude the claim c from
the study’s content. We refer to the pair of falla-
cious premise and the applied fallacy class (pi, fi)
as fallacy. Each fallacy in MISSCI is linked to one
publication context (si). The publication context
contains the content of the misrepresented study,
that necessitates the fallacy. For example, know-
ing that the study’s observations were limited to
cell cultures (publication context, orange, Figure 1)
reveals that the claim about the effectiveness (in
humans) is unjustified. We define this disconnect
between study content and its purported conclu-
sions as a reasoning gap, which fallacious premises
attempt to bridge. Each publication context (and
accurate premise p0) faithfully summarizes parts of
the study. MISSCI defines the argument reconstruc-
tion task as: Given the publication context (si), the
incorrect claim (c) and the accurate premise (p0),
the model must verbalize the fallacious premise
and detect the applied fallacy class (pi, fi).

3.2 Linked Passages

In MISSCI, the accurate premise (p0) and publica-
tion contexts (si) were manually paraphrased from
the HFC article and not the study itself. Since
these HFC articles were specifically written to ex-
plain to non-experts why the misrepresented study
does not support the claim, the paraphrased pub-
lication contexts often reveal the reasoning gaps
easily. This severely limits the applicability of
MISSCI in the real world, where models must iden-
tify relevant content from the entire misrepresented
study, and reason through complex scientific text.

In order to investigate the antiviral properties of chloro-

quine on SARS-CoV after the initiation of infection,

Vero E6 cells were infected with the virus and fresh

medium supplemented with various concentrations of

chloroquine was added immediately after virus adsorp-

tion. Infected cells were incubated for an additional 16-

18 h, after which the presence of virus antigens was an-

alyzed by indirect immunofluorescence analysis. When

chloroquine was added after the initiation of infection,

there was a dramatic dose-dependant decrease in the

number of virus antigen-positive cells (Fig. 2A). As

little as 0.1-1 muM chloroquine reduced the infection

by 50% and up to 90-94% inhibition was observed with

33-100 muM concentrations (Fig. 2B). At concentra-

tions of chloroquine in excess of 1 muM, only a small

number of individual cells were initially infected, and

the spread of the infection to adjacent cells was all but

eliminated. A half-maximal inhibitory effect was esti-

mated to occur at 4.4 ± 1.0 muM chloroquine (Fig. 2C).

These data clearly show that addition of chloroquine

can effectively reduce the establishment of infection

and spread of SARS-CoV if the drug is added immedi-

ately following virus adsorption.

Figure 2: A real-world passage (Vincent et al., 2005)
communicates the paraphrased content s1 from MISSCI
that the study used cell cultures for their experiments.

To address this, MISSCIPLUS links the simplified
paraphrased information from MISSCI with actual
passages from the misrepresented study. Figure 2
shows a verbatim passage from the misrepresented
study in MISSCIPLUS, which is linked (i.e., com-
municates the same content) to the paraphrased
content that “the study used cell cultures for their
experiments” from MISSCI (see Figure 1). For-
mally, given a misrepresented study S with its pas-
sages Sj ∈ S, we linked the passage Sj to the
corresponding paraphrased information (p0 and si)
if (parts of) Sj entail the paraphrased information
(p0 or si). Any passage Sj linked to p0 (or si) can
replace p0 (or si) during the argument reconstruc-
tion. The same passage may be linked to multiple
paraphrased information and vice versa. We denote
a passage Sj as S0

j if it links to p0.

3.3 Subtasks

We consider three sub-tasks for reconstructing fal-
lacious arguments in the wild. First (§5.1), the
model must retrieve a passage S0

j , upon which the
claim is based. This is crucial for understanding
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the general reasoning of the claim. Second (§5.2),
the model must retrieve all additional passages Sj

required to detect fallacies, i.e., passages linked to
any publication context si. Lastly (§6), the argu-
ment reconstruction task is adapted from MISSCI,
but replaces the paraphrased content with the re-
spective linked passages. In reality, each subtask
relies on the output of preceding subtasks. In this
work, we aim to establish a strong foundation for
each sub-task individually and assume oracle input
for each, laying the groundwork for a more robust
end-to-end system in the future.

4 Grounding MISSCIPLUS with Evidence

To create MISSCIPLUS, we selected all fallacious
logical arguments from MISSCI, for which the full
misrepresented study is available via PMC2. This
resulted in 118 fallacious arguments misrepresent-
ing 100 distinct publications, which we automati-
cally split into the constituent passages (cf. §C.1).
We used the IMS model (Wright et al., 2022) to
pre-select relevant passages and avoid exhaustively
annotating every paraphrased information with ev-
ery passage. The IMS model quantifies the in-
formation match between textual statements and
scientific text, which aligns well with our needs.
For each paraphrased information (p0 and si), we
selected the top-ranked passage according to IMS
(cf. §C.2) and collected a minimum of six pas-
sages per argument in total, if possible. We em-
ployed two biology master’s students with annota-
tion experience in biomedical misinformation on
MISSCI. The annotators assigned an entailment
label by comparing each paraphrased information
(p0 and si) with each selected passage (Sj), deter-
mining whether Sj entails (and hence is linked to)
the paraphrased information. Following Glockner
et al. (2024b), the annotators could express uncer-
tainty if the entailment relation was ambiguous. If
the paraphrased information was not linked to any
pre-selected passage after consolidation, one anno-
tator manually selected a corresponding passage
from the entire study, if possible, which was then
double-annotated. We removed four arguments for
which no paraphrased information could be linked
to any passage, yielding 2,257 double-annotated re-
lations between passages and paraphrased informa-
tion across 114 arguments. We retained the same
instances for validation (30 arguments) and test (84
arguments) splits as in MISSCI. The inter-annotator

2https://www.ncbi.nlm.nih.gov/pmc/

agreement, measured by Cohen’s κ, was 0.602. For
details about the annotation process please refer to
§C.3. Overall, 400 pieces of paraphrased informa-
tion (88.6% of the accurate premises p0; 72.0% of
the publication contexts si; 76.8% overall) could
be linked to at least one passage (analysed in §C.4).
Descriptive statistics about the passages are in §D.

5 Retrieving Relevant Passages

A prerequisite to reconstruct the fallacious argu-
ment is the identification of the relevant passages
in the study. These passages provide evidence why
the claim was made, and why this involves fallacies.
They are needed for the fallacious argument recon-
struction and for effective debunking, which must
explain why a claim was thought to be true and
why it actually is not (Lewandowsky et al., 2020).

5.1 Subtask 1: Finding the Kernel of Truth

Given an incorrect claim c that misrepresents a
publication S = [S0, S1, ..., Sn], the model must
rank all passages Si ∈ S such that the top-ranked
passage communicates the accurate premise (p0)
based on which the claim c was made (denoted
as S0

j ). This task is similar to finding supporting
evidence in automated fact-checking (Thorne et al.,
2018), but differs as the evidence passage is in
a “corrupted” support relationship with the claim,
meaning it only supports the claim when a fallacy is
involved. The passage S0

j explains the basis of the
claim and reveals the (broken) rationale behind the
claim. We report P@1 and MRR over the subset
of annotated passages with comprehensive anno-
tations (closed) and over all passages (open). The
open evaluation is more realistic, but only serves
as a lower bound.

As baselines, we randomly shuffled passages
(random) or maintained their original order from
the publication (ordered). We used BM25 for lexi-
cal similarity-based ranking. As semantic embed-
ding based approaches, we ranked the passages by
their cosine similarity to the claim using sentence
embeddings from BioBERT (Lee et al., 2020), fine-
tuned by Deka et al. (2022) for evidence selec-
tion in scientific AFC, and prompt-based embed-
dings from INSTRUCTOR (Su et al., 2023). We
also report the performance of the IMS (Wright
et al., 2022) used during the dataset construction.
Further, we trained DeBERTaV3 (He et al., 2022)
AFC models on three scientific AFC datasets SCI-
FACT (Wadden et al., 2020), COVIDFACT (Saakyan
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closed open
Model P@1 MRR MRR
Random 0.360 0.566 0.209

(1) Ordered 0.480 0.658 0.443
BM25 0.547 0.705 0.539

BioBERT ST 0.547 0.712 0.582
(2) INSTRUCTOR 0.573 0.738 0.631

IMS 0.587 0.742 0.664

AFC (SciFact) 0.603 0.748 0.535

(3) AFC (CovidFact) 0.517 0.691 0.450
AFC (HealthVer) 0.608 0.765 0.516
AFC (all) 0.608 0.768 0.514

Llama2-70B 0.711 0.830 –

(4) Llama3-8B 0.729 0.850 –
GPT-3.5 0.671 0.815 –
GPT-4 0.742 0.850 –

Table 1: Finding a passage S0
j based on which the

claim was made (a) among the annotated passages only
(closed) or (b) across the entire publication (open). We
list results for (1) baselines, (2) embedding rankers, (3)
AFC models and (4) LLMs. Averaged over five seeds
(three for LLMs).

et al., 2021), HEALTHVER (Sarrouti et al., 2021),
and their union, denoted as all (cf. §E). Given the
claim and the passages, we rank passages based
on the predicted label probability for SUPPORTED,
which fits closest to the task definition of finding a
passage that seemingly supports the claim.

Finally, for LLM-based ranking we implemented
PRP (Qin et al., 2024), which reorders passages
through pairwise comparisons akin to the early iter-
ations of the bubble sort. We used GPT-4 (Achiam
et al., 2023) and GPT-3.5 as proprietary LLMs,
Llama3-8B (Dubey et al., 2024) and Llama2-
70B (Touvron et al., 2023) as open-source LLMs.
Implementation details are outlined in §F. Due to
the high computational costs of PRP with grow-
ing numbers of documents, we only evaluate the
LLMs in the closed evaluation with prompt selec-
tion based on the development set, Table 17). Pre-
liminary experiments showed cheaper LLM-based
methods like list-wise ranking were inefficient due
to incorrect outputs and order sensitivity, which is
a known limitation (Zhu et al., 2023).

Table 1 shows solid performance across all mod-
els. The strong ordered baseline suggests that
claims often rely on early parts of a study. In the
open evaluation, embedding-based approaches per-
form the best. Note that the IMS model preselected
the passages for annotation, and its performance
must be interpreted with caution. AFC models are

superior to embedding models in the closed evalua-
tion, but fall behind PRP ranking via LLMs.

5.2 Subtask 2: Finding Undermining Passages
Given an incorrect claim c that misrepresents a
publication S = [S0, S1, ..., Sn], and a passage
S0
j ∈ S, based on which the claim was made, the

model must rank all passages Si ∈ S such that
the top-ranked passages Si expose reasoning gaps
(i.e., they are linked to the publication context si)
between the study content S and the inaccurate
claim c. This passage ranking task differs substan-
tially from evidence retrieval in AFC, as the model
must i) understand the rationale behind the claim
based on the accurate premise in S0

j , and ii) evalu-
ate how each passage Si ∈ S to be ranked impacts
this rationale. For example, “in vitro experiments”
only indicate a fallacy because the claim relies on
the results of these experiments and incorrectly
transfers them to humans. This task also differs
from multi-hop reasoning (Jiang et al., 2020; Ma
et al., 2024), which connects information to estab-
lish a reasoning path, e.g., to support or contradict
a claim. Instead, the task identifies passages that
disrupt the reasoning behind the misinformation.

We report the passage-level mean average preci-
sion (MAP) as our main metric. We further report
P@1 because one detectable fallacy is the mini-
mum requirement to reject a claim. To measure
how many distinct reasoning gaps can be detected,
we report the fallacy-level recall of the top ten
ranked passages (Fall-R@10). This penalizes mod-
els that only detect passages linked to the same
publication context si and, hence, can only detect
the same subset of fallacies. We only evaluate this
subtask on the open subset, as most annotated pas-
sages are linked with reasoning gaps as per the
dataset construction. Here, we slightly adapted the
AFC-based ranking to use the sum of the predicted
probabilities for the labels SUPPORTED and RE-
FUTED. We further assume oracle outputs from the
previous subtask and prepended a randomly sam-
pled gold S0

j to the claim in all baselines. These
design choices follow our experiments on the vali-
dation split (cf. §G).

To solve this task, the model must first under-
stand the (false) rationale behind the claim as ex-
pressed in the passage S0

j (e.g., communicating
that “chloroquine reduced infection of the coro-
navirus”). Then, the model can identify how a
different passage interacts with this reasoning to
highlight a reasoning gap (e.g., that this was ob-
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served in “in vitro” experiments). Table 2 shows
that cosine-similarity-based ranking outperforms
all AFC-based models that can jointly encode the
evidence passage with the claim, despite the com-
plexity of the reasoning required. This suggests
that lexical or semantic similarities correlate suf-
ficiently strongly with passages that indicate rea-
soning gaps, while the acquired reasoning by AFC
models seem to be not helpful.
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Figure 3: Recall of undermining passages per fallacy
class (and accurate premise) over the top k ranked pas-
sages. We only list fallacies with ≥ 20 occurrences.

