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Abstract

Commonsense reasoning deals with the im-
plicit knowledge that is well understood by hu-
mans and typically acquired via interactions
with the world. In recent times, commonsense
reasoning and understanding of various LLMs
have been evaluated using text-based tasks. In
this work, we argue that a proxy of this un-
derstanding can be maintained as a graphical
structure that can further help to perform a rig-
orous evaluation of commonsense reasoning
abilities about various real-world activities. We
create an annotation scheme for capturing this
implicit knowledge in the form of a graphical
structure for 37 daily human activities. We find
that the created resource can be used to frame
an enormous number of commonsense queries
(∼ 1017), facilitating rigorous evaluation of
commonsense reasoning in LLMs. Moreover,
recently, the remarkable performance of LLMs
has raised questions about whether these mod-
els are truly capable of reasoning in the wild
and, in general, how reasoning occurs inside
these models. In this resource paper, we bridge
this gap by proposing design mechanisms that
facilitate research in a similar direction. Our
findings suggest that the reasoning components
are localized in LLMs that play a prominent
role in decision-making when prompted with a
commonsense query.

1 Introduction

The growth of Large Language Models (LLMs)
performing well on a wide variety of common-
sense reasoning benchmarks (West et al., 2023;
Bosselut et al., 2019; Hwang et al., 2021; Park
et al., 2020) raises the question of whether LLMs
are truly capable of reasoning in a more practical
setting of real-world daily activities that involve
commonsense. Though in the past, a wide range
of benchmarks/datasets (information sources) have
been proposed, building a benchmark with exhaus-
tive and rigorous analysis has always remained
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Figure 1: Quantifying commonsense reasoning in Large
Langauge Models (LLMs).

a challenge. To quantify the commonsense rea-
soning abilities of LLMs in an exhaustive manner,
one would require a few primary features about
an information resource 1) the information source
should consider real-world tasks, well understood
by humans (capturing commonsense) 2) the infor-
mation resource should be exhaustive, containing
all possible ways of performing a task, and, 3)
the information resource should support creating
reasoning questions, that help in understanding of
reasoning mechanisms of models via marginaliza-
tion with multiple samples. We found that “Scripts”
(Schank, 1975; Schank and Abelson, 1975) help
create a tangible framework that satisfies all these
requirements. Scripts are defined as a sequence of
events describing a prototypical activity, such as
‘going to a restaurant,’ ‘baking a cake,’ etc., cap-
turing commonsense knowledge about the world
(Schank and Abelson, 1975; Modi et al., 2016;
Wanzare et al., 2016; Ostermann et al., 2018; Modi,
2016, 2017; Modi et al., 2017; Modi and Titov,
2014). Since all the real-world tasks are generic,
writing about steps/events while performing the
activity can be done in an enormous number of dif-
ferent ways. Additionally, these activities are easy
to reason about, and previous works (Modi and
Titov, 2013, 2014; Modi et al., 2017) have used
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what should be the next suitable 
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B. Refill hole with remaining dirt
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'Put on gloves’, 
'dig hole big enough for tree to grow’, 
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Figure 2: The figure provides an overview of the proposed resource. Real-world activities (well understood by
humans) are considered to capture commonsense knowledge about these activities via human crowdsource workers.
These ESDs are used to create a graphical representation of these activities and the underlying commonsense
knowledge. The graphical representations help create enormous commonsense queries (∼ 1017 queries per activity).
The created resource of commonsense queries is reverified via data quality checks from humans. The overall
flexibility attained using the graphical representations helps tease apart the reasoning mechanisms of LLMs, creating
a tool for mechanistic insights into commonsense reasoning.

them to create commonsense reasoning queries,
assessing the quality of acquired commonsense
knowledge. Moreover, they inherently provide a
structure that helps facilitate marginalization across
different variations, opening new directions for lo-
calizing information (Meng et al., 2023; McGrath
et al., 2023; Wang et al., 2022; Goldowsky-Dill
et al., 2023) contained in the decision-making pro-
cess of commonsense reasoning.

In this work, we propose a generic scheme for rig-
orously evaluating commonsense knowledge and
understanding of LLMs via commonsense reason-
ing questions. For a framework devised to vali-
date the commonsense understanding of implicit
commonsense knowledge, it becomes imperative
to consider the dataset directly coming from hu-
mans (i.e. written and annotated by humans with
minimal synthetic intervention). Hence, for our
analysis, we consider a crowdsourced common-
sense resource about daily human activities called
as DeScript (Wanzare et al., 2016). We create a
directed graph from the DeScript corpus, which is
subsequently used (via an algorithm) to generate
commonsense reasoning questions about various
activities. LLMs are then evaluated for common-
sense reasoning via these questions. Further, we
investigate where does commonsense reside in the
pretrained autoregressive transformer-based mod-
els. In particular, we use activation path patching
to localize the decision-making for commonsense
reasoning in these models. We find that the pro-

posed framework provides promising flexibility for
such analysis and will help facilitate future research
in Mechanistic Interpretability for commonsense
reasoning. We make the following contributions:

• We provide resources for creating directed com-
monsense knowledge graph for 37 scenarios
(daily human activities). These graphical rep-
resentations of human activities are suitable to
act as a proxy for comprehending the underlying
commonsense knowledge about these activities.
Fig. 1 shows the key features of the framework.

• We propose a generic scheme (based on graphs)
to create prompts that help validate the common-
sense reasoning and language understanding.

• Via experimentation with 6 open-weight mod-
els gpt-neo-1.3B (Black et al., 2021),
gpt-j-6B (Wang and Komatsuzaki, 2021),
phi-2 (Javaheripi et al., 2023), Llama2-7b (Tou-
vron et al., 2023), Mistral-7B (Jiang et al.,
2023), and Llama-3-8B (Grattafiori et al., 2024),
we highlight trends and gaps in commonsense
knowledge, understanding, and reasoning abili-
ties of these models.

• As a use-case for the proposed dataset, with
the aim of understanding the reasoning process,
we propose design mechanisms to tease apart
the decision-making happening inside pretrained
LLMs. The high flexibility of the proposed
framework helps to provide a more decisive find-
ing about commonsense reasoning happening in-
side these models.
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• We perform localization experiments over phi-2
(being both computationally moderate with bet-
ter performance) and investigate the common-
sense knowledge reasoning in detail. We release
the dataset/code via GitHub: https://github.
com/Exploration-Lab/CoReMech.

2 Methodology

In this section, we provide details about the scheme
created for a rigorous/exhaustive analysis of com-
monsense reasoning abilities related to daily real-
world activities and how an enormous number of
commonsense queries (ranging ∼ 1017 on average
per scenario) can be created to evaluate the quality
of commonsense understanding in LLMs. (Figure
2 provides an overview of the proposed scheme)
Dataset: As outlined earlier, we use crowdsourced
resource DeScript (Wanzare et al., 2016), which
provides a telegrammic-style version of script event
sequences (referred to as Event Sequence Descrip-
tions (ESDs)) for various stereotypical human ac-
tivities. DeScript provides a list of 40 stereotypical
human activities (each referred to as a scenario
or activity) along with ∼ 100 ESDs provided by
crowd-sourced workers for each of the 40 scenarios.
DeScript also annotates 10 scenarios by grouping
similar events (telegrammic steps). For example,
in a scenario like “Washing Dishes,”, the events
like “dry utensils” and “clean utensils with
a clean, dry cloth” are grouped. In this work,
we extend the annotations and provide the align-
ments for the remaining 30 scenarios, leading to a
rich resource of 37 daily activity scenarios (3 sce-
narios are discarded as these were found to be too
noisy). We create a directed graph with the help of
aligned sequences (coming from annotations), con-
solidating information supplied by ∼ 100 crowd
workers into a single graph. Using the graph, we de-
vise a scheme to generate commonsense reasoning
questions about these activities. The complete list
of the considered scenarios is presented in Table 1.
Annotations and Event Alignments: Though
there can be multiple ways (various ESDs) of de-
scribing script for a scenario, there exists an align-
ment among events in multiple descriptions. The
alignments assign generic groups to an event. For
example, events like “go inside the car,” “get
into your car,” “enter the car,” etc., are
assigned a group like “get-into-car.” DeScript
provides these alignments between the events for
only 10 scenarios. We extend these alignment anno-

Scenario/Activity Deg. Total possible ESDs

baking a cake 3.6 4.0e + 26
borrowing book from Library 3.7 3.1e + 19

changing batteries in alarm clock 5.8 8.1e + 19
checking in an airport 8.6 7.7e + 23
cleaning up a flat 7.4 1.1e + 20

cooking pasta 5.4 1.1e + 22
doing laundary 9.5 5.0e + 38

eating in a fast food restaurant 6.7 6.9e + 27
flying in an airplane 3.6 2.6e + 30

fueling a car 8.2 4.6e + 29
getting a haircut 3.7 4.0e + 28

going grocery shopping 3.7 2.3e + 26
going on a Train 3.7 3.1e + 21

going to the dentist 6.6 7.8e + 23
going to the swimming pool 7.2 1.5e + 16

going to the theatre 6.3 8.1e + 16
going to the sauna 7.3 1.3e + 22

going bowling 9.5 1.8e + 37
having a barbeque 6.8 6.5e + 20
ironing Laundary 7.8 2.1e + 36

making scrambled Eggs 7.9 4.0e + 30
making a bonfire 8.0 3.5e + 20
making a coffee 8.0 9.8e + 21

paying with a credit card 7.8 2.4e + 21
planting a Tree 3.7 1.6e + 16
playing Tennis 6.7 1.1e + 18

renovating a room 8.3 3.1e + 31
repairing flat bicycle Tire 3.4 8.4e + 18

riding on a bus 3.8 1.0e + 17
sewing a button 7.5 7.7e + 28
taking a bath 3.7 3.1e + 27
taking a shower 7.6 2.2e + 30

taking a driving lesson 7.9 3.2e + 15
taking a child to bed 3.7 4.4e + 15
washing ones hair 7.4 8.8e + 34

washing dishes 7.6 7.3e + 27

Table 1: The table provides details of the generated
graphs for 37 scenarios.

tations and perform the annotations for all 40 sce-
narios. A group of 3 annotators (graduate students)
performed all the annotations as a part of a course
research project. Annotators were asked to make
generic clusters to perform the specific task and
assign each event to these clusters. It took around
4-12 hrs (spanning across a month) for an annota-
tor to complete annotations and alignments for a
scenario. The varied amount of time highlights the
task complexity and variety in descriptions. Fur-
ther, we manually inspected the alignments and
found the quality of the 3 scenarios to be too noisy,
and we discarded these. Hence, only 37 were used
in the final analysis.

