
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 9243–9254

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

DenseSSM: State Space Models with Dense Hidden Connection for
Efficient Large Language Models

Wei He∗ Kai Han*† Yehui Tang Chengcheng Wang
Yujie Yang Tianyu Guo Yunhe Wang†

Huawei Noah’s Ark Lab
{hewei142, kai.han, yunhe.wang}@huawei.com

Abstract

Large language models (LLMs) face a signif-
icant challenge due to the excessive computa-
tional and memory requirements of the com-
monly used Transformer architecture. While
state space model (SSM) is a new type of foun-
dational network architecture offering lower
computational complexity, their performance
has yet to fully rival that of Transformers. This
paper introduces DenseSSM, a novel approach
to enhance the flow of hidden information be-
tween layers in SSMs. By selectively inte-
grating shallow-layer hidden states into deeper
layers, DenseSSM retains fine-grained infor-
mation crucial for the final output. This in-
cremental improvement maintains the train-
ing parallelizability and inference efficiency
of SSMs while significantly boosting perfor-
mance. The proposed method is broadly ap-
plicable to various SSM types, including Ret-
Net and Mamba, and DenseSSM achieves sig-
nificant performance improvements on public
benchmarks, demonstrating its effectiveness
and versatility.

1 Introduction

Since the release of ChatGPT (OpenAI, 2023),
large language models (Team, 2023; Bai et al.,
2023; Touvron et al., 2023; Zhou et al., 2024; Wang
et al., 2023) have entered a new epoch, showcasing
outstanding abilities in language comprehension,
dialogue, and logical reasoning. Over the past year,
the industry has witnessed the emergence of numer-
ous large language models, such as LLaMA (Tou-
vron et al., 2023) and ChatGLM (Zeng et al.,
2023). These large language models have given
rise to a plethora of practical applications, includ-
ing conversational bots, code assistants, and AI
agents. The foundation of large language models
lies in the Transformer network structure (Vaswani

*Equal contribution
†Corresponding author

et al., 2017), primarily utilizing a multi-head self-
attention module for modeling relationships be-
tween tokens and a Feed-forward network for non-
linear feature transformations. The scaling law (Ka-
plan et al., 2020) based on the Transformer struc-
ture has propelled the continuous development and
expansion of large language models.

In the Transformer network, multi-head self-
attention (MHSA) plays a crucial role, but it comes
with significant computational demands and mem-
ory requirements during inference. In terms of
computational complexity, for an input sentence
of length N , the calculation of self-attention has
a complexity of O(N2) during training and infer-
ence. Regarding memory usage, previously en-
countered keys and values are stored, leading to a
memory occupation of O(ND). As a result, recent
efforts on network architectures have focused on
simplifying Transformer by reducing its computa-
tion and space complexity. This includes various
approaches, notably convolutional language mod-
els (Poli et al., 2023), recurrent unit (Lei, 2021),
long context models (Ding et al., 2023), and state
space models (SSMs) (Gu et al., 2021; Gu and Dao,
2023). These new models have provided strong
alternatives to Transformer for building efficient
LLMs.

SSMs propose modeling sequences by introduc-
ing an appropriate design of hidden states for han-
dling long-range dependencies with both training
parallelizability and inference efficiency. Starting
from the continuous mapping system, SSMs are
discretized to process discrete inputs in deep learn-
ing such as language sequence. The discretized
SSMs can be computed in both linear recurrence
and global convolution modes. Commonly, convo-
lution mode is used during training to achieve paral-
lel acceleration, while recurrence mode is used dur-
ing autoregressive inference because it has lower
computational complexity.

The core distinction of SSMs from other neu-

9243



ral networks, such as fully-connected neural net-
works, lies in the design of hidden states. Hidden
states enable information to be propagated along
the temporal dimension, while avoiding the com-
putation complexity of accessing historical tokens
at each step. Through state transition parameters
A, hidden states transfer the hidden information
from the previous time steps to the current time
step, allowing for autoregressive prediction of the
next token. Hidden states play a crucial role in
SSMs, but have not received sufficient investiga-
tion in the past. Weights and hidden features in
different layers contain information at various lev-
els from fine-grained to coarse-grained (Gu et al.,
2021). However, in previous versions of SSMs,
hidden states only flowed within the current layer
and could not transmit more information to deeper
layers, thus failing to capture more hierarchical
information.

In this paper, we propose DenseSSM to facili-
tate a more comprehensive flow of hidden infor-
mation between layers in state space models. We
first analyze the hidden state degradation in con-
ventional SSMs which will prevent hidden infor-
mation flow from low levels to high levels. By
selectively integrating shallow-layer hidden states
into deeper layers, DenseSSM retains fine-grained
information that is useful for the final output. The
proposed method is applicable to different types
of SSMs, such as RetNet (Sun et al., 2023) and
Mamba (Gu and Dao, 2023). Our approach main-
tains the training parallelizability and inference
efficiency of SSMs, while achieving a significant
improvement with only a slight increase in the num-
ber of parameters. For instance, our DenseRetNet
model outperforms traditional RetNet with up to
5% accuracy improvement on public benchmarks.