Model MAP P@1 Fall-R@10
Random 0.205 0.136 0.438

(1) Ordered 0.286 0.298 0.497
BM25 0.496 0.617 0.602

INSTRUCTOR 0.541 0.652 0.613
(2) SPICED-IMS 0.524 0.640 0.595

BioBERT ST 0.491 0.600 0.570

AFC (SciFact) 0.360 0.326 0.518

(3) AFC (CovidFact) 0.380 0.457 0.538
AFC (HealthVer) 0.368 0.410 0.544
AFC (all) 0.306 0.338 0.554

Table 2: Retrieving passages linked to fallacies from the
entire publication (open) for (1) baselines, (2) embed-
ding rankers and (3) AFC models. Avg over five seeds.

We show the recall of detectable fallacy classes
over the number of retrieved passages for the
INSTRUCTOR and AFC (all) in Figure 3. Over-
all, within the same model, different fallacy classes
follow similar trends. The superior performance of
INSTRUCTOR seemingly relies on fallacies that
can be detected from S0

j passages, which implies
that INSTRUCTOR does not really capture the
problematic nature of the passages that undermine
the claim. For comparison, we visualize the per-
formance without S0

j passages in §G.2, Figure 10,
which reduces the performance gap between the
two ranking models.

Fallacy class: Fallacy of Composition

Definition: Inferring that something is true of the whole
from the fact that it is true of some part of the whole

Logical Form: A is part of B. A has property X. Therefore,
B has property X.

Example: Hydrogen is not wet. Oxygen is not wet. There-
fore, water (H2O) is not wet.

Figure 4: Examples for the (D)efinition, (L)ogical form
and (E)xample for the Fallacy of Composition, used as
supplementary fallacy information in the prompts.

6 Subtask 3: Fallacious Argument
Reconstruction

Given an incorrect claim, c, and relevant selected
passages Sj ∈ S from the misrepresented study
S that contain the accurate premise p0 and the
necessary publication contexts si for detecting
fallacies, the model must generate the fallacious
premises pi along with their corresponding fallacy
classes fi. These generated fallacious premises,
P̂ = [p̂1, p̂2, ..., p̂n], should bridge all reasoning
gaps between S and the incorrect claim c. We as-
sume oracle output of both passage retrieval tasks
from Section 5 and only provide passages linked to
a fallacy (with at least one S0

j passage as the basis
for the claim). We experimented with GPT-4 Turbo
and GPT-3.5 as proprietary LLMs , and Llama3-8B
as a small open-source LLM with strong leader-
board performance. As in MISSCI, we prompted
the LLMs in a zero-shot setting (cf. §H.1 for
prompt selection). By default, all prompts include
Definition, Logical Form and toy Examples, as
shown in Figure 4, from literature (Bennett, 2012;
Cook et al., 2018) as supplementary information
for each fallacy (cf. §A for all fallacy classes).

6.1 Holistic Argument Evaluation

The evaluation on MISSCIPLUS faces two chal-
lenges: First, unlike MISSCI, there is no one-to-one
mapping between fallacies and passages. This is
because a single passage can simultaneously con-
tain multiple publication contexts (si), each linked
to different fallacies, and a single fallacy can also
relate to multiple passages. Second, different fal-
lacies (pi, fi) that share the same fallacy class (fi)
but address different reasoning gaps between the
study and the claim may be present. For example,
the claim that “hydroxychloroquine is a cure for
COVID-19” in Figure 1 is based on two false as-
sumptions: i) that hydroxychloroquine will have
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the same effect as chloroquine, and ii) that SARS-
CoV-2 will behave in the same way as SARS-CoV-1.
Each assumption presents a separate error in the
claim, both of which are based on the False Equiva-
lence fallacy. Hence, during evaluation, the fallacy
class alone is insufficient to determine which of
the two problems the model addressed with its gen-
erated fallacies. To match the generated fallacies
with the gold fallacies, it is essential to additionally
use the fallacious premises.

To address these challenges, we evaluated the
fallacious argument holistically. Given all relevant
passages of the misrepresented study, we expect up
to five ranked fallacies (p̂i, f̂i), where five is the
maximum number of distinct reasoning gaps, that
must be addressed with fallacies, in MISSCI. Fol-
lowing Schlichtkrull et al. (2023), we automatically
match the generated fallacies with the gold falla-
cies at the argument level (instead of evaluating
fallacies per publication context si as in MISSCI).
We define a function ϕ : (y, ŷ) → {0, 1} which
discerns if the predicted fallacy ŷi = (p̂i, f̂i) and
the gold fallacy yk = (pk, fk) match based on two
implementations:

• ϕf outputs 1 if the predicted fallacy class
equals the gold fallacy class.

• ϕf+p outputs 1 if the generated fallacious
premise additionally bridges the same reason-
ing gap as the gold fallacious premise.

The ϕf is an upper bound, as it does not penal-
ize models for poorly phrased premises. ϕf+p

uses a Llama3-8B model, fine-tuned with QLoRA
adapters (Dettmers et al., 2023) on the human eval-
uation data from MISSCI (cf. §H.2). The accuracy
via cross-validation is 79.8% (78.8 in F1-macro).
We do not perform a human evaluation, which is
too complex given the many-to-many relationship
between the predicted and the gold fallacies, and
is hard to reproduce for future work. Instead, we
report evaluation measures based on the two com-
plementary implementations ϕ, which we deem
adequate to answer our research questions. As a
primary measure, we report the recall of reasoning
gaps for which ϕ found a match among the five fal-
lacy predictions (R@5). Following Glockner et al.
(2024a), we use precision P@1, to check if the
top-ranked fallacy is correct, and Arg@1, which
considers an argument as successfully rejected if at
least one of the predicted fallacies is correct.

LLM Passages R@5 P@1 Arg@1

Llama3-8B per-passage 0.226 0.290 0.476
Llama3-8B all passages 0.199 0.266 0.425
GPT-3.5 per-passage 0.165 0.190 0.361
GPT-3.5 all passages 0.089 0.194 0.206

Table 3: All passage prompting vs. per passage prompt-
ing. Averaged over three seeds.

6.2 Experiments

We compare the performance when prompting
LLMs based on each passage Sj individually (per-
passage) and when including all concatenated pas-
sages in a single prompt (all passages). The per-
passage prompts follow MISSCI, but replace the
accurate premise (p0) and publication context (si)
with the respective real-world passages that contain
the same information. We always provided oracle
passages and selected the top five ranked fallacy
predictions per argument for evaluation using ϕf+p

in Table 3. Per-passage prompting shows superior
performances for both LLMs, but is more expen-
sive because it requires multiple prompts per argu-
ment. The higher (or similar) precision suggests
that focusing on one passage (per-passage prompt-
ing) can be advantageous when identifying the fal-
lacies. Llama3-8B outperforms GPT-3.5 across all
measures, but detects none of the annotated fal-
lacies for more than half of the misinformation,
according to Arg@1.

Table 4 compares the performance of all three
LLMs and ablations over the different fallacy infor-
mation in the prompts (Definition, Logical Form
and Explanation) on MISSCI and MISSCIPLUS us-
ing per-passage prompting (using the paraphrased
si and p0 on MISSCI). GPT-4 performs best across
all measures and datasets on this task. We further
observe a considerable impact of different fallacy
information for each LLM. Yet, none is universally
beneficial or harmful for all tested LLMs.

A clear trend of decreasing performance from
the paraphrased information in MISSCI to the real-
world passages in MISSCIPLUS is evident. We note
that, the approximate measures via ϕf and ϕf+p

may underestimate performance as they cannot
match valid fallacies not covered by the annotations
(Glockner et al., 2024a). The performance from
MISSCI to MISSCIPLUS only drops marginally for
Llama3-8B and GPT-4 Turbo. Interestingly, GPT-
3.5 outperforms Llama3-8B using the paraphrased
content. However, its poor performance across all
evaluated prompts on MISSCIPLUS corroborates
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MISSCI MISSCIPLUS

LLM Info R@5 (ϕf+p) R@5 (ϕf ) Arg@1 (ϕf+p) R@5 (ϕf+p) R@5 (ϕf ) Arg@1 (ϕf+p)

DLE 0.277 0.514 0.552 0.226 0.477 0.476

Llama3-8B DL 0.241 0.445 0.512 0.195 0.463 0.413
DE 0.227 0.470 0.480 0.174 0.449 0.389
LE 0.255 0.469 0.504 0.209 0.439 0.460

DLE 0.248 0.491 0.512 0.165 0.428 0.361

GPT-3.5 DL 0.232 0.492 0.464 0.146 0.416 0.321
DE 0.276 0.517 0.567 0.160 0.400 0.333
LE 0.249 0.478 0.524 0.157 0.410 0.341

DLE 0.332 0.486 0.619 0.224 0.458 0.452

GPT-4 Turbo DL 0.308 0.500 0.583 0.238 0.495 0.488
DE 0.318 0.528 0.595 0.210 0.491 0.440
LE 0.304 0.505 0.583 0.252 0.519 0.500

Table 4: Argument reconstruction performance using paraphrased information from MISSCI compared to the real
passages from MISSCIPLUS across various fallacy information. Results (expect GPT-4) are averaged over 3 seeds.
We evaluate different combinations of fallacy (D)efinition, (L)ogical form and (E)xample in the prompt.

the findings in Table 3 and suggests poor adaptabil-
ity toward realistic scientific text on this task.

7 Scientific AFC Evaluation

A key novelty of MISSCIPLUS are the claims
paired with real-world evidence passages that
can be assessed by fallacy detection models and
evidence-based fact-checking models. This allows
to test AFC models on fallacious claims.

7.1 Fine-Tuned Models for Scientific AFC

Argument level AFC
Training Data Sup. Ref. Mix. NEI Acc.
SciFact 55.5 4.5 23.3 16.7 88.9
HealthVer 39.0 20.0 27.1 13.8 82.1
CovidFact 36.9 12.1 51.0 – 90.7

All AFC 48.8 11.9 27.1 12.1 84.1

Table 5: Veracity predictions from scientific AFC mod-
els on 84 misinformation claims with 510 evidence pas-
sages in MISSCIPLUS. Averaged over five seeds.

Given a claim c that misrepresents the publi-
cation S, we form n fact-checking instances (c,
Sj) by treating each of the n annotated passages
Sj ∈ S, as evidence. We use the scientific AFC
models from §5 to predict n veracity labels. Fol-
lowing Schlichtkrull et al. (2023), we assign an
overall veracity label for a claim as MIXED if the la-
bels SUPPORTED and REFUTED were predicted. If
the model only predicted NOTENOUGHINFORMA-
TION (NEI), the overall verdict was NEI. We label
all other cases in which the model predicted SUP-
PORTED (with optional NEI) or REFUTED (with

optional NEI) as SUPPORTED or REFUTED, re-
spectively. The studies in MISSCIPLUS constitute
trustworthy evidence that do not support the inaccu-
rate claims – HFC have rated them to misrepresent-
ing these studies. A literate scientific AFC model
should equally detect the claims as misinformation.

Table 5 shows that all AFC models yielded high
in-domain accuracy (82-90%) on the respective
AFC dataset. In MISSCIPLUS, the misrepresented
studies were (mis)used as evidence to back up inac-
curate claims. Therefore, if the AFC model assigns
any label other than SUPPORTED, it can be con-
sidered a correct rejection of the claim. Yet, AFC
systems falsely predict 37-56% of the claims to be
true. The seemingly best COVIDFACT model uses
binary classification without NEI and benefits from
a substantially increased chance to predict MIXED.

Grounding the verdict of AFC models in the
used evidence is critical for their trustworthiness
and often is a key part of the evaluation protocol
(Thorne et al., 2018; Wadden et al., 2020; Glock-
ner et al., 2024b). Table 5 only shows if the LLM
rejected a claim based on any passage, not if the
LLM assigned the correct label for the provided
passage. To understand whether the AFC models
reject the claims based on the undermining evi-
dence that indicates reasoning gaps, we visualize
the AFC prediction over different passages in Fig-
ure 5. Intuitively, the models mostly predict SUP-
PORTED over passages based on which the claim
was made (top left). If the same passage is addition-
ally linked to a fallacy (bottom left), the predicted
distribution does not change much, suggesting un-
awareness of the fallacy. Based on passages that are
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Figure 5: AFC predictions over passages linked to the
accurate premise (top left), to reasoning gaps (top right),
to both (bottom left) or none (bottom right).

linked to a fallacy but not to the accurate premise
(top right), the distribution changes towards NEI.
This is similar to completely unrelated passages
(bottom right), again suggesting unawareness of
the scientific distortion. More analysis is in §I.1.