Remark: Unlike classification tasks, clustering
doesn’t typically have predefined categories. This
makes it harder to establish a common framework
for agreement between the annotators. Moreover,
clustering comparison is challenging, and though
there are metrics for comparing clusterings (e.g.,
Rand Index (Rand, 1971), Adjusted Mutual Infor-
mation (Vinh et al., 2009), Fowlkes–Mallows index
(Fowlkes and Mallows, 1983), etc.), a robust widely
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accepted metric for annotator agreement in cluster-
ing tasks is not readily available. It is to be noted
that we create the dataset by sampling trajectories
from the created DAG, which shows a way of per-
forming the entire activity. Hence, we used the
same to assess the quality of the annotations and
made suitable changes by manual inspection. Note
that although the clustering annotations may vary
(in terms of granularity), the final task (defined in
the later section) is only dependent on the trajec-
tory sequence, making it suitable for the generated
commonsense queries.
Graphical Representation: Taking inspiration
from (Joshi et al., 2023), we create a graph struc-
ture (also referred to as Scenario Compact Graph or
Compact Graph for short) from event alignments.
In the graphical representation, each cluster (group)
is a node in the graph. For connecting the nodes
with directed edges, we use the original description
sequence provided in the ESDs. In particular, a
directed edge is drawn from node p to q if there is
at least one action (telegram-style step description)
in node p that directly precedes an event in node q.
This simple strategy leads to a rich graph structure
of scenarios that resembles the human understand-
ing of these tasks. Fig. 7 shows an example of such
a graph. These directed acyclic graphs (DAGs)
provide a medium for generating enormous trajec-
tories (refer to Table 1), that are coming directly
from human annotations (alignment annotation as
well as the ESDs written by crowd-soured workers),
providing us a proxy to represent the understanding
of daily activities. We provide more details about
graphical representations and computing the total
number of ESDs in the App. A.
Trajectory Entropy: To quantify the complexity
across various scenarios and compare the created
graphical representations in detail, we also define
Trajectory Entropy Ht (details in App. D). Fig.
10 provides a comparison of various scenarios in
terms of number of paths and the defined Trajectory
EntropyHt.
Reasoning Question Creation: To test LLMs
for commonsense knowledge understanding, we
would like to generate commonsense reasoning
questions related to the obtained activities. We gen-
erate questions via compact graphs. Each path in
the compact graph denotes a suitable set of steps
(events) for accomplishing a task. Using the graph,
we sample multiple trajectories for finishing the
task t1, t2, . . . , tn ∈ τ . Each of these trajectories
contains multiple events of ESDs, e1, e2, . . . emti

.

Note, since different trajectories may require differ-
ent numbers of steps, mti (referred to as m when it
is clear from the context) is a random variable here,
which depends on the selected trajectory ti. Given
a trajectory, we further use a subpart of the trajec-
tory by taking a split at a step n ∈ {1,m} and use
steps e1, e2, . . . en−1 as a part of a commonsense
reasoning question and en as the correct choice
for the question. Using the obtained samples, we
use a template prompt to generate a commonsense
reasoning question. App. Fig. 8 shows a template
prompt.
Data Quality Check: A noteworthy point about
the created dataset is that although it is generated
using an algorithmic procedure, the core knowl-
edge still comes from humans. The algorithmic
generation provides an added advantage of exhaus-
tiveness with a meager human annotation cost,
making the generated distribution of common-
sense queries less likely to be previously seen by
the pretrained LLMs. We additionally perform
some manual inspection to improve the dataset
quality (details in App B). Lastly, we conducted
a sanity check, where we took a sample of 1k
commonsense queries for 5 of 37 scenarios and
asked 5 human annotators to know how well hu-
mans perform on the created task. We recorded
an average accuracy of 95% with 92% and 98%
being the minimum and maximum, respectively
(more details in Table 2), validating the common-
sense captured by the created queries. Interest-
ingly, we ran an evaluation over the same set
of 1k queries using one of the proprietary-LLM
(‘claude-3.5-sonnet-20240620’) and observed
a success rate of 94.30%, which is very close to
human performance.

To this end, the proposed scheme can create
an enormous number of commonsense queries
(∼ 1017 for a single activity), facilitating a rigor-
ous/exhaustive evaluation of commonsense knowl-
edge about these activities.
Remark on Terminology: We use the word "ex-
haustive" specifically in reference to the procedural
knowledge captured in the DeScript corpus, which
denotes comprehensive coverage of event orderings
and dependencies for the human-authored activi-
ties in our framework, not universal commonsense
knowledge which varies culturally as well as con-
textually. The proposed scheme enables testing
over enormous trajectories per activity, exhausting
the solution space defined by the original crowd
workers’ procedural annotations, making it a suit-
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The path patching of the decisive signal
 directly affects the decision-making 

(observed via a change in logit difference)
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Figure 3: The figures highlight the computation of direct effect via path patching. (a) A run with the clean prompt
(xi<t) is passed through the model, saving all the intermediate states. (b) A model pass is again done using a
conjugate prompt (x̄i<t) that flips the expected behavior of the model from green option to black option. (c) A run
for computing the direct effect is done, where a path patching takes place for fθl , i.e., the green signal is patched to
the conjugate run. The change in logit values helps localize the decision-making component that plays a vital role in
the model selecting green as the correct choice.

able proxy for capturing the underlying common-
sense knowledge in these activities.

3 A Tool for Mechanistic Insights

In recent times, pretrained transformer-based net-
works have shown remarkable performance in a
wide range of tasks (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020), including some of
the popular commonsense reasoning tasks (Zellers
et al., 2019a; Zhao et al., 2023). However, the
understanding of decision-making happening in-
side these large models remains limited. With the
help of the proposed dataset generation scheme,
we would like to investigate how a commonsense
reasoning query is answered by these large decoder-
only autoregressive transformer-based language
models autoregressive transformer models.

Though there have been some works localizing
the information in these models (Wang et al., 2022;
Meng et al., 2023; Goldowsky-Dill et al., 2023),
tools to tease apart the decision-making happening
inside these models remain limited. We investi-
gate if the decision-making in these commonsense
reasoning queries can be localized.
A prompt acting as an input to a Language Model
(LM) comprises information related to the query
that helps determine the expected answer. In our
setup, we focus on the multiple-choice question
answering (MCQA) prompt, which consists of
two critical components, 1) Incomplete Task Tra-
jectory (traj.): which includes the sequence of

states or steps, capturing the partial progression
toward completing the task. 2) A Choice Set
(A. ocorrect; B. owrong)) consisting of two options
from which the LM must select the correct answer
and generate as output either A or B. Note that
the A. and B. are for representation, and in the ac-
tual run, the correct/wrong options are shuffled to
marginalize the effect of models choosing a specific
option.

The decision taken by the LM ((Mθ), where θ
represents the model parameters) depends on these
two critical components. Additionally, the predic-
tions also depend on the way in which the query is
framed, i.e. the prompt template (xϵ) used to frame
the queries. The predicted probability/logit value
of the next token can be written as

P (xt|xi<t,Mθ) = P (xt|xtraj., xoptions, xϵ,Mθ)

xtraj. ← {s1, s2, . . . , sn}
xoptions ← {A. ocorrect,B. owrong}

xϵ ∈ set of prompt templates

Mθ = {fθ1 , fθ2 , . . . fθL}

In the transformer-based language model, the in-
put prompt (xi<t) is passed through a sequence
of transformer blocks/layers (fθ1 , fθ2 , . . . fθL), pro-
viding a distribution of logits over the vocabulary
for the next tokens, we only consider the predicted
distribution of the last token (xt), i.e., the token re-
sponsible for answering the reasoning query (using
logits corresponding to tokens ‘ A’ and ‘ B’, see
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Fig. 8 for reference).