2 Related Works

2.1 Large Language Models

Large language models (LLMs) have seen transfor-
mative advancements, enabling them to excel in a
diverse array of natural language processing (NLP)
tasks, including machine translation, text summa-
rization, and emergent abilities like incontext learn-
ing, which were previously unattainable by earlier
language models (Devlin et al., 2019; Raffel et al.,
2023). The evolution of LLMs has been marked by
a monumental shift in scale, exemplified by mod-
els like GPT-3 (Brown et al., 2020), with its 175
billion parameters, and the even more expansive

PaLM (Chowdhery et al., 2022), packing in a as-
tounding 540 billion parameters. These models
have empirically validated the scaling law (Kaplan
et al., 2020), which posits that increasing model
size leads to improved performance.

The rapid expansion in model size has under-
scored the critical need for the development of ef-
ficient Transformer algorithms (Dao et al., 2022;
Dao, 2023; Gu et al., 2021, 2020; Smith et al., 2023;
Fu et al., 2023; Mehta et al., 2022; Sun et al., 2023;
Liu et al., 2024), where FlashAttention (Dao et al.,
2022; Dao, 2023) has emerged as a significant in-
novation. This approach enhances the pivotal at-
tention mechanism within Transformers by opti-
mizing softmax computations using a technique
known as tiling. By minimizing memory transac-
tions between the GPU’s HBM and on-chip SRAM,
FlashAttention compute exact attention with fewer
memory accesses, resulting in both faster execu-
tion and a lower memory footprint compared to
standard attention implementations.

2.2 State Space Models
While the Transformer is currently the de facto
architecture for large language models (LLMs),
providing efficient parallel GPU training, the in-
ference time for single-token inference increases
significantly with longer sequence lengths, pos-
ing challenges for deployment due to the O(N)
complexity per step even with accelerating algo-
rithms like FlashAttention (Dao et al., 2022; Dao,
2023). Efforts have been dedicated to research-
ing the Transformer-Next architecture, aiming to
achieve state-of-the-art (SOTA) performance with
efficient parallel training and effective inference,
particularly for long sequence lengths.

State Space Sequence Models (SSMs) have re-
cently emerged as promising architectures for se-
quence modeling. HiPPO (Gu et al., 2020) stream-
lines sequence modeling by compressing lengthy
inputs into a dynamic, polynomial-based represen-
tation using orthogonal polynomials. S4 (Gu et al.,
2021) introduced a novel parameterization through
the application of a low-rank structured correction,
enabling stable diagonalization and simplifying the
process into Cauchy kernel operations. S5 (Smith
et al., 2023) further simplifies the S4 layer by em-
ploying a single multi-input, multi-output SSM and
introducing efficient parallel scan algorithms into
the S4 layers. H3 (Fu et al., 2023) narrows the
performance gap between SSMs and Transformer
language models by designing three projections

9244



(Q, K, V) to simulate the attention mechanism and
adopting a fast Fourier transform (FFT) to reduce
computation and memory consumption further.

GSS (Mehta et al., 2022) was the first gated neu-
ral network architecture incorporating SSMs, it
builds upon (Hua et al., 2022) and introducing
a compact SSM architecture that contracts model
dimensions. Unlike GSS, which emphasizes com-
pressing context into a smaller state, Mamba (Gu
and Dao, 2023) diverges by focusing on enhancing
the selectivity of the state representation, aiming to
balance the tradeoff between efficiency and effec-
tiveness without compromising the model’s ability
to capture essential information from the context. It
achieves this by integrating a selection mechanism
which enabling the model to selectively prioritize
relevant information while concurrently utilizing a
hardware-optimized algorithm.

2.3 Linear Attention

Linear attentions (Katharopoulos et al., 2020; Zhai
et al., 2021), which remove the softmax operation
from traditional attention, can be seen as a deriva-
tive of State Space Models (SSMs). They replace
SSMs’ convolutions with a variation of Multi-Head
Attention (MHA) and eliminate the softmax of the
traditional attention mechanism by utilizing a ker-
nel function that operates independently on the
queries (Q) and keys (K). These mechanisms also
have a parallel form for efficient training and a
recurrent form with O(1) complexity.

RetNet (Sun et al., 2023), TransNormer-
LLM (Qin et al., 2024), and RWKV (Peng et al.,
2023) implement a fixed decay factor to update
the previous key-value (KV) states at each recur-
rent step. This decay mechanism seamlessly in-
tegrates with the causal attention mask for effi-
cient parallel computation. However, since this
decay factor is preset and independent of the data,
it may not be universally applicable across all
tasks, especially when prompts or long-range infor-
mation is particularly important. To address this
challenge, GLA (Gated Linear Attention) (Yang
et al., 2023) introduces data-dependent gating
mechanisms that are practical for both parallel and
block-parallel forms. It performs competitively
against strong baselines, including the LLaMA-
architecture Transformer (Touvron et al., 2023) and
Mamba (Gu and Dao, 2023).

3 DenseSSM

In this section, we analyze the hidden state degra-
dation in the deeper layers of SSMs and further
introduce dense connection of hidden states to pre-
serve richer information for deeper layers.