7.2 LLMs as Scientific AFC Models
HFCs disseminates their fact-checking articles
widely, which can give unfair advantages to models
when they are evaluated on the same misinforma-
tion (Glockner et al., 2022). We prompted each
LLM (a) without any evidence to test whether it
already has parametric knowledge about the claims
from pretraining (Magar and Schwartz, 2022) and
(b) with the relevant evidence passages to test their
reasoning capabilities in a RAG style, similarly to
Manakul et al. (2023). For parametric knowledge,
we let the LLM generate a fact-checking article
(FC), which is closest to our application, but may
bias the model to refute a claim due to the preva-
lence of misinformation in fact-checking articles.
As a neutral prompt, we additionally asked the
LLM to predict the veracity of the claim to the
best of their knowledge. All prompts are listed
in §J. Table 6 shows the results on MISSCIPLUS

and 100 randomly sampled correct claims from
HEALTHVER and COVIDFACT (50 per dataset).
Both datasets contain real-world health-related
claims from the internet. The percentages may
not add up to 100% if LLMs refuse to answer.

All LLMs tend to have parametric knowledge
about the veracity of many claims. When pro-
viding evidence, the ratio of claims predicted as
TRUE increases not only for correct claims but also
for misinformation, despite that the misrepresented
evidence does not truly support the claims. This
phenomenon is similar to overruling the internal
knowledge with evidence (Wu et al., 2024) and sug-

Predicted as
LLM True False NEI True False NEI

Llama2 1.6 61.1 37.3 34.7 22.3 41.3
Know Llama3 0.0 86.9 2.4 20.0 43.3 14.3
(FC) GPT4 0.0 85.3 14.7 59.0 23.0 17.3

GPT3.5 0.8 71.0 28.2 46.7 17.3 35.7

Llama2 0.0 100.0 0.0 29.7 69.3 1.0
Know Llama3 8.3 88.9 2.4 68.7 26.0 3.0
(Ask) GPT4 3.6 68.3 27.8 49.7 6.7 36.3

GPT3.5 1.6 50.4 48.0 47.3 6.0 45.0

Llama2 23.8 61.5 12.7 58.7 29.7 10.7

RAG
Llama3 44.4 53.2 2.4 80.3 16.3 3.3
GPT4 27.4 34.1 38.5 55.0 4.0 41.0
GPT3.5 38.9 31.7 29.0 78.0 5.3 16.0

Misinformation True claims

Table 6: Averaged veracity predictions from LLMs on
misinformation from MISSCIPLUS (left) and true claims
from HEALTHVER and COVIDFACT (right).

gests that the LLMs do not identify the reasoning
gaps between the claim and the evidence. Similarly
to humans, LLMs seem prone to misinterpreting
scientific publications. Due to their high persua-
siveness (Augenstein et al., 2024; El-Sayed et al.,
2024), this can lead to disastrous problems when
people rely on LLMs, even if LLMs transparently
output the (misrepresented) used evidence.

Akin to previous work on fallacy recognition (Jin
et al., 2022; Alhindi et al., 2022; Glockner et al.,
2024a), the prompts in this work focus on which
fallacies apply instead of whether any applies, and
are no panacea either: in preliminary experiments
(cf. §I.2), LLMs found fallacies in 85-99% of the
claims in MISSCIPLUS but also in 78-99% of the
true claims. Overall, MISSCIPLUS unifies fallacy
detection with AFC and provides a resource for
studying how to handle fallacious arguments and
true claims alike.

8 Conclusion and Future Work

We introduced MISSCIPLUS, an extension of
MISSCI to reconstruct fallacious arguments based
on real passages of the misrepresented studies. We
showed that existing ranking models and LLMs
struggle to reconstruct fallacious arguments us-
ing the real-world evidence. Moreover, fine-tuned
AFC models and LLMs failed to refute claims in
MISSCIPLUS when presented with misrepresented
evidence, highlighting the dangers of persuasive
LLMs. Future work may improve models using
synthetic data generation approaches, or extend the
task definition over multiple documents.

9740



Limitations

MISSCIPLUS assumes that the claims are based on
a single publication only and that each publication
is inherently trustworthy, i.e., that the only error
was done in the reasoning from the publication
to the claim. In the real world, finding comple-
mentary credible evidence is critical. We observed
that sometimes single passages are insufficient to
ground each fallacy in evidence. Currently MISS-
CIPLUS does not address grounding fallacies in
multi-modal content, cases that require evidence
from multiple passages, or conclusions that can
only be drawn from the analysis of the entire study.
We leave these challenges for future research. Our
evaluation is based on automatic matching, which
is inevitably imperfect. Models may detect falla-
cies that are valid but not contained in the original
annotations in MISSCI. We compensate for this
with two complementary matching strategies and
experiments over different seeds and prompt varia-
tions to confirm the robustness of our observations.
By focusing on recall, we further do not penalize
models for predicting fallacies that are not within
our annotations while still requiring the models
to detect the most prominent ones as highlighted
by the annotators based on the HFC articles in
MISSCI. Our results are reported over two represen-
tative state-of-the-art LLMs at the time of writing
(Llama3 8B as an easy-to-run open-source LLM
and GPT4 as a proprietary LLM), and our claims
are bound to these models. We opted for extensive
tuning of these models to establish strong baselines
for the novel tasks rather than providing compre-
hensive comparisons across various LLMs. While
our focus lies in grounding the individual argument
constituents in the real-world misrepresented study,
which contains 2,257 annotated links and 400 ar-
gument constituents, MISSCIPLUS is only based
on 114 fallacious arguments. This may lead to vari-
ance and biases in the experiments, which must
be interpreted with caution. We note that creating
high-quality fallacy datasets with complex falla-
cious arguments requires suitable, professionally
fact-checked claims, for which data is scarce. Fu-
ture work could explore synthetic data generation
to help bridge this gap.

Ethics Statement

The research questions targeted in this work aim
to improve the detection of claims that distort sci-
entific publications, which is ethically uncritical.

Ethical concerns are bound to cases in which the
content of this study are used in unintended ways.

Dual Use False interpretations of health-related
claims can have disastrous effect. Any output of
models derived from MISSCIPLUS only serves re-
search purposes to detect such misinformation, but
under no circumstances must be considered accu-
rate without consulting experts in the field. Our
work poses dangers for dual use, particularly ver-
balizing the fallacious reasoning to draw incorrect
conclusions from real-world studies. While gen-
erating (parts of) misinformation always poses a
risk, it is unavoidable to build resilience against
real-world misinformation, as demonstrated in pre-
vious work (Zellers et al., 2019; Huang et al., 2023;
Alhindi et al., 2024; Glockner et al., 2024a).

Data Collection All publications used in MISS-
CIPLUS have been published by the respective
authors and we did not anonymize their work.
All publications used in MISSCIPLUS are openly
available and are part of the public discourse; in
fact, they have even been distorted by misinforma-
tion. Hence, similarly to other scientific corpora
(Lehman et al., 2019; Lo et al., 2020) that rely on
such publications as evidence, we did not ask for
explicit permission from the authors of each study
to use their work.
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1. Ambiguity: Combines Ambiguity and Equiv-
ocation.
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Definition Logical Form
AMBIGUITY
When an unclear phrase with multiple definitions is used
within the argument; therefore, does not support the conclu-
sion.

Claim X is made. Y is concluded based on an ambiguous
understanding of X.

EQUIVOCATION (merged with AMBIGUITY)
When the same word (here used also for phrase) is used
with two different meanings. Equivocation is a subset of the
ambiguity fallacy.

Term X is used to mean Y in the premise. Term X is used to
mean Z in the conclusion.

IMPOSSIBLE EXPECTATIONS / NIRVANA FALLACY
Comparing a realistic solution with an idealized one, and dis-
counting or even dismissing the realistic solution as a result
of comparing to a “perfect world” or impossible standard,
ignoring the fact that improvements are often good enough
reason.

X is what we have. Y is the perfect situation. Therefore, X is
not good enough.

FALSE EQUIVALENCE
Assumes that two subjects that share a single trait are equiva-
lent.

X and Y both share characteristic A. Therefore, X and Y are
[behave] equal.

FALSE DILEMMA
Presents only two alternatives, while there may be another
alternative, another way of framing the situation, or both
options may be simultaneously viable.

Either X or Y is true.

BIASED SAMPLE FALLACY
Drawing a conclusion about a population based on a sample
that is biased, or chosen in order to make it appear the popu-
lation on average is different than it actually is.

Sample S, which is biased, is taken from population P. Con-
clusion C is drawn about population P based on S.

HASTY GENERALIZATION
Drawing a conclusion based on a small sample size, rather
than looking at statistics that are much more in line with the
typical or average situation.

Sample S is taken from population P. Sample S is a very small
part of population P. Conclusion C is drawn from sample S
and applied to population P.

FALSE CAUSE FALLACY (use as CAUSAL SIMPLIFICATION)
Post hoc ergo propter hoc — after this therefore because
of this. Automatically attributes causality to a sequence or
conjunction of events.

A is regularly associated with B; therefore, A causes B.

SINGLE CAUSE FALLACY (use as CAUSAL SIMPLIFICATION)
Assumes there is a single, simple cause of an outcome. X is a contributing factor to Y. X and Y are present. Therefore,

to remove Y, remove X.

FALLACY OF COMPOSITION
Inferring that something is true of the whole from the fact
that it is true of some part of the whole.

A is part of B. A has property X. Therefore, B has property X.

FALLACY OF DIVISION (merged with FALLACY OF COMPOSITION)
Inferring that something is true of one or more of the parts
from the fact that it is true of the whole.

A is part of B. B has property X. Therefore, A has property X.

FALLACY OF EXCLUSION / CHERRY PICKING / SLOTHFUL INDUCTION
When only select evidence is presented in order to persuade
the audience to accept a position, and evidence that would go
against the position is withheld (Cherry Picking). Ignores rel-
evant and significant evidence when inferring to a conclusion
(Slothful Induction – focus on neglect).

Evidence A and evidence B is available. Evidence A supports
the claim of person 1. Evidence B supports the counterclaim
of person 2. Therefore, person 1 presents only evidence A.

Table 7: Fallacy Overview. Definition and logical form taken from Bennett (2012) and Cook et al. (2018). Table as
provided by Glockner et al. (2024a).
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AMBIGUITY
It is said that we have a good understanding of our universe. Therefore, we know exactly how it began and exactly when.

EQUIVOCATION
A feather is light. What is light cannot be dark. Therefore, a feather cannot be dark.

IMPOSSIBLE EXPECTATIONS / NIRVANA FALLACY
Seat belts are a bad idea. People are still going to die in car crashes.

FALSE EQUIVALENCE
They are both Felidae, mammals in the order Carnivora, therefore there’s little difference between having a pet cat and a pet
jaguar.

FALSE DILEMMA
I thought you were a good person, but you weren’t at church today.

BIASED SAMPLE FALLACY
Based on a survey of 1000 American homeowners, 99% of those surveyed have two or more automobiles worth on average
$100,000 each. Therefore, Americans are very wealthy.

HASTY GENERALIZATION
My father smoked four packs of cigarettes a day since age fourteen and lived until age sixty-nine. Therefore, smoking really
can’t be that bad for you.

FALSE CAUSE FALLACY
Every time I go to sleep, the sun goes down. Therefore, my going to sleep causes the sun to set.

SINGLE CAUSE FALLACY
Smoking has been empirically proven to cause lung cancer. Therefore, if we eradicate smoking, we will eradicate lung cancer.

FALLACY OF COMPOSITION
Hydrogen is not wet. Oxygen is not wet. Therefore, water (H2O) is not wet.

FALLACY OF DIVISION
His house is about half the size of most houses in the neighborhood. Therefore, his doors must all be about 3 1/2 feet high.

FALLACY OF EXCLUSION / CHERRY PICKING / SLOTHFUL INDUCTION
Employer: “It says here on your resume that you are a hard worker, you pay attention to detail, and you don’t mind working
long hours.”
Andy: “Yes sir.”
Employer: “I spoke to your previous employer. He says that you constantly change things that should not be changed, you
could care less about other people’s privacy, and you had the lowest score in customer relations.”
Andy: “Yes, that is all true, as well.”

Table 8: Fallacy Examples (taken from Bennett (2012)). Table as provided by Glockner et al. (2024a).
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2. Impossible Expectations: Uses Impossible
Expectations and its alternative names.

3. False Equivalence: Uses False Equivalence.
4. False Dilemma: Uses False Dilemma.
5. Biased Sample Fallacy: Uses Biased Sample

Fallacy.
6. Hasty Generalization: Uses Hasty General-

ization.
7. Causal Simplification: Combines False

Cause Fallacy and Single Cause Fallacy.
8. Fallacy of Composition: Combines Fallacy

of Composition and Fallacy of Division.
9. Fallacy of Exclusion: Uses Fallacy of Exclu-

sion and its alternative names.

B Example Argument

We present a complete fallacious argument, includ-
ing three (out of 29) original passages (blue) from
the misrepresented study, in Figure 6. The claim
employs three distinct fallacies (red), each of which
can be identified based on different information
from the study. Two of the displayed passages con-
tain relevant information for detecting these falla-
cies. The middle passage provides all the necessary
information to identify all three fallacies, as well
as the accurate premise. The first passage enables
detection of the fallacies related to the study’s in-
vestigation being limited to cell cultures (s1) and its
use of chloroquine rather than hydroxychloroquine
(s3). In MISSCIPLUS, only the original passages
(marked in blue) are provided to the model, which
must infer the fallacies from the complex scientific
content. Although not used in this work, MISSCI-
PLUS includes sentence-level annotations.