Mθ(xi<t) = fθL(1 + fθL−1
(. . . (1 + fθ1(xi<t)))

These sequences of operations play a crucial role
in modifying the residual stream (the 1+ denotes
the update in the residual stream throughout the
transformer blocks), leading to the final predicted
token xt. Fig. 3 (a) highlights the signal pass-
ing through the residual stream where transformer
blocks are present in parallel. Note, in some of
the transformer implementation designs, there are
two points in a single transformer block where the
computational blocks read/write back from/to the
residual stream (self-attention and MLP); we skip
the mid-skip connection in the equations above for
brevity.
Direct Effect: To measure the effect of the
transformer’s lth layer over the predicted deci-
sion, we make use of the direct effect, we follow
Chattopadhyay et al. (2019); Meng et al. (2023);
McGrath et al. (2023); Heimersheim and Nanda
(2024) assuming the transformer-based architec-
tures as structural causal models (SCMs) (Pearl
et al., 2016). The direct effect of intervening over
the activations Al = al → Al = a′l is computed
as

DE(al → a′l) =

P (xt | do(Al = a′l, A̸=l = a ̸=l(xi<t)))

− P (xt | do(Al = al(xi<t)))

where do(.) denotes the do operator (Pearl,
2012) showing the intervention on Al, i.e., esti-
mating the effect of intervening at the lth layer’s
activation Al and setting the value to a′l, keeping
all the other activations intact A ̸=l = a ̸=l(xi<t)
to the value that they would have when passing
xi<t as input prompt. The second term helps cap-
ture the effect, representing the model output, i.e.
P (xt | do(Al = al(xi<t))) = P (xt|xi<t). This
way of computing the intervention via replacing
activations is also known as path patching (Wang
et al., 2022; Goldowsky-Dill et al., 2023) (also see
Fig. 3). Essentially, the direct effect measures how
much changing the activation would affect the out-
put logits if all other units were kept constant, i.e.,
in the setup of a language model, only units that
are connected via the residual path to the output
can have a direct effect.
Intervention with Corrupted run: A crucial as-
pect of capturing the direct effect is the choice of

clean and corrupted runs. A clean run denotes the
expected behavior. In contrast, a corrupted run
signifies changes in the inputs that disrupt/deviate
the expected behavior. To localize the decision-
making happening in the network parameters, we
take a corrupted run and intervene over the acti-
vations via representations coming from the clean
run. We further observe which interventions re-
store the expected behavior, highlighting the com-
ponents that play a vital role in commonsense rea-
soning. Another common, widely used strategy
is to patch the clean run over the corrupted run,
where a Gaussian Noise is added to the same clean
input (also known as Causal Tracing (Meng et al.,
2023)). Some of the previous works (Heimersheim
and Nanda, 2024) highlight the significance of con-
structing a corrupted run via similar prompts (or
counterfactual prompts), making them more deci-
sive in comparison to other methods. The flexibil-
ity in the proposed framework of commonsense
queries coming from a DAG opens up a wide scope
for constructing such queries.
Conjugate Prompts: To be more decisive in the
decision-making via path patching. We define a
new way of constructing the corrupted run prompts.
We call these Conjugate Prompts. For any query
prompt (xi<t), we can construct a conjugate query
prompt by replacing the trajectory tokens with tra-
jectory where the wrong option becomes the correct
choice and vice versa, keeping the set of choices
in the prompt intact. App. Fig. 9 provides a pair
of conjugate prompt templates. This strategy helps
capture the specific dependency on the trajectory,
and after sampling multiple such trajectories, one
could be more decisive about the localization of
decision-making in the clean trajectory. Note that
the constructed query consists of multiple segments

P (xt|xi<t,Mθ) = P (xt|xtraj., xoptions, xϵ,Mθ)

xtraj. ← {s1, s2, . . . , sn}
xoptions ← {A. ocorrect,B. owrong}

xϵ ∈ set of prompt templates

and the ocorrect is the sn+1 whereas the owrong

comes from a randomly sampled node (far from
the current node) of the compact graph . For the
construction of a corrupted prompt that provides
a decisive distinction, one would need a prompt
that flips the answer. We create such prompts by
taking the owrong and sample a conjugate trajectory
that starts at the start node and ends at the wrong
node (oconjugate ← owrong). We further construct
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the conjugate prompt (x̄i<t) by replacing the xtraj.
with x ¯traj..

x̄i<t = x ¯traj. + xoptions + xϵ

P (xt|x̄i<t,Mθ) = P (xt|x ¯traj., xoptions, xϵ,Mθ)

Note that the original clean run still remains the
same with the same set of options present in the
prompt.

xi<t = xtraj. + xoptions + xϵ

This minimal control helps flip the decision of a lan-
guage model as for the conjugate prompt, the con-
jugate (wrong for clean) becomes the right choice.
The direct effect of path patching on the lth layer,
from clean run to conjugate run will be

DE(al → a′l) =

P (xt|do(Al = a′l, A̸=l = a̸=l(x̄i<t))

− P (xt|x̄i<t)

where a′l comes from the clean run, and the re-
maining activations are set from the conjugate run
(A ̸=l = a̸=l(x̄i<t)). Fig. 3 highlights the over-
all mechanism in detail, where the clean run pre-
dicts the green option being correct, whereas, for
the corrupted, the model predicts the option high-
lighted using a black bar. Further, intervening in
the signals via path patching from the clean run to
the corrupted run shows the expected clean behav-
ior (green being higher) when a decisive signal is
patched from the clean run. To capture the decision-
making process, we monitor the deviations in the
logits of the predicted options (i.e., the logits cor-
responding to ‘ A’ and ‘ B’ tokens). Given the
flexibility of sampling multiple such prompts, a
more conclusive result about the localization of
decision-making can be made.

4 Experimental Setup: Evaluating LLMs

We experiment with multiple (6) open-weight au-
toregressive models that are widely used by the
community. We specifically make use of open-
weight models to consider for easier replication of
results and empirical transparency. Note that the
primary aim of these experiments is not to bench-
mark the state-of-the-art models but to demonstrate
the utility of the created resource for rigorous eval-
uation, and to enable interpretability studies in re-
gard to commonsense understanding in LMs.
MCQA based Evaluation of Open-Weight Mod-
els: For a prompt-based evaluation scheme,
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Figure 4: Success rates of different models compared
across the number of shots of in-context examples.

we frame the prompt as a multi-choice ques-
tion answering (MCQA) objective (Robinson and
Wingate, 2023). The prompt is intentionally struc-
tured so that the LLM is intended to predict a
single-choice token (Such as ‘A,’ ‘B,’ etc.). Robin-
son and Wingate (2023) highlight the advantages
of MCQA-based evaluation over cloze evaluation
(Brown et al., 2020) (where the LLMs are expected
to generate the entire answer in a cloze test), lead-
ing to a significant boost in performance over var-
ious tasks, including commonsense-based tasks.
Fig. 8 shows prompt templates with a qualitative
example of the framed commonsense reasoning
query. Additionally, to validate the effectiveness
of these open-weight models over the created re-
source, we also include additional experiments: 1)
In-Context Learning, 2) Fine-tuning over the
generated dataset, and 3) Investigate the general-
ization between similar scenarios in detail. We
provide details of these extended experimental se-
tups in Appendix E.

5 Results and Empirical Findings

In this section, we provide an in-depth insight into
the model’s behavior over different aspects of the
created commonsense queries.
Overall Performance: Table 4 shows success rates
(i.e., total percentage of commonsense queries,
where the LLM generates the expected correct op-
tion) for different models on a zero-shot task over
all 37 scenarios. Mistral-7b shows the best per-
formance, outperforming the other models com-
prehensively in the majority of the scenarios. Sur-
prisingly, we observe that phi-2, which is a low-
parameter model, slightly outperforms it in some
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Figure 5: The figure shows the direct effect of path
patching from the clean run to the conjugate run (‘going
bowling’), leading to deviations starting at layer 20 and
increased signal strength at layer 26, highlighting the
role of particular layers in commonsense reasoning.
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decisive than the clean→conjugate run patching.

scenarios. The results are contrary to what is ex-
pected since the performance does not scale up with
the number of parameters of the model, i.e., phi-2
outperforms gpt-j-6B, Llama-2, and Llama-3,
and despite having fewer parameters. A similar
thing can be observed in the case of Mistral-7B
better performing than Llama-3-8B. Fig. 4 high-
lights the success rates of each model across all the
scenarios when prompted with zero-shot or few-
shot examples of selecting the next steps in a task.
We observe that phi2-2.7b and Mistral-7b show
the best performance, and their performance rises
as we increase the number of in-context examples.
Additionally, we perform a detailed analysis of the
obtained results to better understand the behavior of
these models on the created commonsense queries
across 37 scenarios. Due to space limitations, we
discuss the remaining analysis in the App. G.

Overall, we find that pre-trained phi2 (not fine-
tuned on the specific tasks) with 2.7b parameters
to be providing a decent performance performance
with an average of 60.67% when compared to other
models with a lower number of parameters. We
choose phi2-2.7b to perform the localization in

the decision-making experiments.

6 Localizing Commonsense Reasoning

To localize the components that play a primary
role in the decision-making inside these models,
we use the conjugate prompts (as previously ex-
plained). For these experiments, we consider a
subset of the dataset (200 queries) for which we
construct the conjugate prompts. Considering the
actual performance of the phi model to be around
60%, we only select commonsense queries where
the model predicts the correct choice. Fig. 5 shows
the direct effect of path patching from the clean
run to the conjugate run (for the scenario (‘going
bowling’)) for different transformer layers. For the
initial 20 layers (layer 0 to layer 19), we observe
a minimal deviation in the predicted choice from
the expected conjugate run. In contrast, after 20
layers, we start observing the shift of the predicted
probabilities toward the Expected Clean Run, point-
ing toward the patched signal being responsible for
decision-making. We hypothesize layer 20 to be
the primary initiator of the decision-making, and
the following layers increase the strength of (or
help reinforce) the decision (layer 26 to show the
maximum deviation). We perform a detailed set of
these experiments over all the 37 scenarios present
in the proposed framework. Interestingly, we find
that these deviations are consistent across different
scenarios (see App. Fig. 19), and there seems to
exist a few specific modules that show a peak in
the direct effect, pointing towards the localization
of the decision-making component present in these
large autoregressive models.