3.1 Prelimineries
Transformer Transformer is the widely-used net-
work architecture of large language models which
is based on the self-attention mechanism. The self-
attention performs as follows:

ot = Wo

∑T
i=1 e

qTt kivi∑T
i=1 e

qTt ki
l, (1)

where q, k and v are obtained by fully-connected
layers, Wo is the linear transformation weight for
the output token ot at the t-th timestep. Each token
will merge information of the other tokens by rela-
tionship weights calculated by the self-attention. In
addition to self-attention module, the fee-forward
network (FFN) module is another key component
to transform the token representation and intro-
duces more non-linearity. FFN module is usually
composed by two stacked linear layers and non-
linear activation function:

yt = Wdownσ(Wupot), (2)

where Wup and Wdown are the weight matri-
ces of up projection and down projection lay-
ers, and σ(·) is the activation function such as
GELU (Hendrycks and Gimpel, 2016).

SSM State space models (SSM) in the literature
of deep learning refer to the class of structured
SSMs (Gu et al., 2021) and the derivatives such as
RWKV (Peng et al., 2023) and RetNet (Sun et al.,
2023). Here we briefly describe the structured
SSMs as a representative. Structured SSMs define a
sequence-to-sequence transformation x(t) → y(t)
with an implicit latent state h(t). The continuous
form is formulated as

h′(t) = Ah(t) +Bx(t), (3)

y(t) = Ch(t), (4)

where A, B and C are the parameters. To apply
SSM to the real discrete data, we discretize the con-
tinuous case and obtain the recurrence formulation
and convolution formulation of it. The parameters
A and B are transformed to the discrete parame-
ters A and B with the discretization rule such as

9245



(a) DenseSSM in autoregressive mode. (b) DenseSSM in parallelizable convolution mode.

Figure 1: Illustrations of DenseSSM framework, where ϕ is the selective transition module and ‘Fusion’ is the
hidden fusion module.

zero-order hold (Gu et al., 2021). The recurrence
formulation is

ht = Aht−1 +Bxt, (5)

yt = Cht. (6)

The convolution formulation is

K = (CB,CAB, · · · , CA
t
B), (7)

y = x ∗K, (8)

where ∗ is convolution operation, and t+ 1 is the
convolution kernel size. The recurrence mode is
usually used for efficient autoregressive inference,
while the convolution mode is used for efficient
parallelizable training.

3.2 Dense Hidden Connection
Here we analyze the hidden information flow from
shallow layers to deep layers. In the following, we
use the superscript “l” to represent the l-th block.

hlt =Ahlt−1 +Bxlt

=Ahlt−1 +BΘ(yl−1
t )

=Ahlt−1 +BΘ(Chl−1
t )

=Ahlt−1 +BΘ(CAhl−1
t−1 + CBΘ(Chl−2

t ))

=Ahlt−1 +BΘ(CAhl−1
t−1 + · · ·

+ CBΘ(CAhl−m+1
t−1 + CBΘ(Chl−m

t )) · · · )︸ ︷︷ ︸
m

,

(9)
where Θ(·) is the transformations from the last
output to the input of SSM module, such as con-
volution and FFN. From Eq. 9, we can see that

the transmission of hidden information from the
(l −m)-th layer to the l-th layer requires passing
through m transformation blocks and m BC matrix
multiplications. Such a complex computational
process can lead to significant information loss,
meaning that attempting to retrieve certain infor-
mation from the (l −m)-th layer at the l-th layer
becomes very challenging and unclear.

Through the above analysis, we have identified
a crucial issue in SSM, which is the decay of im-
portant hidden states as the layer depth increases.
Therefore, we propose a dense connection for hid-
den states to better preserve fine-grained informa-
tion from shallow layers, enhancing the ability of
deep layers to perceive the original textual infor-
mation. For the l-th block, we densely connect the
hidden states in its previous m blocks. First, we
collect the shallow hidden states and introduce a
selective transition module ϕ to project them to the
subspace of the target layer and select useful parts
simultaneously:

Hl
t = [ϕ(hl−1

t );ϕ(hl−2
t ); · · · ;ϕ(hl−m

t )], (10)

Then, the intermediate hidden vectors are injected
into the original hidden state of this layer:

h′lt = Fuse(hlt,Hl
t). (11)

The operation Fuse() is the function to fuse the
intermediate hidden vectors and the current hidden
state. The SSMs with the proposed dense hidden
connection is named as DenseSSM (Figure 1(a)).
The DenseSSM scheme can be used in any SSM

9246



variant such as Mamba (Gu and Dao, 2023). Com-
pared to DenseNet (Huang et al., 2017) for convolu-
tional networks, the proposed DenseSSM densely
connect the hidden states in SSMs, and the selective
mechanism and fusion manner are more efficient
for language modeling.

The above analysis is based on the recurrence
mode, in the following we introduce the convo-
lution mode of DenseSSM for efficient training.
From Eq. 5, we have

hlt = Ahlt−1 +Bxlt

= A(Ahlt−2 +Bxlt−1) +Bxlt

= A
2
hlt−2 +ABxlt−1 +Bxlt

= A
t
hl0 +A

t−1
Bxl1 + · · ·+ABxlt−1 +Bxlt

= A
t
Bxl0 +A

t−1
Bxl1 + · · ·+ABxlt−1 +Bxlt.