C Dataset Construction

C.1 Passage Extraction

When documents are available in full-text via the
PMC API3, we retrieve the XML document and col-
lect text passages enclosed within <p> tags within
the <body> node. If the full-text document is acces-
sible as HTML but not through the API, we extract
the HTML content from the Wayback Machine4

and separate the passages based on HTML struc-
ture. We make the data collection script publicly
available.

3See https://www.ncbi.nlm.nih.gov/books/
NBK25499/#chapter4.EFetch

4https://archive.org/web/

Stage Args Passages Relations Mapped

1st Round 118 681 2,191 64.3%
2nd Round 118 719 2,334 67.9%
Consolid. 118 719 2,334 74.2%
Cleaned 114 694 2,257 76.8%

Table 9: Stages of the argument mapping annotation,
including how many of the paraphrased information are
linked to passages.

C.2 Passage Selection

We segment each passage into constituent sen-
tences using SciSpacy (Neumann et al., 2019)
and compute the passage-level IMS (Wright et al.,
2022) by max-pooling the IMS of all sentences.
We retain the passage with the highest max-pooled
IMS for each argument paraphrased information
that needs a match (p0, si). More passages (if avail-
able) are selected based on the highest IMS until
we have six passages per argument. The IMS is
particularly well-suited for our problem as it quanti-
fies the information of the scientific findings rather
than focusing on semantic similarity

C.3 Annotation

We use Surge AI5 as the annotation platform and
employed two M.Sc. students in biology paid 12.26
EUR per hour. We provide a screenshot of the anno-
tation interface in Figure 7 and construct MISSCI-
PLUS in multiple rounds. Table 9 provides statistics
for each round of dataset construction.

Passage Linking First, every combination of
paraphrased information (si or p0) and selected pas-
sage Sj is double annotated by our annotators, de-
ciding whether (parts of) the passage entail the para-
phrased information. To account for cases without
a clear entailment label, we follow Glockner et al.
(2024b) and allow annotators to express their un-
certainty. Specifically, annotators can choose one
of the labels “entailed”, “probably entailed”, “prob-
ably not entailed” or “not entailed”. We conserva-
tively only consider the link between paraphrased
information and passaged and as entailed if at least
one of both annotators labeled it as “entailed” and
the other labeled it as either “entailed” or “prob-
ably entailed”. In the first round, we annotated
2,191 relations with 681 distinct passages. This
annotation round linked 266 paraphrased content
to at least one passage. In a second round, one
annotator manually identified (if possible) a corre-

5https://www.surgehq.ai/
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Study supportsClaim Hydroxychloroquine is
a cure for COVID-19.

Publication context ( ): The study
used cell cultures for their experiments.

Publication context ( ): The study was
conducted on SARS-CoV-1.

Publication context ( ): The study used
chloroquine not hydroxychloroquine.

Fallacious premise ( ):The results can be
transferred to humans because the human

body consists of cell structure.

Fallacious premise ( ): SARS-CoV-1 and
SARS-CoV-2 are both coronaviruses.

Therefore, they can be treated the same
way.

Fallacious premise ( ):
Hydroxychloroquine is similar to chloroquine

and has the same effects on coronavirus.

Fallacy of
Composition

False
Equivalence

False
Equivalence

Missci
(paraphrased

content)

MissciPlus
(original content)

ACE2 flow cytometry analysis and
biosynthesis
Vero E6 cells were seeded in Dulbecco's
modified Eagle medium (Invitrogen)
supplemented with 10% fetal bovine serum. The
next day, the cells were incubated in Opti-MEM
(Invitrogen) in the presence or absence of 10 muM
chloroquine or 20 mM NH4Cl. To analyze the
levels of ACE2 at the cell surface, cells were
incubated on ice with 10 mug/mL affinity-purified
goat anti-ACE2 antibody (R&D Systems) and then
incubated with FITC-labeled swine anti-goat IgG
antibody (Caltag Laboratories). Labeled cells were
analyzed by flow cytometry with a FACSCalibur flow
cytometer (BD Biosciences). For ACE2 biosynthesis
studies, Vero E6 cells were pulsed with 250 muCi
35S-(Met) (Perkin Elmer) for 3 h with the indicated
concentrations of chloroquine or NH4Cl and then
lysed in RIPA buffer. Clarified lysates were
immunoprecipitated with an affinity-purified goat anti-
ACE2 antibody (R&D systems), and the
immunoprecipitated proteins were separated by
SDS-polyacrylamide gel electrophoresis.

Discussion

We have identified chloroquine as an effective
antiviral agent for SARS-CoV in cell culture
conditions, as evidenced by its inhibitory effect when
the drug was added prior to infection or after the
initiation and establishment of infection. The fact that
chloroquine exerts an antiviral effect during pre- and
post-infection conditions suggest that it is likely to
have both prophylactic and therapeutic advantages.
Recently, Keyaerts et al. [21] reported the antiviral
properties of chloroquine and identified that the drug
affects SARS-CoV replication in cell culture, as
evidenced by quantitative RT-PCR. Taken together
with the findings of Keyaerts et al. [21], our analysis
provides further evidence that chloroquine is
effective against SARS-CoV Frankfurt and Urbani
strains. We have provided evidence that
chloroquine is effective in preventing SARS-CoV
infection in cell culture if the drug is added to the
cells 24 h prior to infection. In addition, chloroquine
was significantly effective even when the drug was
added 3-5 h after infection, suggesting an antiviral
effect even after the establishment of infection.
Since similar results were obtained by NH4Cl
treatment of Vero E6 cells, the underlying
mechanism(s) of action of these drugs might be
similar.

Background

Severe acute respiratory syndrome (SARS) is an
emerging disease that was first reported in
Guangdong Province, China, in late 2002. The
disease rapidly spread to at least 30 countries within
months of its first appearance, and concerted
worldwide efforts led to the identification of the
etiological agent as SARS coronavirus (SARS-CoV),
a novel member of the family Coronaviridae [1].
Complete genome sequencing of SARS-CoV [2,3]
confirmed that this pathogen is not closely related to
any of the previously established coronavirus
groups. Budding of the SARS-CoV occurs in the
Golgi apparatus [4] and results in the incorporation
of the envelope spike glycoprotein into the virion.
The spike glycoprotein is a type I membrane protein
that facilitates viral attachment to the cellular
receptor and initiation of infection, and angiotensin-
converting enzyme-2 (ACE2) has been identified as
a functional cellular receptor of SARS-CoV [5]. We
have recently shown that the processing of the spike
protein was effected by furin-like convertases and
that inhibition of this cleavage by a specific inhibitor
abrogated cytopathicity and significantly reduced the
virus titer of SARS-CoV [6].

Accurate premise ( ): Chloroquine
reduced infection of the coronavirus.

Figure 6: A complete fallacious argument, including three (out of 29) passages from the misrepresented study. The
arrows indicate which original passage in MISSCIPLUS corresponds to the paraphrased publication context in
MISSCI. Some passages convey the same content in different publication contexts, and the same content may appear
in multiple passages.
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Figure 7: Annotation Interface from Surge AI to assign the entailment labels between the a passage and the
paraphrased information.

sponding passage from all remaining passages for
each missing link. These new passages were then
double annotated with every paraphrased informa-
tion (si, p0) as outlined before. This annotation
round contained 38 additional passages with 143
new relations and increased the number of para-
phrased information linked to a passage to 281.
The agreement for the fine-grained labels is 0.445.
When merging “entailed” with “probably entailed”
and “not entailed” with “probably not entailed”,
the inter-annotator agreement rises to 0.602. This
suggests that some of the disagreement stems from
uncertainty regarding a definite label.

Consolidation To account for possible false neg-
atives due to our conservative label aggregation,
we consolidate annotations where the two annota-
tors reached no unanimous label. We consider in-
stances as not unanimous if they include instances
labeled as “probably entailed” by both annotators
or “entailed” by one and “probably not entailed”
or “not entailed” by the other. To finalize the over-
all label, we provided the annotator with the en-
tire fallacious argument during consolidation. This
additional context allowed for a more contextual
understanding of the role of the passage in recon-
structing the fallacious argument. Our primary an-
notator, who had extensive experience in fallacy

# Sentence

(1) The study did not include a group that did not wear masks at all.
(negated)

(2) The experiments were done on concentrations that are different from
concentrations found in patients or vaccinated people. (scope)

(3) Chloroquine diphosphate and hydroxychloroquine sulfate show an-
tiviral activity against MERS-CoV and SARS-CoV. (multi-hop)

(4) The average amount of spike protein in the blood was about 30 to 40
picograms/mL after receiving the Moderna vaccine. (multi-modal)

Table 10: Examples of paraphrased information with no
linked passage.

annotation and was involved in all our pilot studies,
handled consolidation. Cases in which our consol-
idator could not clearly identify as “entailed” were
labeled as “not entailed”. In total, 245 relations
needed consolidation, 58 of which were consoli-
dated as “entailed”, leading to 26 previously un-
linked paraphrased information. Four arguments
were not linked to any passages and were subse-
quently removed. This likely happened when the
link to the misrepresented publication was falsely
selected in MISSCI.

C.4 Missing Passage Link Analysis
During dataset construction, we assumed that each
paraphrased information from MISSCI could be
linked to a single passage. This was feasible in 400
cases only (76.8%). Accurate premises were more
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frequently linked to at least one passage (88.6%),
than publication contexts (72.0%). We list rep-
resentative reasons where no passages could not
be found in Table 10. The most common reason,
accounting for 41.6%, was the presence of nega-
tion in the paraphrased information, discussing in-
formation not present in the study. For instance,
a claim questioning mask effectiveness would re-
quire a study with a control group without masks.
However, if the study did not focus on mask ef-
fectiveness in general, there is no need for such
a control group or to explicitly mention its ab-
sence. Negated sentences were more prevalent
in undermining publication contexts (47.4%) and
less frequent in accurate premises (7.7%). Among
the remaining instances, we identified (2) scope
mismatches between the claim and the study, (3)
information spread across multiple passages, and
(4) non-textual components like tables or figures.
While these fields could not be linked to a single
passage, it is theoretically possible to reconstruct
the argument using the complete publication.

C.5 Licenses

MISSCI extends the MISSCI dataset, published un-
der the Apache 2.0 license. MISSCIPLUS aligns
directly with their intended use, which is to out-
line the fallacious reasoning of distorted science
transparently, and only improved its applicability
in the real world. Our collected annotations and
all scripts to collect and preprocess the scientific
publications will be made publicly available under
an open-source license. All fallacious logical argu-
ment and all publications in MISSCIPLUS are in
English.

D Length of Passages in MISSCIPLUS

The number of annotated passages per argument
ranges from 1-8 passages (mean: 6.1; std: 1.2;
median: 6.0). The number of all annotations per
argument ranges from 1-114 passages (mean: 43.7;
std: 25.5; median: 43.0). Annotated passages
vary in length, with 1 to 28 sentences. These pas-
sages contain 4.9 sentences on average (median: 4).
When considering all passages of the entire mis-
represented publication, each passage averages 3.8
sentences, with a median of 3. Figure 8 displays
the distribution of sentence counts in annotated
passages, while Figure 9 shows the same for all
passages.
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Figure 8: Number of sentences per passage over all
annotated passages in MISSCIPLUS. Passages are only
considered once (if used by multiple arguments).
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Figure 9: Number of sentences per passage over all
passages of the entire publication in MISSCIPLUS. Pas-
sages are only considered once (if used by multiple
arguments).
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E Scientific AFC Models

We train four DeBERTaV3 (He et al., 2022) mod-
els for scientific AFC using SCIFACT (Wadden
et al., 2020), COVIDFACT (Saakyan et al., 2021),
HEALTHVER (Sarrouti et al., 2021) and the combi-
nation of all.

E.1 Scientific AFC datasets

SCIFACT (Wadden et al., 2020) covers multiple
scientific domains using scientific abstracts as ev-
idence documents. Citations were used to col-
lect claims supported by the evidence. Refuted
claims were generated via careful paraphrasing.
While the original task includes the selection of
evidence documents and rationale sentences, we
only train models to predict the stance towards the
claim given the full abstract as evidence. We used
the official validation split as our test split (due
to the hidden official test split). We randomly se-
lected 200 instances from the official training set
as the validation set and trained on the remaining
instances. COVIDFACT (Saakyan et al., 2021) cov-
ers scientific claims related to COVID-19. Pairs
of claims and evidence originate from a strictly
moderated Reddit forum where every claim must
provide an evidence document. Refuted claims
were created by automatically changing the true
claims. Unlike other AFC datasets, this dataset
only distinguishes between “supported” and “re-
futed” claims, missing a label for “not enough in-
formation”. HEALTHVER (Sarrouti et al., 2021)
used COVID-19-related questions as queries and
collected claims from resulting web pages via a
search engine. Each claim was annotated against
retrieved scientific abstracts as evidence using the
three labels SUPPORTS, REFUTES, and NEUTRAL.