We also observe that there is an increase in peak
detection when computing the direct effect from
conjugate prompts (Fig. 5) when compared to a
corrupted run created using a prompt with random
tokens (Fig. 12). (also see Fig. 6 for comparison).
This highlights the effectiveness of the proposed
conjugate prompts, making the direct effect peaks
more decisive for localizing the decision-making.

7 Related Works

The proposed scheme primarily targets a special
case of commonsense reasoning. In the past, a large
body of research works have investigated common-
sense knowledge. Our work intersects with three
broad research areas: 1) Commonsense Knowledge
Resources, 2) Script-based Procedural Reasoning,
and 3) Mechanistic Interpretability.
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Commonsense Knowledge Resources: Some of
the recent works to model commonsense reasoning
include knowledge graphs like ATOMIC (Hwang
et al., 2021), which captures social and physical
inferences, and transformer-based generators like
COMET (Bosselut et al., 2019) and the follow up
works (West et al., 2023; Park et al., 2020; Choi,
2022; Rashkin et al., 2018). While these resources
enable broad reasoning, they lack a granular pro-
cedural structure. On the other hand, benchmarks
such as SWAG (Zellers et al., 2018), HellaSwag
(Zellers et al., 2019b), and COIN (Ostermann et al.,
2019) evaluate isolated inferences but ignore to test
multi-step reasoning in procedural text. Some other
works include (Qin et al., 2019; Huang et al., 2019;
Bhagavatula et al., 2020; Qin et al., 2021; Talmor
et al., 2021; Zellers et al., 2021; Zhao et al., 2024)
Recently proposed methods show a good perfor-
mance on these tasks (Lourie et al., 2021; Zhou
et al., 2023), yet their performance remains limited
to a small evaluation set, making quantification
challenging. It is often difficult to quantify if the
performance reflects surface pattern matching or
structured understanding (Wang et al., 2024). Un-
like these works, our scheme models activities as
directed graphs, enabling evaluation through sam-
pling enormous trajectories per activity.
Script-Based Commonsense Reasoning: Scripts
have been an active area of research for the last
four decades. Scripts provide a framework to for-
malize procedural knowledge as event sequences
(Schank, 1975; Schank and Abelson, 1975), with
corpora like InScript (Modi et al., 2016), DeScript
(Wanzare et al., 2016), and McScript (Ostermann
et al., 2018), capturing commonsense knowledge
via crowdsourcing. Several computational models
have developed to model script knowledge, inter-
alia, (Regneri et al., 2010; Frermann et al., 2014;
Modi, 2016; Modi and Titov, 2014; Rudinger et al.,
2015; Jans et al., 2012; Pichotta and Mooney, 2016;
Modi et al., 2017; Sancheti and Rudinger, 2022;
Tandon et al., 2019; Madaan et al., 2021; Sak-
aguchi et al., 2021; Saha et al., 2021; Li et al., 2023;
Creswell et al., 2023; Gandhi et al., 2023; Onoe
et al., 2023; Poesia et al., 2023; Joshi et al., 2024).
However, evaluations remain limited to small test
sets and are often limited in capturing real-world
variation. In this work, we expand this paradigm
by converting scripts into directed graphs that en-
code valid event orderings per activity, supporting
systematic stress-testing through marginalization
over enormous trajectories.

Mechanistically Interpretable Localization: In
recent years, a wide range of approaches have been
proposed in the context of factual recall (Meng
et al., 2023; Heimersheim and Nanda, 2024; Wang
et al., 2022; Gordon et al., 2012), where the recall-
ing circuit for a particular fact is found via circuit-
level attribution in language models. A represen-
tative work widely used across these methods is
the counteract dataset (Meng et al., 2023), which
provides flexibility in choosing the counterfactual
statement. Specifically, the dataset consists of a
series of prompts and combines a tuple (subject, re-
lation, object), and the object is replaced by a coun-
terfactual object, making sense in the context. This
helps tease apart the factual recalling mechanism
by producing prompts whose completion requires
specific factual knowledge about a subject and a
relation. However, most of the prior art focuses
on attribute recall rather than procedural reason-
ing. In this work, we extend it for commonsense
reasoning happening inside these large autoregres-
sive models by providing resources that facilitate
marginalization using multiple samples.

8 Conclusion

In this work, we study to quantify commonsense
knowledge acquired in LLMs by performing a rig-
orous evaluation over real-world activities well un-
derstood by humans. We provide alignment re-
sources for 37 daily human activities, which can
generate an enormous number of choice-based
questions for validating the commonsense reason-
ing in LLMs. With a detailed analysis of 6 open-
weight models, we find commonsense reasoning
challenging for LLMs. To add an extra layer of
understanding of the performance, we dive deeper
into the relationships with different properties of
the scenarios and report the findings. Further, we
provide ways in which the decision-making about
commonsense reasoning happening inside these
models could be localized and understood. Our
analysis using the Phi-2 model points out a few
localized layers that play a crucial role in predict-
ing the expected reasonable answer. We hope that
this work opens up new ways of understanding the
commonsense reasoning happening inside these
models, by not only grasping the representations
learned by these models but also by making a com-
parison with the compact graph representation of
the commonsense knowledge about these daily real-
world activities.
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Limitations

The major limitation of this work is the low num-
ber of stereotypical human activities (37 in number)
used to validate the commonsense understanding
aspect of LLMs. Though the validation space gen-
erated by the graph representation is enormous, the
provided resource can only validate the common-
sense understanding aspect in models for a limited
set of these 37 scenarios, which may not be the true
representative of the generalized understanding ac-
tivities in the wild.

Though the framework supports the flexibility
of choosing a set of question prompt templates, for
our experiments, given the computation cost, we
find a single prompt template that shows a nominal
performance and use the same for all the analyses.
In the future, it would be good to marginalize the
results by using multiple prompt templates.

For finding the decision-making components in
the large autoregressive language models, though
we provide a rich resource that facilitates teasing
apart various modules. In our experiments, we
only considered a small set of indicative experi-
ments to show the utility of the proposed frame-
work. Moreover, we only considered the activation
blocks with less granularity, and a better localiza-
tion may exist when performing path patching by
analyzing the role of individual attention heads.
Furthermore, we only used phi-2 for the local-
ization experiments, and more analysis would be
required for other open-weight models that show a
decent performance over the created commonsense
queries. At last, we would like to mention that
these experiments only provide a weak signal that
localization may exist, and the current method of
direct computation may not be transparent enough
to find the decision-making modules for common
sense reasoning. We encourage future works to
consider finding the underlying circuits behind the
commonsense reasoning. We believe the proposed
framework will lead to a helpful resource with high
utility, both for robust evaluation and circuit dis-
covery of commonsense reasoning, helping find
out ways in which these models can be made more
accurate for commonsense reasoning in general.

Ethical Aspects

Our work does not have any negative impact on the
society. We create a dataset for evaluating LLMs
for commonsense knowledge and evaluate open-
weight LLMs exhaustively and rigorously.
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Marie Francine Moens. 2012. Skip N-grams and
Ranking Functions for Predicting Script Events. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Lin-
guistics.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin,
Jyoti Aneja, Caio César Teodoro Mendes, Weizhu
Chen, Allie Del Giorno, Ronen Eldan, Sivakanth
Gopi, Suriya Gunasekar, Piero Kauffmann, Yin Tat
Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Michael San-
tacroce, Harkirat Singh Behl, Adam Taumann Kalai,
Xin Wang, Rachel Ward, Philipp Witte, Cyril Zhang,
and Yi Zhang. 2023. Phi-2: The surprising power of
small language models. Microsoft Research Blog.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Abhinav Joshi, Areeb Ahmad, and Ashutosh Modi.
2024. COLD: Causal reasoning in closed daily ac-
tivities. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

9644

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2404.15255
http://arxiv.org/abs/2404.15255
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
http://arxiv.org/abs/2010.05953
http://arxiv.org/abs/2010.05953
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034
http://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=7Mo1NOosNT
https://openreview.net/forum?id=7Mo1NOosNT


Abhinav Joshi, Areeb Ahmad, Umang Pandey, and
Ashutosh Modi. 2023. Scriptworld: Text based
environment for learning procedural knowledge.
In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI-23,
pages 5095–5103. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

Xinze Li, Yixin Cao, Muhao Chen, and Aixin Sun. 2023.
Take a break in the middle: Investigating subgoals
towards hierarchical script generation.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Unicorn on rainbow: A
universal commonsense reasoning model on a new
multitask benchmark.

Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yim-
ing Yang, and Eduard Hovy. 2021. Could you give
me a hint ? generating inference graphs for defeasible
reasoning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
5138–5147, Online. Association for Computational
Linguistics.

Thomas McGrath, Matthew Rahtz, Janos Kramar,
Vladimir Mikulik, and Shane Legg. 2023. The hy-
dra effect: Emergent self-repair in language model
computations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt.

Ashutosh Modi. 2016. Event Embeddings for Seman-
tic Script Modeling. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning.

Ashutosh Modi. 2017. Modeling Common Sense Knowl-
edge via Scripts. Ph.D. thesis, Saarland University.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3485–
3493, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Ashutosh Modi and Ivan Titov. 2013. Learning seman-
tic script knowledge with event embeddings. arXiv
preprint arXiv:1312.5198.