(12)
This process can be conducted by a convolution on
the input sequence (xl0, x

l
1, · · · , xlt):

hlt = A
t
Bxl0 +A

t−1
Bxl1 + · · ·+ABxlt−1 +Bxlt

= (xl0, x
l
1, · · · , xlt) ∗ (B,AB, · · · , At

B).
(13)

In the proposed DenseSSM, we enhance the hidden
states by Eq. 11 and then obtain the outputs of
SSM:

ylt = Ch′lt = CFuse((xl0, x
l
1, · · · , xlt)∗

(B,AB, · · · , At
B),Hl

t).
(14)

As shown in Figure 1(b), DenseSSM can be trained
in parallelizable convolution mode.

Selective Transition Module The selective tran-
sition module ϕ(·) is to project inputs to the target
subspace and select the useful part of hidden infor-
mation simultaneously. We implement the selective
transition module with projection layer and gate
selection mechanism, as shown in Figure 2. First,
we project the hidden states in the previous m SSM
blocks to the same space:

h′l−m
t = Proj(hl−m

t ). (15)

Then we generate the gate weights based on the
input xlt and use them to select useful hidden states:

ϕ(hl−m
t ) = h′l−m

t ⊙Gate(xlt). (16)

Please note that the newly introduced modules
must not compromise the training parallelizability

and inference efficiency of the original SSM frame-
work. Therefore, we maintain a simple and efficient
implementation in practice. The projection layer is
implemented using a linear transformation, while
the gate module is implemented with a two-layer
MLP with a SiLU activation (Elfwing et al., 2018).

Figure 2: Selective Transition Module.

Hidden Fusion Module After the selective
transition module, we obtain the selected hid-
den states from shallow layers, i.e., HL

t =
[ϕ(h1t );ϕ(h

2
t ); · · · ;ϕ(hL−1

t )]. A hidden fusion
module is utilized to integrate shallow hidden states
with the current hidden states. Similarly, we keep
the implementation simple for efficiency. We add
the selected hidden states since they have been pro-
jected to the same space:

hLt = Fuse(hLt ,HL
t ) = hLt +

m∑

i=1

hl−i
t . (17)

Here, we provide a basic implementation, but of
course, there are other implementation approaches
such as concatenation and cross-attention.

Extension to RetNet RetNet (Sun et al., 2023)
can be viewed as a kind of state space models which
uses a variant of self-attention rather than convo-
lution in Eq. 7. Compared to the standard Trans-
former, RetNet is a RNN-style language model
with fast inference and parallelized training. It uti-
lizes linear attention to simplify the computation
complexity of self-attention.

St = γSt−1 + kTt vt, (18)

yt = qtSt, (19)

where St is the recurrent state, and 0 < γ < 1.
The dense KV connection for RetNet is performed
as follows. The low-level keys and values are first
concatenated:

Kl
t = [ϕ(kl−1

t );ϕ(kl−2
t ); · · · ;ϕ(kl−m

t )], (20)

V l
t = [ϕ(vl−1

t );ϕ(vl−2
t ); · · · ;ϕ(vl−m

t )]. (21)

9247



Then, the intermediate key (or value) vectors are
injected into the original keys (or values) of this
layer:

k′Lt = kLt +

m∑

i=1

kl−i
t , (22)

v′Lt = vLt +

m∑

i=1

vl−i
t . (23)

The RetNet equiped with the proposed dense key-
value (KV) connections is named as DenseRetNet,
as illustrated as shown in the appendix. In addition,
the paralleizable mode of DenseRetNet is formu-
lated as follows:

yt = qt

t∑

i=1

γt−ik′Ti v
′
i. (24)

Our DenseRetNet can be implemented in paralleliz-
able mode as well, that is, can be trained in parallel
on GPUs or NPUs.

4 Experiments

In this section, we conducted comprehensive exper-
iments to validate the effectiveness of the proposed
DenseSSM. The verification was carried out on dif-
ferent architectures, including RetNet and Mamba

4.1 Data and Experimental Settings
Pretraining Data In our empirical analysis, we
trained multiple models from scratch. Our experi-
ments involved training on a dataset tokenized with
the LLaMA tokenizer (Touvron et al., 2023), com-
prising 56GB of raw data sourced from 91 files
sampled from The Pile (Gao et al., 2020). This
dataset was randomly sampled from the full Pile
dataset, excluding data from the DM_Mathematics
and GitHub subsets, resulting in a cached dataset
containing a total of 15 billion tokens. For a de-
tailed list of the 15B data files sampled from the
Pile in our analysis, see Ref. A.3.

Additionally, we conducted experiments with
DenseMamba-1.4B, trained on the entire Pile
dataset, extending to 300 billion tokens and uti-
lizing the GPT-NeoX tokenizer (Black et al., 2022).
This approach ensured a fair comparison with other
models, such as Mamba and Pythia (Biderman
et al., 2023).