E.2 Hyperparameter search

We fix the number of epochs to 5 and the seed
to 1 and perform a hyperparameter search over
the learning rates (1e-7, 5e-7, 1e-6, 5e-6, 1e-5,
5e-5) and batch sizes (4, 8, 16), evaluated on the
respective validation set. When training on mul-
tiple datasets, the overall performance considers
each instance equally (instead of averaging dataset
scores). The results are shown in Tables 11-14. We
train five models using different seeds (1-5) based
on the best-performing hyperparameters and report
the averaged test performance in Table 15.

Model lr batch-size Acc. F1-score

deberta-v3-large 1e-07 4 49.5 24.7
deberta-v3-large 1e-07 8 49.5 24.7
deberta-v3-large 1e-07 16 49.5 24.7

deberta-v3-large 5e-07 4 50.5 26.2
deberta-v3-large 5e-07 8 49.5 24.7
deberta-v3-large 5e-07 16 49.0 22.1

deberta-v3-large 1e-06 4 58.5 43.7
deberta-v3-large 1e-06 8 53.0 31.6
deberta-v3-large 1e-06 16 50.0 22.2

deberta-v3-large 5e-06 4 90.5 88.6
deberta-v3-large 5e-06 8 88.5 86.4
deberta-v3-large 5e-06 16 82.5 79.6

deberta-v3-large 1e-05 4 91.5 90.4
deberta-v3-large 1e-05 8 91.5 90.2
deberta-v3-large 1e-05 16 88.5 86.8

deberta-v3-large 5e-05 4 50.0 22.2
deberta-v3-large 5e-05 8 50.0 22.2
deberta-v3-large 5e-05 16 82.5 80.7

Table 11: Hyperparameter search reported on our SCI-
FACT validation split. We fix the random seed to 1 and
number of epochs to 5.

Model lr batch-size Acc. F1-score

deberta-v3-large 1e-07 4 69.0 40.8
deberta-v3-large 1e-07 8 69.0 40.8
deberta-v3-large 1e-07 16 69.0 40.8

deberta-v3-large 5e-07 4 75.4 61.8
deberta-v3-large 5e-07 8 69.0 40.8
deberta-v3-large 5e-07 16 69.0 40.8

deberta-v3-large 1e-06 4 85.0 83.2
deberta-v3-large 1e-06 8 85.4 83.6
deberta-v3-large 1e-06 16 69.0 40.8

deberta-v3-large 5e-06 4 90.5 89.1
deberta-v3-large 5e-06 8 90.2 88.8
deberta-v3-large 5e-06 16 89.0 87.4

deberta-v3-large 1e-05 4 88.8 87.4
deberta-v3-large 1e-05 8 90.9 89.3
deberta-v3-large 1e-05 16 88.8 87.1

deberta-v3-large 5e-05 4 69.0 40.8
deberta-v3-large 5e-05 8 69.0 40.8
deberta-v3-large 5e-05 16 89.7 88.3

Table 12: Hyperparameter search reported on the
COVIDFACT validation split. We fix the random seed to
1 and number of epochs to 5.
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Model lr batch-size Acc. F1-score

deberta-v3-large 1e-07 4 51.6 29.4
deberta-v3-large 1e-07 8 49.8 29.3
deberta-v3-large 1e-07 16 46.7 30.1

deberta-v3-large 5e-07 4 72.3 65.6
deberta-v3-large 5e-07 8 66.2 50.2
deberta-v3-large 5e-07 16 64.8 47.5

deberta-v3-large 1e-06 4 80.1 78.2
deberta-v3-large 1e-06 8 76.5 72.0
deberta-v3-large 1e-06 16 69.1 56.0

deberta-v3-large 5e-06 4 86.6 84.6
deberta-v3-large 5e-06 8 85.4 83.4
deberta-v3-large 5e-06 16 86.3 84.5

deberta-v3-large 1e-05 4 85.6 83.6
deberta-v3-large 1e-05 8 85.7 83.4
deberta-v3-large 1e-05 16 85.8 83.6

deberta-v3-large 5e-05 4 51.8 22.7
deberta-v3-large 5e-05 8 51.8 22.7
deberta-v3-large 5e-05 16 51.8 22.7

Table 13: Hyperparameter search reported on the
HEALTHVER validation split. We fix the random seed
to 1 and number of epochs to 5.

Model lr batch-size Acc. F1-score

deberta-v3-large 1e-07 4 54.6 33.5
deberta-v3-large 1e-07 8 52.9 28.1
deberta-v3-large 1e-07 16 51.7 27.9

deberta-v3-large 5e-07 4 69.6 62.5
deberta-v3-large 5e-07 8 65.1 46.6
deberta-v3-large 5e-07 16 64.0 46.0

deberta-v3-large 1e-06 4 79.4 78.0
deberta-v3-large 1e-06 8 76.5 73.6
deberta-v3-large 1e-06 16 69.7 59.7

deberta-v3-large 5e-06 4 85.2 83.6
deberta-v3-large 5e-06 8 84.7 83.1
deberta-v3-large 5e-06 16 84.9 83.6

deberta-v3-large 1e-05 4 52.3 22.9
deberta-v3-large 1e-05 8 84.8 83.1
deberta-v3-large 1e-05 16 85.1 83.8

deberta-v3-large 5e-05 4 52.3 22.9
deberta-v3-large 5e-05 8 52.3 22.9
deberta-v3-large 5e-05 16 52.3 22.9

Table 14: Hyperparameter search reported on the SCI-
FACT, COVIDFACT, and HEALTHVER validation split.
We fix the random seed to 1 and number of epochs to 5.

Overall Per Label (F1)
Datasets Acc. F1 S N R

SCIFACT 88.9 87.9 92.0 86.0 85.8
HEALTHVER 82.1 81.4 80.1 86.6 77.4
COVIDFACT 90.7 89.5 86.0 – 93.1

All 84.1 83.3 83.8 86.7 79.5

Table 15: Evaluation of the scientific AFC models on the
test set of the respective dataset used for training. The
F1-score is macro averaged. The results are averaged
over five seeds

Model Agg. Sent MRR P@1

BioBERT-ST concat all 0.657 0.462
BioBERT-ST mean 1 0.676 0.500
BioBERT-ST mean 2 0.664 0.500
BioBERT-ST mean 3 0.678 0.500

PubMedBERT-ST concat all 0.764 0.654
PubMedBERT-ST mean 1 0.620 0.423
PubMedBERT-ST mean 2 0.661 0.462
PubMedBERT-ST mean 3 0.664 0.462

SapBERT-ST concat all 0.701 0.538
SapBERT-ST mean 1 0.664 0.500
SapBERT-ST mean 2 0.680 0.462
SapBERT-ST mean 3 0.663 0.462

SBERT concat all 0.663 0.500
SBERT mean 1 0.620 0.423
SBERT mean 2 0.655 0.462
SBERT mean 3 0.602 0.385

SPICED IMS concat all 0.699 0.538
SPICED IMS mean 1 0.598 0.346
SPICED IMS mean 2 0.717 0.577
SPICED IMS mean 3 0.673 0.500

INSTRUCTOR concat all 0.726 0.577
INSTRUCTOR mean 1 0.671 0.500
INSTRUCTOR mean 2 0.763 0.654
INSTRUCTOR mean 3 0.747 0.615

Table 16: Hyper-parameter search on the validation
split for sentence-embedding models to select passages
S0
j ⇒ p0.

F Details on Finding the Kernel of Truth

F.1 Implementation Details
F.1.1 Baselines
As baselines, we randomly shuffle all passages
(random) using five different seeds (1-5) or order
passages as they appear within the original pub-
lication (ordered). We rank passages via BM256

for ranking based on lexical similarity. For pre-
processing, we use SpaCy7 for tokenization and
converting all tokens to lowercase.

F.1.2 Embedding-based approaches
We experiment with various sentence-embedding
models (in addition to those reported in Table 1).
This includes SBERT8 (Reimers and Gurevych,
2019), and sentence transformers fine-tuned on
BioBERT (Lee et al., 2020), PubMedBERT (Gu
et al., 2021), and SapBERT (Liu et al., 2021)
as provided by Deka et al. (2022). For the
INSTRUCTOR, we use the following prompts for
the INSTRUCTOR (Su et al., 2023), which follows
the official templates:

6https://pypi.org/project/rank-bm25/
7https://spacy.io/
8all-mpnet-base-v2
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• Prompt (Claim): “Represent the Scientific
claim for retrieving supporting sentences: ”

• Prompt (Passage Sentences): “Represent the
Scientific sentence for retrieval: ”

For all embedding models, we ranked the passages
according to the cosine similarity to the embedded
claim. For SPICED-IMS, we use the model9 pro-
vided by Wright et al. (2022) and rank passages
according to their IMS between claim and passage.
We treat the scientific AFC models from §E as
cross-encoder models to jointly encode each claim-
passage pair and re-rank passages based on the
predicted probability for the label SUPPORTED.

Hyperparameter Tuning We compare two per-
spectives on how to represent passages. First, the
model embeds the entire passage by concatenat-
ing all sentences (denoted as concat). Second, we
compute the cosine-similarity (or IMS) between
the claim and each sentence of the passage individ-
ually and rerank passages based on the mean score
of the top k sentences with the highest score (de-
noted as mean). The intuition is that only fractions
of a passage may be relevant for the claim, and fo-
cusing on only parts of the passage can benefit the
ranking performance. We report the performance
on the validation set in Table 16 and select the best
hyperparameters based on the P@1.

F.1.3 LLMs with PRP
For PRP, we use the claim and two passages as
input to the LLM and prompt it to output which
passage should be ranked first. Following Qin et al.
(2024), we use these outputs to re-rank passages
akin to bubble sort. The bubble sort algorithm en-
sures that the top k elements are ranked at the top
after k iterations. We evaluate four prompts on
the validation split in Table 17, starting with the
prompt provided by Qin et al. (2024) and three
deviations tailored towards our task. We further
assess whether passages should include or exclude
the title and found that including the title gener-
ally improves performance. During prompt selec-
tion in Table 17 we randomly shuffle all passages
prior to reranking them to avoid the impact of the
strong positional bias on the validation split (P@1:
0.577). Since our metrics are only sensitive to the
top-ranked results, PRP can only be completed over
a few iterations to reduce costs without affecting
the performance much. Following our experiments

9https://github.com/copenlu/
scientific-information-change

on the validation split, we only ran PRP for three
iterations on the test set. Prompts are listed in §J.1.

F.2 Exhaustive Results on MISSCIPLUS

Table 18 provides a list of all evaluated models,
including additional sentence embedding models,
tasked to find the passage S0 based on which
the claim was made. We additionally report
HasPositives@3 (Shaar et al., 2020) as a more re-
laxed measure that allows an appropriate passage
to be ranked within the top three results.

G Details on Finding Undermining
Passages

We only evaluate finding undermining passages
in the open subset. Hence, the results represent a
lower bound of the system’s performance. Per our
hyper-parameter search (§G.1.1 and §G.1.2), we
always provide one randomly sampled passage S0

to the model, which is necessary to understand the
rationale (and reasoning gaps) behind the claim. If
no passage S0 exists, we use the paraphrased accu-
rate premise from MISSCI instead. All experiments
are averaged over five seeds (1-5).

G.1 Implementation Details

G.1.1 AFC as Rankers
A key challenge in retrieving passages that indi-
cate reasoning gaps in a zero-shot setting is the
absence of directly comparable tasks. For instance,
passages containing content that undermines an ar-
gument may convey a supporting stance (e.g., if the
claim is confirmed based on a small sample size, as
in Hasty Generalization). When re-purposing AFC
models to predict whether Sj points to a reasoning
gap in the argument, we experiment with various
strategies that aggregate the stance prediction la-
bels from AFC models. Specifically, we measure
the predicted probability mass for the labels SUP-
PORTED, REFUTED, or their sum10 (both). For
each strategy, we experiment with the role of the
passage S0 based on which the claim was made:

• No S0: The AFC model sees only c and Sj .
• Claim: The claim is reformulated as an argu-

ment by incorporating S0 through the expres-
sion “S0 Therefore: claim”.

• Evid.: S0 is added at the beginning of the ev-
idence passage (Sj) that is subject to ranking.

10Except when trained on CovidFact, which only exhibits
two labels.