Ashutosh Modi and Ivan Titov. 2014. Inducing Neural
Models of Script Knowledge. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning.

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Say-
eed, and Manfred Pinkal. 2017. Modeling Semantic
Expectation: Using Script Knowledge for Referent

Prediction. Transactions of the Association for Com-
putational Linguistics.

Yasumasa Onoe, Michael J. Q. Zhang, Shankar Padman-
abhan, Greg Durrett, and Eunsol Choi. 2023. Can
lms learn new entities from descriptions? challenges
in propagating injected knowledge.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. MCScript:
A novel dataset for assessing machine comprehen-
sion using script knowledge. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Simon Ostermann, Sheng Zhang, Michael Roth, and Pe-
ter Clark. 2019. Commonsense inference in natural
language processing (COIN) - shared task report. In
Proceedings of the First Workshop on Commonsense
Inference in Natural Language Processing, pages
66–74, Hong Kong, China. Association for Computa-
tional Linguistics.

Jae Sung Park, Chandra Bhagavatula, Roozbeh Mot-
taghi, Ali Farhadi, and Yejin Choi. 2020. Visual-
comet: Reasoning about the dynamic context of a
still image. In In Proceedings of the European Con-
ference on Computer Vision (ECCV).

Judea Pearl. 2012. The do-calculus revisited. In Pro-
ceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, UAI’12, page 3–11,
Arlington, Virginia, USA. AUAI Press.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell.
2016. Causal inference in statistics: A primer. John
Wiley & Sons.

Karl Pichotta and Raymond J. Mooney. 2016. Using
Sentence-Level LSTM Language Models for Script
Inference. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics.

Gabriel Poesia, Kanishk Gandhi, E. Zelikman, and
Noah D. Goodman. 2023. Certified reasoning with
language models. ArXiv, abs/2306.04031.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019.
Counterfactual story reasoning and generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5043–
5053, Hong Kong, China. Association for Computa-
tional Linguistics.

Lianhui Qin, Aditya Gupta, Shyam Upadhyay, Luheng
He, Yejin Choi, and Manaal Faruqui. 2021. Timedial:
Temporal commonsense reasoning in dialog.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

9645

https://doi.org/10.24963/ijcai.2023/566
https://doi.org/10.24963/ijcai.2023/566
http://arxiv.org/abs/2305.10907
http://arxiv.org/abs/2305.10907
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2103.13009
http://arxiv.org/abs/2103.13009
http://arxiv.org/abs/2103.13009
https://doi.org/10.18653/v1/2021.findings-acl.456
https://doi.org/10.18653/v1/2021.findings-acl.456
https://doi.org/10.18653/v1/2021.findings-acl.456
http://arxiv.org/abs/2307.15771
http://arxiv.org/abs/2307.15771
http://arxiv.org/abs/2307.15771
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
https://doi.org/10.18653/v1/K16-1008
https://aclanthology.org/K16-1008
https://doi.org/10.18653/v1/K16-1008
https://aclanthology.org/K16-1008
https://d-nb.info/1137206276/34
https://d-nb.info/1137206276/34
https://aclanthology.org/L16-1555
https://aclanthology.org/L16-1555
https://doi.org/10.3115/v1/W14-1606
https://aclanthology.org/W14-1606
https://doi.org/10.3115/v1/W14-1606
https://aclanthology.org/W14-1606
https://doi.org/10.1162/tacl_a_00044
https://aclanthology.org/Q17-1003
https://doi.org/10.1162/tacl_a_00044
https://aclanthology.org/Q17-1003
https://doi.org/10.1162/tacl_a_00044
https://aclanthology.org/Q17-1003
http://arxiv.org/abs/2305.01651
http://arxiv.org/abs/2305.01651
http://arxiv.org/abs/2305.01651
https://aclanthology.org/L18-1564
https://aclanthology.org/L18-1564
https://aclanthology.org/L18-1564
https://doi.org/10.18653/v1/D19-6007
https://doi.org/10.18653/v1/D19-6007
https://doi.org/10.18653/v1/P16-1027
https://aclanthology.org/P16-1027
https://doi.org/10.18653/v1/P16-1027
https://aclanthology.org/P16-1027
https://doi.org/10.18653/v1/P16-1027
https://aclanthology.org/P16-1027
https://doi.org/10.18653/v1/D19-1509
http://arxiv.org/abs/2106.04571
http://arxiv.org/abs/2106.04571


William M. Rand. 1971. Objective criteria for the evalu-
ation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850.

Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A.
Smith, and Yejin Choi. 2018. Event2Mind: Com-
monsense inference on events, intents, and reactions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 463–473, Melbourne, Australia.
Association for Computational Linguistics.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning Script Knowledge with Web
Experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics.

Joshua Robinson and David Wingate. 2023. Leveraging
large language models for multiple choice question
answering. In The Eleventh International Conference
on Learning Representations.

Rachel Rudinger, Vera Demberg, Ashutosh Modi, Ben-
jamin Van Durme, and Manfred Pinkal. 2015. Learn-
ing to predict script events from domain-specific text.
In Proceedings of the Fourth Joint Conference on
Lexical and Computational Semantics.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit
Bansal. 2021. ExplaGraphs: An explanation graph
generation task for structured commonsense reason-
ing. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 7716–7740, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le
Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts generation
via pre-trained language models.

Abhilasha Sancheti and Rachel Rudinger. 2022. What
do Large Language Models Learn about Scripts? In
Proceedings of the 11th Joint Conference on Lexical
and Computational Semantics.

Roger C. Schank. 1975. The structure of episodes in
memory. In DANIEL G. BOBROW and ALLAN
COLLINS, editors, Representation and Understand-
ing, pages 237–272. Morgan Kaufmann, San Diego.

Roger C. Schank and Robert P. Abelson. 1975. Scripts,
Plans, and Knowledge. In Proceedings of the 4th
International Joint Conference on Artificial Intelli-
gence, IJCAI.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2021. CommonsenseQA 2.0: Exposing the
limits of AI through gamification. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Pe-
ter Clark, and Antoine Bosselut. 2019. WIQA: A
dataset for “what if...” reasoning over procedural text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6076–
6085, Hong Kong, China. Association for Computa-
tional Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2009. Information theoretic measures for cluster-
ings comparison: is a correction for chance neces-
sary? In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09,
page 1073–1080, New York, NY, USA. Association
for Computing Machinery.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter-
pretability in the wild: a circuit for indirect object
identification in gpt-2 small.

Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren.
2024. Can llms reason with rules? logic scaffolding
for stress-testing and improving llms.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. A Crowdsourced
Database of Event Sequence Descriptions for the
Acquisition of High-quality Script Knowledge. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16).

Peter West, Ronan Bras, Taylor Sorensen, Bill Lin, Li-
wei Jiang, Ximing Lu, Khyathi Chandu, Jack Hessel,

9646

https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.18653/v1/P18-1043
https://doi.org/10.18653/v1/P18-1043
https://aclanthology.org/P10-1100
https://aclanthology.org/P10-1100
https://aclanthology.org/P10-1100
https://aclanthology.org/P10-1100
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://doi.org/10.18653/v1/S15-1024
https://aclanthology.org/S15-1024
https://doi.org/10.18653/v1/S15-1024
https://aclanthology.org/S15-1024
https://doi.org/10.18653/v1/2021.emnlp-main.609
https://doi.org/10.18653/v1/2021.emnlp-main.609
https://doi.org/10.18653/v1/2021.emnlp-main.609
http://arxiv.org/abs/2104.08251
http://arxiv.org/abs/2104.08251
https://doi.org/10.18653/v1/2022.starsem-1.1
https://aclanthology.org/2022.starsem-1.1
https://doi.org/10.18653/v1/2022.starsem-1.1
https://aclanthology.org/2022.starsem-1.1
https://doi.org/https://doi.org/10.1016/B978-0-12-108550-6.50014-8
https://doi.org/https://doi.org/10.1016/B978-0-12-108550-6.50014-8
https://dl.acm.org/doi/abs/10.5555/1624626.1624649
https://dl.acm.org/doi/abs/10.5555/1624626.1624649
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/D19-1629
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1145/1553374.1553511
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2402.11442
http://arxiv.org/abs/2402.11442
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556


Ashutosh Baheti, Chandra Bhagavatula, and Yejin
Choi. 2023. NovaCOMET: Open commonsense
foundation models with symbolic knowledge distil-
lation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 1127–1149,
Singapore. Association for Computational Linguis-
tics.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A large-scale adversarial dataset
for grounded commonsense inference. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 93–104, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019a. Hellaswag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019b. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
2021. Merlot: Multimodal neural script knowledge
models.

Wenting Zhao, Justin T Chiu, Jena D. Hwang, Faeze
Brahman, Jack Hessel, Sanjiban Choudhury, Yejin
Choi, Xiang Lorraine Li, and Alane Suhr. 2024. Un-
commonsense reasoning: Abductive reasoning about
uncommon situations.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning.

Wangchunshu Zhou, Ronan Le Bras, and Yejin Choi.
2023. Commonsense knowledge transfer for pre-
trained language models.