Evaluation Datasets In our experiment, we in-
vestigate models performance across a spectrum of
downstream tasks, focusing on zero-shot and 4-shot

learning capabilities. The tasks, We benchmarked
in Table 1, encompass a range of datasets designed
to test common-sense reasoning and question-
answering, such as HellaSwag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), COPA (Ponti
et al., 2020), PIQA (Bisk et al., 2019), Wino-
grad (Muennighoff et al., 2022), Winogrande (Sak-
aguchi et al., 2019), StoryCloze (Lin et al., 2021),
OpenBookQA (Mihaylov et al., 2018), SciQ (Welbl
et al., 2017), ARC_E (ARC-easy) and ARC_C
(ARC-challenge) (Clark et al., 2018). Words Per-
plexity results of WikiText (Merity et al., 2016)
and LAMBADA (LAMBADA_OPENAI) (Paperno
et al., 2016) are also reported. All evaluations are
executed using the LM evaluation harness (Gao
et al., 2023), ensuring a standardized approach to
assessing the models’ capabilities.

4.2 Training Setup and Model’s Architectures
To validate the effectiveness of our proposed
method, we trained 350M and 1.3B DenseSSM
models from scratch for one epoch. For experi-
ments with 15 billion training tokens, we utilized a
training batch size of 0.5 million tokens and train-
ing context length is set to 2048. The AdamW
optimizer (Loshchilov and Hutter, 2019) was em-
ployed, featuring a polynomial learning rate decay
and warm-up ratio is set to 1.5% of total training
steps. We set the weight decay to 0.01 and applied
gradient clipping at 1. In experiments conducted on
The Pile (300B), we adhered to the training settings
and model hyperparameters used in Mamba (Gu
and Dao, 2023). Additionally, we designed our
DenseRetNet model to be fully comprised of GAU-
like blocks, which will be detailed in the subse-
quent paragraph.

Transformer-based language models We evalu-
ate our proposed select dense mechanism against
popular large language models like LLaMA (Tou-
vron et al., 2023) and OPT (Zhang et al., 2022),
comparing with LLaMA for 350M size models and
with OPT for 1.3B size models. Their hyperparam-
eters are reported in the appendix A.2.

Mamba In our experiments with a dataset con-
taining 15 billion tokens, we followed the model
structure in each Mamba layer and the training set-
tings outlined in Mamba’s paper. Specifically, we
set the learning rate to 3e-4 for training the Mamba-
360M model and 2e-4 for the Mamba-1.3B model,
with no dropout applied in either case. Two addi-
tional layers were added to ensure a fair compar-

9248



Models / Tasks Wikitext↓ LAMBADA↓ ARC_C ARC_E BoolQ COPA HellaSwag PIQA WinoGrande StoryCloze Winograd OpenBookQA SciQ Avg.↑
Zero-Shot
LLaMA-350M 26.79 22.50 22.95 46.13 59.27 64 33.19 64.36 49.09 57.64 62.02 29.6 75.3 51.23
RetNet-350M 36.88 35.53 21.25 40.99 48.35 61 29.86 62.30 51.07 55.59 59.05 28.4 75.8 48.51
DenseRetNet-350M 31.35 19.92 23.72 45.03 58.50 69 32.31 64.04 52.09 58.04 60.82 30.4 76.6 51.87
Mamba-360M 26.60 17.55 23.98 45.83 55.78 61 34.89 64.31 52.88 58.90 62.92 29.2 79.8 51.77
DenseMamba-360M 26.41 17.03 24.32 46.0 59.20 66 34.68 64.80 51.14 59.03 63.23 29.8 79.8 52.55
Four-Shot
LLaMA-350M - - 23.81 47.26 53.00 65 33.71 64.15 51.14 57.38 64.25 28.2 81.2 51.73
RetNet-350M - - 23.04 40.91 50.37 63 29.49 62.08 51.78 55.66 59.61 27.4 77.4 49.16
DenseRetNet-350M - - 24.74 45.66 54.89 69 32.14 63.70 52.01 57.58 59.23 28.2 78.3 51.41
Mamba-360M - - 25.26 46.51 45.41 63 34.25 65.13 52.80 58.97 62.88 29.0 81.0 51.29
DenseMamba-360M - - 24.83 46.97 58.26 66 34.74 64.69 52.01 58.37 63.44 28.6 80.3 52.56
Zero-Shot
OPT-1.3B 22.04 13.79 24.66 48.65 58.07 63 37.00 65.89 52.80 61.02 65.51 29.6 81.1 53.39
RetNet-1.3B 27.90 23.41 22.61 46.34 48.75 58 32.25 63.44 49.96 57.71 60.65 23.4 77.3 49.13
DenseRetNet-1.3B 21.55 10.88 24.49 50.88 58.62 63 38.72 67.25 49.96 60.82 65.85 31.8 82.7 54.01
Mamba-1.3B 21.79 12.46 25.09 50.84 53.15 67 38.34 67.19 50.59 60.29 65.25 30.0 79.8 53.41
DenseMamba-1.3B 21.39 12.47 25.09 51.89 58.59 67 39.26 67.90 52.01 61.28 66.11 30.6 79.9 54.51
Four-Shot
OPT-1.3B - - 25.94 50.46 52.35 63 36.97 64.64 52.33 60.09 66.58 28.2 89.4 53.63
RetNet-1.3B - - 24.66 46.30 47.49 67 31.96 63.22 52.09 57.51 61.42 26.6 80.3 50.78
DenseRetNet-1.3B - - 25.68 53.07 56.3 67 38.56 66.97 53.59 62.08 65.12 27.8 86.7 54.81
Mamba-1.3B - - 26.96 52.69 49.56 69 39.25 66.27 52.96 61.15 66.06 30.4 82.3 54.24
DenseMamba-1.3B - - 26.54 52.99 58.59 67 39.26 67.08 53.67 61.48 65.89 31.0 82.1 55.05