9754

https://github.com/copenlu/scientific-information-change
https://github.com/copenlu/scientific-information-change


MRR after iteration i
Prompt Section Title P@1 i=1 i=2 i=3 All

Qin et al. (2024) no 0.628 0.750 0.778 0.783 0.783
Qin et al. (2024) (claim) no 0.705 0.806 0.833 0.835 0.837
Qin et al. (2024) (convincing) no 0.731 0.825 0.849 0.848 0.848
Qin et al. (2024) (support) no 0.615 0.739 0.758 0.758 0.760

Qin et al. (2024) yes 0.692 0.798 0.824 0.824 0.825
Qin et al. (2024) (claim) yes 0.731 0.822 0.844 0.841 0.843
Qin et al. (2024) (convincing) yes 0.744 0.831 0.858 0.858 0.858
Qin et al. (2024) (support) yes 0.667 0.769 0.789 0.791 0.793

Table 17: Evaluation of different prompts for PRP with Llama2-70B ( 8bit quantization), with random initialization.
Averaged over three seeds.

Annotated Passages (closed) All Passages (open)
Model P@1 MRR P@1 MRR HasPos@3
Random 0.360 0.566 0.096 0.209 0.213
Ordered 0.480 0.658 0.320 0.443 0.507

BM25 0.547 0.705 0.387 0.539 0.627

SBERT (Reimers and Gurevych, 2019) 0.400 0.631 0.280 0.460 0.547
PubMedBERT ST (Deka et al., 2022) 0.440 0.652 0.240 0.442 0.573
BioBERT ST (Deka et al., 2022) 0.547 0.712 0.427 0.582 0.680
SapBERT ST (Deka et al., 2022) 0.480 0.672 0.333 0.514 0.627
INSTRUCTOR (Su et al., 2023) 0.573 0.738 0.480 0.631 0.733
SPICED-IMS (Wright et al., 2022) 0.587 0.742 0.533 0.664 0.760

DeBERTav3 SciFact (Wadden et al., 2020) 0.603 0.748 0.389 0.535 0.627
DeBERTav3 CovidFact (Saakyan et al., 2021) 0.517 0.691 0.307 0.450 0.507
DeBERTav3 HealthVer (Sarrouti et al., 2021) 0.608 0.765 0.347 0.516 0.629
DeBERTav3 Scienfic AFC (all) 0.608 0.768 0.349 0.514 0.600

Llama2-70B (Touvron et al., 2023) PRP (it=3) 0.711 0.830 – – –
Llama3-8B PRP (it=3) 0.729 0.850 – – –
GPT3.5 PRP (it=3) 0.671 0.815 – – –
GPT4 (Achiam et al., 2023) PRP (it=3) 0.742 0.850 – – –

Table 18: Ranking performance to find the passages based on which the claim was made (S0
j ) over all 75 test

instances where p0 was linked to at least one passage.
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mAP when S0
j included as

Train data Strategy No S0
j Claim Evid.

SciFact Support 0.304 0.389 0.193
SciFact Refute 0.258 0.251 0.230
SciFact Both 0.348 0.404 0.208

CovidFact Support 0.236 0.369 0.206
CovidFact Refute 0.161 0.150 0.214

HealthVer Support 0.270 0.357 0.235
HealthVer Refute 0.234 0.269 0.241
HealthVer Both 0.273 0.375 0.245

All AFC Support 0.308 0.410 0.188
All AFC Refute 0.270 0.183 0.192
All AFC Both 0.355 0.420 0.191

Table 19: Evaluation of ranking passages based on the
predicted probability of supported, refuted or their sum
(both) on the validation split.

0 10 20 30
Top k ranked passages

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lla

cy
-le

ve
l R

ec
al

l

INSTRUCTOR

0 10 20 30
Top k ranked passages

AFC (all)

False Equivalence
Hasty Generalization
Causal Oversimplification
Fallacy of Exclusion

Fallacy of Division/Composition
Biased Sample Fallacy
Ambiguity

Figure 10: Recall of undermining passages per fallacy
class over the top k ranked passages when removing
all S0 passages (based on which the claim was made).
Only listing fallacies with ≥ 20 occurrences.

Table 19 shows the validation split results. We
select the best-performing strategy according to
MAP, which always concatenates a randomly sam-
pled passage S0 with the claim.

G.1.2 Dense embedding rankers

Using the same ranking models via embeddings or
BM25 as in §F, we assess the impact of prepend-
ing a passage S0 to the claim on the validation
split in Table 20. We select the best configura-
tion according to mAP for the test split. For the
INSTRUCTOR, we modify the prompt to encode
the claim by looking for “refuting” instead of “sup-
porting” sentences (cf. §F.1.2), which resulted in a
higher MAP on the validation set.

MAP
Model no S0

j S0
j

BM25 0.283 0.554

SBERT (concat) 0.328 0.522
SBERT (mean-1) 0.333 0.366
SBERT (mean-2) 0.353 0.354
SBERT (mean-3) 0.308 0.342

INSTRUCTOR (concat) 0.388 0.582
INSTRUCTOR (mean-1) 0.404 0.480
INSTRUCTOR (mean-2) 0.389 0.516
INSTRUCTOR (mean-3) 0.368 0.479

SPICED-IMS (concat) 0.384 0.562
SPICED-IMS (mean-1) 0.379 0.429
SPICED-IMS (mean-2) 0.380 0.408
SPICED-IMS (mean-3) 0.323 0.380

PubMedBERT ST (concat) 0.283 0.490
PubMedBERT ST (mean-1) 0.337 0.529
PubMedBERT ST (mean-2) 0.318 0.513
PubMedBERT ST (mean-3) 0.324 0.490

BioBERT ST (concat) 0.270 0.516
BioBERT ST (mean-1) 0.313 0.531
BioBERT ST (mean-2) 0.311 0.536
BioBERT ST (mean-3) 0.280 0.521

SapBERT ST (concat) 0.323 0.484
SapBERT ST (mean-1) 0.312 0.497
SapBERT ST (mean-2) 0.325 0.500
SapBERT ST (mean-3) 0.323 0.500

Table 20: Ranking performance of embedding-based
models on the validation instances to select passages
linked to fallacies. We select the best model based on
the highest MAP.
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G.2 Impact of S0
j Passages

We artificially remove all passages from the ranked
results if the passage communicates the con-
tent based on which the claim was made (i.e.,
S0
j passages) in Figure 10. Among these pas-

sages only, both rankers exhibit different strengths.
INSTRUCTOR prefers passages based on which
the Biased Sample Fallacy or the Fallacy of Exclu-
sion can be detected. The AFC ranker prioritizes
fallacies based on which Hasty Generalization and
False Equivalence can be detected. An intuitive
explanation is that both fallacies are similar to the
support relationship and, hence, to the predicted
probability for the label SUPPORTED.

G.3 Exhaustive Results on MISSCIPLUS

We list all results of detecting undermining pas-
sages on the MISSCIPLUS test split in Table 21.

H Details on Argument Reconstruction

H.1 LLM argument reconstruction

We provide the LLM with all passages Sj that were
linked to at least one reasoning gap (or fallacy),
and one passage S0 that communicates the content
based on which the claim was made. If multiple
candidates for S0 exist, we randomly select one.
Experiments over MISSCI use the paraphrased p0
instead of a randomly sampled passage S0, and
the publication context si instead of the linked pas-
sages Sj . We run each experiment over three dif-
ferent seeds (1-3). For Llama3-8B we use a tem-
perature of 0.3. For a fair assessment given the
changed requirements for the LLM, we perform
extensive prompt-search over all six prompts eval-
uated for MISSCI and an additional new prompts
(cf. §J.3). During prompt search, we provide the
complete fallacy information consisting of the def-
inition, the logical form, and an example (cf. §A;
Tables 7-8) within the instructions. All prompts
task LLMs to output a ranked list of verbalized
fallacious premises and the applied fallacy class.
If possible, fallacies outside our inventory were
converted; otherwise, they were removed. The re-
sults are listed in Table 22. We additionally report
the average number of predicted fallacies per argu-
ment. This number excludes fallacies that the LLM
hallucinated and are invalid (e.g., Contextomizer,
Accident, Conflict of Interest, Fallacy of Conclu-
sion) or that are outside of our fallacy inventory
(e.g., Fear Mongering, Non Sequitur, Ad Hominem,
False Consensus).

H.2 Llama3 Judge ϕ

We experiment with four different prompts (cf.
§J.2) with the Llama3-8B-Instruct model as a bi-
nary classifier ϕ that determines whether two fal-
lacious premises exhibit fallacious reasoning that
bridges the identical gap. We use the human evalu-
ation data provided by Glockner et al. (2024a) for
training data. We discard all trivially invalid in-
stances where the generated premise p̂i was almost
identical to the claim or the paraphrased publica-
tion context si by discarding all premise pairs if

min
[
lev(p̂i, c), lev(p̂i, si)

]
≤ t

where lev is the Levensthein distance and the
threshold t = 2. This yielded a total of
168/240 manually annotated premise pairs. To
adapt Llama3-8B-Instruct for the task, we per-
form (1) zero-shot experiments, (2) in-context
learning (Brown et al., 2020) (ICL) experi-
ments and (3) supervised fine-tuning (SFT) using
QLoRA (Dettmers et al., 2023) and 8bit quantiza-
tion (Dettmers et al., 2022). We validate each ap-
proach using five-fold cross-validation where folds
are separated by the arguments, ensuring the LLM
is evaluated with premises from unseen arguments.
We set the temperature to zero and evaluate all
ICL and SFT experiments over three random seeds
(1,2,3) to account for different (ordering) of seen
instances. The results are listed in Table 23. As
a baseline, we report the performance of always
predicting the majority label. We further report a
baseline using a univariate logistic regression (LR)
on top of the automatic NLI-S (Glockner et al.,
2024a), which showed the highest correlation with
human judgment in MISSCI. NLI-S uses the pre-
dicted entailment probability of a T5 (Raffel et al.,
2020) model fine-tuned by Honovich et al. (2022).
Rather than only considering the entailment score
given the reference text as a premise and generated
text as a hypothesis, NLI-S swaps its roles to avoid
penalizing the model if it generates more specific
text. Without SFT, ICL with 16 shots and the tem-
plate p4 reached the best performance measured
via the F1-score. We consequentially performed
SFT using the same prompt, which led to the over-
all best model with fine-tuning for 5 epochs with a
linear schedule, a learning rate of 5e− 4, a batch-
size of 4 and α = 16, r = 64, dropout = 0.2 for
QLoRA. We use these hyperparameters to fine-tune
Llama3-8B-Instruct on the entire data and use it as
the backend model for ϕf+p.
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Passage-wise Fallacy-wise
Model mAP P@1 P@3 P@10 R@1 R@3 R@10
Random 0.205 0.136 0.130 0.124 0.168 0.252 0.438
Ordered 0.286 0.298 0.210 0.145 0.266 0.374 0.497
BM25 0.496 0.617 0.347 0.212 0.413 0.485 0.602

SBERT (Reimers and Gurevych, 2019) 0.520 0.640 0.381 0.221 0.423 0.503 0.609
INSTRUCTOR (Su et al., 2023) 0.541 0.652 0.409 0.222 0.439 0.529 0.613
SPICED-IMS (Wright et al., 2022) 0.524 0.640 0.388 0.219 0.423 0.516 0.595
PubMedBERT ST (Deka et al., 2022) 0.489 0.588 0.360 0.207 0.387 0.548 0.605
BioBERT ST (Deka et al., 2022) 0.491 0.600 0.377 0.200 0.400 0.495 0.570
SapBERT ST (Deka et al., 2022) 0.504 0.619 0.379 0.211 0.411 0.547 0.615

DeBERTaV3 SciFact (Wadden et al., 2020) 0.360 0.326 0.266 0.172 0.264 0.393 0.518
DeBERTaV3 CovidFact (Saakyan et al., 2021) 0.380 0.457 0.260 0.165 0.326 0.407 0.538
DeBERTaV3 HealthVer (Sarrouti et al., 2021) 0.368 0.410 0.284 0.176 0.321 0.426 0.544
DeBERTaV3 Scientific AFC (all) 0.306 0.338 0.263 0.177 0.267 0.400 0.554

Table 21: Ranking results for finding passages linked to fallacies on the test split, using all passages of the
misrepresented publication.