9647

https://doi.org/10.18653/v1/2023.findings-emnlp.80
https://doi.org/10.18653/v1/2023.findings-emnlp.80
https://doi.org/10.18653/v1/2023.findings-emnlp.80
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
http://arxiv.org/abs/2106.02636
http://arxiv.org/abs/2106.02636
http://arxiv.org/abs/2311.08469
http://arxiv.org/abs/2311.08469
http://arxiv.org/abs/2311.08469
http://arxiv.org/abs/2305.14078
http://arxiv.org/abs/2305.14078
http://arxiv.org/abs/2305.14078
http://arxiv.org/abs/2306.02388
http://arxiv.org/abs/2306.02388


Appendix

Table of Contents

A Details to Graphical Representation . . . . 17

B Improving Data Quality. . . . . . . . . . . . . 17

C Prompt Templates . . . . . . . . . . . . . . . . . 17

D Trajectory Entropy . . . . . . . . . . . . . . . . 17

E Experimental Setup: Evaluating LLMs. . 18

F Hyperparameters for Fine-Tuning Exper-
iments . . . . . . . . . . . . . . . . . . . . . . . . . 19

G Additional Results and Empirical Find-
ings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

List of Figures

7 Compact Graph “baking a cake” 18

8 Input prompt formats for the
MCQA-based evaluation. . . . . . 19

9 Formation of Conjugate prompt
from a Clean prompt. . . . . . . . 19

10 Variation of trajectory entropy
against the number of paths . . . . 20

11 Comparing the success rates of the
models across task completion per-
centage. The error bands show +1
and -1 standard deviations across
scenarios and in-context shots. . . 22

12 The figure shows the direct effect
of path patching from the clean run
to the random run (‘going bowl-
ing’). The peaks/deviations are
less decisive than 5, highlighting
the effectiveness of using the pro-
posed conjugate prompts. . . . . 22

13 Success rate of the models af-
ter fine-tuning it on the MCQA
dataset. The error bands show +1
and -1 standard deviation across
scenarios. . . . . . . . . . . . . . 22

14 Flying an airplane and Going
grocery shopping and show
considerable improvement in
phi2-2.7b and Mistral-7b
when going from 0-shot to 5-shot. 22

15 Comparing the success rates of the
models on all the scenarios based
on their release date and model
size. The size of each circle is in-
dicative of the number of param-
eters in the model. Here, we ob-
serve that phi2 shows a consid-
erable gap in performance when
compared to Llama model series
and is very close to Mistral-7b
despite having less than half the
number of parameters. . . . . . . 22

16 Comparing success rates of the pre-
sented 6 models across each sce-
nario and task completion percent-
ages in a 5-shot setting. Here
we see that for many scenarios
phi2-2.7b and Mistral-7b show
similar success rates. All the mod-
els have a high success rate ear-
lier in each task, however as the
task progresses the models show
a drop in success. gptj-6b and
gptneo-1.3b show almost ran-
dom success (≈ 50%) on each task.

. . . . . . . . . . . . . . . . . . 23
17 Task completion % vs success rate

of all models on each scenario aver-
aged over all number of in-context
examples, i.e. n-shots . . . . . . . 24

18 Task completion % vs success
rate of all models on each sce-
nario for fine-tuned Llama3-8b
and phi2-2.7b . . . . . . . . . . 25

19 The figure shows the direct effect
of path patching from the clean run
to the conjugate run, leading to de-
viations starting at layer 20 and re-
inforced by the following layers
(maximum deviations observed at
layer 26 and layer 28), highlight-
ing the role of particular layers in
commonsense reasoning. . . . . . 26

9648



A Details to Graphical Representation

Graphical Representation: The created directed
acyclic graphs (DAGs) provide a medium for gener-
ating enormous trajectories (scales from 1.6e+ 16
to 2.6e + 30, also see Table 1), that are coming
directly from human annotations (alignment anno-
tation as well as the ESDs written by crowd-soured
workers), providing us a proxy to represent the un-
derstanding of daily activities. Each node in the
presented graph also contains miniature steps. For
example, for the subtask “take medicine” (repre-
sented by a single node in the entire graph), some
crowdsource workers explain it in more detail, like
“open water bottle,” “put medicine in the
mouth,” “drink water.” To handle such cases,
we expand the node further, incorporating such
substeps. This essentially leads to an enormous
number of paths/ESDs from the start to the end
node in the graph.
Computing the total number of ESDs: Note
that the total number of ESDs that can be gener-
ated using the created graph is the total number of
paths/trajectories from the start node to the end task
node. (see Figure (7) for reference) The obtained
DAGs can be used to compute the total number
of paths using a simple DFS scheme. For consid-
ering the miniature steps as well, we expand the
same graph by incorporating the parallel paths for
all sub-tasks. Further, the total number of paths is
computed considering every node in the compact
graph that points to multiple text instances written
by different human experts. We further use these
paths to get multiple commonsense reasoning ques-
tion prompts. Considering the humongous number
of queries, we believe the generated examples act
as a closed set that captures a proxy for the com-
monsense understanding related to a task.

B Improving Data Quality

A noteworthy point about the created dataset is
that although it is generated using an algorithmic
procedure, the core knowledge still comes from
humans. To cross-validate the quality of the gener-
ated dataset, we perform additional checks of the
created DAGs by manual inspection of compact
graph structure (and improve the quality by manu-
ally removing the nodes/entries/edges that do not
form an explainable path from the start node to the
end node), manual inspection of the descriptions
that are clubbed together. Lastly, we conducted a
sanity check, where we took a sample of 1k com-

Human Experts Task Accuracy

Expert-1 98.00
Expert-2 96.20
Expert-3 96.52
Expert-4 94.36
Expert-5 92.00

Average 95.42

claude-3-5-sonnet-20240620 94.30

Table 2: Performance of multiple annotators over the
selected 1k samples (200 samples for 5 scenarios) over
the generated commonsense queries for 5 activities. The
high performance numbers indicate the presence of valid
commonsense queries, well answerable by humans.

monsense queries for 5 of 37 scenarios and asked
5 human annotators to know how well humans per-
form on the created task. We recorded an average
accuracy of 95% with 98% being the maximum
(more details in Table 2).

C Prompt Templates

Fig. 8 shows the evaluation prompt template used
for MCQA-based evaluation. The prompt is in-
tentionally structured so that the LLM is intended
to predict a single-choice token (Such as ‘A,’ ‘B,’
etc.).

D Trajectory Entropy

To quantify the complexity across various scenarios
and compare the created DAGs in detail, we define
the trajectory entropy of a scenario. Trajectory
entropyHt for an DAG (Directed Acyclic Graph)
G is computed as:

Ht = −
N∑

k=1

p(tk)logp(tk)

Where N is the total number of paths from the
start to the end node p(tk), is the probability of
trajectory tk defined as p(tk) =

∏
ij T (ei → ej).

T (ei → ej) is transition probability from event
ei to ej , which is defined uniformly across all the
outgoing edges. Figure 10 shows the computations
across multiple scenarios. We find that though there
is a relationship between the entropy and the num-
ber of paths, there are a few outliers like ‘playing
tennis’, ‘ironing laundry’, and ‘renovating
a room’, and the entropy would be another mea-
sure to identify the complexity of the task captured
by the compact graph representations.
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Figure 7: The figure shows the generated graph for the scenario “baking a cake”.

E Experimental Setup: Evaluating LLMs

As explained in the main paper, our overall evalua-
tion relies on an MCQA-based Evaluation scheme
that can generate ∼ 1017 commonsense queries for
a single activity.
Commonsense Queries for Evaluation: Note that
though the proposed scheme is capable of generat-
ing enormous queries, we perform all the analysis
on the dataset generated from 2k trajectories (lead-
ing to ∼ 20k commonsense queries) for each sce-
nario. We freeze this dataset of (∼ 20k common-
sense queries per scenario) for easier replicability
of the obtained results.

We provide details of the additional experi-
ments to investigate the effectiveness of these open-
weight models below.
In-Context Learning: In recent years, LLMs have
shown a surprising ability to capture the context
via a few examples of the task provided in a prompt
in the form of input-output examples (Dong et al.,

2022). The LLMs predict the next output condi-
tioning on the previous examples. To quantify the
performance of the created task, it becomes impor-
tant to consider evaluating LLMs using in-context
examples. We perform an evaluation of the cre-
ated commonsense queries by considering 1-shot,
2-shot, and 5-shot experiments for the LLMs. Pre-
viously, a few of the works (Brown et al., 2020;
Robinson and Wingate, 2023) have reported signif-
icant boosts in performance when provided with
in-context examples for MCQA-based evaluation.

Fine-Tuning: We also consider the finetuning of 2
open-weight models (phi-2 and Llama-3) over a
small set of 1000 queries from the created common-
sense reasoning queries. We specifically choose 5
common scenarios and fine-tune the LLMs for an
epoch. The fine-tuned scenarios include planting
a tree, going on a train, going grocery
shopping, flying in an airplane, and riding
on a bus. We choose these five scenarios based
on their generic nature, when compared to more
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[ in-context examples (if few-shot/in-context learning experiment) ]
Question: For the task activity name, if the following steps are already completed in order
1. E1, 2. E2, 3. . . . i. Ei, what should be the next suitable step for completing the task?
A. Ei+1

B. wrong choice sampled from the scenario
Answer: A

[ in-context examples (if few-shot/in-context learning experiment) ]
Question: For the task planting a tree, if the following steps are already completed in order
1. ‘Go to garden center’, 2. ‘Obtain seedling.’, what should be the next suitable step for
completing the task?
A. ‘Water tree’
B. ‘Find a location to plant tree’
Answer: B

Figure 8: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight models (e.g.,
llama(-2), GPT-J, etc.). The black text is the templated input. The orange text is the input from the current
event trajectory, where the activity name denotes the description of the activity like baking a cake, or planting
a tree. The next-token prediction probabilities of the option IDs at the red text is used as the observed prediction
distribution.