Table 1: Benchmarking results on the 15B Pile subset, comparing DenseSSM models with baseline models
like RetNet (Sun et al., 2023) and Mamba (Gu and Dao, 2023), as well as Transformer-based models LLaMA-
350M (Touvron et al., 2023) and OPT-1.3B (Zhang et al., 2022). DenseSSM models demonstrate lower perplexity
and higher accuracy, enhancing the performance of SSM models and surpassing that of Transformer-based models.

ison in terms of parameter count. Details of the
model’s hyperparameters are provided in the ap-
pendix A.2. For experiments scaling up to the Pile
dataset with 300 billion tokens, we used the same
architecture as the original Mamba-1.4B model,
with negligible increases in parameters and compu-
tational costs for dense hidden connections thanks
to the relatively small hidden size of the Mamba
architecture.

RetNet Model sizes and hyperparameters for
our RetNet variants with DenSSM methods are
shown in the appendix A.2. We further utilize
Gated Attention Unit (GAU) (Hua et al., 2022)
in our DenseRetNet. GAU combine Attention
and FFN block into one, so a single block can
perform both channel mixing and token mixing:
Y = (XWu ⊙ AV̂ )Wo, where A is attention
weight cauculated though Eq. 24. Also, multiple at-
tention heads with different exponential decay rates
are utilized to perform multi-scale decay instead
of GAU’s single-head strategy. In our experiments,
we have observed that our architecture surpasses
the origin RetNet structure in terms of training sta-
bility and performance.

4.3 Experiment Results

Experiment Results on 15B Pile-Subset Table 1
presents the experimental results from training with
the 15B pile-subset, comparing DenseRetNet and
DenseMamba with LLaMA (Touvron et al., 2023),
OPT (Zhang et al., 2022), Mamba (Gu and Dao,
2023), and RetNet (Sun et al., 2023). DenseRetNet

achieves lower perplexity on the Wikitext and
LAMBADA, demonstrating clear advantages in
downstream tasks in both zero-shot and few-shot
settings, and significantly outperforms RetNet. Ad-
ditionally, DenseMamba shows superior perplexity
and accuracy on the test set, outperforming Mamba
and other Transformer-based models.

Experiment Results on 300B Pile In our experi-
ments with the 300B Pile dataset, we assessed the
performance of DenseMamba-1.4B trained from
scratch. We compared benchmark results from
the original Mamba-1.4B (Gu and Dao, 2023),
Pythia-1.4B (Biderman et al., 2023) and RWKV-
1.5B (Peng et al., 2023), which were sourced
from the Mamba paper. As illustrated in Table 2,
DenseMamba-1.4B demonstrated a clear advantage
over the original Mamba-1.4B and other models.
This highlights the effectiveness of the DenseSSM
approach in handling data at scale.

4.4 Ablation Studies

We conduct an ablation study to assess the impact
of various design choices in our Selective Transi-
tion Module and Hidden Fusion Module. Word Per-
plexity results are reported for in-domain and out-
of-domain corpora (Merity et al., 2016). We adjust
model parameters to ensure fair comparisons across
all studies under similar computational costs, using
a 350M RetNet model as the baseline. Metrics are
In-domain evaluation loss and out-of-domain Wiki-
text word perplexity, with training data consisting
of 5B tokens tokenized using LLaMA tokenizer.

9249



Model Pile↓ LAMBADA↓ LAMBADA HellaSwag PIQA Arc_E Arc_C WinoGrande Avg. ↑
Pythia-1.4B 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 54.3
Mamba-1.4B 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
DenseMamba-1.4B 6.68 4.85 66.4 60.6 74.0 66.7 33.2 62.9 60.6

Table 2: Zero-shot benchmarking results when training the Pile(300B), comparing DenseSSM models with Pythia-
1.4B (Biderman et al., 2023), RWKV-1.5B (Peng et al., 2023) and Mamba-1.4B (Gu and Dao, 2023).

Projection Select #Param In domain Wikitext

Vanilla RetNet - 356M 2.524 46.82
None None 346M 2.459 43.76
Identity MLP 353M 2.428 42.08
Identity Linear 357M 2.443 43.54
Linear MLP 353M 2.460 43.37
Linear Linear 356M 2.469 44.23

Table 3: Ablation on Selective Transition Module

Fusion Layers (m) Diff. gates #Param In domain Wikitext

Vanilla RetNet - 356M 2.524 46.82
1 % 353M 2.463 44.17
2 % 353M 2.428 42.05
2 ! 360M 2.431 42.12
4 % 353M 2.420 42.10
4 ! 374M 2.447 43.91

Table 4: Ablation on Different Fusion Layers and Gates

Ablations on Selective Transition Module The
selective transition module projects shallow hidden
states to a common subspace and selects useful
parts, which can be implemented in various ways.
Table 3 examines different settings for Projection
and Select. With variables controlled (dense lay-
ers fixed at 2 and ’Add’ operation used as fusion
module), the results show that Identity Projection
combined with a selection gate, learned from hid-
den states via a parameter-efficient MLP, optimally
balances parameter efficiency and performance.