Fallacy Level (premise+class) Arg. Level Count
Prompt Passages R@5 P@5 P@1 F1@5 Arg@1 Pred/Arg

p1-basic per-passage 0.079 0.046 0.133 0.306 0.167 2.6
p2-support per-passage 0.083 0.048 0.078 0.296 0.200 2.7
p3-undermine per-passage 0.079 0.047 0.089 0.302 0.178 2.4
p4-connect per-passage 0.176 0.134 0.222 0.359 0.333 1.4
p5-auto per-passage 0.083 0.066 0.144 0.263 0.178 1.4
p6-auto-connect per-passage 0.111 0.100 0.156 0.272 0.256 1.1
p7-passage per-passage 0.093 0.047 0.078 0.357 0.222 4.2
p8-passage-assumptions per-passage 0.162 0.084 0.122 0.379 0.356 4.2
p9-passage-detective per-passage 0.157 0.146 0.222 0.270 0.344 1.1
p10-passage-evaluate per-passage 0.120 0.060 0.111 0.337 0.289 4.8
p11-passage-evaluate-2 per-passage 0.176 0.087 0.178 0.353 0.367 4.6
p12-passage-detective-2 per-passage 0.218 0.113 0.211 0.360 0.444 3.9
p13-passage-evaluate-3 per-passage 0.167 0.083 0.167 0.359 0.300 4.4

p1-basic all passages 0.060 0.053 0.067 0.294 0.144 2.8
p2-support all passages 0.065 0.058 0.044 0.303 0.156 2.8
p3-undermine all passages 0.046 0.040 0.044 0.280 0.111 2.9
p4-connect all passages 0.093 0.162 0.178 0.239 0.211 1.4
p5-auto all passages 0.056 0.070 0.089 0.247 0.133 2.0
p6-auto-connect all passages 0.046 0.110 0.111 0.163 0.111 1.0
p7-passage all passages 0.042 0.024 0.022 0.333 0.100 4.4
p8-passage-assumptions all passages 0.144 0.088 0.089 0.376 0.289 4.2
p9-passage-detective all passages 0.069 0.153 0.133 0.218 0.167 1.1
p10-passage-evaluate all passages 0.130 0.069 0.167 0.377 0.233 4.7
p11-passage-evaluate-2 all passages 0.144 0.077 0.089 0.371 0.256 5.1
p12-passage-detective-2 all passages 0.171 0.105 0.144 0.379 0.400 3.9
p13-passage-evaluate-3 all passages 0.162 0.094 0.124 0.402 0.344 4.4

Table 22: Argument reconstruction prompt-tuning using Llama3-8B-Instruct on the validation split.
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Method Prompt Extra F1 Acc.

Majority – – 0.372 0.593
NLI-S + LR – – 0.642 0.695

Zeroshot p1 0-shot 0.570 0.581
Zeroshot p2 0-shot 0.636 0.647
Zeroshot p3 0-shot 0.636 0.641
Zeroshot p4 0-shot 0.626 0.629
Zeroshot p5 0-shot 0.562 0.569

ICL p1 8-shot 0.623 0.625
ICL p2 8-shot 0.635 0.639
ICL p3 8-shot 0.620 0.623
ICL p4 8-shot 0.604 0.607
ICL p5 8-shot 0.612 0.617

ICL p1 16-shot 0.656 0.663
ICL p2 16-shot 0.640 0.645
ICL p3 16-shot 0.645 0.651
ICL p4 16-shot 0.656 0.661
ICL p5 16-shot 0.652 0.657

SFT p4 1-epochs 0.671 0.687
SFT p4 2-epochs 0.690 0.711
SFT p4 3-epochs 0.725 0.749
SFT p4 4-epochs 0.751 0.770
SFT p4 5-epochs 0.788 0.798
SFT p4 6-epochs 0.761 0.776

Table 23: Cross-validation evaluation for implementa-
tions of the ϕp+f judge. All prompt-based approaches
use Llama3-8B-Instruct as backend.

H.2.1 Prompting Strategies

Prompts using per-passage prompting follow the
prompting scheme of MISSCI and have a dedicated
field for the content based on which the claim was
made (p0 or S0

j ) and for the publication context nec-
essary to detect the fallacy (si or Sj). This prompt-
ing technique requires n separate prompts for n
passages. Specifically, we create n − 1 prompts
using a randomly sampled passage S0 (based on
which the claim was made) together with each other
passage linked to a fallacy, separately. In MISSCI-
PLUS, the passage S0 itself may be linked to falla-
cies. Hence, we prompt the model again with only
the passage S0. When selecting the top k results of
multiple prompts for the same argument, combine
all results, consisting of the fallacious premise and
fallacy class, while keeping their ranking informa-
tion. We then return the top k results based on their
prompt-specific rank. We prefer results with differ-
ent fallacy classes when multiple fallacies share the
same rank to avoid sampling the same fallacious
reasoning numerous times. Prompts that concate-
nate all passages within a single prompt follow the
holistic view of arguments. We sort all passages
based on the order in which they occur in the sci-
entific publication and only prompt the LLM once

per argument.

H.2.2 Performance on MISSCI with only
linked publication context

We report the argument reconstruction of the eval-
uated LLMs in Table 24. This evaluation only
considers a prediction of an LLM based on the
paraphrased information si if a passage Sj that
communicates the same information exists, and the
same fallacy could have been detected based on
Sj . This serves as a complementary comparison
between the performance on MISSCI and MISSCI-
PLUS, which removes benefits over MISSCI due to
additional information.

I AFC applied on MISSCIPLUS

I.1 Stance Predictions per Fallacy Class

We aim to understand how passages that point to
different reasoning gaps (and hence different fal-
lacy classes) affect the stance prediction of scien-
tific AFC models. Figure 11 visualizes for each
AFC model and fallacy class the distribution over
the predicted veracity labels of SUPPORTED, RE-
FUTED and NEI. Regardless of the fallacy class,
rarely any passage is identified as refuting the claim.
Most models vary between the labels SUPPORTED

and NEI with only minor clear trends among differ-
ent fallacy classes. Interestingly, the model trained
on COVIDFACT, which had the best misinforma-
tion detection rate according to Table 5 (as it does
not know the label NEI) almost always tends to pre-
dict SUPPORTED more frequently than REFUTED

over these passages that exhibit fallacious reason-
ing behind the claim.

I.2 Binary Fallacy Detection by LLMs

We adjusted our prompt (cf. §J.4) to allow LLMs
to select no fallacy if they consider a claim cor-
rect and empirically evaluate three LLMs in how
well they detect misinformation in MISSCIPLUS

or correct information in the 100 selected claims
from HEALTHVER and COVIDFACT. Since true
claims only come with one evidence passage, we
also prompt the LLMs once only for misinforma-
tion using the concatenated relevant passages (cf.
all passages in §6.2). Table 25 reports the ratio
of claims identified as fallacious (the LLM did not
specifically say that “no fallacy” exists and found
at least one fallacy) across both datasets averaged
over three seeds. We do not discern which fallacy
was detected. Using the prompts to reconstruct
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LLM Info R@5 (ϕf+p) R@5 (ϕf ) Arg@1 (ϕf+p)

DLE 0.255 0.520 0.516

Llama3-8B DL 0.237 0.453 0.520
DE 0.220 0.470 0.468
LE 0.251 0.492 0.504

DLE 0.217 0.456 0.464

GPT-3.5 DL 0.198 0.438 0.413
DE 0.229 0.461 0.500
LE 0.213 0.417 0.464

DLE 0.327 0.472 0.619

GPT-4 Turbo DL 0.280 0.458 0.560
DE 0.294 0.500 0.571
LE 0.299 0.514 0.583

Table 24: Argument reconstruction performance only over fallacies that could be detected based on linked passages
(or based on the accurate premise alone).

Ref. NEI Supp.

Ambiguity
Biased Sample Fallacy

Causal Oversimplification
Fallacy of Composition

Fallacy of Exclusion
False Dilemma

False Equivalence
Hasty Generalization

Impossible Expectations

0.10 0.38 0.53
0.12 0.39 0.49
0.19 0.47 0.33
0.17 0.41 0.42
0.13 0.42 0.45
0.20 0.49 0.31
0.12 0.37 0.51
0.07 0.60 0.33
0.11 0.60 0.29

All AFC

Ref. NEI Supp.

0.07 0.35 0.58
0.16 0.36 0.48
0.10 0.53 0.37
0.03 0.33 0.64
0.13 0.40 0.47
0.19 0.40 0.41
0.05 0.35 0.61
0.05 0.62 0.33
0.14 0.46 0.40

SciFact

Ref. NEI Supp.

0.15 0.43 0.41
0.09 0.40 0.51
0.18 0.62 0.20
0.19 0.60 0.21
0.16 0.43 0.41
0.24 0.48 0.28
0.11 0.59 0.31
0.07 0.73 0.20
0.29 0.31 0.40

HealthVer

Ref. Supp.

0.39 0.61
0.46 0.54
0.35 0.65
0.33 0.67
0.34 0.66
0.54 0.46
0.32 0.68
0.35 0.65
0.49 0.51

CovidFact

0.0

0.2

0.4

0.6

Figure 11: Distribution over predicted fact-checking labels per fallacy class, which was linked to the passage used
as evidence, when predicting the veracity label. Results are averaged over five seeds for each fine-tuned AFC model.

Detected a fallacy
LLM MISSCIPLUS True Claims
Llama2-70B 0.988 0.993
Llama3-8B 0.877 0.783
GPT-3.5 0.853 0.923

Table 25: Binary fallacy evaluation over misinfor-
mation from MISSCIPLUS and correct claims from
HEALTHVER and COVIDFACT.

fallacious arguments, the LLMs tend to find fal-
lacies in all claims regardless of whether they are
correct. We note that our claims are designed to
correctly verbalize and identify all applied fallacies
in MISSCIPLUS. This follows previous works on
fallacy detection (Da San Martino et al., 2019; Jin
et al., 2022; Alhindi et al., 2022) that focused on
which fallacy was applied rather than determining
if a fallacy was applied. Future work may explore
how to detect fallacies and correct claims better.

I.3 LLMs may decline to provide a veracity
prediction.

The percentages of the label classification from
LLMs as fact-checking models using their paramet-

[INSTRUCTIONS]

Passage A: [PASSAGE-A]
Passage B: [PASSAGE-B]

Output Passage A or Passage B:

Figure 12: Prompt template for PRP prompting.

ric knowledge or RAG evidence in Table 6 may
not sum up to 100% if the LLM declines to answer.
We provide an extended Table that includes the
percentage when the LLM declines to answer in
Table 26.

J Prompts

J.1 PRP Prompts

The prompt template for PRP ranking is shown in
Figure 12 with the different [INSTRUCTION] listed
in Table 27.

J.2 Premise judge ϕp+f

The prompt template for the judge ϕp+f with ICL
and SFT approaches is shown in Figure 13. The
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Predicted as
LLM True False NEI No Answer True False NEI No Answer

Llama2 1.6 61.1 37.3 0.0 34.7 22.3 41.3 1.7
Know Llama3 0.0 86.9 2.4 10.7 20.0 43.3 14.3 22.3
(FC) GPT4 0.0 85.3 14.7 0.0 59.0 23.0 17.3 0.7

GPT3.5 0.8 71.0 28.2 0.0 46.7 17.3 35.7 0.3

Llama2 0.0 100.0 0.0 0.0 29.7 69.3 1.0 0.0
Know Llama3 8.3 88.9 2.4 0.4 68.7 26.0 3.0 2.3
(Ask) GPT4 3.6 68.3 27.8 0.4 49.7 6.7 36.3 7.3

GPT3.5 1.6 50.4 48.0 0.0 47.3 6.0 45.0 1.7

Llama2 23.8 61.5 12.7 2.0 58.7 29.7 10.7 1.0

RAG Llama3 44.4 53.2 2.4 0.0 80.3 16.3 3.3 0.0
GPT4 27.4 34.1 38.5 0.0 55.0 4.0 41.0 0.0
GPT3.5 38.9 31.7 29.0 0.4 78.0 5.3 16.0 0.7

Misinformation True claims

Table 26: Averaged veracity predictions from LLMs on misinformation from MISSCIPLUS (left) and true claims
from HEALTHVER and COVIDFACT (right).

Name Instructions

Qin et al. (2024) Given a query [CLAIM], which of the following two passages is more relevant to the query?
Qin et al. (2024) (claim) Given a claim [CLAIM], which of the following two passages is more relevant to the claim?
Qin et al. (2024) (convincing) Given a claim [CLAIM], which of the following two passages constitutes more convincing

evidence for the claim?
Qin et al. (2024) (support) Given a claim [CLAIM], is it more likely that someone made the claim based on passage A

or based on passage B?

Table 27: Evaluated instructions used for PRP prompting.

Name Instructions

p1 You are given two premises that exhibit some reasoning of a larger argument. Both premises apply a fallacy. Your
task is to select whether the reasoning on an abstract level is identical. If one premise is more specific, they can still
apply the same false reasoning. Provide your answer in the first line of your response. Answer with “match” if both
premises apply the same false reasoning. Answer with “no-match” if they apply different false reasoning.

p2 I’ll present you with two premises, each containing a fallacy in their reasoning. Analyze both statements: Your task:
Determine if the core flawed logic behind the fallacies in both statements is identical. Respond with “match” if the
underlying reasoning is the same, even if the specifics differ. Respond with “no-match” if they represent different
fallacies.

p3 Task: Analyze both premises and determine if they commit the same type of fallacy.
Answer: (match / no-match)

p4 Determine whether two premises exhibit identical false reasoning, regardless of their specificity. Provide your
answer in the first line of your response. Answer with “match” if both premises apply the same false reasoning.
Answer with “no-match” if they apply different false reasoning.

p5 Task: Analyze both premises and determine if they apply a similar reasoning regardless of specificity.
Answer: (match / no-match)

Table 28: Instructions used for the judge ϕp+f .
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[INSTRUCTIONS]

Premises:
1: "[GEN-PREMISE]"
2: "[GOLD-PREMISE]"

Question: Do both premises use the same flawed
reasoning (fallacy)?