Question: For the task activity name, if the following steps are already completed in order
1. E1, 2. E2, 3. . . . p. Ep, what should be the next suitable step for completing the task?
A. Ep+1

B. Eq+1

Answer: A

Question: For the task activity name, if the following steps are already completed in order
1. E1, 2. E2, 3. . . . q. Eq, what should be the next suitable step for completing the task?
A. Ep+1

B. Eq+1

Answer: B

Figure 9: Formation of Conjugate prompt from a Clean prompt. The black text is the template input (xϵ), where
the activity name denotes the description of the activity like baking a cake, or planting a tree. The blue
text is the clean run (xtraj.) ending at step Ep, making Ep+1 to be the correct choice. The conjugate run input
(orange text) is framed from a conjugate trajectory (x̄traj.) ending at Eq , making Eq+1 to be the correct conjugate
choice. Note that in both prompts (clean and conjugate), the options (xoptions) remain the same, i.e., Ep+1 and
Eq+1 and only the clean trajectory is changed to conjugate trajectory. The next-token prediction probabilities of the
option IDs at the red text is used as the observed prediction distribution. The change in the decision is monitored
via the difference in logits corresponding to tokens ‘ A’ and ‘ B’ before and after the activation path patching.

specific scenarios like ‘sewing a button’ or
‘renoating a room’.
Generalization between Similar Scenarios: To
assess if simple finetuning over a few scenarios
helps the model learn the MCQA evaluation for-
mat, we consider evaluating the fine-tuned models
over all the available scenarios. This also helps
validate if there is a generalization between similar
scenarios, i.e., learning a scenario helps improve
the performance over other similar scenarios.

F Hyperparameters for Fine-Tuning
Experiments

We employed the following hyperparameters to
fine-tune our models. We set the batch size to 4

and utilized gradient accumulation steps of 4. The
models were trained for one epoch with a learn-
ing rate of 1e− 5. A weight decay of 0.01 was
applied. Flash attention (Dao et al., 2022) was
enabled to enhance the training efficiency. The
AdamW (Loshchilov and Hutter, 2017) optimizer
was used for updating the model weights.

G Additional Results and Empirical
Findings

Relation with Model Size: Fig. 15 underscores
the success rate of a model compared to its size
and release date. We observe a surprising trend in
that phi2-2.7b can outperform the Llama series
of models despite its smaller size. Through Fig.
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Figure 10: The figure shows the variation of trajectory entropy with the Total Number of Paths in the Compact
Graph. We observe that some scenarios have less or almost equal trajectory entropy despite having a significantly
higher number of paths. This demonstrates that the complexity of the task is not only due to the number of paths,
but some other factors also play a role in determining complexity.

9652



15, we observe that this performance rise could be
attributed to the release dates of the models and the
availability of pre-training datasets.
Relation with Task completion percentage: The
MCQA formulation of the commonsense knowl-
edge about the activities is framed using the
steps/events involved in the activity, where a sub-
part of the trajectory (with length m) is considered
by taking a split at a step n ∈ {1,m} and using
steps e1, e2, . . . en−1 as a part of a commonsense
reasoning question and en as the correct choice for
the question. The task completion percentage is
calculated based on the current event step (n) with
respect to the total steps (m) in the sampled trajec-
tory. More task completion percentage means more
context of a particular task, i.e. the query contains
more number of steps.

We investigate model performance in Fig. 11 by
comparing the success rates of the models against
the task completion percentage. We observe that all
models perform well for smaller task completion
percentage; however, as the task progresses, all the
models show a dip in success rates. This could
possibly be attributed to either the long context of
all the previous actions or the task’s complexity as
it progresses. In general, LLMs are expected to per-
form well with more context about the task (note
the context length here does not increase by a sig-
nificant margin). However, in this case, as the task
progresses, the number of valid options increases
with more variability, increasing the complexity of
the commonsense queries.

To further explore how the performance varies
with task completion percentage for different sce-
narios, we compare the performance across all the
scenarios. Fig. 16 shows the success rate of each
model across task completion percentages for each
scenario. We observe a similar trend and notice
that all models perform well initially but show a
decline in performance thereafter.

We observed a few interesting trends when in-
specting them across similar scenarios. For the sce-
narios that contain relationships with food, for ex-
ample, in scenarios like Making scrambled eggs,
Baking a cake, Having a barbecue, Making
coffee, etc., the Mistral-7b shows a significant
drop in the performance towards the end, highlight-
ing the role of context in making the task more de-
tailed and difficult to reason about. Moreover, we
also find an interesting trend where the scenarios
contain some movement, e.g., Taking a driving
lesson, Going to the theatre, Going bowling,

Language Model 0-shot 1-shot 2-shot 5-shot

gpt-j-6B 50.19 50.14 50.59 50.05
gpt-neo-1.3B 50.07 49.58 49.86 50.26

Llama-2-7b-chat-hf 55.67 54.63 56.11 56.59
Mistral-7B-v0.1 66.76 67.61 70.24 71.13

Average 55.99 55.78 57.04 57.26

Table 3: Average performance for In-context learning
experiments over multiple open-weight models.

Taking a child to bed, Going to the dentist,
Riding on a bus, Flying in an airplane, and
Checking in at the airport; Mistral-7b and
phi2-2.7b show improvements in success rates at
the middle sections of the task, making the context
more important for such scenarios.
Improvements with In-Context Learning Ex-
amples: Fig. 14 shows the improvement of the
models from zero-shot to five-shot settings, espe-
cially at the initial steps. Mistral-7b, phi2-2.7b,
Llama3-8b, and gptj-6b show performance im-
provements in the Going Grocery Shopping sce-
nario (holding the highest scores in Mistral-7b).
However, Llama2-7b shows performance degrada-
tion when going from 0-shot to 5-shot . A similar
trend is observed in Flying in an Airplane sce-
nario, with Mistral-7b and phi2-2.7b showing
performance improvements while Llama models
show a degradation in performance .
Improvements with Finetuning: Table 5 and Fig.
13 highlights the improvement of Llama3 across
all scenarios and task completion status upon fine-
tuning. We observe that after fine-tuning Llama3,
it has a rise in success rate across time steps and
also outperform Mistral-7B when prompted with
in-context examples. Fig. 18 dives deeper into the
fine-tuned models across time steps for each sce-
nario. We also observe the same rising trend, sug-
gesting that the model generalize upon fine-tuning.
However, we observe a decrease in performance of
phi2-2.7b in general and across time steps. We
observe the same trend in Fig. 18 for phi2-2.7b
in all scenarios.
Generalization across Multiple Scenarios: We
fine-tuned Llama3-8b and phi2-2.7b on the tra-
jectories from Going grocery shopping and eval-
uated the models on all the scenarios. Fig. 13
highlights that Llama3-8b generalizes to all the
scenarios, especially across time steps. However,
we see a drop in the performance of phi2-2.7b in
general and across time steps, pointing towards low
generalization capability of smaller models.
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Figure 11: Comparing the success rates of the models
across task completion percentage. The error bands
show +1 and -1 standard deviations across scenarios
and in-context shots.
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Figure 12: The figure shows the direct effect of path
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5, highlighting the effectiveness of using the proposed
conjugate prompts.
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-1 standard deviation across scenarios.
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Figure 15: Comparing the success rates of the models on
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Figure 17: Task completion % vs success rate of all models on each scenario averaged over all number of in-context
examples, i.e. n-shots
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Figure 19: The figure shows the direct effect of path patching from the clean run to the conjugate run, leading to
deviations starting at layer 20 and reinforced by the following layers (maximum deviations observed at layer 26 and
layer 28), highlighting the role of particular layers in commonsense reasoning.
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Activity gpt-neo-1.3B phi-2 gpt-j-6B Llama-2-7b Mistral-7B-v0.1 Llama-3

baking a cake 48.86 73.78 44.43 69.28 77.84 63.11
borrowing a book from the library 49.37 60.76 52.45 61.86 75.08 55.41

changing batteries in an alarm clock 50.02 62.79 50.65 51.51 60.53 51.19
checking in at an airport 48.77 55.65 48.60 53.74 58.16 48.76

cleaning up a flat 49.23 57.93 51.29 50.64 59.58 51.84
cooking pasta 51.88 67.03 49.68 60.56 70.20 60.31
doing laundry 49.43 68.54 50.27 60.84 73.26 56.46

eating in a fast food restaurant 49.91 63.00 52.19 50.62 71.74 53.64
flying in an airplane 49.83 59.43 48.30 62.40 74.14 57.93

fueling a car 51.05 59.78 51.30 45.54 64.44 50.79
getting a hair cut 49.91 56.81 48.53 54.72 73.75 50.58

going bowling 49.87 58.05 50.59 53.14 61.15 49.29
going grocery shopping 50.84 70.96 53.12 67.36 84.96 66.77

going on a train 50.16 55.00 52.03 58.10 69.81 54.70
going to the dentist 50.29 54.28 51.56 52.10 66.58 52.57
going to the sauna 50.47 53.17 49.91 50.70 57.50 50.83

going to the swimming pool 47.90 54.34 49.51 46.93 57.16 46.72
going to the theater 48.49 52.76 51.94 48.54 61.35 47.75
having a barbecue 48.41 77.19 52.33 60.31 76.30 57.97
ironing laundry 51.69 61.57 48.65 57.88 65.04 51.81
making a bonfire 51.17 65.22 49.22 51.33 64.29 48.00
making coffee 51.62 57.51 49.44 51.04 59.95 49.91