Ablations on Dense Layers We also conducted
an ablation analysis on the depth of stored fusion
layers (denoted as m). Our results, shown in Ta-
ble 4, indicate that both two-layer(m=2) and four-
layer (m=4) fusion architectures improve perfor-
mance. Considering computational cost, the two-
layer fusion is more optimal. Additionally, we
explored the necessity of different selection gates
for various stored dense layers m, different selec-
tion gates do not significantly impact performance,
benefiting the development of lightweight dense
connection architectures.

Ablations on Hidden Fusion Module In Table 5,
we evaluate the efficiency and effectiveness of dif-

ferent hidden fusion module methods. Feature fu-
sion, achieved either by concatenation followed
by dimension reduction or by employing Cross-
Attention, tends to increase the model’s parameter
count or computational cost. We opted for the addi-
tion (Add) method over Cross-Attention for our fu-
sion strategy, prioritizing computational efficiency
while maintaining performance comparability.

Fusion #Param In domain Wikitext

Vanilla RetNet 356M 2.524 46.82
Concat 354M 2.440 43.75
Add 353M 2.428 42.05
Cross-Attention 353M 2.422 42.31

Table 5: Ablation on HiddenFusion module.

In Table 6, we investigate the performance of
feature fusion when applied at different intervals
across layers or at each layer using the same pre-
viously stored dense features (m = 2). Fusing
at each layer facilitates information transfer from
lower to higher layers more effectively.

Fuse Frequency #Param In domain Wikitext

Vanilla RetNet 356M 2.524 46.82
Every layer 353M 2.428 42.05
Every 2 layers 353M 2.441 42.76
Every 4 layers 353M 2.455 44.20

Table 6: Ablation on Fusion Frequency.

5 Conclusion

In this paper, we propose DenseSSM, a frame-
work designed to enhance the hidden information
flow in SSMs. By selectively integrating hidden
states from shallow layers into deeper layers, Dens-
eSSM improves the model’s ability to capture low-
level textual information. This approach preserves
the key advantages of SSMs, such as efficient au-
toregressive inference and parallelizable training.
Experiments on Pile have validated the effective-
ness of the DenseSSM method on both RetNet and
Mamba, demonstrating its applicability to various
SSM architectures.

9250



6 Limitations

In this paper, our experiments primarily compare
pure SSM methods, while comparisons involving
hybrid architectures could be part of our future
work. We have not yet tested larger-scale models
and datasets, and the hyperparameters we propose
for DenseSSM are optimized for models with sizes
of 350M and 1.3B. It is important to note that as we
scale the model, different hyperparameter strategies
may prove more optimal, as they can impact the
stability and efficiency of training.

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,

Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint,
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. Preprint,
arXiv:2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Preprint, arXiv:2205.14135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, Nanning Zheng,
and Furu Wei. 2023. Longnet: Scaling trans-
formers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural networks, 107:3–11.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W.
Thomas, Atri Rudra, and Christopher Ré. 2023. Hun-
gry hungry hippos: Towards language modeling with
state space models. Preprint, arXiv:2212.14052.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

9251

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836


Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2020. Hippo: Recurrent mem-
ory with optimal polynomial projections. Advances
in neural information processing systems, 33:1474–
1487.

Albert Gu, Karan Goel, and Christopher Re. 2021. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le.
2022. Transformer quality in linear time. Preprint,
arXiv:2202.10447.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. Preprint, arXiv:2006.16236.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
7633–7648.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona T. Diab, Veselin
Stoyanov, and Xian Li. 2021. Few-shot learn-
ing with multilingual language models. CoRR,
abs/2112.10668.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng
Ni, Duyu Tang, Kai Han, and Yunhe Wang. 2024.
Kangaroo: Lossless self-speculative decoding for ac-
celerating LLMs via double early exiting. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and
Behnam Neyshabur. 2022. Long range lan-
guage modeling via gated state spaces. Preprint,
arXiv:2206.13947.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2022. Crosslingual general-
ization through multitask finetuning. Preprint,
arXiv:2211.01786.

OpenAI. 2023. Chatgpt (mar 14 version). https://
chat.openai.com/chat.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. 2023.
Rwkv: Reinventing rnns for the transformer era. In
Findings of EMNLP 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866.

Edoardo M. Ponti, Goran Glavaš, Olga Majewska,
Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
XCOPA: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun,
Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong.
2024. Transnormerllm: A faster and better large lan-
guage model with improved transnormer. Preprint,
arXiv:2307.14995.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

9252

https://arxiv.org/abs/2202.10447
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2112.10668
https://arxiv.org/abs/2112.10668
https://openreview.net/forum?id=lT3oc04mDp
https://openreview.net/forum?id=lT3oc04mDp
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2206.13947
https://arxiv.org/abs/2206.13947
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2211.01786
https://arxiv.org/abs/2211.01786
https://chat.openai.com/chat
https://chat.openai.com/chat
https://doi.org/10.5281/zenodo.2630551
https://ducdauge.github.io/files/xcopa.pdf
https://ducdauge.github.io/files/xcopa.pdf
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683


Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Jimmy T. H. Smith, Andrew Warrington, and Scott W.
Linderman. 2023. Simplified state space layers for
sequence modeling. Preprint, arXiv:2208.04933.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to
transformer for large language models. Preprint,
arXiv:2307.08621.