Figure 13: Prompt for the judge ϕp+f .

instructions are listed in Table 28.

J.3 Argument reconstruction prompts

We take the p1-p6 prompts from MISSCI as-is.
For all-passages prompting we concatenate all pas-
sages (except for one S0

j passage), treating them
as publication context in the MISSCI prompt, and
treating the left-out S0

j as the accurate premise.
The per-passage prompt templates for p7-p13 are
shown in Figures 14-20., where we always replace
[PASSAGE S0] with a randomly sampled passage
S0
j and [PASSAGE Sj] with a passage Sj linked to a

fallacy. For all, we present the fallacy information
consisting of the fallacy definition, logical form
and example from literature identically to MISSCI

prompts. The all-passage prompts are minimally
edited from these prompts and have one dedicated
field for all selected passages. All used prompts
are provided within our repository.

J.4 LLM as AFC prompts

The prompts used to directly predict the veracity
of claims using LLMs are shown in Figures 21-
23. We replace [EVIDENCE] with the concatenated
evidence passages. The adapted fallacy generation
prompt which allows to output that no fallacy exists,
is shown in Figure 24.

K Reproducibility

All experiments with Llama2 or Llama3 used the
instruction-tuned LLM and were performed on
80GB A100 GPUs. We always used the 70B and
8B models for Llama2 and Llama3, respectively.
All experiments with LLMs are averaged over three
seeds. The only exception is the experiments with
GPT-4 Turbo in Table 4, which we only ran once
due to computational costs. We used the API
version 2023-10-01-preview for GPT-3.5 (model
version: 0613)11, GPT-4 (model version: 0613)

11We used gpt-35-turbo-16k in the all passages prompt-
ing experiments and gpt-35-turbo in all other experiments

and GPT-4 Turbo (model version: 1106-Preview).
We used Grammarly12 in writing this paper.

12https://app.grammarly.com/
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[FALLACY INFORMATION]

Task:
Examine the following fallacious argument:

Passage 1: "[PASSAGE S0]"
Passage 2: "[PASSAGE Sj]"
Claim: "[CLAIM]"

Passages 1 and 2 are sourced from the same credible scientific document. The claim is based on the content of both passages.
Your task is to identify and verbalize the fallacious reasoning as the fallacious premise necessary to support the claim given the
content of passages 1 and 2. This reasoning should effectively support the claim, ensuring that the passages do not undermine
the claim as a valid conclusion. Only consider fallacies from the provided fallacy inventory.

Present each fallacious premise along with the applied fallacy class in this format:
Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>.
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant).

Figure 14: Prompt template for argument reconstruction p7-passage.

[FALLACY INFORMATION]

Task:
Examine the following fallacious argument:

Passage 1: "[PASSAGE S0]"
Passage 2: "[PASSAGE Sj]"
Claim: "[CLAIM]"

Passages 1 and 2 are sourced from the same credible scientific document. The claim is based on the content of both passages.
Your task is to identify and verbalize the fallacious reasoning (the hidden assumptions) as the fallacious premise necessary to
support the claim given the content of passages 1 and 2. This reasoning should effectively support the claim, ensuring that the
passages do not undermine the claim as a valid conclusion. Only consider fallacies from the provided fallacy inventory.

Present each fallacious premise along with the applied fallacy class in this format:
Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>.
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant).

Figure 15: Prompt template for argument reconstruction p8-passage-assumptions.
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[FALLACY INFORMATION]

Challenge:
You’ve been assigned a detective mission in the world of scientific arguments!
The Case:
An argument has been made based on two passages from a credible scientific document. However, there’s a hidden flaw in the
reasoning. Your job is to uncover this hidden assumption – the "fallacious premise" – that makes the argument illogical.
The Evidence:
Passage 1 (This is the first piece of information from the scientific document.): "[PASSAGE S0]" Passage 2 (This provides
additional details from the same document.): "[PASSAGE Sj]" Claim (This is the conclusion drawn from both passages):
"[CLAIM]"
The Tools:
Fallacy Inventory: You have access to a list of common fallacies (errors in reasoning). Only use these fallacies!
Your Mission:
1. Analyze the passages and the claim.
2. Identify the hidden assumption that’s needed for the claim to follow logically from the passages.
3. Formulate this hidden assumption as a clear "fallacious premise."
4. Identify the specific type of fallacy from the fallacy inventory that best explains this hidden assumption.
Deliverables:
Present your findings in this format:
"Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>."
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant). Only consider fallacies from the provided fallacy inventory.
Remember:
The passages come from a credible scientific document, so the information itself is likely true. The fallacy lies in how the
information is used to support the claim. Focus on the hidden assumption(s) needed to bridge the gap between the passages
and the claim.

Figure 16: Prompt template for argument reconstruction p9-passage-detective.

[FALLACY INFORMATION]

Task:
This activity focuses on identifying weaknesses in scientific arguments based on source materials.
Materials:
Passage 1: "[PASSAGE S0]"
Passage 2: "[PASSAGE Sj]"
Claim: "[CLAIM]"
The claim is derived from the content of both passages. Both passages stem from the same credible scientific publication.
Objective:
Analyze the relationship between the provided passages and the claim. Identify any assumptions or gaps in reasoning that
might weaken the argument’s validity.
Instructions:
1. Read Passage 1, Passage 2, and the claim carefully.
2. Consider how the information in the passages connects to the claim.
3. Identify any missing information or hidden assumptions that would be necessary for the claim to logically follow from the
passages.
4. Formulate these missing pieces as clear "fallacious premises."
5. Using the provided fallacy list, identify the type of fallacy associated with each fallacious premise.
Output:
Present your findings in this format:
"Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>."
If multiple applicable fallacies exist, list them in order of relevance (most to least relevant). Only consider fallacies from the
provided fallacy inventory.
Important Note:
The passages are sourced from a credible scientific document, so the information itself is most likely accurate. The focus is on
how the information is used to support the claim, not questioning the scientific content.

Figure 17: Prompt template for argument reconstruction p10-passage-evaluate.

9764



[FALLACY INFORMATION]

Task:
This activity focuses on identifying weaknesses in scientific arguments based on source materials.
Materials:
Passage 1: "[PASSAGE S0]"
Passage 2: "[PASSAGE Sj]"
Claim: "[CLAIM]"
The claim is derived from the content of both passages. Both passages stem from the same credible scientific publication.
Objective:
Analyze the relationship between the provided passages and the claim. Identify any assumptions or gaps in reasoning that
might weaken the argument’s validity.
Instructions:
1. Read Passage 1, Passage 2, and the claim carefully.
2. Consider how the information in the passages connects to the claim.
3. Identify any missing information or hidden assumptions that would be necessary for the claim to logically follow from the
passages.
4. Formulate these missing pieces as clear "fallacious premises."
5. Using the provided fallacy list, identify the type of fallacy associated with each fallacious premise.
Output:
Present your findings in this format: "Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy
class>." If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance
(most to least relevant). Only consider fallacies from the provided fallacy inventory.
Important Note:
The passages are sourced from a credible scientific document, so the information itself is most likely accurate. The focus is on
how the information is used to support the claim, not questioning the scientific content.

Figure 18: Prompt template for argument reconstruction p11-passage-evaluate-2.

[FALLACY INFORMATION]
Challenge:
You’ve been assigned a detective mission in the world of scientific arguments!
The Case:
An argument has been made based on two passages from a credible scientific document. However, there’s a hidden flaw in the
reasoning. Your job is to uncover this hidden assumption – the "fallacious premise" – that makes the argument illogical.
The Evidence:
Passage 1 (This is the first piece of information from the scientific document.): "[PASSAGE S0]"
Passage 2 (This provides additional details from the same document.): "[PASSAGE Sj]"
Claim (This is the conclusion drawn from both passages): "[CLAIM]"
The Tools:
Fallacy Inventory: You have access to a list of common fallacies (errors in reasoning). Only use these fallacies!
Your Mission:
1. Analyze the passages and the claim.
2. Identify the hidden assumption that’s needed for the claim to follow logically from the passages.
3. FOR EACH identified flaw:
a. Formulate this hidden assumption as a clear "fallacious premise."
b. Using the provided fallacy inventory, identify the specific fallacy class from the provided fallacy inventory that best explains
this fallacious premise.
c. Output each identified flaw in a separate line following this format: "Fallacious Premise: <fallacious premise>; Applied
Fallacy Class: <applied fallacy class>."
Deliverables:
Present your findings in this format:
"Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>."
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant). Only consider fallacies from the provided fallacy inventory.
Remember:
The passages come from a credible scientific document, so the information itself is likely true. The fallacy lies in how the
information is used to support the claim. Focus on the hidden assumption(s) needed to bridge the gap between the passages
and the claim.

Figure 19: Prompt template for argument reconstruction p12-passage-detective-2.
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[FALLACY INFORMATION]
Task:
This activity focuses on identifying weaknesses in scientific arguments based on source materials.
Materials:
Passage 1: "[PASSAGE S0]"
Passage 2: "[PASSAGE Sj]"
Claim: "[CLAIM]"
The claim is derived from the content of both passages. Both passages stem from the same credible scientific publication.
Objective:
Analyze the relationship between the provided passages and the claim. Identify any assumptions or gaps in reasoning that
might weaken the argument’s validity.
Your Mission:
1. Analyze the passages and the claim.
2. Identify the hidden assumption that’s needed for the claim to follow logically from the passages.
3. FOR EACH identified flaw:
a. Formulate this hidden assumption as a clear "fallacious premise."
b. Using the provided fallacy inventory, identify the specific fallacy class from the provided fallacy inventory that best explains
this fallacious premise.
c. Output each identified flaw in a separate line following this format: "Fallacious Premise: <fallacious premise>; Applied
Fallacy Class: <applied fallacy class>."
Output:
Present your findings in this format:
"Fallacious Premise: <fallacious premise>; Applied Fallacy Class: <applied fallacy class>."
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant). Only consider fallacies from the provided fallacy inventory.
Important Note:
The passages are sourced from a credible scientific document, so the information itself is most likely accurate. The focus is on
how the information is used to support the claim, not questioning the scientific content.

Figure 20: Prompt template for argument reconstruction p13-passage-detective-3.

Write a fact-checking article about the claim that "[CLAIM]"

Conclude your fact-checking article with a verdict in a
single line: "Verdict: (your verdict label)". Choose one of
the following verdicts: True, Unknown, False.

Figure 21: Prompt to generate a fact-checking article
given no evidence.

Claim: "[CLAIM]"

To the best of your knowledge, what is the veracity of the
claim? Provide a thorough explanation supporting your
decision, select one of the answers (True, False, Unknown)
and output the veracity of the claim in a single line: "Verac-
ity: (your veracity label)".

Figure 22: Prompt to ask for the veracity of the claim
given no evidence.

Study:
[EVIDENCE]

Rate if the claim "[CLAIM]" is correct based on the study.
Answer with "Verdict: (Correct / Incorrect / Not Enough
Information)"

Figure 23: Prompt to ask for the veracity of the claim
given evidence.
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[FALLACY INFORMATION]

Challenge:
You’ve been assigned a detective mission in the world of scientific arguments!
The Case:
An argument has been made based on two passages from a credible scientific document. Your job is to assess the logical
reasoning behind this argument.
The Evidence:
Passages (The used information from the scientific document): "[EVIDENCE]" Claim (This is the conclusion drawn from the
passages): "[CLAIM]"
The Tools:
Fallacy Inventory: You have access to a list of common fallacies (errors in reasoning). Only use these fallacies!
Your Mission:
1. Analyze the passages and the claim.
2. Evaluate whether the claim logically follows from the information presented in the passages.
3. IF you identify flaws in the reasoning, pinpoint all hidden assumptions that’s needed for the claim to follow logically.
4. FOR EACH identified flaw:
a. Formulate this hidden assumption as a clear "fallacious premise."
b. Using the provided fallacy inventory, identify the specific fallacy class from the provided fallacy inventory that best explains
this fallacious premise.
c. Output each identified flaw in a separate line following this format: "Fallacious Premise: <fallacious premise>; Applied
Fallacy Class: <applied fallacy class>."
5. IF the claim logically follows from the passages (no fallacy present), then simply output: "No Fallacy"
Deliverables:
If the argument is sound (if no fallacy or only minor fallacies exist), clearly state "No Fallacy" in the output.
If a fallacy is present, present your findings in this format: "Fallacious Premise: <fallacious premise>; Applied Fallacy Class:
<applied fallacy class>."
If multiple applicable fallacies exist, list all fallacious premises with the applied fallacy classes in order of relevance (most to
least relevant). Only consider fallacies from the provided fallacy inventory.
Remember:
The passages come from a credible scientific document, so the information itself is likely true. The fallacy lies in how the
information is used to support the claim. Focus on the hidden assumption(s) needed to bridge the gap between the passages
and the claim. If the scientific document supports the claim, no critical fallacy is applied.

Figure 24: Fallacy generation prompt that can predict “no fallacy”.
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