making scrambled eggs 51.49 66.08 48.64 56.46 65.99 57.84
paying with a credit card 49.15 38.92 50.49 49.07 50.95 49.84

planting a tree 49.60 71.25 49.18 63.59 73.19 60.27
playing tennis 48.65 56.09 50.87 47.67 64.96 50.18

renovating a room 47.09 60.92 51.38 52.45 63.49 51.06
repairing a flat bicycle tire 50.38 71.32 50.26 59.05 69.59 55.59

riding on a bus 48.04 61.99 53.31 58.39 71.99 54.98
sending food back (in a restaurant) 53.98 49.23 48.37 50.84 63.69 51.15

sewing a button 51.95 63.06 48.53 54.28 66.68 52.70
taking a bath 49.91 59.31 49.54 55.32 69.52 52.74

taking a child to bed 51.56 60.21 49.55 54.69 68.74 54.25
taking a driving lesson 49.67 63.97 51.32 59.64 63.27 54.28

taking a shower 49.94 49.93 50.17 57.77 68.33 55.61
washing dishes 49.99 62.32 50.73 52.32 60.07 50.26

washing one s hair 48.63 64.52 50.15 53.40 66.75 57.12

Average Performance 50.01 60.67 50.23 55.27 66.76 53.63

Table 4: Success Rate (%) of various open-weight LLMs over the created commonsense queries for 37 real-world
activities. Overall, we find Mistral-7B-v0.1 performing best over the maximum number of scenarios, highlighting
better commonsense reasoning abilities when compared to other open-weight models. We also observe that phi-2,
with a surprisingly lower number of parameters, outperforms models with more number of parameters.
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Scenario planting a tree going on a train going grocery shopping flying in an airplane riding on a bus

baking a cake 91.58 (↑ 28.47%) 94.09 (↑ 30.98%) 92.59 (↑ 29.48%) 93.21 (↑ 30.10%) 82.23 (↑ 19.12%)
borrowing a book from the library 82.26 (↑ 26.85%) 86.55 (↑ 31.14%) 86.44 (↑ 31.03%) 84.49 (↑ 29.08%) 81.14 (↑ 25.73%)

changing batteries in an alarm clock 81.17 (↑ 29.98%) 79.09 (↑ 27.90%) 74.13 (↑ 22.94%) 74.86 (↑ 23.67%) 75.23 (↑ 24.04%)
checking in at an airport 62.29 (↑ 13.53%) 67.31 (↑ 18.55%) 67.07 (↑ 18.31%) 68.58 (↑ 19.82%) 61.22 (↑ 12.46%)

cleaning up a flat 63.55 (↑ 11.71%) 63.36 (↑ 11.52%) 65.41 (↑ 13.57%) 65.23 (↑ 13.39%) 65.38 (↑ 13.54%)
cooking pasta 84.45 (↑ 24.14%) 83.15 (↑ 22.84%) 86.65 (↑ 26.34%) 83.62 (↑ 23.31%) 82.37 (↑ 22.06%)
doing laundry 76.06 (↑ 19.60%) 80.14 (↑ 23.68%) 79.08 (↑ 22.62%) 79.29 (↑ 22.83%) 76.09 (↑ 19.63%)

eating in a fast food restaurant 78.84 (↑ 25.19%) 84.95 (↑ 31.30%) 85.69 (↑ 32.04%) 87.35 (↑ 33.70%) 80.45 (↑ 26.80%)
flying in an airplane 86.81 (↑ 28.88%) 90.15 (↑ 32.22%) 84.44 (↑ 26.51%) 95.71 (↑ 37.78%) 77.50 (↑ 19.57%)

fueling a car 73.19 (↑ 22.40%) 73.07 (↑ 22.28%) 73.44 (↑ 22.65%) 74.48 (↑ 23.69%) 73.57 (↑ 22.78%)
getting a hair cut 84.83 (↑ 34.25%) 85.45 (↑ 34.87%) 85.60 (↑ 35.02%) 87.89 (↑ 37.31%) 79.17 (↑ 28.59%)

going bowling 66.00 (↑ 16.71%) 69.63 (↑ 20.34%) 67.37 (↑ 18.08%) 69.89 (↑ 20.60%) 68.66 (↑ 19.37%)
going grocery shopping 90.69 (↑ 23.92%) 92.69 (↑ 25.92%) 96.82 (↑ 30.05%) 94.17 (↑ 27.40%) 87.66 (↑ 20.89%)

going on a train 79.66 (↑ 24.96%) 93.89 (↑ 39.19%) 78.45 (↑ 23.75%) 86.35 (↑ 31.65%) 75.09 (↑ 20.39%)
going to the dentist 68.95 (↑ 16.38%) 78.18 (↑ 25.61%) 77.02 (↑ 24.45%) 79.14 (↑ 26.57%) 71.23 (↑ 18.66%)
going to the sauna 66.59 (↑ 15.76%) 72.87 (↑ 22.04%) 66.80 (↑ 15.97%) 70.92 (↑ 20.09%) 65.05 (↑ 14.22%)

going to the swimming pool 66.51 (↑ 19.78%) 69.39 (↑ 22.66%) 63.75 (↑ 17.02%) 71.40 (↑ 24.67%) 62.85 (↑ 16.12%)
going to the theater 71.62 (↑ 23.90%) 74.62 (↑ 26.90%) 71.81 (↑ 24.09%) 80.23 (↑ 32.51%) 68.64 (↑ 20.92%)
having a barbecue 87.32 (↑ 29.34%) 86.63 (↑ 28.65%) 87.92 (↑ 29.94%) 87.47 (↑ 29.49%) 80.32 (↑ 22.34%)
ironing laundry 73.86 (↑ 22.05%) 78.18 (↑ 26.37%) 78.57 (↑ 26.76%) 78.68 (↑ 26.87%) 77.30 (↑ 25.49%)
making a bonfire 77.72 (↑ 29.72%) 77.87 (↑ 29.87%) 72.06 (↑ 24.06%) 75.50 (↑ 27.50%) 67.50 (↑ 19.50%)
making coffee 70.11 (↑ 20.20%) 64.84 (↑ 14.93%) 63.53 (↑ 13.62%) 61.54 (↑ 11.63%) 58.30 (↑ 8.39%)

making scrambled eggs 71.61 (↑ 13.77%) 79.90 (↑ 22.06%) 82.66 (↑ 24.82%) 80.72 (↑ 22.88%) 78.63 (↑ 20.79%)
paying with a credit card 74.52 (↑ 24.68%) 75.53 (↑ 25.69%) 73.12 (↑ 23.28%) 77.32 (↑ 27.48%) 65.85 (↑ 16.01%)

planting a tree 95.46 (↑ 35.18%) 89.98 (↑ 29.70%) 85.47 (↑ 25.19%) 85.98 (↑ 25.70%) 76.00 (↑ 15.72%)
playing tennis 59.51 (↑ 9.33%) 60.14 (↑ 9.96%) 62.43 (↑ 12.25%) 63.65 (↑ 13.47%) 60.95 (↑ 10.77%)

renovating a room 72.92 (↑ 21.86%) 75.30 (↑ 24.24%) 72.11 (↑ 21.05%) 72.05 (↑ 20.99%) 73.54 (↑ 22.48%)
repairing a flat bicycle tire 80.63 (↑ 25.04%) 83.22 (↑ 27.63%) 80.89 (↑ 25.30%) 82.12 (↑ 26.53%) 77.30 (↑ 21.71%)

riding on a bus 84.73 (↑ 29.75%) 80.08 (↑ 25.10%) 76.45 (↑ 21.47%) 86.34 (↑ 31.36%) 90.70 (↑ 35.72%)
sending food back (in a restaurant) 70.47 (↑ 19.32%) 73.10 (↑ 21.95%) 71.93 (↑ 20.78%) 64.22 (↑ 13.07%) 66.61 (↑ 15.46%)

sewing a button 76.73 (↑ 24.03%) 81.05 (↑ 28.35%) 80.59 (↑ 27.89%) 77.56 (↑ 24.86%) 76.23 (↑ 23.53%)
taking a bath 77.71 (↑ 24.96%) 85.67 (↑ 32.92%) 81.47 (↑ 28.72%) 81.65 (↑ 28.90%) 77.57 (↑ 24.82%)

taking a child to bed 68.52 (↑ 14.26%) 74.16 (↑ 19.90%) 69.31 (↑ 15.05%) 70.35 (↑ 16.09%) 68.11 (↑ 13.85%)
taking a driving lesson 72.96 (↑ 18.67%) 74.08 (↑ 19.79%) 72.93 (↑ 18.64%) 76.74 (↑ 22.45%) 75.44 (↑ 21.15%)

taking a shower 78.23 (↑ 22.62%) 79.28 (↑ 23.67%) 79.36 (↑ 23.75%) 78.61 (↑ 23.00%) 75.06 (↑ 19.45%)
washing dishes 65.23 (↑ 14.99%) 69.43 (↑ 19.19%) 67.94 (↑ 17.70%) 66.78 (↑ 16.54%) 68.03 (↑ 17.79%)

washing one s hair 76.49 (↑ 19.37%) 84.70 (↑ 27.58%) 82.76 (↑ 25.64%) 78.70 (↑ 21.58%) 79.09 (↑ 21.97%)

Table 5: The table shows the performance of Llama-3-8B finetuned over 5 scenarios (presented in the columns).
We observe a boost in performance (highlighted in blue) when compared to the MCQA-based evaluation.
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