InternLM Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu Guo,
Kai Han, Ying Nie, Xutao Wang, Hailin Hu, Zheyuan
Bai, Yun Wang, et al. 2023. Pangu-π: Enhancing
language model architectures via nonlinearity com-
pensation. arXiv preprint arXiv:2312.17276.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions. In
NUT@EMNLP.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. arXiv
preprint arXiv:2312.06635.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130b: An open bilingual pre-trained model. In
The Eleventh International Conference on Learning
Representations (ICLR).

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen
Huang, Hanlin Goh, Ruixiang Zhang, and Josh
Susskind. 2021. An attention free transformer.
Preprint, arXiv:2105.14103.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Hang Zhou, Yehui Tang, Haochen Qin, Yujie Yang,
Renren Jin, Deyi Xiong, Kai Han, and Yunhe Wang.
2024. Star-agents: Automatic data optimization with
llm agents for instruction tuning. arXiv preprint
arXiv:2411.14497.

9253

https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=-Aw0rrrPUF
https://arxiv.org/abs/2105.14103
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068


A Appendix

A.1 Illustration of DenseRetNet
RetNet (Sun et al., 2023) can be viewed as a kind
of state space models which uses a variant of self-
attention rather than convolution. The autoregres-
sive mode of DenseRetNet is shown in Figure 3. In
addition, the paralleizable mode of DenseRetNet is
formulated as follows:

yt = qt

t∑

i=1

γt−ik′Ti v
′
i. (25)

Our DenseRetNet can be implemented in paralleliz-
able mode as well, that is, can be trained in parallel
on GPUs or NPUs.

Hyperparam LLaMA
350M

RetNet
350M

DenseRetNet
360M

Mamba
360M

DenseMamba
360M

Layers 18 16 16 50 50
Hidden Size 1024 1216 1536 1024 1024
FFN Size 4096 2052 - - -
Heads 8 4 2 - -
Dense Layers - - 2 4 -
Query & Key Size - - 768 - -
Value & Gate Size - 2052 3072 - -
Learning-rate 6× 10−4 6× 10−4 6× 10−4 3× 10−4 3× 10−4

Adam β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.95) (0.9, 0.95)
Dropout 0.0 0.1 0.1 0.0 0.0

Table 7: Key hyperparameters for 350M models

Hyperparam OPT
1.3B

RetNet
1.3B

Mamba
1.3B

DenseRetNet
1.3B

DenseMamba
1.3B

Layers 24 24 50 25 50
Hidden Size 2048 2048 2048 2560 2048
FFN Size 8192 3456 - - -
Heads 32 8 - 4 -
Dense Layers - - - 2 4
Query & Key Size - - - 1280 -
Value & Gate Size - 3456 - 5120 -
Learning-rate 6× 10−4 6× 10−4 2× 10−4 6× 10−4 2× 10−4

Adam β (0.9, 0.98) (0.9, 0.98) (0.9, 0.95) (0.9, 0.98) (0.9, 0.95)
Dropout 0.1 0.1 0.0 0.1 0.0

Table 8: Key hyperparameters for 1.3B models

A.2 Details of the Compared Models
There are two model specifications, i.e., 350M and
1.3B, to verify the validity of our proposed dense
mechanism. The details of the compared models
including Mamba and RetNet a re listed in Table 7
and 8.

A.3 Details of the 15B Pile-Subset
Here are the details of the sampled files in the 15B
Pile-Subset:

• pile_ArXiv_{025, 069, 070, 092, 098,
123, 124, 133, 134, 157}.json

• pile_Books3_{015, 016, 052, 057, 071,
083, 084, 093, 115, 134, 173, 197,
203, 235, 242, 247}.json

• pile_Enron_Emails_004.json

Figure 3: DenseRetNet in autoregressive mode.

• pile_FreeLaw_{031, 083, 104}.json

• pile_Gutenberg_PG-19_{044, 049}.json

• pile_OpenSubtitles_{008, 031,
037}.json

• pile_OpenWebText2_{011, 050, 063,
108, 118, 132, 157, 162, 212, 216,
242, 245, 256}.json

• pile_Pile-CC_{001, 024, 069, 076,
106, 120, 133, 181, 209, 211, 237,
254, 259}.json

• pile_PubMed_Abstracts_{037, 049,
054}.json

• pile_PubMed_Central_{028, 053, 067,
069, 085, 123, 125, 132, 149, 165,
173, 215, 220}.json

• pile_Stack_Exchange_055.json

• pile_USPTO_Backgrounds_{012, 027,
031, 051}.json

• pile_Ubuntu_IRC_{001, 017, 021}.json

• pile_Wikipedia_en_{006, 009, 043,
053, 070}.json

• pile_YoutubeSubtitles_008.json

9254


